West Cumberland Hospital Ground Investigation Report

Curtins Ref: 073983-CUR-00-XX-RP-GE-002

Revision: 03

Issue Date: 09 December 2021

Client Name: CCL Solutions

Client Address: Unit 18, The South Range, Hackthorpe Business Centre, Hackthorpe, Penrith,

Cumbria, CA10 2HX

Site Address: West Cumberland Hospital, CA28 8JG

Ground Investigation Report

Rev	Description	Issued by	Checked	Date
V01	First Issue	JJ	RA	25/03/2021
V02	Updated following post demolition ground investigation	JJ	NF	28/09/2021
V03	Updated with revised borehole plan and appended shear box results	TW	NF	09/12/2021

This report has been prepared for the sole benefit, use, and information for the client. The liability of Curtins Limited with respect to the information contained in the report will not extend to any third party.

Author	Signature	Date
J. James BSc GC EnvMgt MCIWEM C.WEM Principal Engineer	delm	25 March 2021
T. Walker BSc MSc Graduate Geo-environmental Engineer	Twalker	09 December 2021

Reviewed	Signature	Date
R Amirhosseiny Meng Senior Geotechnical Engineer	Li	25 March 2021
N Farnworth BSc (Hons) MCIWEM Senior Geo-Environmental Engineer	Nemwatt	28 September 2021

Authorised	Signature	Date
M Lomas BSc (Hons) CEnv CSci CWEM MCIWEM Associate	lead	25 March 2021
J. James BSc GC EnvMgt MCIWEM C.WEM Principal Engineer	dedu	09 December 2021

Executive Summary

	•
Appointment	In November 2020, Curtins were instructed by Graham Construction to undertake a Phase 2 Ground Investigation for the construction of a new hospital wing and refurbishment of existing buildings with associated car parking, communal soft landscaped, clinical and recycling waste storage in the north of the site.
	Subsequent phases of ground investigation were instructed by Graham Construction in February and June 2021.
	The site is centred on National Grid Reference NS 298950, 516040.
Current Site Status	Most of the site is currently vacant, having undertaken demolition of the previous hospital building in the west, and previous buildings in the north-east.
	The site was vacant up until the 1960s from when the West Cumberland Hospital was constructed. The site underwent significant development in the mid to late 1960s and remained relatively the same up until the present day, where the site structures have been demolished with significant earthworks also undertaken.
	Based on the site's historical land use and considering the nature of present demolition and earthworks, made/reworked ground is anticipated at varying depths. Superficial deposits are indicated to comprise Till underlain by bedrock noted as the Hensingham Grit and Stainmore Formations, comprising sandstone and mudstone.
Summary of Phase 1	Superficial deposits are not assigned an Aquifer designation. The bedrock is classified as a Secondary A aquifer. The site is not located within a source protection zone and there are no groundwater abstraction points within 1km of the site.
	The nearest surface water feature is located 264m south west of the site. Which appears to relate to a small drain. There are no surface water abstraction points recorded within 1km of the site.
	The site is located in a lower probability radon area, where less than 1% of properties are estimated to be above the radon action level.
	Primary potential risks to be investigated during the Phase 2, as well as establishing ground conditions for geotechnical design, included; potential for land gas and risks to human health from Made Ground soils.
	Fieldworks were carried out in December 2020 and comprised six cable percussion / rotary cored boreholes to a maximum depth of 17.30m bgl and seven windowless sampling boreholes up to 3.65m bgl.
	Groundwater and gas monitoring wells installed within select borehole locations, with six return ground gas monitoring visits have been completed. Selected soil and rock samples were scheduled for chemical and geotechnical analysis.
Fieldworks	Further ground investigation were undertaken in March 2021 comprising three open-hole rotary boreholes to 12.00m bgl and dynamic probing within the north of the site to obtain CBR values for road/pavement design.
	Additionally, further ground investigation works were undertaken in August 2021 comprising six machine excavated trial pits up to 1.90m bgl, four window sample boreholes up to 3.00m bgl, two concrete cored inspection pits up to 0.25m bgl, six hand dug foundation inspection pits up to 1.65m bgl, with soakaway infiltration tests conducted in three of the machine excavated trial pits. Selected soil samples were scheduled for chemical and geotechnical analysis.
	Made Ground deposits were encountered in all of the exploratory holes (with exception of WS02), to base depths ranging from 0.18m bgl (BH23) to 2.50m bgl (WS05). The Made Ground generally comprised an upper layer of predominantly granular material with demolition material and the deeper Made Ground encountered as a cohesive material, likely reworked material.
Ground Conditions	Residual soils were encountered locally within north-western to south-western area of the site within WS01 and WS02. These were encountered to underlie either Topsoil or Made Ground at shallow depths (<0.80m bgl) to depths of 3.65m bgl.
	Bedrock has been encountered within all of the rotary boreholes, comprising sandstone to circa 10.0m bgl with Limestone thereafter within BH01, BH02 and BH06 all within the northern portion only. The sandstone is described Medium strong light brownish grey coarse rained crystalline SANDSTONE with rare microline coal laminations.

Ground Investigation Report

	The Limestone was described as Strong light whitish grey crystalline LIMESTONE. Small pyritic inclusions noted and common quartz veins throughout.
Environmental Laboratory Testing and Ground Gas Monitoring Results	With respect to the proposed 'Commercial' end use, no exceedances were recorded within any samples collected from the made ground. Selected soil samples were screened for asbestos. No suspected asbestos containing materials (ACMs) were identified in the exploratory hole logs and no asbestos fibres were positively identified during laboratory analysis of the soil samples. No flow, carbon dioxide or methane concentrations above the machine's limit of detection have been recorded.
Generic Quantitative Risk Assessment	The risk presented to site end users from made ground soils is Low due to no exceedances above <i>Commercial</i> thresholds were recorded in any samples recovered. The risk presented to site end users from ground gases is Low , with a CS-1 classification and no gas protection measures required for the site. Radon protection measures are not required.
Geotechnical Assessment	It is considered that the underlying bedrock could potentially provide a suitable bearing stratum. For foundations founded on moderately strong sandstone with discontinuity spacings >60mm, allowable bearing capacities of 1500 to 2000 kN/m2 are estimated. Where bedrock is too deep and overlaid by variable made ground (encountered across the site to depths of up to 2.50m bgl) and along with variable residual soils (locally to 3.65m bgl) it may affect the feasibility with potential mass trench fill foundations required within areas of deep made ground/residual soils. It is also considered that a piled foundation solution could be used to transfer the loads to the underlying bedrock. The carrying capacity of piles depends not only on their size and the ground conditions but also on their method installation. If a piled foundation solution is to be adopted, consideration should be given to the fractured/poor quality bedrock at from approximately 9.00 – 11.50m bgl, within the vicinity of BH02A. Based on the observations on site together with the results of laboratory tests, it is recommended that consideration is given to a suspended ground floor slab, unless founded on a suitable natural stratum with allowable bearing capacities satisfying the required pressures from the slab. Where piled foundations are anticipated, a suspended slab is recommended to bear on the pile caps by a network of beams which will minimise any differential settlement between the floor and piled structure. Laboratory test results indicate a Design Sulphate Class for concrete may be taken as DS-2 and ACEC class of AC-2 would be appropriate.
Recommendations	Based on the findings of the ground investigation, the following recommendations are made: 1. It is recommended that construction workers are provided with appropriate PPE and sanitary facilities, with reference to the environmental testing results presented herein and within Appendix C. 2. Where unexpected contamination is discovered during future earthworks and/or construction, works should be stopped and the advice of a qualified geo-environmental engineer should be sought.

Ground Investigation Report

Table of Contents

1.0 Int	roduction	1
1.1	Project Background	1
1.2	Scope of Works	1
2.0 Sit	e Setting	2
2.1	Available Sources	2
2.2	Current Setting	2
2.3	Previous Site Use	3
2.4	Geology and Hydrogeology	4
2.5	Hydrology	5
2.6	Mining	6
2.7	Unexploded Ordnance	6
2.8	Ground Gas	6
3.0 Co	nceptual Site Model & Qualitative Risk Assessment	8
3.1	Additional Risk Assessments	8
4.0 Fie	eld and Laboratory Studies	10
4.1	Ground Investigation	10
4.2	Laboratory Analysis	12
4.3	Monitoring Well Installations	14
5.0 Gr	ound Conditions	16
5.1	General	16
5.2	Topsoil	16
5.3	Made Ground	16
5.4	Residual Soils	21
5.5	Bedrock	22
5.6	Observed Potential Contamination	
5.7	Groundwater	24
5.8	Aggressive Ground Conditions	
5.9	Dynamic Cone Penetrometer Tests	25
5.10	Foundation Inspection Pits	25
5.11	Soakaway Infiltration Tests	
6.0 Gr	ound and Groundwater Contamination Assessment	
6.1	Human Health GQRA	27
6.2	Controlled Waters GQRA	29
6.3	Ground Gas GQRA	29
7.0 Re	vised Conceptual Site Model	32

Ground Investigation Report

8.0 Ge	otechnical Conclusions and Recommendations	34
8.1	Foundation Recommendations	34
8.2	Ground Floor Slabs	34
8.3	Chemical Attack on Buried Concrete	35
8.4	Excavations	35
9.0 Ge	o-Environmental Conclusions and Recommendations	36
9.1	Geo-Environmental Conclusions	36
9.2	Recommendations	37
10.0 Bib	liography	38

Ground Investigation Report

Appendices

Appendix A - Drawings

Appendix B - Exploratory Hole Logs

Appendix C - Chemical Laboratory Testing Results

Appendix D - Geotechnical Laboratory Testing Results

Appendix E - Ground Gas and Groundwater Monitoring Results

Appendix F - GAC Screening Thresholds

Appendix G - Soakaway Infiltration Results

Appendix H - Risk Assessment Methodology

1.0 Introduction

1.1 Project Background

Curtins have been instructed by CCL Solutions on behalf of Grahams Construction to undertake a Ground Investigation for the proposed development at the West Cumberland Hospital in Whitehaven.

Subsequent phases of ground investigation were instructed by Graham Construction in February and June 2021.

The proposed development comprises the construction of a new hospital wing and refurbishment of existing buildings with associated car parking, communal soft landscaped, clinical and recycling waste storage in the north of the site.

The site is located on approximate National Grid Reference (NGR) 298950, 516040.

The current development plans can be referred to within Appendix A of this report.

1.2 Scope of Works

This report includes a review of the readily available information for the site, as presented in the Curtins 2020 Phase 1 Preliminary Risk Assessment Report (Curtins, 2020) and the previous ground investigations and recent ground investigations undertaken by Curtins. This report will provide an assessment of the geo-environmental and geotechnical conditions across the site and present an account of the ground and groundwater conditions along with any anticipated limitations or constraints caused by contamination or geohazards.

The Phase 2 report is intended to determine:

- a) Likelihood of potential shallow site soils contamination, due to site's current and historic land use, adversely impacting the end-user;
- Likelihood of potential groundwater contamination, due to site's current and historic land use, adversely impacting the end-user;
- c) Likelihood of potential ground gas, adversely impacting the end-user; and
- d) Likelihood of the proposed works being adversely impacted by potential geo-hazards across the site.

In addition, recommendations on foundation solutions for the proposed structures will be provided.

Detailed flood risk assessment, ecology and archaeological studies are outside of the scope of this report.

2.0 Site Setting

Information about the current site setting, history, geology and hydrogeology/hydrology, have been previously detailed within the Phase 1 Preliminary Risk Assessment, undertaken by *Curtins, Ref: 073096-CUR-00-XX-RP-GE-001*. Additional sources of readily available information have also been assessed as a part of this report. A summary of these are provided in the subsequent sections.

This information will feed into the geo-environmental risk assessment (refer to Section 7.0) and geotechnical assessment (refer to Section 9.0).

2.1 Available Sources

In addition to the Phase 1 report undertaken by Curtins, other sources of relevant information reviewed for this scheme comprise:

- Envirocheck Report, included in the Curtins Phase 1
- British Geological Society (BGS) Scotland Map Sheet 30E, Scale 1:50,000 Glasgow Solid Geology (British Geological Society, 1993)
- British Geological Society (BGS) Scotland Map Sheet 30E, Scale 1:50,000 Glasgow Solid Geology (British Geological Society, 1994)
- BGS GeoIndex Online Map Viewer (British Geological Society, 2020)

2.2 Current Setting

The development site is indicated within boundary A in the figure below. Most of the site is currently vacant, having undertaken demolition of the previous hospital building in the west, and previous buildings in the north-east.

Figure 2.2 on the following page shows the approximate site boundary.

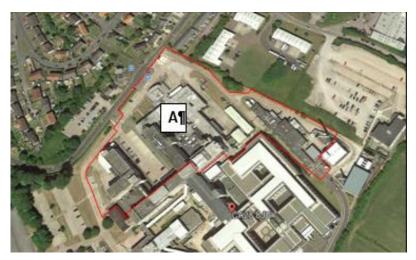


Figure 2.2 Site Location Plan (approx. site boundary shown in pink), centred on National Grid Reference NS 298950, 516040.

The surrounding land use is summarised in Table 2.2.

Table 2.2Surrounding Land uses

	N	Homewood road and mixed commercial and residential properties.
Surrounding Area	E	Buildings associated with West Cumberland Hospital and open fields with a helipad.
	S	Residential properties and fields.
	W	Residential properties.

2.3 Previous Site Use

A summary of the review of the historical maps undertaken within the Curtins Phase 1 report is provided below:

Table 2.3 - Previous Site Uses and Potential Sources of Contamination

Date	Description	Potential Sources of Contamination
1865- 1957	The subject site is spread across several bounded fields. Three trees are present on the western boundary.	N/A
1961- 1963	West Cumberland Hospital is first identified. The previously mentioned trees have been removed. A rectangular building is constructed in the eastern corner of the site as per present day as is a secondary rectangular building that is built parallel. A footpath provides access to these buildings from Homewood Road. A chimney is shown on the east of the site.	Uncontrolled deposition of Made Ground from construction onsite.

Date	Description	Potential Sources of Contamination
1965- 1968	A large phase of development occurs between O.S. publications and West Cumberland Hospital largely resembles the same general layout as per present day. Construction of numerous buildings, many remain till present day. A row of 8No. square buildings are orientated toward NW-SE in the north west of the site. Several trees are planted along the north eastern site boundary.	Uncontrolled deposition of Made Ground from construction / demolition onsite.
1999	The site remains largely unchanged. The row of square structures previously mentioned appears to have been demolished in the north west of site and replaced by car parking.	Uncontrolled deposition of Made Ground from construction / demolition onsite.
1999- 2019	Site remains largely unchanged until present day.	N/A

The contaminants, likely to be present from the historic site and surrounding area uses, include but are not limited to: asbestos within construction materials, petroleum hydrocarbons from localised fuel spillages, and inorganic compounds including heavy metals.

No significant geo-hazards have been previously recorded.

2.4 Geology and Hydrogeology

The British Geological Society (BGS) 1:50,000 maps and the BGS historic exploratory holes have been reviewed. A summary of the anticipated ground conditions is provided in *Table 2.4*.

 Table 2.4
 Geological/Hydrogeological Succession

Geology	Associated Hydrogeological Classification
Till, Devensian ¹	Secondary Undifferentiated ²
Hensingham Grit ³	Secondary A Aquifer ⁴
Stainmore Formation ⁵	Secondary A Aquifer ⁴

Notes:

- 1. Diamicton. Superficial Deposits formed up to 2 million years ago in the Quaternary Period. Local environment previously dominated by ice age conditions.
- 2. Assigned in cases where it has not been possible to attribute either category A or B to a rock type

- 3. Sandstone. Sedimentary Bedrock formed approximately 328 to 329 million years ago in the Carboniferous Period. Local environment previously dominated by rivers.
- 4. Permeable layers capable of supporting water supplies at a local rather than strategic scale, and in some cases forming an important source of base flow to rivers. These are generally aquifers formerly classified as minor aquifers.
- 5. Mudstone, Siltstone and Sandstone. Sedimentary Bedrock formed approximately 319 to 329 million years ago in the Carboniferous Period. Local environment previously dominated by swamps, estuaries and deltas.

2.4.1 BGS Data

A review of the available online BGS borehole records did not record any historic boreholes on site, however historical boreholes were identified immediately adjacent to the site. These were summarised within the Curtins Phase 1 Preliminary Risk Assessment and are presented in *Table 2.4.1*.

Table 2.4.1 Summary of BGS Historic Boreholes

Reference	Location (NGR)	Details (depth to top of strata/details/thickness)
NX91NE50/52	298730, 515980	0.40m bgl, Topsoil 3.75m bgl, Broken sandstone and sandy clay. 4.50m bgl, Grey sandstone. Borehole completed at 4.50m bgl.
NX91NE/80	299061, 516308	0.00m bgl, Firm to stiff brown sandy boulder clay. 1.50m bgl, Stiff brown sandy boulder clay. 3.20m bgl, Soft brown sandy clay and grey shale. 5.00m bgl, Dark grey weathered shale. 5.00m Borehole completed
NX91NE381	299890, 515910	0.00m bgl, Sandy gravelly cobbly clay. 6.70m bgl, Sand and gravel with cobbles and boulders. 8.35m bgl, Dark reddish-brown sandstone. 18.00m bgl, Dark red sandy clayey siltstone. Borehole continues to 120m bgl prior to termination.

2.5 Hydrology

The nearest surface water feature is located 264m south west of the site. Which appears to relate to a small drain.

There are 17No. discharge consents within 1km of the site. The closest is 390m north east of the site and is operated by Copeland Athletic Stadium Trust for the discharge of surface water into a freshwater stream/river.

There are no surface water abstraction points recorded within 1km of the subject site.

Ground Investigation Report

There are 21 pollution incidents to controlled waters within 1km of the site. The closest refers to a Category 3 – Minor incident which occurred in March 1992, 278m to the north west of the site relating to unknown oils being discharged into the Irish Sea catchment area.

2.6 Mining

There are 21No. BGS Recorded Mineral Sites within 1km of the site. The closest refers to the aforementioned Overend Quarry approximately 200m east of the site.

The site is within a known coal mining region, however, is not located within a development high risk area associated with potential zone of influence of surface or subsurface coal workings.

Based on the foregoing commentary, it is not considered there is a risk to the site from previous mining and mineral extraction activities; it is therefore not considered further.

2.7 Unexploded Ordnance

Risk mapping for UXO's has placed the site in a low-risk area. Low-risk areas are indicated as having 15 bombs per 1000 acre or less. In low risk areas, it may not be essential to undertake a detailed UXO risk assessment. Furthermore, no evidence of ruins is noted in post war mapping on site or in the surrounding area and there are no locally significant targets noted prior to or during WW2.

On this basis the risk from UXO is considered to be Low and no further assessment is required at this stage.

2.8 Ground Gas

There is a single (1No.) BGS Recorded Landfill Site entry 198m NE from the site, this refers to Overend Tip (former quarry).

There are 3No. Historic Landfill Site records within 830m of the site. The two closest refer to Overend Quarry approximately 200m north east of the site.

There are 3No. records of Potentially Infilled Land (non-water) within 1km of the site. The closest is 377m east of the site referring to unknown filled ground (pit, quarry, etc) in 1979.

There are 20 records of Potentially Infilled Land (water) within 1km of the site. A single entry is located within the site boundaries referring to unknown filled ground (pond, marsh, river, stream, dock, etc).

Two (2No.) Registered Landfill Sites are identified within the environmental database report. The closest is 195m north east of the site and also refers to Overend Quarry. The license is operated by Copeland B.C. for the disposal of gully waste and road sweepings.

Ground Investigation Report

The BGS Radon Mapping (4) confirms the site is situated in a lower probability radon area where <1% of homes are at or above the radon action level. On this basis radon protection measures are not considered necessary in the construction of new dwellings or extensions.

3.0 Conceptual Site Model & Qualitative Risk Assessment

The Preliminary Conceptual Site Model (PCSM) and Qualitative Risk Assessment (QRA) are presented in the table within this section.

The PCSM details the source-pathway-receptor linkages or potential contaminant linkages (PCLs) that have been identified for the site. The QRA details the associated level of risk relating to these PCLs.

The PCSM and QRA concern the major risks to human health and the water environment with additional, more specific risk assessment protocols contained within the main body of this reporting, as detailed in Section 3.1 below.

The QRA follows the framework outlined within CIRIA C552 which is summarised within Appendix H.

The 'risk rating' within the QRA refers to the risk that the source, pathway, receptor linkage or PCL is complete. Unless specifically stated it does not necessarily refer to an immediate risk and is intended to be used as a tool to assess the necessity for further assessment/investigation.

3.1 Additional Risk Assessments

The following risk assessments, listed below, are not included within the main CSM and QRA but nonethe-less can be of critical importance to the onward development of the site.

- The risk presented by Mining and Mineral Extraction is discussed and assessed in Section 2.6.
- The risk presented by Radon is discussed and assessed in Section 2.8.
- The risk presented by Unexploded Ordnance is discussed in Section 2.7.

Under current health and safety legislation, employers are required to carry out their own appropriate risk assessments and mitigation to protect themselves and their employees, other human receptors and the environment from potential contamination. Such risks must be adequately mitigated by law, specifically the Construction Design Management (CDM) Regulations, 2015 which require that potential risks to human health and the environment from construction activities are appropriately identified and all necessary steps taken to eliminate / manage that risk.

It has been assumed that any future construction works on site will be undertaken in compliance with these requirements and therefore construction workers involved in the building works at the site have been discounted as a human receptor in the conceptual site model.

Ground Investigation Report

Qualitative Risk Assessment Generic Quantitative Risk Assessment Detailed Quantitative Risk Assessment or; Remedial Action

- The table below represents the first stage in the land quality risk assessment process; the Qualitative Risk Assessment.
- In order for a development site to be deemed 'suitable for use' the level of risk needs to be brought down to acceptable levels, i.e. low to negligible risk. The purpose of each stage of risk assessment is ultimately to establish if there is a requirement for additional levels of assessment to be made in order to have sufficient confidence to support a risk characterisation or management decision, e.g. remedial action.

	Conceptual Site Model			Qualitative Risk Assessment			
Source	Pathway(s)	Receptor(s)	Consequence Likelihood of Occurrence		Risk Rating	Recommended Actions	
	Direct contact, ingestion, inhalation (dust and vapours)	End-user of site & Construction Workers	Medium Chronic health risk	Low Likelihood Minimal phases of historic development and minimal significant sources of contamination identified. Construction Workers will be protected further by appropriate PPE and Health & Safety Measures.	Moderate / Low	Generic Quantitative Risk Assessment Contamination testing is recommended as part of the ground investigation.	
Made Ground of unknown composition from uncontrolled deposition of construction / demolition materials on site. Localised contamination within potential chimney base on site.	Vertical migration through the superficial deposits (soils) May occur due to existing service corridors and physical processes including; capillary action and downwards into the natural deposits through infiltration.	Controlled Waters (groundwater) High vulnerability of superficial Principal Aquifer. Secondary A Aquifer of bedrock. No groundwater abstraction points within 1km & the site is not within a designated Source Protection Zone.	Medium Pollution of sensitive water resources	Unlikely Widespread contamination is not anticipated given the limited site history and lack of industrial land use. Superficial Till deposits anticipated to have a low infiltration capacity. The risk to the aquifer is considered low due to no SPZ or abstraction points.	Low	Generic Quantitative Risk Assessment No further action required unless visual or olfactory evidence of significant contamination is encountered on site, in this case groundwater testing is recommended.	
	Horizontal migration over and through the superficial deposits (soils)	Controlled Waters (surface water) There are no surface water courses within 250m of the site.	Medium Pollution of sensitive water resources	Unlikely Considering the considerable distance from the site to the nearest surface water feature, it is considered unlikely that any contamination would migrate to surface water receptors.	Low	No further action required.	
Production of ground generating gases from surrounding areas of known infilled land (water and nonwater).	Vertical and horizontal migration through existing service corridors and the underlying superficial deposits	End-user of site	Medium Human health risk	Low Numerous sources of possible ground gas identified in area surrounding site. Gas migration may be limited by superficial Glacial Till deposits.	Moderate/ Low	Generic Quantitative Risk Assessment Ground gas monitoring to confirm risk following the recommended ground investigation.	

Rev 03 | Copyright © 2021 Curtins Consulting Ltd

4.0 Field and Laboratory Studies

4.1 Ground Investigation

Curtins Ground investigation was undertaken in December 2020 with additional drilling works undertaken in March 2021 and in August 2021 following enabling works. The scope of the ground investigation was designed in general accordance with current UK guidance including:

- LCRM (Environment Agency, 2020)
- British Standard (BS) 10175 (British Standards Institution, 2017)
- BS5930:2015 (British Standards Institution, 2010)
- BSEN1997: Part 2:2007 Eurocode 7A (British Standards Institution, 2007)

The scope of the works and rationale is summarised in *Table 4.1*.

 Table 4.1
 Scope and Rationale of Fieldwork Undertaken

Stage of Works	Exploratory Hole Type	Exploratory Hole Reference	Exploratory Hole Depth (m bgl)	Rationale
		WS01	3.65	
		WS02	3.65	Confirm shallow ground
	Min davida a	WS03	1.90	conditions.
December 2020	Windowless Sampling	WS04	2.20	Undertake in-situ testing.Collect soil samples for
2020	Boreholes	WS05	2.50	chemical and geotechnical analysis
		WS06	1.80	
		WS07	2.20	
		BH01	11.00	
		BH02A	17.30	Confirm ground conditions.
December	Cable Percussion /	BH03	13.00	 Collect soil and water samples for chemical
2020	Rotary Cored Boreholes	BH04	13.00	and geotechnical analysis.
		BH05	13.00	Undertake in-situ testing.Gas and groundwater
		BH06	12.00	level monitoring.
March 2021		BH07	12.00	Confirm ground
	Open Hole Rotary Boreholes	BH08	12.00	conditions within vicinity of BH02A to confirm no
	borenoies	BH09	12.00	voiding present.
Moreh 2021		DCP01	1.00	
March 2021		DCP02	1.00	

Stage of Works	Exploratory Hole Type	Exploratory Hole Reference	Exploratory Hole Depth (m bgl)	Rationale
		DCP03	1.00	
	Dynamia Cana	DCP04	1.00	Obtain CBR values for
	Dynamic Cone Penetrometer	DCP05	1.00	proposed road/pavement
	Test	DCP06	1.00	design.
		DCP07	1.00	
		BH21	2.00	Confirm shallow ground
	Additional	BH22	2.90	conditions to inform contractor's retaining
August 2021	Windowless	BH23	020	wall designUndertake in-situ testing.
August 2021	Sampling Boreholes	BH24	3.00	Collect soil samples for additional geotechnical analysis.
	Machine	TW TP01	1.40	Confirm challess aresed
		TW TP02	1.05	Confirm shallow ground conditions to inform contractors temporary
August 2021	Excavated Trial Pits (inc Soakaway	TW TP03	1.90	works design.Collect soil samples for additional geotechnical
	Infiltration Tests)	TW TP04	1.80	 analysis. Confirm estimated infiltration rates within
		SA01	0.95	shallow soils.
		SA02	1.65	
		HD01	0.83	
		HD02	1.65	Confirm foundation design for existing
August 2021	Hand Dug Foundation	HD02A	N/A	building.
	Inspection Pits	HD03	0.50	Complete hand drawn sketches of any
		HD04	0.30	observed foundations.
		HD05	N/A	
	Concrete Cored	CO1	0.25	Determine thickness of
August 2021	Inspection Pits	CO2	0.25	existing concrete on the site.

For the exploratory hole locations refer to Curtins Drawings Ref: 073096-CUR-VV-XX-DR-C-04004 and -CUR-00-XX-DR-GE-001-V01, Appendix A.

Graham Construction provided a Specification of works to be undertaken as part of August 2021 works Ref. Ground Investigation Specification – West Cumberland Hospital, ref. EJ20-GCL-TW-XX-SP-0006-C01.

The exploratory holes were logged on site by an engineer from Curtins in accordance with the requirements of BS5930:2015, including recording of any observed visual and olfactory indications of contamination.

Copies of the exploratory hole logs are provided within Appendix B.

4.1.1 In-Situ Tests

The in-situ testing undertaken during the initial ground investigation works and additional ground investigation works is summarised in *Table 4.1.1*.

Table 4.1.1 In-Situ Testing

Activity	Rationale			
SPT tests within window sample boreholes	To obtain in-situ density and investigate bedrock profile across the site.			
Rotary coring within rotary boreholes	To obtain Rock Quality Designation (RQD) values of intact bedrock			
Additional SPT tests within window sample boreholes	To obtain in-situ density and investigate bedrock profile across the site.			

4.2 Laboratory Analysis

Representative soil samples were obtained for laboratory geotechnical and geochemical testing, based on the field observations. Additional samples for testing were obtained in specific locations on the proposed working platform (TW TP01, TW TP02, TW TP03, TW TP04 and BH21) on the site at the request of Graham Construction in line with their Specification (Ref. EJ20-GCL-TW-XX-SP-0006-C01), to further investigate the geotechnical parameters of the granular made ground.

Soil samples for geochemical analysis were placed in appropriate laboratory provided containers and stored in temperature-controlled conditions prior to being transported to a UKAS accredited laboratory under chain of custody documentation.

The representative rock samples were collected and scheduled for laboratory geotechnical testing. Geotechnical samples were transported to a UKAS and MCerts accredited laboratory under chain of custody documentation for testing.

4.2.1 Geo-environmental - Soils

Soil samples were taken from shallow ground across the site, and 13 made ground samples from across the site were tested for a broad environmental suite as detailed below.

The contaminants of concern potentially present on the site was considered to include, amongst others; organic matter, ash and fill, hydrocarbons (e.g. fuel/oils), heavy metals and asbestos the extent of which is captured by the broad environmental testing suite listed in *Table 4.2.1*.

Table 4.2.1Environmental Chemistry Analysis Suite : Soils

Suite Ref.	Analyte	LOD
	Asbestos Screen, pH and Soil Organic Matter (SOM)	N/A
	Arsenic, Chromium, Chromium VI, Copper, Lead, Selenium, Zinc, Nickel	1 mg/kg
	Boron (water soluble)	0.2 mg/kg
	Cadmium	0.2 mg/kg
Soils Suite A	Mercury	0.3 mg/kg
	Cyanide (total)	1 mg/kg
	Phenols (screen)	<0.1 – 0.3 mg/kg
	PAHs (USEPA 16)	0.05 mg/kg
	TPH (Aro/Ali Split)	0.01 to 10 mg/kg

Copies of the environmental chemistry testing certificates are presented in Appendix C.

4.2.2 Geo-environmental – Groundwater

Groundwater samples were taken from the wells installed in BH01, BH03 and BH06 during the second monitoring visit and were scheduled for a specific groundwater suite listed in *Table 4.2.2*.

Table 4.2.2 - Environmental Chemistry Analysis Suite: Waters

Suite Ref.	Analyte	LOD		
	рН			
	Total Hardness			
	Vater Suite Arsenic, Lead, Nickel, Selenium, Zinc Boron (water soluble), Chromium, Copper, Mercury, Phenols (screen)			
Water Suite A				
	Cadmium	0.5 μg/l		
	Cyanide, Sulphide			
	Sulphate	10 mg/l		

Ground Investigation Report

Suite Ref.	Analyte	LOD
	PAHs (USEPA16)	0.01 μg/l
	TPH (Aro/Ali Split)	10 μg/l

Copies of the environmental chemistry testing certificates are presented in Appendix C.

4.2.3 Geotechnical

Soil samples for testing were prepared in accordance with BS1377 (British Standards Institution, 2016). The following geotechnical tests have been undertaken:

- 1 No. Particle Size Distribution Test;
- 29 No. Point Load (PL) Tests; and
- 13 No. Unconfined Compression Strength (UCS) Test.

Additional soil samples for testing were sent for testing as part of the August 2021 ground investigation works. The following additional geotechnical tests have been undertaken in line with Graham Construction's Specification to further characterise granular made ground and inform possible material classification by Graham Construction:

- 4 No. Particle Size Distribution Tests;
- 4 No. Los Angeles Coefficient N Tests;
- 3 No. Compaction (Vibrating Hammer) Tests; and
- 3 No. direct (large) Shear Box Tests; tested at normal stress(es) of 50, 100, and 200 kPa.

Copies of the geotechnical testing certificates are presented within Appendix D.

4.3 Monitoring Well Installations

Single installations comprising 50mm diameter standpipes have been installed in BH01, BH02A, BH03, BH04, BH06, WS03 and WS05, for the purposes of gas and groundwater monitoring.

A bentonite seal was placed above the screened section of the boreholes to minimise potential for migration of contaminants and the creation of a preferential migratory pathway. A gravel surround was installed in the annulus between the sides of the borehole and the slotted sections of pipe.

The installations are summarised in *Table 4.3*.

Table 4.3 Monitoring Well Response Zones

Ground Investigation Report

Borehole Ref.	Diameter (mm)	Response Zone (m bgl)	Strata Description(s)
BH01	50	2.0-11.0	Sandstone
BH02A	50	8.0-12.0	Sandstone
BH03	50	3.0-13.0	Sandstone
BH04	50	4.0-13.0	Sandstone
BH06	50	2.0-12.00	Sandstone
WS03	50	1.0 – 2.0	Made Ground
WS05	50	1.0 – 2.0	Made Ground

Copies of borehole logs can be referred to in Appendix B of this report.

4.3.1 Post-Investigation Monitoring

Six rounds of groundwater and ground gas monitoring over a three-month period have been completed, to assess the groundwater and ground gas conditions, identified in the Preliminary Conceptual Site Model within the Phase 1 Preliminary Site Assessment.

5.0 Ground Conditions

5.1 General

The updated ground conditions encountered during the Curtins Ground Investigation and during the additional post demolition ground investigation is summarised in *Table 5.1*, with detailed information presented on the exploratory hole logs, Appendix B.

Table 5.1 Ground Conditions Summary

Stratum	Depth to top of strata	Thickness (m)		
<u> </u>	(m bgl)	Min	Max	
Topsoil	0.0	0.40	-	
Concrete	0.0	0.20		
Made Ground	0.0	0.18	3	
Residual Soils	0.4 – 0.80	2.8	3.25	
Bedrock: Hensingham Grit	0.2-3.65	-		

5.2 Topsoil

Topsoil was encountered within a single location (WS02) comprising a dark brown slightly silty fine and medium SAND. The material was encountered to 0.40m bgl.

Topsoil was not encountered in any of the August 2021 exploratory holes (BH21 to BH24, TW TP01 to TW TP04, and HD01 to HD05).

5.3 Made Ground

Made Ground deposits were encountered in all of the exploratory holes (with exception of WS02), to base depths ranging from 0.18m bgl (BH23) to 2.50m bgl (WS05). The Made Ground generally comprised a predominate upper layer of granular material with demolition material and the deeper Made Ground encountered as a cohesive material, likely reworked material.

Concrete surface cover was encountered in the areas of CO1 and CO2, the concrete was recorded at 0.20m in thickness overlying Made Ground subbase material.

Granular Material

The granular material comprised light brown sand and gravel with gravel of sandstone, breeze block, wood, plastic, metal and cloth fragments. This unit was predominately encountered to circa 1.0m to 2.20m bgl.

August 2021 Investigation- Granular Soils

During August 2021 ground investigation works similar granular material was encountered to depth of between 0.18m (BH23 and SA01) to 1.90m bgl (TW TP03). Samples were obtained of this material in BH21 and in TW TP01 to TW TP04 from various depths for additional geotechnical testing with the results summarised below. Particle Size distribution tests were conducted on all of the above samples and the results are presented below in Table 5.3a and Table 5.3b and graphs present in Figure 5.3a.

Table 5.3a Summary of geotechnical test results- Granular Made Ground

Test	No. of tests	Minimum	Maximum	Average				
In situ								
SPT 'N' Value	2	6	7	6.5				
Laboratory Testing								
PSD (% Dry Mass) Cobbles Gravel Sand Silt/Clay	5	0 46 18 8	16 58 31 17	-				

Table 5.3b - Granular Made Ground Particle Size Distribution

Evaloratory Holo Location	Depth Percent Passing (%)					Uniformity	
Exploratory Hole Location	(m bgl)	125	75	10	2	0.063	Coefficient
BH21	0.5	100	89	38	26	8	350
TW TP01	0.5	100	100	59	42	14	>170
TW TP02	0.3	100	98	48	94	7	3.4
TW TP03	0.9	100	92	53	45	14	>260
TW TP04	1.4	100	100	59	47	17	>170

Only two SPT 'N' values were recorded in the granular Made Ground strata as part of the August 2021 investigation, ranging between 6 and 7. The greatest value was recorded in BH21 at 1.20m bgl, however the results generally correlate with loose sands and gravels.

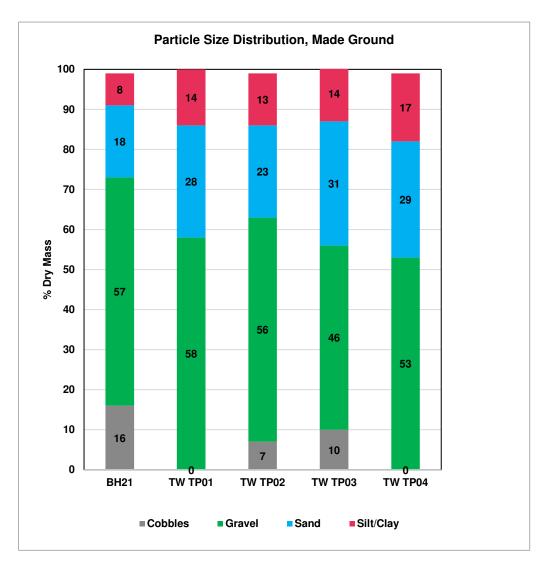


Figure 5.3a - Summary of PSD test results in Made Ground.

Uniformity coefficients generally have tested as being greater than 170.

Natural moisture content (MC) and Optimum Moisture Content (OMC) tests have been undertaken on made ground samples obtained on site with the results summarised in Table 5.3c and Figure 5.3b.

Table 5.3c - Made Ground Moisture Content

Exploratory Hole Location	Depth (m bgl)	Moisture Content %
TW TP01	0.5-0.6	10
TW TP02	0.3-0.4	10
TW TP04	1.40-1.50	14

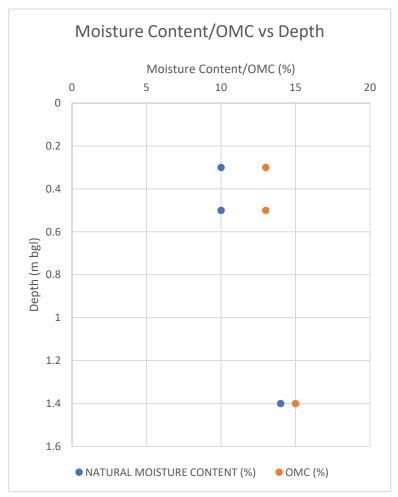


Figure 5.3b - Made Ground Moisture Content and OMC vs. Depth

In summary:

- The OMC for TW TP01 is 13%.
- The OMC for TW TP02 is 13%.
- The OMC for TW TP04 is 15%.
- The Maximum Dry Density (DD) for TW TP01 is 1.91mg/m³.
- The Maximum Dry Density (DD) for TW TP02 is 1.90mg/m³.
- The Maximum Dry Density (DD) for TW TP04 is 1.79mg/m³.
- OMC has been achieved between 5% and 10% air voids for TW TP04.

For detailed graphs in geotechnical test reports refer to Appendix D.

The Los Angeles Coefficient of the granular Made Ground samples has been used to characterise determination of resistance to fragmentation in accordance with BS EN 1097-2:2020. Three LA Coefficient tests were undertaken within the Made Ground, and the results are summarised in Table 5.3d.

Ground Investigation Report

Table 5.3d- Made Ground Los Angeles Coefficient

Exploratory Hole Location	Depth (m bgl)	LA Coefficient (%)
TW TP01	0.5	57
TW TP02	0.3	59
TW TP04	1.4	64

As shown in Table 5.3d the range of Los Angeles Coefficient ranges from 55 to 65%.

Full details of the results of Los Angeles Coefficient testing are presented in Appendix D.

The Angle of Shearing Resistance has been determined using a Shear Box for granular Made Ground samples in accordance with BS EN 1377 1990. Three Shear Box tests were undertaken within the Made Ground and the results are summarised in *Table 5.3e*.

Table 5.3e– Made Ground Angle of Shearing Resistance

Exploratory Hole Location	Depth (m bgl)	Angle of Shearing Resistance
TW TP01	0.5	46.5
TW TP02	0.3	43
TW TP04	1.4	45

Cohesive Material

The cohesive Made Ground was typically encountered to underlie the granular material and was considered to be reflective of reworked residual soils. The unit comprised a brown sandy gravelly clay with gravel of sandstone, wood, brick and nails. This material was typically encountered prior to intact bedrock.

August 2021 Investigation- Cohesive Soils

Cohesive Made Ground material was only encountered in the August 2021 ground investigation works in the areas of BH21, BH22 and BH24. Cohesive Made Ground was recorded to underlie the granular material in BH21 and BH22 at depths from 1.50m to 2.40m bgl. BH24 encountered cohesive material from ground level to 3.0m bgl consisting of sandy gravelly clay with a medium cobble content.

Table 5.3e Summary of geotechnical test results – Cohesive Made Ground

Test	No. of tests	o. of tests Minimum Maximum Ave		Average	
In situ					
SPT 'N' Value	4	5	30	16	

On-situ SPTs within the made ground indicate a highly variable stratum as shown in Figure 5.3c

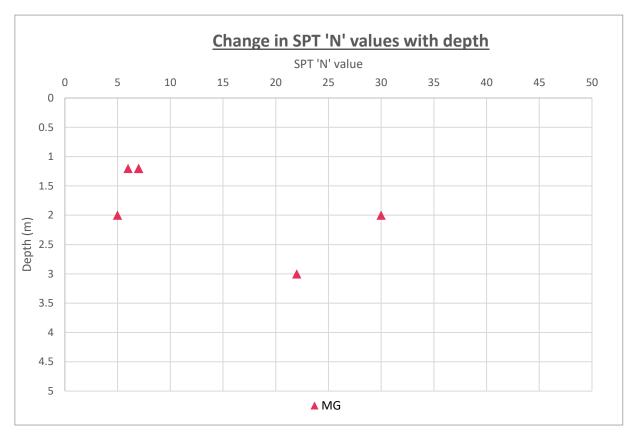


Figure 5.3c - Graph showing changes in SPT results with depth in Made Ground.

Due the small cohort of results within both cohesive and granular Made Ground, the graph above shows highly variable strength within Made Ground material with depth but does generally increase with depth.

5.4 Residual Soils

Residual soils were encountered locally within north-western to south-western area of the site within WS01 and WS02. These were encountered to underlie either Topsoil or Made Ground at shallow depths (<0.80m bgl) to depths of 3.65m bgl.

The residual soils were recorded as both granular and cohesive material. The cohesive material comprised a stiff brownish red sandy slightly gravelly CLAY, whilst granular material comprised a medium dense light brown slightly clayey gravelly fine to coarse SAND. The geotechnical test results recorded within the residual soils are summarised in *Table 5.4*. However, given the localised area of these deposits on-site, no geotechnical parameters have been derived for this unit.

Ground Investigation Report

Residual soils were only encountered in the area of BH21 during the post demolition works from 1.70 to 1.95m bgl comprising light brown sandy gravelly CLAY. Given the localised area of these deposits on-site, no geotechnical parameters have been derived for this unit.

Table 5.4 Summary of geotechnical test results – Residual Soils

Test	No. of tests	Minimum	Maximum	Average	
In-situ					
SPT 'N' Value (cohesive)	3	20	38	30	
SPT 'N' Value (granular)	1	22	-	-	

5.5 Bedrock

Bedrock has been encountered within all of the rotary boreholes, comprising sandstone to circa 10.0m bgl with Limestone thereafter within BH01, BH02 and BH06 all within the northern portion only. The sandstone is described Medium strong light brownish grey coarse rained crystalline SANDSTONE with rare microline coal laminations. The Limestone was described as Strong light whitish grey crystalline LIMESTONE. Small pyritic inclusions noted and common quartz veins throughout.

Bedrock was encountered at shallow depths within most of the exploratory boreholes during the post demolition ground investigation comprising medium to coarse grained crystalline SANDSTONE with varied weathering and fracturing and occasional clay infill from depths of 0.18m (BH23) to 2.40m bgl (BH22). In situ SPT results recorded refusals (SPT N = 50) in presumed bedrock of SANDSTONE in BH21 at 2.0m bgl and BH22 at 2.45m bgl. Due to the small cohort of results, no parametric analysis has been undertaken from SPT results from the post demolition exploratory boreholes.

It is noted that during drilling of BH02A, a significant reduction in RQD was noted at the apparent limestone interface at approximately 9m bgl. Three additional boreholes (BH07 – BH09) were advanced approximately 5m from BH02A in different directions in March 2021, to investigate whether this potentially arose due to presence of voids. Locations of additional boreholes are presented within Appendix A.

It is noted that within all three locations broken sandstone was encountered from approximately 9m bgl to and at the beginning of the limestone bedrock interface. During groundwater monitoring visits, groundwater was recorded within the bedrock at BH02A at approximately 11m bgl, at levels coinciding with the weakened/fractured bedrock.

As such, it is anticipated that this is reflective of a geological fault with noted reduction of the RQD at the interface between sandstone and limestone within this area and/or weakened/fractured bedrock coinciding with a groundwater bearing unit, rather than voiding.

Ground Investigation Report

The geotechnical test results recorded within the sandstone are summarised in *Table 5.5a*. The test result certificates are included within Appendix D. At this stage, no geotechnical test results or parameters have been derived for the Limestone owing to localised area on-site.

Table 5.5a Summary of geotechnical test results – Sandstone

Test		No. of tests	Value			
	In-Situ					
RQD (%)		57	Min: 0* Max: 100 Average:86			
	Labora	atory				
Point Load Test Poin	Point Load Strength Index (Is ₅₀) (MPa)	28	Diametral	Min: 0.48 Max: 6.94 Average: 2.19		
		28	Axial	Min: 0.53 Max: 5.55 Average: 2.26		
UCS (MPa)		12	Min: 26.6 Max: 50.7 Average: 37			

Notes - *At the interface between the sandstone and limestone

UCSs were determined from the Unconfined Compressive Strength (UCS) test results and Point Load test results. A factor of 20 has been used to correlate the Is_{50} determined from the Point Load tests to the UCS, Figure 5.5.

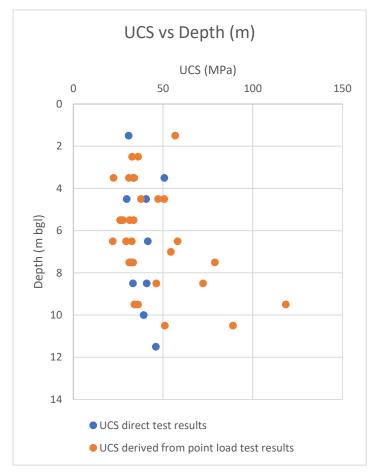


Figure 5.5 UCS vs. Depth

5.6 Observed Potential Contamination

No potential contamination was noted within the soils/groundwater.

5.7 Groundwater

Perched groundwater was encountered within the Made Ground during the investigation ranging from 0.50m (WS03) to 2.10m bgl (BH05). A single groundwater strike was recorded within the residual deposits of WS01 at 2.10m bgl.

Groundwater was not encountered during the post demolition ground investigation exploratory holes.

Groundwater monitoring wells were installed as summarised in Table 5.7.

Six rounds of groundwater monitoring have been undertaken to assess the groundwater regime across the site.

 Table 5.7
 Groundwater Monitoring Results

		Depth (m bgl)				
Borehole Ref.	Installation Strata	07/01/21	20/01/21	04/02/21	17/02/21	08/03/21
BH01		0.77	0.00	0.0	0.65	0.99
BH02A	Sandstone /	*	11.20	10.80	11.09	11.00
BH03	limestone	1.97	0.98	1.57	1.96	1.91
BH06		0.66	0.0	0.0	0.04	0.75
WS03	Made	0.40	0.00	0.0	0.0	*
WS05	Ground	2.05	1.02	1.63	1.96	1.95

Notes - *Unable to be accessed

It is considered that perched water exists within the Made Ground as noted within WS03 and WS05, at depths of 0.0m to 2.05m bgl.

The installations within the sandstone (BH01, BH03 and BH06) installed within the underlying bedrock has recorded shallow groundwater, at depths of between 0.0m to 1.96m bgl, with locally deep groundwater of 10.80m to 11.20m bgl within BH02A indicating the groundwater within the bedrock aquifer is under an element of hydrostatic pressure.

5.8 Aggressive Ground Conditions

The classification of the site in terms of concrete in aggressive ground is based on the guidance provided in Table C2 of the Building Research Establishment (BRE) Special Digest 1, third edition of 2017 (Building Research Establishment, 2017). *Table 5.7* details the classification.

Table 5.8 Aggressive Chemical Environment for Concrete (ACEC) Site Classification

Stratum	Design Sulphate Class	ACEC Class *
Made Ground	DS-2	AC-2

ACEC assessment was based on the mobile groundwater condition for the scheme are

5.9 Dynamic Cone Penetrometer Tests

Seven dynamic cone penetrometer tests were advance to approximately 1.00m bgl to obtain CBR values within areas of proposed road/hardstanding in the new waste recycling facility.

Copies of Test results are included within Appendix D.

5.10 Foundation Inspection Pits

Six hand dug existing foundation inspection pits were dug in positions along the northern wall of the building adjacent to the south of the site. The maximum depth excavated was 1.65m bgl.

Ground Investigation Report

HD01 encountered concrete potential footing at 0.45m bgl protruding 0.65m from the building wall which stepped 0.08m to a relict concrete slab extending a further 3.25m away from the wall. The base of the relict concrete slab was not encountered and is at a depth greater than 0.8m bgl and as such formation strata was not proven.

HD02 and HD02A was undertaken against the 'black corridor' and did not encounter the base of the concrete corridor, encountered to a maximum depth of 1.65m bgl as such the formation strata was not proven.

HD03 encountered a possible concrete footing from ground level to 0.4m bgl extending 0.24m away from the building wall and the base of the footing appeared to be formed within formation strata of Made Ground gravel.

HD04 encountered a possible footing from ground level to 0.23m bgl extending 0.30m from the building wall. The base of the possible footing was formed within formation strata of sandstone.

HD05 encountered a possible footing at 0.88m projecting 0.65m from the building wall. The base of the footing was not proven, as such a formation strata was not proven.

All cross-sectional drawings of the foundation inspection pits are presented with the exploratory hole logs in Appendix B.

5.11 Soakaway Infiltration Tests

Soakaway tests were conducted in three of the six machine excavated trial pits (SA01, SA02 and TW TP01 (SA03)). All tests were conducted in natural strata of fine to medium grained SANDSTONE. SA01 infiltration test was repeated three times. One test was completed in SA02 and SA03 due to negligible infiltration rates and as such no rate could be calculated over 1.5 hr tests.

SA01 infiltration tests were conducted between 0.50 and 0.53m bgl to the base of the pit at 0.95m bgl. Test 1 recorded an infiltration rate of 2.12x10⁻⁴ m/s, Test 2 recorded infiltration rate of 1.03x10⁻⁴ m/s, and Test 3 recorded an infiltration rate of 7.05x10⁻⁵ m/s.

The variation in infiltration rates is likely due to variability in weathering and fracture spacings in the bedrock. Infill between fractures also appeared more clayey in SA02 and SA03 which may limit infiltration. As such, based on the estimated infiltrations rates it is considered unlikely that soakaway drainage will be feasible across the site. Further testing would be required where soakaway drainage is being considered.

Full results for the soakaway tests conducted are presented within Appendix G.

6.0 Ground and Groundwater Contamination Assessment

This section of the report includes the assessment of the potential contamination, solid, liquid and gas, identified on the subject site which may present a risk to the proposed end users, associated utilities and the wider environment.

In guidance published by the Environment Agency, the risk to human health or controlled waters is determined through an assessment of pollutant linkages between a source of contamination (within the ground or groundwater either on or off site) and a sensitive receptor such as end users of the site, building materials, edible plants grown in gardens or groundwater abstracted for drinking. This is termed a source-pathway-receptor relationship. The same model is applied to the assessment of risk arising from ground gases as detailed within BS8576:2013 (British Standards Institution, 2013).

These models have a common approach, which is one of a tiered assessment. At each stage of the assessment further detail can be applied to the conceptual site model to provide a detailed interpretation on a site by site basis. As part of the planning process this approach is adopted to establish either if the site is 'suitable for use' or whether additional work or else remedial work is required for the site to be deemed so.

The sub-sections hereafter therefore incorporate the first tier (Tier 1) of this approach otherwise referred to as the Generic Quantitative Risk Assessment (GQRA). The GQRA builds on the qualitative risk assessment presented in Section 3.0 in conjunction with observations made during the ground investigation and is based solely on the results of the chemical and other testing data obtained as part of Curtins ground investigation. The GQRA is used to build/refine the Conceptual Site Model (CSM) for the site as detailed and presented in *Section 8.0* of this report.

The following sections present more detail on the risk assessment methodology rationale for the main receptors.

6.1 Human Health GQRA

Detailed guidance on human health risk assessment is available within several documents, published by both the Environment Agency and Defra. Guidance includes Contaminated Land Exposure Assessment (CLEA) v1.071 model (Environment Agency, 2014), Science Report 2 (Environment Agency, 2009) and Science Report 3 (Environment Agency, 2009).

A generic quantitative risk assessment (GQRA) has been carried out for the Potential Contaminant Linkages (PCLs) investigated by screening of soil contamination data against relevant Generic Assessment Criteria (GAC) where available, including:

i) Soil Guideline Values (SGVs): These have been published by the Environment Agency and are trigger values for screening out low risk areas of land contamination. SGV's give an indication of representative average concentrations of chemicals in soil, below which long-term health risks are likely to be minimal. SGVs have been published for several contaminants

including arsenic, cadmium, mercury, nickel, selenium, BTEX, phenols and dioxins, furans and dioxin-like PCB substances for land uses including residential, allotments and commercial. The SGVs have been developed for a sandy loam soil with 6% soil organic matter (SOM) content;

- ii) Supplementary Screening Values (SSVs): In addition to the SGVs developed by the EA, other third-party organisations have derived SSVs for a wider range of contaminants and land uses using the CLEA Model. Curtins have adopted these numbers where applicable, including those developed by Atkins AtriskSoil™, the LQM/CIEH Suitable for Use Levels (S4UL) and EIC/AGS/CL:AIRE published thresholds;
- iii) Category 4 Screening Levels (C4SLs): In March 2014 DEFRA published C4SLs for arsenic, benzene, benzo(a)pyrene, cadmium, hexavalent chromium and lead. These values were derived to support the revised Part 2A Statutory Guidance issued in 2012 (Department of Environment Food and Rural Affairs (DEFRA), 2012) in which four categories of contaminated land are included, ranging from Category 1 (significant/high risk) to Category 4 (low risk). C4SLs are not representative of significant possibility of significant harm (SPoSH) and are low risk levels which, and therefore where the C4SLs are not exceeded, land can be demonstrated to be in Category 4 and cannot be determined as contaminated land.

6.1.1 Adopted Soil Human Health GACs Screening Methodology

The proposed use to the site, as a hospital, is most analogous with a *Commercial* scenario and so assessment has been undertaken against the following GACs, in order of preference:

- 1. Environment Agency Soil Guideline Values,
- 2. CL:AIRE, AGS, EIC. Soil Generic Assessment Criteria for Human Health Risk Assessments,
- 3. LQM/CIEH 2015 S4ULs for Human Health Risk Assessment, and
- 4. DEFRA Category 4 Screening Levels.

Soil Organic Matter (SOM) has a strong bearing on the availability of potential contaminants and therefore influences the Tier 1 Thresholds. The SOM ranged between 0.2% to 2.9%. As such, the comparison has been made against GACs developed for a sandy soil with a SOM of 1.0%.

The results of the environmental testing can be referred to in Appendix C. Copies of the Tier 1 Thresholds are contained within Appendix F.

6.1.2 Generic Assessment Criteria Screening of Soil Laboratory Results

The results of the environmental testing can be referred to in Appendix C, with testing undertaken on a total of thirteen made ground soil samples across the site.

Ground Investigation Report

With respect to the proposed 'Commercial' end use, no exceedances were recorded within any samples collected from the made ground.

Selected soil samples were screened for asbestos. No suspected asbestos containing materials (ACMs) were identified in the exploratory hole logs and no asbestos fibres were positively identified during laboratory analysis of the soil samples.

6.2 Controlled Waters GQRA

No significant visual/olfactory evidence of contamination was identified within shallow site soils during the site investigation. This is further confirmed by laboratory testing of soils highlighted within Section 6.1.2.

Considering the conceptual site model developed within the Phase 1 Preliminary Risk Assessment, due to no surface water receptors being located within 250m of the site, and no recorded abstraction points located within 1km of the site, as well as chemical laboratory it is considered that risks to controlled waters are confirmed as Low with no further action required.

6.3 Ground Gas GQRA

The assessment of risk presented by ground gases is assessed with reference to guidance published by CIRIA (Assessing Risks Posed by Hazardous Ground Gases to Buildings, C665 (CIRIA, December 2007), BSI Publication (Code of practice for the design of protective measures for methane and carbon dioxide ground gases for new buildings BS8485:2015 (British Standards, June 2015), BSI Publication (Guidance on Investigations for Ground Gas-Permanent gases and Volatile Organic Compounds (VOCs) (British Standards Institution, 2013) and other broadly accepted references such as the Ground Gas Handbook 2009 (S.Wilson, G.Card and S.Haines, 2009).

The gas risk assessment adopts a tiered approach. In the first instance, this involves a re-evaluation of the Conceptual Site Model described within the previous reporting and thereafter validating this conceptual model with the ground gas data, a semi-quantitative risk assessment.

6.3.1 Conceptual Site Model

The Preliminary Conceptual Site Model (PCSM) presented within Section 3.0 noted the overall moderate/low risk posed by ground gases based on the identified sources, primarily made ground from previous phases of development and gases associated with potentially infilled ground and historical development.

With respect to ground gas sources;

Made Ground

Ground Investigation Report

Made ground deposits were encountered in all of the exploratory holes, to a maximum depth of 3.65 m bgl.

The Made Ground generally comprised a predominate upper layer of granular material with demolition material and the deeper Made Ground encountered as a cohesive material, likely reworked material.

With respect to ground gas pathways:

Direct gassing of ground gas from the shallow soils to the near surface is considered the main pathway for ground gas migration on site.

6.3.2 Monitoring Results Discussion

In order to characterise the site's gas regime and validate the qualitative assessment of ground gas risk, standpipe installations were incorporated within six exploratory borehole locations as detailed in *Table 4.1.3* within Section 4.0.

Gas monitoring has been undertaken on the following occasions: 07/01/2021, 20/01/2021, 04/02/2021 & 17/02/21.

Gas monitoring has been undertaken during both falling and steady atmospheric pressures with barometric pressure ranging from 1014mb to 954mb.

A summary of the soil gas monitoring results to date is presented in *Table 6.3.2* and copies of the log sheets presented in Appendix E.

Table 6.3.2 Summary of Soil Gas Monitoring Results

Location	Flow	(l/hr)	CO ₂ Range of Peak	CO ₂ Range of Steady	CH₄ Range	Strata Description
Location	Max	SS	Values (% ^{vol} / _{vol)}	State (% ^{vol} / _{vol)}	(% ^{vol} / _{vol)}	(50mm well)
BH01	-23.7	-0.2	<0.1	<0.1	<0.1	Bedrock
BH02A	4.5	<0.1	1.3	1.3	<0.1	Bedrock
BH03	-63.7	<0.1	<0.1	<0.1	<0.1	Bedrock
BH06	-63.8	<0.1	<0.1	<0.1	<0.1	Bedrock
WS03	-22.7	-0.2	<0.1	<0.1	<0.1	Made Ground
WS05	0.1	0.1	<0.1	<0.1	<0.1	Made Ground

Hydrogen sulphide and carbon monoxide were recorded with maximums of 1ppm and 13ppm respectively.

6.3.3 Gas Assessment

It is noted that high negative flow rates were recorded within BH03, BH06 and WS03 on once occasion each. For the remainder of the visits, these wells were noted as being flooded. On the occasions where high flow rates were recorded, the groundwater levels recorded within the well were significantly above the screened section of the well. As such, it is considered that the cause of these peak flows is a result of pressure build up within the well, and not representative of natural site conditions. As such, these peak flows have been discounted form this assessment.

Considering both a 'worst credible scenario' (maximum 'absolute' flow rate, maximum gas concentration within a single borehole location) and 'worst possible scenario' (maximum 'absolute' flow rate, maximum gas concentration across all borehole locations) the Hazardous Gas Flow Rates (Qhg) for the site are evaluated as 0.059 (carbon dioxide) and 0.001 (methane).

On the basis that encountered ground conditions have a low gassing potential and low ground gas concentrations have been recorded the site is assessed as Characteristic Situation 1 (CS-1) where gas protection measures will not be required.

6.3.4 Radon

As identified in Section 2.8, no radon protection measures are required.

However, where the new development incorporates a basement the advice of a specialist Radon assessor must be obtained.

7.0 Revised Conceptual Site Model

The Preliminary Conceptual Site Model (PCSM) presented in Section 3.0 of this report has been revised following the GQRA in *Section 6.0* above. The Revised Conceptual Site Model (CSM) is summarised in the table overleaf.

The CSM details the source-pathway-receptor linkages or potential pollutant linkages (PPL) that have been identified as relevant for the site. The GQRA details the associated level of risk relating to these potential pollutant linkages.

The CSM follows the framework outlined within CIRIA C552 (CIRIA, 2001) which is summarised within Appendix H.

The 'risk rating' within the CSM refers to the risk that the source, pathway, receptor linkage or PPL is complete. Unless specifically stated it does not necessarily refer to an immediate risk and is intended to be used as a tool to assess the necessity for further assessment/investigation.

Risks presented by Unexploded Ordnance is discussed and assessed in Section 2.7.

Under current health and safety legislation, employers are required to carry out their own appropriate risk assessments and mitigation to protect themselves and their employees, other human receptors and the environment from potential contamination. Such risks must be adequately mitigated by law, specifically the Construction Design Management (CDM) Regulations, 2015 (CITB, 2015) which require that potential risks to human health and the environment from construction activities are appropriately identified and all necessary steps taken to eliminate / manage that risk. It has been assumed that any future construction works on site will be undertaken in compliance with these requirements and therefore construction workers involved in the building works at the site have been discounted as a human receptor in the conceptual site model. Reference should be given to the environmental testing results discussed within Section 6.0 and presented within Appendix C.

Ground Investigation Report

Qualitative Risk Assessment

Generic Quantitative Risk Assessment Or; Remedial Action

- The table below represents the Second stage in the land quality risk assessment process; the Revised Conceptual Site Model following the Quantitative Risk Assessment.
- For a development site to be deemed 'suitable for use' the level of risk needs to be brought down to acceptable levels, i.e. low to very low risk. The purpose of each stage of risk assessment is ultimately to establish if there is a requirement for additional levels of assessment to be made to have sufficient confidence to support a risk characterisation or management decision, e.g. remedial action.
- In the absence of specific site data, a Generic Quantitative Risk Assessment is invariably recommended.

C	Conceptual Site Model		Generic	Qualitative Risk Asses	sment		
Identified Source	Pathway(s)	Receptor(s)	Consequence	Likelihood of Occurrence	Risk Rating	Comments	Action
On-site sources of potential contamination:	Ingestion/direct contact of soils Inhalation of vapours and soil dust/fibres	End users of site Future site users, visitors and trespassers	Mild	Unlikely	Low	No exceedances of Commercial GACs noted within any recovered made ground soils samples.	Standard Health & Safety precautions likely to be used by workers.
Made ground was encountered to a maximum depth of 3.65m.	Vertical migration through the Made Ground and residual soils May occur due to processes including; capillary action.	Controlled Waters (Groundwater) Bedrock – Principal Aquifer No groundwater abstractions within 1km of the subject site. The site is not within a SPZ.	Medium Pollution of sensitive water resources	Unlikely	Low	Due to no sources of contamination identified within shallow site soils during the ground investigation and no groundwater abstractions noted within 1km of the site, this SPR linkage is not expected to be realised.	No further action required.
On-site and off-site sources of potential ground gas generation Made ground associated with historic development on-site.	Vertical and horizontal migration through the Made Ground.	End users of site Future site users, visitors and trespassers	Mild Human health risk	Unlikely	Low	Ground gas monitoring to date has recorded no elevated concentrations of carbon dioxide, methane. High negative flow rates have been attributed to pressure build up within monitoring wells due to high water table and are not considered representative of live site conditions. As such, the site is classified as CS-1.	No further action required.

Rev 03 | Copyright © 2021 Curtins Consulting Ltd

8.0 Geotechnical Conclusions and Recommendations

The recommendations provided within this section are based on a review of the ground conditions encountered across the site, considering the geotechnical and geo-environmental limitations and hazards identified.

8.1 Foundation Recommendations

It is understood, the proposed development comprises the construction of a new two storey hospital wing and refurbishment of existing buildings with associated car parking, communal soft landscaped, clinical and recycling waste storage in the north of the site.

It is considered that the underlying bedrock could potentially provide a suitable bearing stratum. For foundations founded on moderately strong sandstone with discontinuity spacings >60mm, allowable bearing capacities of 1500 to 2000 kN/m² are estimated.

Where bedrock is too deep and overlaid by variable made ground (encountered across the site to depths of up to 2.50m bgl) and along with variable residual soils (locally area to 3.65m bgl) it may affect the feasibility with potential mass trench fill foundations required within areas of deep made ground/residual soils. It is also considered that a piled foundation solution could be used to transfer the loads to the underlying bedrock. It must be noted that due to high strength of the bedrock, where allowable bearing capacities cannot be achieved for a pile end bearing at rockhead, CFA piling may not be a suitable solution, and other piling techniques such as bored piles may have to be considered. In addition, obstructions within the made ground and the high strength bedrock may affect the performance of a CFA rig. Therefore, a suitably qualified and experienced piling contractor should be consulted prior to commencement of the works.

The carrying capacity of piles depends not only on their size and the ground conditions but also on their method of installation.

If a piled foundation solution is to be adopted, consideration should be given to the fractured/poor quality bedrock at from approximately 9.00 – 11.50m bgl, within the vicinity of BH02A.

8.2 Ground Floor Slabs

Based on the observations on site together with the results of laboratory tests, it is recommended that consideration is given to a suspended ground floor slab, unless founded on a suitable natural stratum with allowable bearing capacities satisfying the required pressures from the slab. Where piled foundations are anticipated, a suspended slab is recommended to bear on the pile caps by a network of beams which will minimise any differential settlement between the floor and piled structure.

Ground Investigation Report

8.3 Chemical Attack on Buried Concrete

The site has been classified in accordance with BRE Special Digest and laboratory testing undertaken accordingly as detailed in Section 5.7.

Based on the laboratory test results it is considered that for Made Ground a Design Sulphate Class may be taken as DS-2 and an ACEC class for the site of AC-2 would be appropriate.

8.4 Excavations

It is anticipated that excavations will be required during the construction phase. These are likely to be for localised services and dig & replacement works.

Based on observations on site, together with the results of in-situ and laboratory tests, it is considered that excavations to <1.20m bgl should stand unsupported in the short term at suitable batters. However, where soft/loose deposits are present, instability is likely. Side support for safety purposes should of course be provided to all excavations which appear unstable, and those >1.20m deep, in accordance with Health and Safety Regulations.

Suitable side slope batters may be required. These must be designed by a suitably qualified temporary works contractor for any excavations.

Groundwater may be encountered as seepages in shallow excavations for foundations or services as perched water. It is considered that groundwater inflows, if encountered, may be controlled by pumping from sumps.

Excavation through layers of Made Ground encountered across the site should be feasible using conventional site plant. Following periods of heavy rainfall, the use of a tracked excavator may be required to prevent plant subsidence.

All excavation temporary works shall be designed by a suitably qualified temporary works contractor for any excavations.

9.0 Geo-Environmental Conclusions and Recommendations

9.1 Geo-Environmental Conclusions

A revised tabulated Conceptual Site Model has been derived following the findings of the Generic Quantitative Risk Assessment and is presented in Section 7.0.

9.1.1 Ground Contamination

The environmental chemistry soil results have been compared with the Tier 1 criteria for soils with respect to human health against 'Commercial' thresholds of which no exceedances were noted.

As such, the risk to site end users arising for made ground soils on-site is considered to be **Low**, with no further actions required.

9.1.2 Controlled Waters

No significant visual/olfactory evidence of contamination was identified within shallow site soils during the site investigation.

Considering the conceptual site model developed within the Phase 1 Preliminary Risk Assessment, due to no surface water receptors being located within 250m of the site, and no recorded abstraction points located within 1km of the site, as well as chemical laboratory it is considered that risks to controlled waters are confirmed as **Low** with no further action required.

9.1.3 Ground Gas Assessment

Six ground gas monitoring visits have been undertaken, with low carbon dioxide/methane concentrations recorded during the monitoring visits. The risk to the end-user of the development from soil gases is therefore considered to be **Low**.

It is noted that high negative flow rates were recorded within BH03, BH06 and WS03 on once occasion each. For the remainder of the visits, these wells were noted as being flooded. On the occasions where high flow rates were recorded, the groundwater levels recorded within the well were significantly above the screened section of the well. As such, it is considered that the cause of these peak flows is a result of pressure build up within the well, and not representative of natural site conditions. As such, these peak flows have been discounted form this assessment.

On the basis that encountered ground conditions have a low gassing potential and low ground gas concentrations have been recorded the site is assessed as Characteristic Situation 1 (CS-1) where gas protection measures will not be required.

Ground Investigation Report

9.2 Recommendations

Based on the findings of the ground investigation, the following recommendations are made:

- 1) It is recommended that construction workers are provided with appropriate PPE and sanitary facilities, with reference to the environmental testing results presented herein and within *Appendix C*.
- Where unexpected contamination is discovered during future earthworks and/or construction, works should be stopped and the advice of a qualified geo-environmental engineer should be sought.

Ground Investigation Report

10.0 Bibliography

Authority, C., 2020. *Coal Authority Interactive Map.* [Online] Available at: https://mapapps2.bgs.ac.uk/coalauthority/home.html [Accessed August 2020].

Barnes, G. E., 2016. Soil Mechanics Principles and Practice. s.l.:s.n.

British Geological Society, 1993. 1:50,000 Geological Map Series, Scotland Sheet 30E. [Online] Available at: https://www.bgs.ac.uk/data/maps/maps.cfc?method=viewRecord&mapId=10783 [Accessed August 2020].

British Geological Society, 1994. 1:50,000 Geological Map Series, Scotland Sheet 30E. [Online] Available at: https://www.bgs.ac.uk/data/maps/maps.cfc?method=viewRecord&mapId=11013 [Accessed August 2020].

British Geological Society, 2020. GeoIndex Onshore. [Online]

Available at: https://www.bgs.ac.uk/geoindex/

[Accessed August 2020].

British Standards (BS), 2013. BS8576, Guidance on investigations for ground gas. Permanent gases and Volatile Organic Compounds (VOCs). s.l.:s.n.

British Standards Institution, 2007. *Eurocode 7: Geotechnical Design (report no. BSEN1997).*, s.l.: s.n.

British Standards Institution, 2010. *Code of Practice for Site Investigations (report no. BS5930).*, s.l.: s.n.

British Standards Institution, 2011. *Investigation of Potentially Contaminated Sites (report no. BS10175).*, s.l.: s.n.

British Standards Institution, 2013. *Guidance on Investigations for Ground Gas, Permanent Gas and Volatile Organic Compounds (VOCs) (report no.BS8576:2013).*, s.l.: s.n.

British Standards Institution, 2016. *Methods of test for soils for civil engineering purposes. General requirements and sample preparation (report no. BS1377-1).*, s.l.: s.n.

British Standards, June 2015. BS 8485, Code of practice for the design of protective measures for methane and carbon dioxide ground gases for new buildings. s.l.:s.n.

Building Research Establishment, 2005. Concrete in Aggressive Ground (Special Digest 1)., s.l.: s.n.

CIRIA, 2001. Contaminated Land Risk Assessment. A guide to good practice (report no. C552)., s.l.: s.n.

CIRIA, 2002. Special Publication 32: Construction over Abandoned Mine Workings, s.l.: s.n.

CIRIA, 2016. CIRIA Report No C750 Groundwater Control. s.l.:s.n.

CIRIA, December 2007. CIRIA C665, Assessing risk posed by hazardous grounbd gases to buildings. s.l.:s.n.

Ground Investigation Report

CITB, 2015. Construction (Design and Management) Regulations., s.l.: s.n.

Coal Authority, Groundsure, June 2019. Enviro All-in-One, ref 51002132338001, s.l.: s.n.

Contaminated Land: Applications In Real Environments (CL:AIRE), 2011. *Definition of Waste Code of Practice (Version 2).*, s.l.: s.n.

Curtins, 2020. Red Tree Central Phase 1 Preliminary Risk Assessment, ref. 073983.302-CUR-00-XX-RP-GE-0001, s.l.: s.n.

Department of Environment Food and Rural Affairs (DEFRA), 2012. Environmental Protection Act 1990: Part 2A Contaminated Land Statutory Guidance (report no. PB13735)., s.l.: s.n.

Envirocheck, July 2020. Envirocheck Report, Ref 248034384 1 1. s.l.:s.n.

Environment Agency, 2004. *Model Procedures for the Management of Land Contamination Contaminated Land Report 11 (report no. CLR11).*, s.l.: s.n.

Environment Agency, 2006. Remedial Targets Methodology - Hydrological Risk Assessment for Land Contamination, s.l.: s.n.

Environment Agency, 2009. Human Health Toxicological Assessment of Contaminants in Soil (report no. SC050021/SR2)., s.l.: s.n.

Environment Agency, 2009. *Updated Technical Background to the CLEA Model (report no. SC050021/SR3*)., s.l.: s.n.

Environment Agency, 2014. Contaminated Land Exposure (CLEA) Tool (version 1.071)., s.l.: s.n.

Environment Agency, May 2015. Guidance on the classification and assessment of waste (1st edition 2015). Technical Guidance WM3. s.l.:s.n.

European Community (EC), 2000. The Water Framework Directive, s.l.: s.n.

European Union, 1998. Drinking Water Directive (Council Directive 98/83/EC), s.l.: s.n.

Gibson, R. E., 1953. Experimental Determination of The True Cohesion and True Angle of Internal Friction in Clays..

Groundsure, n.d. s.l.:s.n.

Highways England, 2009. *Interim Advice Note 73/06: Design Guidance for Road Pavement Foundations*, s.l.: s.n.

NHBC, 2013. Part 4 (Foundations) Chapter 4.2 (Building near Trees), s.l.: s.n.

S.Wilson, G.Card and S.Haines, 2009. Ground Gas Handbook. s.l.:s.n.

Stroud, M. a. B. F., 1975. The Standard Penetration Test and the Engineering Properties of Glacial Materials. s.l.:s.n.

Stroud, M. A. & Butler, F. G., 1975. *The Standard Penetration Test and the Engineering Properties of Glacial Materials.*, s.l.: s.n.

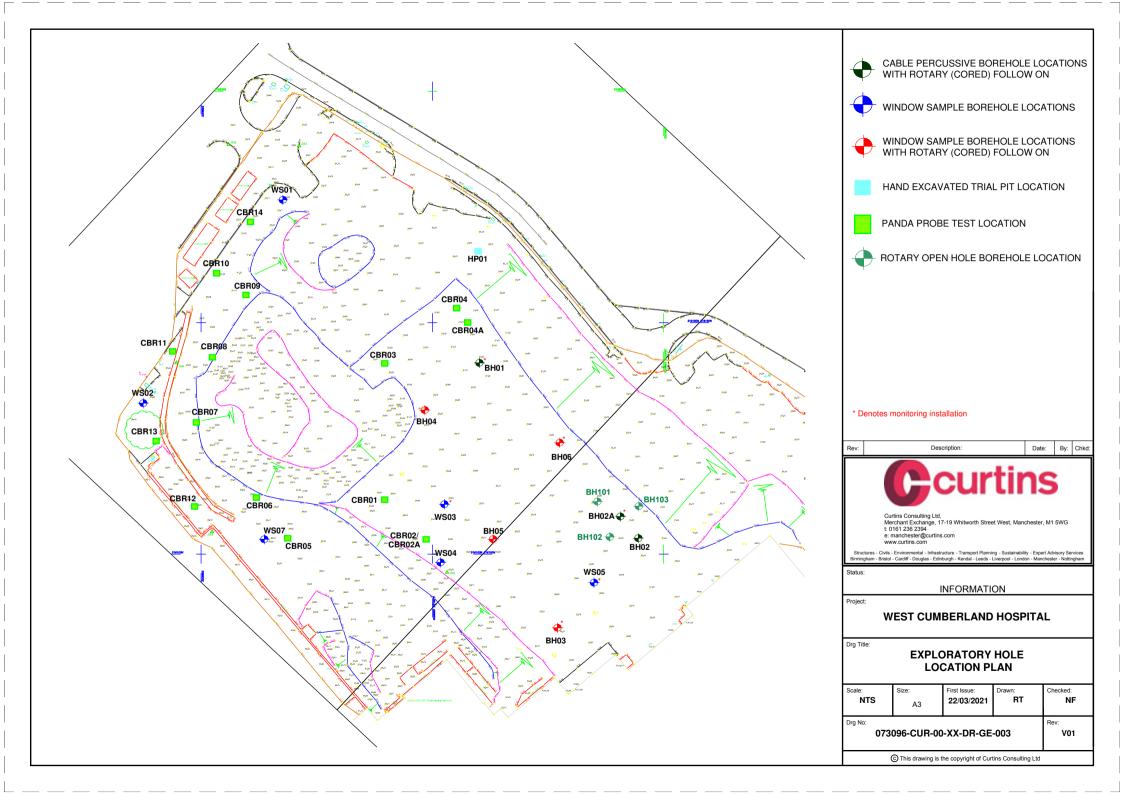
Tomlinson, M. J., 2001. Foundation Design and Construction. 7th ed. Suffolk: Pearson.

Ground Investigation Report

Tomlinson, M. J., 2001. Foundation Design and Construction. s.l.:s.n.

UK Radon, 2020. UK Radon Maps, http://www.ukradon.org/information/ukmaps. s.l.:s.n.

Waltham, T., 2019. Foundations of Engineering Geology. s.l.:s.n.


World Health Organisation (WHO), 2017. Guidelines for Drinking Water Quality, s.l.: s.n.

WYG, 2013. Southfield Grange Ground Investigation Report, ref: A081403-INT-01, s.l.: s.n.

Ground Investigation Report

Appendix A – Drawings

GENERAL NOTES:

- 1. THIS DRAWING IS TO BE READ IN CONJUNCTION WITH ALL RELEVANT ARCHITECTS AND ENGINEERS DRAWINGS AND SPECIFICATIONS.
- 2. DO NOT SCALE THIS DRAWING. ANY AMBIGUITIES, OMISSIONS AND ERRORS ON DRAWINGS SHALL BE BROUGHT TO THE ENGINEERS ATTENTION IMMEDIATELY. ALL DIMENSIONS MUST BE CHECKED / VERIFIED ON SITE.
- 3. ALL DIMENSIONS ARE IN MILLIMETRES UNLESS NOTED OTHERWISE.
- 4. FOR GENERAL NOTES REFER TO DRAWING.

SLIT TRENCH FROM BACK OF KERB BRE 365 SOAKAWAY TEST

CORE EXISTING SLAB TO DETERMINE DEPTH. DCP/CBR TEST ON SUBGRADE MATERIAL WITHIN ROAD AND ADJACENT AREA

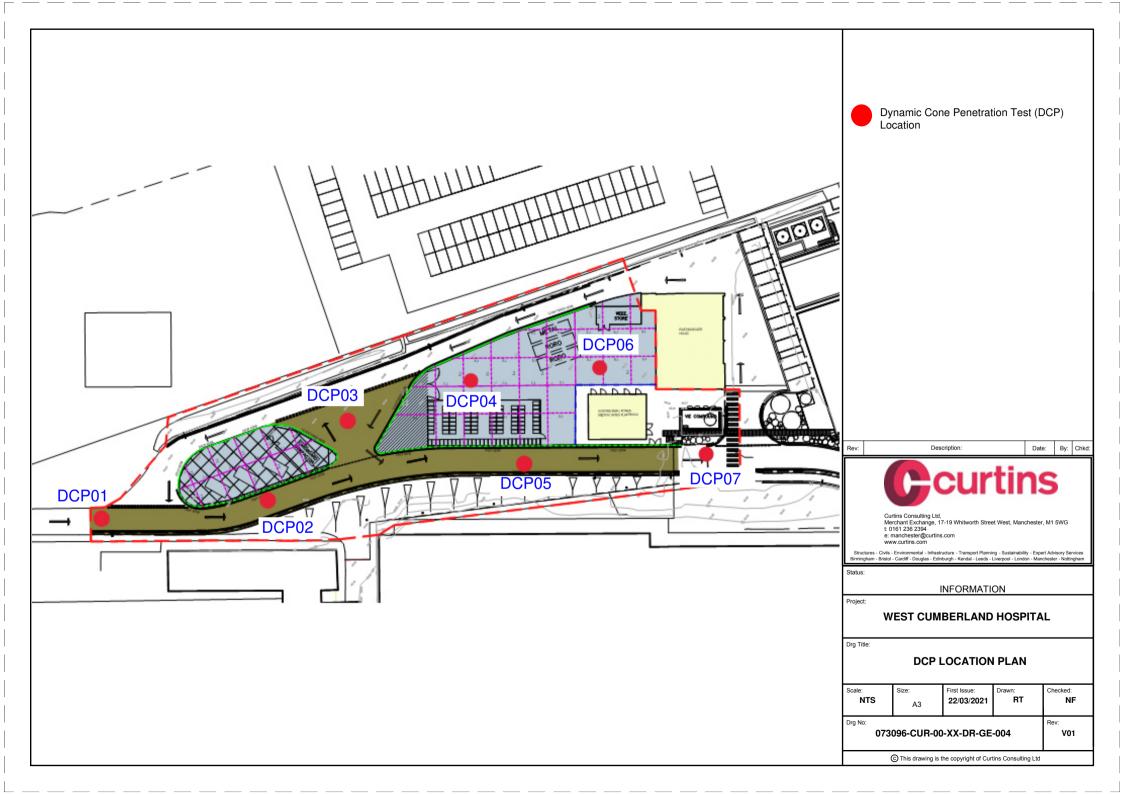
HAND DIG TO EXISTING FOUNDATIONS BOREHOLE LOCATION

TRIAL PIT LOCATION AS PER GCL TEMPORARY WORKS REQUIREMENTS

Units 24 & 25 Riverside Place, K Village, Lound Road, Kendal, LA9 7FH 01539 724823 kendal@curtins.com www.curtins.com Civil & Structures • Transport Planning • Environmental • Infrastructure • Geotechnical • Conservation & Heritage • Principal Designer Birmingham • Bristol • Cambridge • Cardiff • Douglas • Dublin • Edinburgh • Glasgow • Kendal • Leeds • Liverpool • London • Manchester • Nottinghan ISSUED FOR INFORMATION

16/07/21 DM PT

Date: By: Chkd:


GRAHAM

PROCURE WEST CUMBERLAND HOSPITAL PHASE 2 DEVELOPMENT

P01 FIRST ISSUE

SITE INVESTIGATION TEST REQUIREMENTS & LOCATIONS

Project No:	Size:	Date:	Drawn By:	Designed By:	Checked By:
070440	A1	JUL 21	DM	PT	DT
072419	Scale: 1:500		- DM	PI	PT
Project Code:	Originator:	Zone: Level:	Type: Discip	line: Category / Nu	ımber: Rev:

Ground Investigation Report

Appendix B –	Explorator	y Hole	Logs
--------------	------------	--------	------

								Trialpit No	_
						Tr	ial Pit Log	HP01	
								Sheet 1 of 1	
Project Name	ct West Ci	umberlar	nd Hospital	Project 07309			Co-ords: - Level:	Date 08/12/2020	
Locati	ion: Whiteha	aven		I			Dimensions	Scale	_
							(m): Depth	1:20 Logged	_
Client				1		1	0.60	MH	
Water Strike	Depth	Type	n Situ Testing Results	Depth (m)	Level (m)	Legend	d Stratum Description		
Rema	0.50	ES		0.60			MADE GROUND: Light brown slightly silty grav to coarse sand. Gravel is fine to coarse angula subrounded sandstone, rare brick, rare coal an fragments. Rare boulder of sandstone. End of pit at 0.60 m	d wood	
Stabili								AGS	

rojec ocatio		West Cum Whitehave	en		Project No. 073096		Co-ords: Level: Dates:	ole Log - 09/12/2020 - 09/12/2020	WS01 Sheet 1 of Hole Type WS Scale 1:20 Logged By	1
110111.				n Situ Testing			Dates.	03/12/2020 - 03/12/2020	MH	
Well	Water Strikes	Depth (m) 0.40	Type	Results	Depth (m)	Level (m)	Legend	Stratum Description MADE GROUND: Gravel over orang slightly sandy slightly gravelly clay. One to coarse angular to subrounded samixed lithologies. Rare cobbles of samixed lithologies.	gish brown Gravel is fine ndstone of	
		1.20		N=33 (3,4/7,9,8,9	0.80			Stiff brownish red sandy slightly gra Gravel is fine and medium subangul subrounded sandstone.	velly CLAY. lar to	1
	▼	1.70 - 3.00 2.00	Bulk	N=22 (5,4/5,6,4,7	1.70			Medium dense light brown slightly c gravelly fine to coarse SAND. Grave coarse angular to subrounded sand	el is fine to	2
		3.00		0 (0 for 0mm/0 fo 0mm)						3
Remai	rks				3.60 3.65		\	Grey medium and coarse SANDSTC End of borehole at 3.60 m	DNE. ,/	4

Well Water Strikes De	Samples and Depth (m) Type	In Situ Testing Results N=20 (2,3/4,5,5,6)	Depth (m) 0.40 0.70	Level (m)	Legend	Stratum Description Grass over TOPSOIL: Dark brown s fine and medium sand. Light brown and yellowish brown wit mottling sandy CLAY. Stiff reddish brown sandy slightly gra Gravel is fine and medium angular t subrounded sandstone.	slightly silty th rare grey avelly CLAY.	1
/veii	Depth (m) Type	Results	(m) 0.40		Legend	Grass over TOPSOIL: Dark brown sine and medium sand. Light brown and yellowish brown wit mottling sandy CLAY. Stiff reddish brown sandy slightly grayer is fine and medium angular to	slightly silty th rare grey avelly CLAY.	1
	3.00	N=38 (5,6/11,8,7,12) 0 (0 for 0mm/0 for 0mm)						2
			3.65			End of borehole at 3.65 m		

									Borehole N	lo.
						Boi	reho	ole Log	WS03	}
								.	Sheet 1 of	
Projec	t Name:	West Cum	berlan		Project No. 073096		Co-ords:	-	Hole Type WS	9
Locati	on:	Whitehave	en				Level:		Scale 1:20	
Client		CCL Solut	ions				Dates:	07/12/2020 - 07/12/2020	Logged By	у
Well	Water	Samples	s and l	n Situ Testing	Depth	Level	Legend	Stratum Description		
VVCII	Strikes	Depth (m)	Туре	Results	(m)	(m)	xxxxxxxx			
	•	0.40	ES					MADE GROUND: Light brown silty of to coarse sand. Gravel is fine to coat to subrounded sandstone, brick, wo fragments, metal fragments and rare Occasional cobbles of sandstone. R of sandstone.	irse angular od e nails.	
		1.20		N=24 (5,6/7,7,5,5				MADE GROUND: Yellowish/greyish brown slightly clayey gravelly mediu coarse sand. Gravel is fine to coarse subrounded sandstone. Rail nails.	m and e angular to	
		1.00		0 (0 101 011111/0 10 0mm)	1.90			Yellowish/greyish brown medium an SANDSTONE.	d coarse	
Rema	rks							End of borehole at 1.90 m		3 —
kema	IKS								AGS	

								Borehole N	0.
					Boi	reho	ole Log	WS04	1
							•	Sheet 1 of	1
Project Name	: West Cum	berlan		Project No. 073096		Co-ords:	-	Hole Type WS	
_ocation:	Whitehave	en	1			Level:		Scale 1:20	
Client:	CCL Solut	ions				Dates:	07/12/2020 - 07/12/2020	Logged By MH	y
Water	Samples	s and	In Situ Testing	Depth	Level				
Well Strikes				(m)	(m)	Legend	Stratum Description		
Strikes	0.40	ES	Results N=20 (4,3/2,5,7,6)		(m)		MADE GROUND: Light brown silty of to coarse sand. Gravel is fine to coat to subrounded sandstone, brick, wo fragments, metal fragments and rare Occasional cobbles of sandstone. Rof sandstone. MADE GROUND: Brown sandy gravelayey gravelly fine to coarse sand. to coarse angular to subrounded salbrick, wood fragments, metal fragmenails.	gravelly fine rse angular od e nails. are boulders velly clay and Gravel is fine ndstone,	1
	1.90		50 (25 for 113mm/5 for 85mm)	1.90			Brown and yellowish brown fine to c SANDSTONE.	oarse	2 —
				2.20			End of borehole at 2.20 m		-
Remarks									3
								AGS	

									Borehole N	lo.
						Boi	reho	ole Log	WS05	5
									Sheet 1 of	
Projec	t Name:	West Cum	berlan		Project No. 073096		Co-ords:	-	Hole Type WS	Э
Locati	on:	Whitehave	en				Level:		Scale 1:20	
Client:		CCL Solut	ions				Dates:	08/12/2020 - 08/12/2020	Logged B	у
Well	Water	Samples	s and l	n Situ Testing	Depth	Level	Legend	Stratum Description		
VVCII	Strikes	Depth (m)	Туре	Results	(m)	(m)	Legenu			
Rema	rks	2.20	ES	N=15 (3,5/5,3,3,4 50 (1,2/50 for 160mm)	2.50 2.51			MADE GROUND: Light brown sand Gravel is fine to coarse angular to standstone, breeze block fragments, plastic, rare metal and rare cloth fragments, occasional cobbles of sandstone. Grey medium and coarse SANDSTC End of borehole at 2.51 m	ubrounded wood, gments.	1 2 3
									AGS	3

					Borehole No.				
					Boi	eho	ole Log	WS07	,
							J	Sheet 1 of	1
Project Name:	West Cum	berland	d Hospital	Project No. 073096		Co-ords:	-	Hole Type WS	•
Location:	Whitehave	en				Level:		Scale 1:20	
Client:	CCL Solut	ions				Dates:	09/12/2020 - 09/12/2020	Logged By	y
Water	Samples	s and I	n Situ Testing	Depth	Level			IVIIT	
Well Strikes	Depth (m)	Туре	Results	(m)	(m)	Legend	Stratum Description		
Remarks	0.50	ES		1.40 1.80 2.00 2.20			MADE GROUND: Light brown sand Gravel is fine to coarse angular to su concrete, brick, rare clinker, sandsto breeze block fragments, rare wood a metal. MADE GROUND: Brown sandy grav Gravel is fine to coarse angular to su concrete, brick, rare clinker, sandsto breeze block fragments, rare wood a metal. MADE GROUND: Red brick, MADE GROUD: Grey gravelly clay. to coarse angular to subangular much for the properties of the pr	velly clay. ubrounded ine, rare and rare velly clay. ubrounded ine, rare and rare Gravel is fine distone.	1
-								AGS	

Proje	ct Name:	West Cumb	erland	Hosp	ital	(Client: 0	Curtins							Date: 1	4/12/20	20			
Locat	ion: Whit	tehaven				(Contrac	tor:												
	ct No. : 3					(Crew Na	ame: JH							Drilling	Equipm	ent: Fra			
Boı	rehole N BH01	umber		e Typ RC	е			Level				_	ged E CG	Ву		Scale 1:50			ge Num neet 1 of	
Well	Water	Depth (m)	Type /FI		orin	g	Diameter Recovery (SPT)	Depth (m)	I	_eve (m)	l	_ege			St	ratum D	escript		1001 1 01	
				TOIL	OOK	TOOL	,			` ,				# Drilli	ng carr	ied out b	y Cable	Percus	sion.	-
								0.50			:		: : :	# SAN	IDSTO	NE.				
								1.00			:	: : :		Mediu	m stron	g light b	rownish	grey co	arse	1 =
		1.00 - 2.00	4	100	100	90								space	d horizo	alline SA ontal frac nge oxid	ctures, s	tepped	rough.	-
		2.00 - 3.00	4	90	100	100)													2 -
							_													3 -
		3.00 - 4.00	3	100	100	90														- - - - -
		4.00 - 5.00	2	100	100	95	-													4
																				5 —
		5.00 - 6.00	5	100	100	80														-
		6.00 - 7.00	4	100	100	90					•									6 -
		7.00 - 8.00	3	100	100	100)													7
		8.00 - 9.00	2	100	100	95														8
		9.00 - 10.00	3	100	100	90								Closely	spaced	microlin	e coal la	minatio	ns.	9 -
<u>:</u>			Type/FI	TCR	SCR	RQD	D/R/(SPT)				:		<u>: : :</u>							10 -
	Diameter se Diamete 139 115					Chise Base	Illing Duration	Tool [Inclina Top Dep				orientation	Depth Top 0.00 1.00	Depth Base 1.00 11.00	Drilling Type Air Water	Flush Colour	Min (%)	Max (%) 100 100

Remarks

Project Name: West Cumberland Hospital	Client: Curtins	Date: 14/12/2020
_ocation: Whitehaven	Contractor:	
Project No. : 3670		Drilling Equipment: Fraste XL
Borehole Number Hole Type BH01 RC	Level Logged By CG	Scale Page Number 1:50 Sheet 2 of 2
Well Water Depth (m) Type Coring		Stratum Description
10.00 - 10.70 3 100 100 90 10.70 - 10.80	Mediu graine space. In 10.70	m strong light brownish grey coarse of drystalline SANDSTONE. Closely d horizontal fractures, stepped rough. ust orange oxidised banding noted. locally very weak dark blackish grey ne grained pyritic MUDSTONE. greed non intact. glight whitish grey crystalline STONE. Small pyritic inclusions noted ommon quartz veins. End of Borehole at 11.000m 12 — 13 — 14 — 15 — Depth Top Depth Base Type Colour Min (%) Max (%) Max (%)
1.00 139 1.00 139 11.00 115		0.00 1.00 Air 100 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Remarks

Project Name	: West Cumbe	erland l	Hosp	ital	C	Client: C	Curtins								Date:	10/12/20)20			
Location: Whi	tehaven				C	Contrac	tor:													
Project No. : 3	3670				C	Crew Na	ame: JԻ	ł							Drilling	g Equipn	nent: Fra			
Borehole N BH02			Type RC	е			Level				Lc	gged				Scale 1:50			ge Num neet 1 of	
Well Water	Donth			orin	g ROD	Diameter Recovery (SPT)	Depth (m)	n	Leve (m)		Le	gend			St		Descrip		icet i oi	
	. ,		TOR	OOK	rigo								# D	rilli	ng carı	ried out	by Cable	e Percus	sion.	
							0.50						# S	AN	DSTO	NE.				- - - - -
	1.00 - 2.00	5	100	100	80		1.00						gra mic hor pre rus	ine croli izoi fere t or	d cryst ne coa ntal fra ential a ange c	alline SA I lamina ctures, s Ilong coa	ANDSTO itions. Cl stepped	ations. R	rare aced	1 -
	2.00 - 3.00	3	100	100	100						· · · · · · · · · · · · · · · · · · ·		unre	oug	hout.					3 —
	3.00 - 4.00	5	100	100	95															-
	4.00 - 5.00	2	100	100	100						· · · · · · · · · · · · · · · · · · ·									4
	5.00 - 6.00	2	100	100	90															5 -
	6.00 - 7.00	4	100	100	90															6 -
	7.00 - 8.00	5	40	100	40								¬Becor	mes	s very (coarse.	- -			8 —
	8.00 - 9.00	0	40	100	100						· · · · · · · · · · · · · · · · · · ·									9 —
	9.00 - 10.00		40	100	0		10.00													-
Hole Diameter	Casing Diame	Type/FI eter	TCR		RQD Chisel	D/R/(SPT) lina	10.00	<u> </u>	Incline	ation	and	d Orien	tation	-			Drillin	g Flush		10 —
Depth Base Diameter 13.00 139 17.30 115		neter Dep	th Top			Duration	Tool	Depth						ation	0.00 1.00 7.80 13.00	1.00 7.80 13.00 17.30		Colour	Min (%)	Max (%) 100 100 0 100

Remarks

Project	Name	: West Cu	umbei	rland	Hosp	ital	C	Client: C	Curtins						Date: 1	0/12/202	20			
Location	n: Whi	tehaven					C	Contrac	tor:											
Project							C	crew Na	ame: JԻ	ł					Drilling		ent: Fra			
	hole N BH02/	umber _A			Typ RC	е			Level			L	ogged I CG	Ву		Scale 1:50			ge Numb neet 2 of	
Well		Depti (m)				orin	g	Diameter Recovery (SPT)	Depth (m)	า	Level	Le	gend		Str	atum D	escript		1001 2 01	
		10.00 - 1			70	80	20				()			LIMES and co Widely	g light wist STONE. Sommon of Sommon of Sommon of States	Small p quartz v d sub-ho	yritic inc eins thro	lusions oughout		11 -
		11.00 - 1	2.00	4	80	80	80													12
		12.00 - 1	3.00	3	70	100	100													13 —
		13.00 - 1	4.00	5	100	100	80													- - - - - -
		14.00 - 1	5.00	4	100	100	90													14
		15.00 - 1	6.00	5	100	95	85													15
		16.00 - 1	7.00		70	80	30													16 -
		17.00 - 1	7.30	5	60	70	40		17.30											17 =
									17.30	,					End	of Boreho	ole at 17.3	300m		18 -
				Type/FI	TCR	SCR	RQD	D/R/(SPT)												19 —
Hole Di		Casing [Diamet	er		Depth E	Chisell Base [ing Duration	Tool	Dept			nd Orienta	ation Orientation	Depth Top	Depth Base	Drilling Type	Flush	Min (%)	Max (%)
13.00 17.30	139 115	13.00	139		-r					-124					0.00 1.00 7.80 13.00	1.00 7.80 13.00 17.30	Air Water Water Water	- 15-51	()	100 100 0 100

Remarks

Project Name:	: West Cumbe	erland I	Hosp	ital		Client: (Curtins						Date: 0	9/12/20:	20			
Location: Whit	tehaven				C	Contrac	tor:											
Project No. : 3	3670				C	Crew N	ame: JH						Drilling	Equipm	ent: Fra	ste XL		
Borehole N BH03			Typ RC	е			Level			Lo	ogged E CG	Зу		Scale 1:50			ge Num neet 1 o	
Well Water	Depth (m)	Type /FI	C	orin	g	Diameter Recovery (SPT)	Depth (m)		evel m)	Le	gend		Str	atum D	escripti	on		
	, ,		TOIL	OOK	rigo							# Bacl	kfill.					_
																		=
																		_
																		1 -
							1.80] =
							1.00					# Wea	thered \$	SANDS [*]	TONE.			2 =
							2.40					"						_ =
												# SAN	IDSTON	IE.				=
.						-	3.00			: : :		Madiu		a. Ii.a.la.4 la				3 -
												graine	d crysta	Illine SA	rownish NDSTO	NE. Clo	sely	-
	3.00 - 4.00	3	100	100	100							space Rare r	a norizo ust orar	ntai trad nge oxid	tures, st ised bar	eppea i	rougn. oted.	=
																		4 —
																		4 -
	4.00 - 5.00	6	100	100	95													_
																		_
																		5 —
	5.00 - 6.00	7	100	100	80													=
						-												6 -
	6.00 - 7.00	1	100	100	100													_
	0.00 - 7.00	'	100	100	100													_
						-												7 =
	7.00 - 8.00	3	100	100	95													=
						-												8 -
	8.00 - 9.00	5	100	100	100													_
																		9 -
	9.00 - 10.00	3	100	100	100													=
Hole Diameter	Casing Diame		TCR		RQD	D/R/(SPT)	T	ln.	clinatio	n ar-	d Orienta	tion	I		Drilling	Flush		10 —
Depth Base Diamete 3.00 139		eter Dep	th Top			Duration	Tool					Orientation	0.00	3.00	Type Air	Colour	Min (%)	Max (%)
13.00 115													3.00	13.00	Water			100

Remarks

Projec	t Name	: West C	umbe	erland	Hosp	ital	(Client: C	Curtins						Date: 0	9/12/20:	20			
Location	on: Whi	tehaven					(Contrac	tor:											
-	t No. : 3						(Crew Na	ame: JH	ł					Drilling	Equipm	ent: Fra			
Bore	ehole N BH03				e Typ RC	е			Level			Logg	ed l :G	Ву		Scale 1:50			ge Numl neet 2 of	
Well	Water	Dept (m)		Type /FI		orin	g RQD	Diameter Recovery (SPT)	Depth (m)	า	⊥— evel m)	Leger			Str	atum D	escript			
		10.00 - 1	11.00	5	100									graine space	d crysta d horizo	g light b alline SA antal frac nge oxid	NDSTO	NE. Clo tepped	sely rough.	11 —
		11.00 - 1	12.00	3	100	100	100													12 —
		12.00 - 1	13.00	3	100	100	100													- - - - - -
4									13.00)			• •		End	of Boreho	ole at 13.0	000m		13 -
																				14 -
																				15 -
																				16 -
																				17 -
																				18 -
																				19 -
				Type/FI	TCR	SCR	RQD	D/R/(SPT)												20 -
	Diameter Diamete 139 115	Casing or Depth Base 3.00		ter Der	1	(Chisel		Tool	Dept		n and Or Base Inclir		ation Orientation	Depth Top 0.00 3.00	Depth Base 3.00 13.00	Drilling Type Air Water	Flush Colour	Min (%)	Max (%) 100 100

Remarks

Proje	ct Name	: West Cumb	erland	Hosp	oital	(Client: 0	Curtins					Date: 1	4/12/202	20			
Loca	tion: Whi	tehaven				(Contrac	tor:										
Proje	ct No. : 3	3670					Crew N	ame: JH					Drilling	Equipm	ent: Fra	ste XL		
Во	rehole N			е Тур	е			Level		Lo	ogged I	Ву		Scale			ge Num	
Well	BH04 Water	Depth	Туре	RC C	orin	g	Diameter Recovery (SPT)	Depth	evel	Le	CG gend		Str	1:50 atum D	escrip	1	neet 1 of	1
59 F	1	(m)	/FI	TCR	SCR	RQD	Rec (S	(m)	(m)	XXX		# MAC				d boreh	olo	
	Y							1.60 2.00 2.60				# MAL # MAL sands	DE GRO DE GRO tone. (P		andstor rushed fill).	ne bould broken		1 -
												πIIaic	CAND	STOINE	withina	ictures.		-
*		3.00 - 4.00	6	100	100	50		3.00				graine microli horizo prefere	d crysta ine coal ntal frac ential al ange ox	lline SA laminat tures, s	NDSTC ions. Cl tepped I lamina	itions. R	rare aced	3 -
		4.00 - 5.00	7	100	100	60	_											5 -
		5.00 - 6.00	8	100	100	30	_											6 -
		6.00 - 7.00	6	100	95	70	_											7 -
		7.00 - 8.00	7	100	100	70												8 -
		8.00 - 9.00	10	100	95	40												9 —
		9.00 - 10.00	3	100	95	95												10
Holo	Diameter	Casing Diam	Type/FI	TCR		RQD Chisel	D/R/(SPT)	1	nclinati	on an	d Orienta	ation			Drillin	g Flush		10
Depth Ba 3.00 13.00	Diamete	r Depth Base Dian		oth Top	Depth E		Duration	Tool [Depth Top 0.00 3.00	3.00 13.00	Type Air Water	Colour	Min (%)	Max (%) 100 100

Remarks

Project Na	ame:	West C	umbe	rland	Hosp	ital	(Client: C	Curtins							Date: 1	4/12/20:	20			
Location:	White	ehaven					(Contrac	tor:												
Project N							(Crew Na		ł						Drilling	Equipm	ent: Fra			
Boreho	ole Nu 3H04	ımber			e Typ RC	е			Level				Logge C		By		Scale 1:50			ge Numl neet 2 of	
Well Wa		Dept		Type /FI		orin	g RQE	Diameter Recovery (SPT)	Depth (m)	n		vel m)	Legen			Str	atum D	escript			
	1	(m) 10.00 - 1 11.00 - 1	11.00	3	100	100	100		(m)		((m)	Legal		graine microli horizo prefere	m strond crysta ine coal ntal fracential al ange on hout.	g light balline SA laminate tures, song coakidised barrendo	rownish NDSTO ions. Cli tepped I I lamina panding	grey co NE with osely sp rough, tions. R noted	rare aced	11
Holo Dia-	netor	Cooler	Diame	Type/FI	TCR			D/R/(SPT)			le.	olinati-	n and O-	entati	ion			Deillie -	r Eluch		20 —
Hole Diam Depth Base Di 3.00 13.00		Casing Depth Base 3.00		eter De	oth Top		Chise Base	Duration	Tool	Depti			n and Ori Base Inclin		orientation	Depth Top 0.00 3.00	3.00 13.00	Type Air Water	g Flush Colour	Min (%)	Max (%) 100 100

Remarks

Projec	t Name	: West Cun	nberla	nd Hos	spital	(Client: (Curtins						Date: 1	1/12/202	20			
Locati	on: Whi	tehaven				(Contrac	ctor:											
Projec	ot No. : 3	3670				(Crew N	ame: JF	1					Drilling	Equipm	ent: Fra	ste XL		
Bor	ehole N BH05		F	lole Ty RC	ре			Level			Lo	ogged E CG	Ву		Scale 1:50		1	ge Num neet 1 o	
Well	Water	Depth (m)			Corir	ng BOD	Diameter Recovery (SPT)	Depth (m)		Level (m)	Le	gend		Str	atum D	escript			
													# MAC	DE GRO	OUND: C	ollapsed	d boreho	ole.	1 - 2 - 2
								2.10					# Brok	en SAN	IDSTON	IE.			
								2.50			: : :		401	IDOTON					_ =
													# SAN	IDSTON	NE.				=
		3.00 - 4.0	00 4	4 10	0 100	90		3.00					graine microl horizo prefer	d crysta ine coal ntal frac ential al range ox	g light balline SA laminat tures, so ong coa kidised b	NDSTO ions. Clo tepped r I lamina	NE with osely sp rough, tions. R	rare aced	4
		4.00 - 5.0	00 :	3 10	0 100	100													5 —
		5.00 - 6.0	00 :	3 10	0 100	85													6
		6.00 - 7.0	00 :	2 10	0 100	95													7
		7.00 - 8.0	00 :	2 10	0 100	100													8 -
		8.00 - 9.0	00 ;	3 10	0 100	100)												9 —
		9.00 - 10.	00 2	2 10	0 100	100)												10
Hole	Diameter	Casing Dia		e/FI TC		RQD Chise	D/R/(SPT)			Inclinati	ion and	d Orienta	ation			Drilling	ı Flush		10 -
	Diameter Diameter 139 115		Diameter 139	Depth To			Duration	Tool					n Orientation	Depth Top 0.00 3.00	3.00 13.00	Type Air Water	Colour	Min (%)	Max (%) 100 100

Remarks

Projec	t Name	: West Cı	ımbe	rland	Hosp	oital	(Client: C	Curtins						Date: 1	1/12/202	20			
ocati	on: Whi	tehaven					(Contrac	tor:											
Projec	t No. : 3	3670					(Crew Na	ame: JH	ł					Drilling	Equipm	ent: Fra	ste XL		
Bor	ehole N				e Typ RC	е			Level				Logged			Scale			ge Num	
Well	BH05 Water	Dont		Type /FI		orin	g ROF	Diameter Recovery (SPT)	Depth (m)	n	Le\ (m		CG Legend		Str	1:50 atum D	escript		heet 2 of	
		10.00 - 1	1.00	4	100	100	90		, ,			,		graine microl horizo prefer	ed crysta ine coal intal frac ential al range ox jhout.	Illine SA Iaminat tures, s ong coa kidised b	rownish NDSTO tions. Clot tepped r Il lamina panding	NE with osely sp rough, tions. R noted	n rare baced are	11
		12.00 - 1	3.00	2	100	100	90													13
									13.00)					End	of Boreho	ole at 13.0	000m		13
																				14
																				15
																				16
																				17 -
																				18 -
																				=
Hole	Diameter	Casing [Diamet		TCR		RQD	D/R/(SPT)			Incl	inatio	n and Orier	Itation			Drilling	g Flush		20 —
3.00 13.00				eter Dep	oth Top				Tool	Depth				on Orientation	Depth Top 0.00 3.00	3.00 13.00	Type Air Water	Colour	Min (%)	Max (%) 100 100

Remarks

Projec	ct Name	: West Cun	nberlar	nd Hos	pital	(Client: (Curtins						Date: 1	1/12/202	20			
Locati	ion: Whi	tehaven				(Contrac	tor:											
Projec	ct No. : 3	3670				(Crew N	ame: Jŀ	1					Drilling	Equipm	ent: Fra	st XL		
Bor	ehole N		H	lole Typ	ре			Level			Lo	ogged I	Ву		Scale			ge Numl	
Well	BH06 Water	Depth		RC pe (Corin	ıg	Diameter Recovery (SPT)	Dept		vel	Le	CG gend		Str	1:50 atum D	escript		neet 1 of	12
) 131 (전		(m)	/F	TCR	SCR	RQE	Dia Rec (S	(m)	1)	n)	***	S	# МАГ		UND: C			nle.	<u> </u>
	•							1.20					# MAI		UND: C				1 -
								1.80 2.00						IDSTON					2 -
		2.00 - 3.0	00 6	3 100	100	80		2.00					graine space	d crysta d horizo	g light bi illine SA intal frac inge oxid	NDSTO tures, s	NE. Clo	sely rough.	3 -
		3.00 - 4.0	00 4	1 100	100	95													4 —
		4.00 - 5.0	00 6	5 100	100	70													5 -
		5.00 - 6.0	00 5	5 100	100	90													6 -
		6.00 - 7.0	00 2	2 100	100	100)												7 -
		7.00 - 8.0	00 3	3 100	100	100													8 -
		8.00 - 9.0	00 3	3 100	100	100													9 —
		9.00 - 10.0	00 3	3 100	100	100)	10.00											10 -
Hole	Diameter	Casing Dia		e/FI TCR		RQD	D/R/(SPT)	10.00		linatio	n ar	d Orienta	ation	l		Drilling	ı Flush		10
Depth Bas 2.00			Diameter 139	Depth Top				Tool		_			Orientation	Depth Top 0.00	Depth Base 2.00	Type Air	Colour	Min (%)	Max (%)
12.00	115	2.00	.50											2.00	12.00	Water			100

Remarks

Project Name: West Cumberland Hospital	Client: Curtins	Date: 11/12/2020
_ocation: Whitehaven	Contractor:	
Project No. : 3670	Crew Name: JH	Drilling Equipment: Frast XL
Borehole Number Hole Type	Level Logged By	Scale Page Number
BH06 RC Well Water Depth Type Coring TCR SCR RQ RQ RQ RQ RQ RQ R	CG CG CG CG CG CG CG CG	1:50 Sheet 2 of 2 Stratum Description
10.00 - 10.10	10.10 XXXXXXX Heavily mediur non int	Incally very weak orangish brown of weathered and oxidised fine to magrained SANDSTONE. Recovered lact and clay bound. If light whitish grey crystalline itTONE. Small pyritic inclusions noted formon quartz veins throughout. The properties of the
	selling Inclination and Orientation	Drilling Flush
Depth Base Diameter Depth Base Diameter Depth Base Diameter Depth Top Depth Base 2.00 139 2.00 139 139 139 139 14 <t< td=""><td></td><td></td></t<>		

Remarks

	R	Phoen Orilling	nix
3)	E	Orilling	Ltd

Project Name: West Cumberland Hospital Location: Whitehaven Project No.: 3775								Client: Curtins Contractor:						Date: 08/03/2021					
								Crew Name: JS					Drilling Equipment: Fraste ML						
Borehole Number Hole Type								Level		Logged	Logged By		Scale		Page Number				
	BH101				RO				1 1		JM	1	1:50 Sheet 1 of 2					2	
Well	Water	Depth (m)		ype /FI			g	lamete (SPT)	Depth (m)	Leve (m)			Stratum Description						
		()			ICK	SCR	RQD	۵۳	()	(,		# M	ADE GROUI	ND.				+ =	
									0.60			4:	ne grained S	NANDOT	ONE			_ =	
												# [1	ne grained S	SANDSI	ONE.				
																		1 =	
									2.10			# Fii	# Fine grained yellow SANDSTONE.					2 =	
																		3	
							3.20 :::::: # Fine grained grey SANDSTONE.							E.		$+$ \blacksquare			
													5 5	, ,				1 =	
																		4	
																		1 =	
									4.90										
									4.50			# Fii	ne grain yell	ow SAN	IDSTONE	Ξ.		5 =	
									5.90			# 51	no grained S	TOUNAS	ONE			_	
										# Fine grained SANDSTONE.						6 =			
							6.50												
									0.50		# Fin		Fine grained yellow SANDSTONE.						
																		7 =	
																		'	
																		8 =	
									8.60									8	
									0.00			# Ba	adly broken s	SANDS ⁻	TONE.				
																		9 =	
			 -	ype/FI	TCR	SCR	RQD	D/R/(SPT)										=	
	Diameter se Diameter	Casing Depth Base	Diameter				Chisell		Tool De		ation and Orien pth Base Inclinati		tion Depth Top I	Denth Pas-		Flush	Min (9/)	May (9/)	
3.00 12.00	139 115	3.00	139	Det	рит тор	Deptn	Dase	Duration	1001 De	ebui ioh De	pui base inclinati	Oriental	0.00 8.60	8.60 10.70	Type Air/Mist Air/Mist	Colour	Min (%)	Max (%) 100 60	
													10.70	12.00	Air/Mist			100	
	1	1	i	1		1	1			I I	1	1	1 1		1	1	1		

Remarks

Description based on drillers records.
Inspection pit pre dug to 1.20m and CAT scanned.

Phoen	ix
rilling	Ltd

Project l	Name: V	C	Client: Curtins								Date: 08/03/2021										
Location: Whitehaven								Contractor:													
Project l	No. : 377	75					C	rew Na	me: JS							Drilling E	Equipme	nt: Fraste	e ML		
Bore	ehole Nu BH101	mber			e Type RO	е			Level				Lo	gged B JM	Ву		Scale 1:50			nge Numb	
Well	Water	Depth (m)	n T	ype /FI	TCR	orin	g	Diameter Recovery (SPT)	Depth (m)	n	Le\ (m		Leg	gend		St	tratum D	escription	on		
									10.70 11.10						# Fine		SANDS				10
								12.00								End	d of Boreho	ole at 12.00	00m		12
																					13 -
																					14
																					15
																					16
																					17
																					18
				ype/FI	TCR			D/R/(SPT)													19
Hole D Depth Base	Diameter	Casing Depth Base		r De	nth To-		Chisell	ing Duration	Tool	Den'				Orientation	Orientation	Denth Ter	Depth Base	Drilling	Flush Colour	Min (%)	Max (%)
3.00 12.00	139 115	3.00	139	. ре	ישני וטף	pepul	Jase	JuiduUII	1001	Debt	.1 10p	<i>-</i> թեն (1	Jase I		Onentation	0.00 8.60 10.70	8.60 10.70 12.00	Type Air/Mist Air/Mist Air/Mist	Colour	ivilli (70)	100 60 100

Remarks

Phoen	ix
rilling	Ltd

Projec	t Name: V	Vest Cum	ospital		C	Client: C	urtins						Date: 08/03/2021							
ocatio	on: Whitel	haven					C	Contract	or:											
Projec	t No. : 37	75					C	Crew Na	me: JS						Drilling I	Equipme	nt: Fraste	e ML		
	rehole Nu			Но	le Typ	<u>е</u>			Level			L	ogged B			Scale			age Numb	per
	BH102				RO								JM	,		1:50			heet 1 of	
Well	Water	Depth	n	Туре	e C	Corin	g	Diameter Recovery (SPT)	Depth		evel	ا ا	gend		St	tratum D)escrinti	on		
VVOII	Water	(m)		/FI	TCR	SCR	RQD	Diar Rec (S	(m)	(m)		gond				, ooon pu			
														# MAD	E GROL	JND.				1 3
																				1 3
									0.90			***	******	# Fine	grained	yellow S/	ANDSTO	NE.		1 =
																,				'
									1.50											
									1.50					# Fine	grained	grey SAN	NDSTON	E.		
																				ا ا
																				2 =
																				1 3
																				,
																				3 =
												: : :								1 1
												:::								
																				4 =
												:::								=
									4.70			:::		# =:		CANDOT	ONE			1 2 3 4 5 6 6
														# Fine	grained	SANDST	ONE.			5 =
												:::								
																				6
									6.20					# Fine	arainad	vallau C	ANDOTO	NIT.		_
												:::		# FINE	gramed	yellow S <i>i</i>	ANDSTO	JIN⊑.		
												:::								
												:::								7 =
												:::								'
																				1 1
												:::								8
																				0 =
									8.30					# Fine	grained	SANDST	ONE.			1 1
												:::								
												: : :								8
												:::								8
												:::								
				Type/F	TCR			D/R/(SPT)												
Hole Diameter Casing Diameter Chiselling Depth Base Diameter Depth Base Diameter Depth Top Depth Base Durat							Tool I				d Orientation	Orientation	Depth Top	Depth Base		g Flush Colour	Min (%)	Max (%)		
3.00 12.00	139 115	3.00	139												0.00 9.90	9.90 11.00	Air/Mist Air/Mist			100 60
															11.00	12.00	Air/Mist			100
																	1	1	1	

Remarks

	R	Phoen Drilling	nix
3)	E	Orilling	Ltd

Project Name: West Cumberland Hospital								Client: Curtins								Date: 08/03/2021				
Location: Whitehaven								Contractor:												
Project	t No. : 37	75					С	rew Na	me: JS						Drilling I	Equipme	nt: Fraste	ML		
Во	rehole Nu BH102				e Type	Э			Level			Lo	ogged B JM	Ву		Scale 1:50			nge Numb	
Well	Water	Depth (m)	T I	ype /FI		orin	g	Diameter Recovery (SPT)	Depth (m)	1	Level (m)	Le	gend		St	tratum D	escription			
		()			ICK	SCR	RQD	Ω K			(***)	:::		# Fine	grained	SANDST	ONE.			
									9.90						en SANE	OSTONE.				10 11 12 13 14 15 16 17 18 19 19 19 19 19 19 19
									12.00							d of Boreho	ole at 12.00	00m		12
																				13
																				14
																				15
																				16
																				17
																				18
			Т	ype/FI	TCR	SCR	RQD	D/R/(SPT)												19
	Diameter	Casing D	Diameter				Chisell	ing					d Orientati				Drilling			1
Depth Bas 3.00	139 115	Depth Base 3.00	Diamete 139	r De	pth Top	Depth I	Base	Duration	Tool	Depth	Top Depth	n Base	Inclination	Orientation	0.00	Depth Base 9.90	Type Air/Mist	Colour	Min (%)	Max (%) 100
12.00	115														9.90 11.00	11.00 12.00	Air/Mist Air/Mist			60 100

Remarks

Phoen	ix
rilling	Ltd

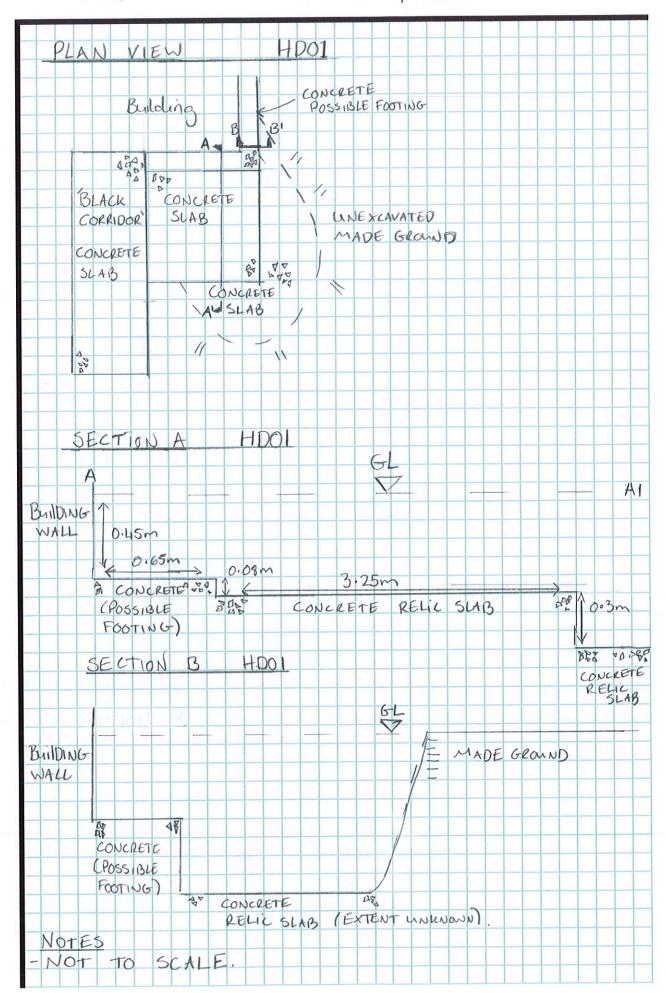
Project	Name: \	Nest Cuml	berland	Hos	pital		C	lient: Curtins						Date: 09/03/2021						
Locatio	n: White	haven					C	Contract	or:											
Project	No. : 37	75					C	Crew Na	me: JS						Drilling I	Equipme	nt: Fraste	e ML		
Bor	ehole N				е Туре	е			Level			Lo	ogged B	у		Scale			age Numb	
	BH103		1_		RO .			# Y	D (1	Τ.		1	JM			1:50		S	heet 1 of	2
Well	Water	Depth (m)		ype /FI	TCP	orin	g POD	Siamete Recover (SPT)	Depth (m)	ו ו	Level (m)	Leg	gend		St	tratum D	escriptio	on		
Well	Water	(m)		/FI	TCR	SCR	RQD	Dameter Recovery (SPT)	(m) 0.80		(m)	Leç	gend		E GROU	JND.	Description			1 1 2 3 4 5 6 7 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
									3.10					# Fine (grained	grey SAN	NDSTON	E.		4 =
									4.20					# Fine (grained	SANDST	ONE.			5
									6.10					# Fine (grained j	yellow S	ANDSTO	NE.		7 —
									7.30					# Fine (grained (grey SAN	NDSTON	E .		8 -
Holo	liameter	Cooling		/pe/FI	TCR	SCR		D/R/(SPT)	8.60		Inclinati		Orientati		en SANE	OSTONE	Drilling	ı Elueb		9 -
Depth Base			Diameter	Dep	oth Top		Chisell Base	Duration	Tool	Depth T			Orientation			Depth Base	Туре	Colour	Min (%)	Max (%)
3.00 12.00	139 115	3.00	139												0.00 8.60 9.90	8.60 9.90 12.00	Air/Mist Air/Mist Air/Mist			100 60 100

Remarks

Phoen	nix
rilling	Ltd

Project	Name: V		С	Client: Curtins								Date: 09/03/2021								
Location: Whitehaven								Contractor:												
Project	No. : 377	75					С	rew Na	me: JS						Drilling I	Equipme	nt: Fraste	ML		
Bore	ehole Nu BH103				e Type RO	е			Level				Logged JM	Ву		Scale 1:50			age Numb	
Well '	Water	Depth (m)	1	Гуре /FI	TCR	orin	g	Diameter Recovery (SPT)	Depth (m)	1	Leve (m)		Legend		S	tratum D	escription	on		
Well		Depth		Гуре		SCR	g RQD	Diameter Recovery (SPT)						# SAN	EEN SANE	DSTONE.		on		11
																				17 -
																				18
			 T	ype/FI	TCR	SCR	RQD	D/R/(SPT)												19 =
	Diameter	Casing D	iameter				Chisell	ing					and Orient			I	Drilling			
Depth Base 3.00	139 115	Depth Base 3.00	Diamete 139	r De	pth Top	Depth I	Base	Duration	Tool	Depti	h Top De	epth B	ase Inclination	on Orientation	0.00	Depth Base 8.60	Air/Mist	Colour	Min (%)	Max (%) 100
12.00	115														8.60 9.90	9.90 12.00	Air/Mist Air/Mist			60 100

Remarks

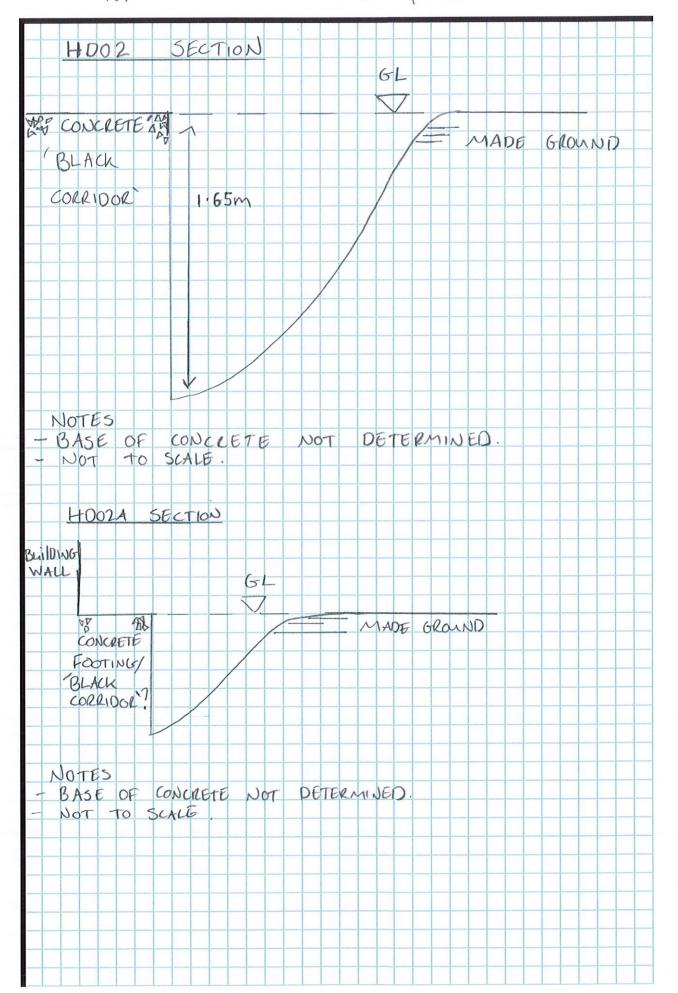


Job Title West Cumberland Hospital

Job No: B073096

Date: 05/08/2021 CCUrtins

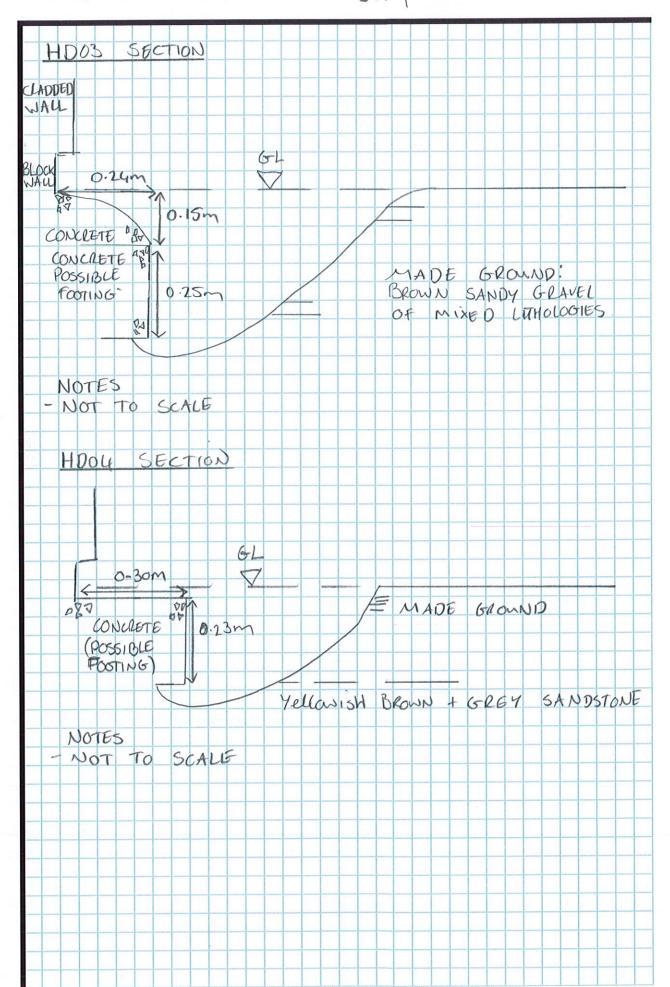
Made By: NF Checked By: Sheet No: 1 of I+


Job Title WCH

Job No: 073096

Made By: NF Checked By:

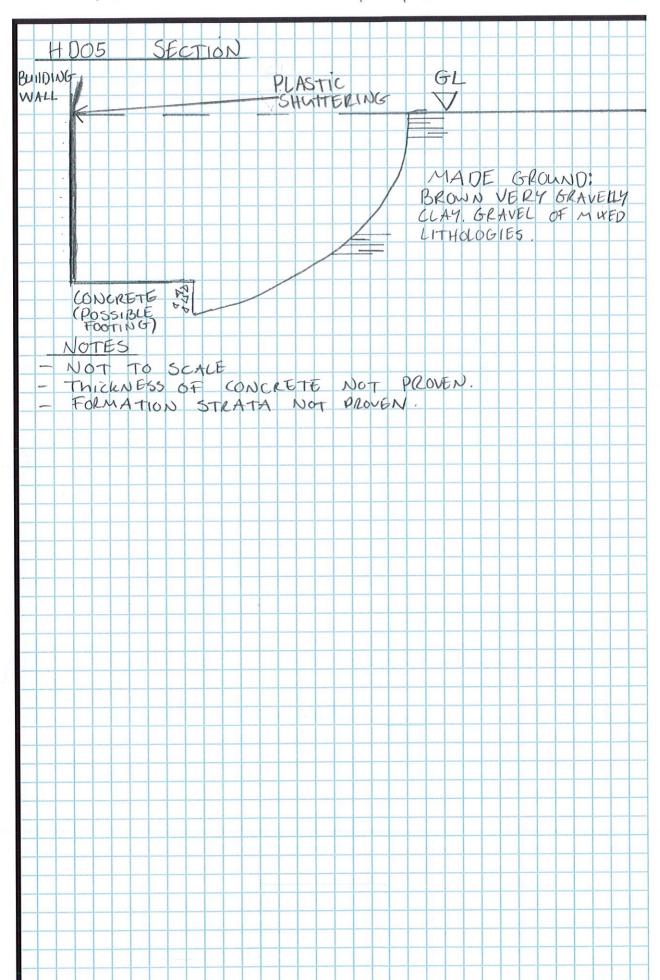
Sheet No: 2 of 4



Job Title WCH

Job No: 073096

Sheet No: 3 of 4


Job Title WCH

Job No: 073096

Made By: NF Checked By:

Sheet No: 4 of 4

							Borehole No.			
						Boı	reho	ole Log	BH21	
									Sheet 1 of	1
Projec	t Name:	West Cum Additional			Project No. 073036.005		Co-ords:	-	Hole Type WS	9
Locatio	on:	Whitehave	n				Level:		Scale 1:20	
Client:		Graham C	onstru	ction			Dates:	03/08/2021 -	Logged B	у
\\/oll	Water	Samples	s and I	n Situ Testing	Depth	Level	Logond	Stratum Depariation		
Well	Strikes	Depth (m) 0.50 - 1.00	В	Results	(m)	(m)	Legend	MADE GROUND: Brown very grave coarse SAND with high cobble contribution to coarse angular to sub-rounde lithologies including brick, concrete, occaisonal ash.Cobbles include bric (Demo Rubble).	Illy fine to ent. Gravel is ed of mixed cermaics,	
		1.20 1.20 - 1.50	N=7 (1,1/1,1,2,		1.20			No core recovery. MADE GROUND: Dark brown silty signavelly CLAY. Gravel fine to coarse		- - - - - - - - -
					1.70			sub-rounded of coal and limestone. Light brown slightly sandy, slightly g Gravel includes sandstone and lime	stone.	- - - -
		2.00		50 (25 for 80mm/5 for 95mm)	2.00			Grey and brown medium to coarse of crystalline SANDSTONE (Presumed End of borehole at 2.00 m	grained I Bedrock).	3
										4 -

Hand excavated service clearance pit excavated to 1.20m bgl. No groundwater recorded.

									Borehole N	0.
						Boi	reho	ole Log	BH22	
									Sheet 1 of	
Projec	t Name:	West Cum Additional			Project No. 073036.005		Co-ords:	-	Hole Type WS	9
Locatio	on:	Whitehave	en				Level:		Scale 1:20	
Client:		Graham C	onstru	ction			Dates:	03/08/2021 -	Logged By	y
	Water	Samples	s and	In Situ Testing	Depth	Level				
Well	Strikes	Depth (m)	Туре	Results	(m)	(m)	Legend	Stratum Description		
		0.50 - 0.70	D					MADE GROUND: Brown very grave coarse SAND with medium cobble coarse angular to su of mixed lithologies including brick, coermaics, occaisonal ash. Cobbles brick, concrete. (Demo Rubble).	ontent. ub-rounded concrete,	
		1.20		N=6 (1,2/2,2,1,1)	1.50			MADE GROUND: Purplish brown sa CLAY with medium cobble content. (Gravel	1
		2.00		N=30 (2,2/3,4,6,17	7)			includes fine to coarse angular to su mudstone, concrete, ash. Cobbles ir concrete.	b-rounded nclude	2 —
		2.45		N=50 (25 for 95mm/50 for 280mi	2.40 m)			Grey and brown medium to coarse g crystalline SANDSTONE (Presumed	grained Bedrock).	
					2.90			End of borehole at 2.90 m		3 —
										4

Hand excavated service clearance pit excavated to 1.20m bgl. No groundwater recorded.

									Borehole N	0.
						Bor	eho	ole Log	BH23	
									Sheet 1 of	
Projec	t Name:	West Cum Additional	berlan Investi		Project No. 073036.005		Co-ords:	-	Hole Type WS)
				igation .	073030.003				Scale	
Locati	on:	Whitehave	n				Level:		1:20	
Client:		Graham C	onstru	ction			Dates:	03/08/2021 -	Logged By NF	y
Well	Water Strikes			n Situ Testing	Depth (m)	Level (m)	Legend	Stratum Description		
	Cuntoo	Depth (m)	Туре	Results	()	()		MADE GROUND: Brown slightly gra	velly SAND.	_
					0.18			Gravel is fine to medium angular to of mixed lithologies including brick a Brown medium to coarse grained S	sub-rounded nd concrete.	-
(//28///					0.18			Brown medium to coarse grained S (Presumed Bedrock)	ANDSTONE ,	-
								(Presumed Bedrock). End of borehole at 0.20 m		-
										-
										-
										-
										-
										1 —
										-
										-
										-
										_
										-
										-
										-
										_
										2 —
										-
										-
										-
										-
										-
										-
										-
										3 —
										-
										-
										-
										-
										-
										-
										_
										4 —

Hand excavated service clearance pit excavated to 1.20m bgl. No groundwater recorded.

									Borehole No	0.
				l		Boi	reho	ole Log	BH24	
					N				Sheet 1 of	
Projec	t Name:	West Cum Additional	berlan Invest		Project No. 073036.005		Co-ords:	-	Hole Type WS	,
_ocati	on.	Whitehave			0.222		Level:		Scale	
_UUain	JII.	VVIIIGIIAVO					Levei.		1:20	
Client:	· · · · · ·	Graham C					Dates:	03/08/2021 -	Logged By NF	y
Well	Water			In Situ Testing	Depth	Level	Legend	Stratum Description	ı	
<i>\\\\</i>	Strikes	Depth (m)	Туре	Results	(m)	(m)		MADE GROUND: Brown gravelly sl		
								CLAY with medium cobble content.	Gravel is fine	1
								to coarse angular to sub-rounded of lithologies including sandstone, brid	k, concrete,	-
								rare timber. Frequent Grey sandstor 2-3m bgl.	ne cobbles at	-
								2 3		-
										1
										-
										=
										-
										=
										1 -
		1.10 - 1.50	D							=
		1.20		N=7 (1,1/1,1,2,3))					1
										-
										1
										=
										1
										=
		2.00		N=5 (2,2/1,2,1,1)	,					2 —
		2.00		N-0 (2,2/1,2,1,1,	'					_
										-
										=
										=
										-
										-
										1
										=
										-
		3.00		N=22 (10,7/7,5,3,	7) 3.00			End of borehole at 3.00 m		3 —
								End of peronole at one		1
										=
										-
										-
										_
										-
										-
										-
										4 —

Remarks

Hand excavated service clearance pit excavated to rockhead. No groundwater recorded. Refusal at 3.0m bgl, possible sandstone but no recovery to confirm or otherwise.

									Trialpit I	No
						Tri	ial Pit Lo	g	CO1	1
									Sheet 1	
Project Name:	t West Cui Investiga	mberland tion	l Hospital Additional	Project 07303			Co-ords: - Level:		Date 03/08/20	
				07303	0.003		Dimensions		Scale	
Locatio	on: Whitehav	/en					(m):		1:20	
Client:	Graham	Construc	tion				Depth 0.25		Logge NF	d
Water Strike	1		Situ Testing	Depth (m)	Level (m)	Legend	d Stratu	ım Description		
∧ છ	Depth	Туре	Results	()	()		Grey Concrete, reinforctop) with 5mm bar.	ed through middle (9mr	n from	-
				0.20			MADE GROUND: Fine	to coarse ash GRAVEL	euh-	-
				0.25			base. Occasional sands End	tone cobbles. of pit at 0.25 m		2
Remar	rks: Concr	ete core	carried out. Core rep	olaced an	ıd skimm	ned with	concrete on completion.			4 —
Stahilit	hv.								AG	S

			Tri	al Pit Lo	~	Trialpit No
					y	CO2
						Sheet 1 of 1
Project West Cumberland Hospital Additional lame: Investigation	Project 07303			Co-ords: - Level:		Date 03/08/2021
-	07300	0.000		Dimensions		Scale
ocation: Whitehaven				(m): Depth		1:20
Client: Graham Construction				0.25		Logged NF
Samples and In Situ Testing Depth Type Results	Depth (m)	Level (m)	Legend	d Stratur	m Description	
50)				Grey Concrete, reinforce top) with 5mm bar.	d through middle (8.5r	nm from
	0.25			MADE GROUND: Fine to base. Occasional sandstr	one cobbles.	2
						3
Remarks: Concrete core carried out. Core re	placed ar	nd skimm	ned with	concrete on completion.		AGS

								Trialpit N	0
						Tri	ial Pit Log	SA01	
				Duning	4 N1 -		lot	Sheet 1 of	f 1
Project Name:	West Cun Investigat	nberlan tion	nd Hospital Additional	Project 07303			Co-ords: - Level:	Date 03/08/202	21
Locatio				0.000	0.000		Dimensions 2.5	Scale	- '
Locatio	on. Whitehav						(m): Depth တ	1:20	
Client:	Graham (Constru	ction				Depth 0.95	Logged NF	
ter	Samples	s and l	n Situ Testing	Depth	Level	Legend	d Stratum Description		
Water Strike	Depth	Туре	Results	(m)	(m)	Legend			
				0.20			MADE GROUND: Brownish grey gravelly SANE high cobble content. Gravel is fine to coarse ang sub-rounded of mixed lithologies including brick concrete, sandstone, occasional re-bar. Cobble: brick, concrete, sandstone. (Demo Rubble) Grey medium to coarse grained crystalline SANDSTONE, closely spaced fractures. End of pit at 0.95 m	gular to	2 —
Remarl	ks: No gro sepera	undwa itely.	ter recorded. Soakawa	ay test (S	SA01) un	idertake	n in bedrock deposits, results reported		

Stable.

				$\overline{}$			Т	
						Tr		rialpit No SA02
						• •		neet 1 of 1
Projed Name		 nberlar tion	nd Hospital Additional	Project 07303			Co-ords: -	Date 3/08/2021
Locati	on: Whitehav	en					Dimensions 2.2	Scale
							(m):	1:20 Logged
Client	: Graham (Constru	uction				1.65	NF
Water Strike	Samples	s and I	In Situ Testing	Depth	Level	Legen	d Stratum Description	
Wa Stri	Depth	Type	Results	(m)	(m)			
				0.90			MADE GROUND: Light brown sandy GRAVEL with h cobble content. Gravel is fine to coarse angular to sul rounded of mixed lithologies including brick, concrete sandstone, cermaics. Cobbles include brick, concrete sandstone. (Demo Rubble). Light brown and grey weathered SANDSTONE. Recocvered as a sandy slightly clayey gravel of subrounded to angular sandstone.	b
				1.65			End of pit at 1.65 m	
								2
								3 -

Remarks: No groundwater recorded. Soakaway test (SA02)undertaken in bedrock deposits, results reported seperately.

Stability: Stable.

							1	Tailala it ki	
						Tr	ial Pit Log	Trialpit N	
								Sheet 1 of	f 1
Projec Name			d Hospital Additional	Projec			Co-ords: -	Date	
				07303	6.005		Level: Dimensions 2.8	04/08/202 Scale	<u> </u>
Locati	on: Whiteha	ven					(m):	1:20	
Client						1	Depth 1.40	Logged NF	
Water Strike	Depth	Type	n Situ Testing Results	Depth (m)	Level (m)	Legen	Stratum Description		
> 0	0.50 - 0.60	D	IXCCURE	0.90			MADE GROUND: Brown and grey very sandy G with high cobble content, occaisonal boulders. G fine to coarse angular to sub-rounded of mixed lithologies including brick, concrete, sandstone, cermaics, re-bar, wiring. Cobbles include brick, c sandstone. (Demo Rubble). Concrete obstruction 0.60m across part of pit, pit extended to the west concrete wasnt present. Grey and brown SANDSTONE, slightly weathers all the control of the street and the control of the street and the same street and the same same same same same same same sam	concrete, on at t where	
				1.40			clayey infill between fractures.		1 —
									2
									3
Rema	rks: No gr seper	oundwat ately.	er recorded. Soakawa	ay test (S	SA03) ur	ndertake	n in bedrock deposits, results reported		

Stable

								Trialpit N	No
						Tri	al Pit Log	TWTP	
Projec	t Most Cu	mharlar	ad Llaggital Additional	Projec	t No		Co-ords: -	Sheet 1 c	of 1
Name:	: Investiga	ation	nd Hospital Additional	07303			Level:	04/08/20	21
Location	on: Whiteha	ven					Dimensions 2.5	Scale	
							(m): Depth	1:20 Logged	
Client:	Graham	Constru	uction		1		1.05	NF	
ite ike			n Situ Testing	Depth	Level	Legeno	Stratum Description		
Str	Depth	Туре	Results	(m)	(m)	********			
Water Strike				0.90 1.05	(m)	Legend	MADE GROUND: Brown very sandy GRAVEL v cobble content, occaisonal boulders. Gravel is f coarse angular to sub-rounded of mixed litholog including brick, concrete, sandstone, cermaics, wiring. Cobbles include brick, concrete, sandsto (Demo Rubble). Grey medium to coarse grained crystalline SANDSTONE, light brown laminations. End of pit at 1.05 m	ine to jies re-bar,	2 —
									4 -

Remarks: No groundwater recorded.

Stability: Some side wall instability in fill.

Samples and in Situ Testing Depth Type Results Samples and in Situ Testing Depth (m) Level (m) Level (m) Level (m) Stratum Description MADE GROUND Brown very sandy GRAVEL with high coable content, occalisonal builders. Grave is fine to course angular to sub-condeted or fined tillhologies including brisk, concrete, sandstone, occasional writing, timble present and occasional programmics. Cathlesia include brisk, contrava, sandstone, occasional writing, timble present and occasional programmics. Cathlesia include brisk, contrava, sandstone, Occasional writing, timble present and occasional programmics. Cathlesia include brisk, contrava, sandstone, Occasional writing, timble present and occasional programmics. Cathlesia include brisk, contrava, sandstone, Occasional writing, timble present and occasional programmics. Cathlesia include brisk, contrava, sandstone, occasional writing, timble present and occasional programmics. Cathlesia includes brisk, contrava, sandstone, occasional writing, timble present and occasional programmics. Cathlesia includes brisk, contrava, sandstone, occasional writing, timble present and occasional writing, timble present and occasional programmics. Cathlesia includes brisk, contrava, sandstone, occasional writing, timble present and occasional writing, timble present and occasional programmics. Cathlesia includes brisk, contrava, sandstone, occasional writing, timble present and occasional programmics. Cathlesia includes brisk, contrava, sandstone, occasional writing, timble present and occasional programmics. Cathlesia includes brisk, contrava, sandstone, and sandstone,	7								Trialpit I	No
West Cumberland Hospital Additional Project No. 73038.005 Level: 0,41082/021 0,4082/							Tri	al Pit Log		
Alame: Investigation 073038.005 Level:	!	1 M= at Ou		The transfer of the second	Broiec	+ NIO		Co order		
Dimensions (m): Dimensions (m): Dimensions (m): Dipph		t vvesi Cui : Investiga	mberian ition	id Hospitai Additional	1 -					
Depth Samples and In Situ Testing Level (m) Legend Stratum Description Size Samples and In Situ Testing (m) Level (m) Legend Stratum Description MADE GROUND: Brown very sandy GRAVEL with high cobble content, cocalisonal boulders. Grave is fine to course angular to sub-conded final distributions include brick, concrete, sandsione, occasional witing, include brick, concrete, sandsione, (Demo Rubble).	ocati							Dimensions 2.5	Scale	;
Samples and in Situ Testing Depth Type Results Depth Code of the										
Depth Type Results (m) (m) (m) Legend MADE STOUND Enter yearly CRAVEL with high cothic content occasional boulders. Grave is fine to coarse angular to sub-contend of mixed illivologies including brick, concrete, sandstone, coasional wing, limited process and copper plagments. Cobbles include brick, concrete, sandstone, Clemo Rubble). 1.90 The Results (m) (m) (m) Legend MADE STOUND Enter yearly CRAVEL with high cothic content occasional boulders. Grave is fine to coarse angular to sub-contend of mixed illivologies including brick, concrete, sandstone, Clemo Rubble).	Client:	Graham	Constru	ıction				1.90	NF	u
MADE GROUND. Brown very sandy gRAVEL with high cobbe content, ocasional bit file to coarse angular to sub-rounded of mixed bit dougles and cobbe content, ocasional piece fragments. Cabbles at the coarse and copper piece fragments. Cabbles include brick, concrete, sandstone. (Demo Rubble). 190 1-1 1-2 1-3 Remarks: No groundwater recorded.	ke	Sample	s and I	n Situ Testing			l edenc	Stratum Description	_	
cobble content, occasional budders (angular to sub-contend of missed information of miss	Wa _t	Depth	Туре	Results	(m)	(m)	Legens			
AGS	Rema			ter recorded.	1.90			cobble content, occaisonal boulders. Gravel is f coarse angular to sub-rounded of mixed litholog including brick, concrete, sandstone, occasionat timber pieces and copper pipe fragments. Cobb include brick, concrete, sandstone. (Demo Rubt	ine to gies al wiring, oldes bles ble).	3
	s								AG	S

Some side wall instability in fill.

								Trialpit I	No
						Tri	al Pit Log	TWTP	04
							3	Sheet 1	of 1
Projec Name		ımberlar ation	nd Hospital Additional	Project 07303			Co-ords: - Level:	Date 04/08/20	
Locati	on: Whiteha	ven					Dimensions 2.5	Scale	
							(m): ∞ Depth \odot	1:20 Logge	
Client					1		1.80	NF	
Water Strike	Sample Depth	Type	n Situ Testing Results	Depth (m)	Level (m)	Legend	Stratum Description		
Rema	1.40 - 1.50	D	ter recorded.	1.80			MADE GROUND: Grey brown very sandy GRA high cobble content, occasional boulders. Grav to coarse angular to sub-rounded of mixed litho including brick, concrete, sandstone, glass. Col include brick, breeze block, concrete, sandston Rubble). MADE GROUND: Brown very gravelly slightly of SAND with medium cobble content. Gravel is fit coarse angular to sub-rounded of mixed litholog including brick, concrete, sandstone, cermaics, wiring. Cobbles include brick, concrete, sandstone Occasional clayey nodules (Demo Rubble). End of pit at 1.80 m	el is fine logies obles e. (Demo	1 3 4
Stahili	tu: Some	s eide w	all inetability in fill					AG	S

Some side wall instability in fill.

073983-CUR-00-XX-RP-GE-002 West Cumberland Hospital

Ground Investigation Report

Appendix C –	Chemical	Laboratory	Testing	Results
--------------	----------	------------	---------	---------

FINAL ANALYTICAL TEST REPORT

Envirolab Job Number: 20/10811

Issue Number: 1 **Date:** 18 January, 2021

Client: Curtins Consulting (Manchester)

Merchant Exchange 17-19 Whitworth Street

Manchester

UK

M1 5WG

Project Manager: Joe James/Matthew Holroyd

Project Name: WC. Hospital Project Ref: B073096
Order No: EBED60
Date Samples Received: 14/12/20
Date Instructions Received: 14/12/20

Date Analysis Completed: 18/01/21

Prepared by: Approved by:

MManshall Sophie France

Laboratory Coordinator Client Service Manager

					Onent i io	ect Ref: Bu	7 3030			
Lab Sample ID	20/10811/1	20/10811/2	20/10811/3	20/10811/4	20/10811/5	20/10811/6	20/10811/7			
Client Sample No	1	1	1	1	1	1	1			
Client Sample ID	BH01	WS05	WS01	WS07	BH04	BH02A	BH03			
Depth to Top	0.35	0.50	0.40	0.50	0.40	0.40	0.70			
Depth To Bottom									<u>io</u>	
Date Sampled	08-Dec-20	08-Dec-20	09-Dec-20	09-Dec-20	08-Dec-20	07-Dec-20	08-Dec-20		etect	* =
Sample Type	Soil - ES	Soil - ES		Limit of Detection	Method ref					
Sample Matrix Code	5A	6A	5A	4A	4A	4AE	4AE	Units	Ë	Meth
% Stones >10mm _A	15.9	23.1	1.3	38.6	21.4	20.8	13.6	% w/w	0.1	A-T-044
pH _D ^{M#}	10.43	9.72	8.32	10.77	10.40	9.19	9.42	pН	0.01	A-T-031s
Sulphate (water sol 2:1) _D ^{M#}	0.57	0.55	0.19	1.04	0.64	0.27	0.48	g/I	0.01	A-T-026s
Cyanide (total) _A ^{M#}	<1	<1	<1	<1	<1	<1	<1	mg/kg	1	A-T-042sTCN
Phenois - Total by HPLC _A	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	mg/kg	0.2	A-T-050s
Organic matter _D ^{M#}	1.0	0.8	2.6	2.9	1.2	2.5	0.9	% w/w	0.1	A-T-032 OM
Arsenic _D ^{M#}	5	6	8	2	5	7	10	mg/kg	1	A-T-024s
Boron (water soluble) _D	2.3	1.8	<1.0	1.4	1.7	<1.0	1.0	mg/kg	1	A-T-027s
Cadmium _D ^{M#}	0.6	0.5	1.2	0.6	<0.5	<0.5	0.6	mg/kg	0.5	A-T-024s
Copper _D ^{M#}	16	18	16	14	14	11	15	mg/kg	1	A-T-024s
Chromium _D M#	18	12	20	17	13	10	10	mg/kg	1	A-T-024s
Chromium (hexavalent) _D	<1	<1	<1	<1	<1	<1	<1	mg/kg	1	A-T-040s
Lead _D ^{M#}	43	47	21	64	39	21	27	mg/kg	1	A-T-024s
Mercury _□	0.98	0.68	<0.17	1.34	0.62	0.23	0.22	mg/kg	0.17	A-T-024s
Nickel _D ^{M#}	12	9	12	12	12	8	15	mg/kg	1	A-T-024s
Selenium _D ^{M#}	<1	<1	2	1	<1	<1	<1	mg/kg	1	A-T-024s
Zinc _D ^{M#}	52	46	22	64	41	17	21	mg/kg	5	A-T-024s

Lab Sample ID	20/10811/1	20/10811/2	20/10811/3	20/10811/4	20/10811/5	20/10811/6	20/10811/7			
Client Sample No	1	1	1	1	1	1	1			
Client Sample ID	BH01	WS05	WS01	WS07	BH04	BH02A	BH03			
Depth to Top	0.35	0.50	0.40	0.50	0.40	0.40	0.70			
Depth To Bottom									<u>io</u>	
Date Sampled	08-Dec-20	08-Dec-20	09-Dec-20	09-Dec-20	08-Dec-20	07-Dec-20	08-Dec-20		Detection	4
Sample Type	Soil - ES		₽	od ref						
Sample Matrix Code	5A	6A	5A	4A	4A	4AE	4AE	Units	Limit	Method
Asbestos in Soil (inc. matrix)										
Asbestos in soil _D #	NAD			A-T-045						
Asbestos ACM - Suitable for Water Absorption Test? _D	N/A			A-T-045						

					0.101111111	cot rici. Bo				
Lab Sample ID	20/10811/1	20/10811/2	20/10811/3	20/10811/4	20/10811/5	20/10811/6	20/10811/7			
Client Sample No	1	1	1	1	1	1	1			
Client Sample ID	BH01	WS05	WS01	WS07	BH04	BH02A	BH03			
Depth to Top	0.35	0.50	0.40	0.50	0.40	0.40	0.70			
Depth To Bottom									uo	
Date Sampled	08-Dec-20	08-Dec-20	09-Dec-20	09-Dec-20	08-Dec-20	07-Dec-20	08-Dec-20		etect	-
Sample Type	Soil - ES	Soil - ES	Soil - ES		Limit of Detection	od re				
Sample Matrix Code	5A	6A	5A	4A	4A	4AE	4AE	Units	Limit	Method ref
PAH-16MS (MSD order)										
Naphthalene _A ^{M#}	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	mg/kg	0.03	A-T-019s
Acenaphthylene _A ^{M#}	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	0.01	A-T-019s
Acenaphthene _A ^{M#}	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	0.01	A-T-019s
Fluorene _A ^{M#}	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	0.01	A-T-019s
Phenanthrene _A ^{M#}	<0.03	<0.03	<0.03	0.03	0.08	0.20	<0.03	mg/kg	0.03	A-T-019s
Anthracene _A ^{M#}	<0.02	<0.02	<0.02	<0.02	<0.02	0.03	<0.02	mg/kg	0.02	A-T-019s
Fluoranthene _A ^{M#}	<0.08	<0.08	<0.08	<0.08	<0.08	0.16	<0.08	mg/kg	0.08	A-T-019s
Pyrene _A ^{M#}	<0.07	<0.07	<0.07	<0.07	<0.07	0.11	<0.07	mg/kg	0.07	A-T-019s
Benzo(a)anthracene _A ^{M#}	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	mg/kg	0.04	A-T-019s
Chrysene _A ^{M#}	<0.06	<0.06	<0.06	<0.06	<0.06	<0.06	<0.06	mg/kg	0.06	A-T-019s
Benzo(b)fluoranthene _A ^{M#}	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	mg/kg	0.05	A-T-019s
Benzo(k)fluoranthene _A ^{M#}	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	mg/kg	0.07	A-T-019s
Benzo(a)pyrene _A ^{M#}	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	mg/kg	0.04	A-T-019s
Indeno(123-cd)pyrene _A ^{M#}	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	mg/kg	0.03	A-T-019s
Dibenzo(ah)anthracene AM#	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	mg/kg	0.04	A-T-019s
Benzo(ghi)perylene _A ^{M#}	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	mg/kg	0.05	A-T-019s
Total PAH-16MS (MSD order) _A M#	<0.08	<0.08	<0.08	<0.08	0.08	0.50	<0.08	mg/kg	0.03	A-T-019s

					Client Pro	ect Ref: B0	73096			
Lab Sample ID	20/10811/1	20/10811/2	20/10811/3	20/10811/4	20/10811/5	20/10811/6	20/10811/7			
Client Sample No	1	1	1	1	1	1	1			
Client Sample ID	BH01	WS05	WS01	WS07	BH04	BH02A	BH03			
Depth to Top	0.35	0.50	0.40	0.50	0.40	0.40	0.70			
Depth To Bottom									uo	
Date Sampled	08-Dec-20	08-Dec-20	09-Dec-20	09-Dec-20	08-Dec-20	07-Dec-20	08-Dec-20		stecti	
Sample Type	Soil - ES	Soil - ES		of De	od re					
Sample Matrix Code	5A	6A	5A	4A	4A	4AE	4AE	Units	Limit of Detection	Method ref
TPH CWG										
Ali >C5-C6 _A #	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	0.01	A-T-022s
Ali >C6-C8 _A #	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	0.01	A-T-022s
Ali >C8-C10A	<1	<1	<1	<1	<1	<1	<1	mg/kg	1	A-T-055s
Ali >C10-C12 _A M#	<1	<1	<1	<1	<1	<1	<1	mg/kg	1	A-T-055s
Ali >C12-C16 _A M#	2	<1	<1	<1	<1	<1	<1	mg/kg	1	A-T-055s
Ali >C16-C21 _A M#	4	<1	<1	2	2	<1	<1	mg/kg	1	A-T-055s
Ali >C21-C35 _A M#	36	11	<1	39	35	6	4	mg/kg	1	A-T-055s
Total Aliphatics _A	42	12	<1	42	38	6	4	mg/kg	1	A-T-055s
Aro >C5-C7 _A #	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	0.01	A-T-022s
Aro >C7-C8 _A #	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	0.01	A-T-022s
Aro >C8-C10 _A	3	<1	<1	15	7	<1	<1	mg/kg	1	A-T-055s
Aro >C10-C12 _A	<1	<1	<1	<1	<1	<1	<1	mg/kg	1	A-T-055s
Aro >C12-C16A	2	<1	<1	1	2	<1	<1	mg/kg	1	A-T-055s
Aro >C16-C21 _A ^{M#}	4	2	<1	6	5	<1	<1	mg/kg	1	A-T-055s
Aro >C21-C35 _A ^{M#}	18	7	<1	21	24	6	2	mg/kg	1	A-T-055s
Total Aromatics _A	27	9	<1	44	40	7	2	mg/kg	1	A-T-055s
TPH (Ali & Aro >C5-C35)A	69	21	<1	86	78	13	6	mg/kg	1	A-T-055s
BTEX - Benzene _A #	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	0.01	A-T-022s
BTEX - Toluene _A #	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	0.01	A-T-022s
BTEX - Ethyl Benzene _A #	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	0.01	A-T-022s
BTEX - m & p Xylene _A #	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	0.01	A-T-022s
BTEX - o Xylene _A #	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	0.01	A-T-022s
MTBE _A #	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	0.01	A-T-022s

					Ciletti Proj				
Lab Sample ID	20/10811/8	20/10811/9	20/10811/10	20/10811/11	20/10811/12	20/10811/13			
Client Sample No	1	1	1	1	1	1			
Client Sample ID	WS03	WS06	HP01	WS04	BH05	WS01			
Depth to Top	0.40	0.45	0.50	0.40	1.20	1.70			
Depth To Bottom					1.40	3.00		ion	
Date Sampled	07-Dec-20	08-Dec-20	08-Dec-20	07-Dec-20	08-Dec-20	09-Dec-20		etect	.
Sample Type	Soil - ES	Soil - ES	Soil - ES	Soil - ES	Soil - ES	Solid		Limit of Detection	Method ref
Sample Matrix Code	4AE	4A	4AE	4A	4A	7	Units	Limit	Meth
% Stones >10mm _A	21.6	10.6	18.8	18.7	16.5	<0.1	% w/w	0.1	A-T-044
pH _D ^{M#}	10.84	11.22	10.68	10.04	10.73	8.63	рН	0.01	A-T-031s
Sulphate (water sol 2:1) _D M#	0.86	0.57	0.75	0.63	0.28	0.03	g/l	0.01	A-T-026s
Cyanide (total) _A ^{M#}	<1	<1	<1	<1	<1	-	mg/kg	1	A-T-042sTCN
Phenois - Total by HPLC _A	<0.2	<0.2	<0.2	<0.2	<0.2	-	mg/kg	0.2	A-T-050s
Organic matter _D ^{M#}	1.2	1.8	0.9	1.1	0.2	-	% w/w	0.1	A-T-032 OM
Arsenic _D ^{M#}	3	5	4	9	6	-	mg/kg	1	A-T-024s
Boron (water soluble) _D	2.4	2.8	2.7	2.2	1.4	-	mg/kg	1	A-T-027s
Cadmium _D ^{M#}	0.8	0.7	0.7	0.7	<0.5	-	mg/kg	0.5	A-T-024s
Copper _D ^{M#}	17	22	19	24	8		mg/kg	1	A-T-024s
Chromium _D ^{M#}	17	21	17	15	7		mg/kg	1	A-T-024s
Chromium (hexavalent) _D	<1	<1	<1	<1	<1	•	mg/kg	1	A-T-040s
Lead _D ^{M#}	71	106	54	50	19	•	mg/kg	1	A-T-024s
Mercury₀	1.73	1.98	1.76	0.75	0.33	-	mg/kg	0.17	A-T-024s
Nickel _D ^{M#}	14	14	11	11	4	-	mg/kg	1	A-T-024s
Selenium _D ^{M#}	<1	<1	<1	<1	<1	-	mg/kg	1	A-T-024s
Zinc _D M#	77	272	169	37	15	-	mg/kg	5	A-T-024s
1.10a PSD (Grading/63um/sand fraction/wet sieve) BS1377 pt 2 1990 cl 9.2 _A #	-	-	-	-	-	Appended	%	0.1	Subcon SS

Lab Sample ID	20/10811/8	20/10811/9	20/10811/10	20/10811/11	20/10811/12	20/10811/13			
Client Sample No	1	1	1	1	1	1			
Client Sample ID	WS03	WS06	HP01	WS04	BH05	WS01			
Depth to Top	0.40	0.45	0.50	0.40	1.20	1.70			
Depth To Bottom					1.40	3.00		ion	
Date Sampled	07-Dec-20	08-Dec-20	08-Dec-20	07-Dec-20	08-Dec-20	09-Dec-20		Detection	Į.
Sample Type	Soil - ES	Soil - ES	Soil - ES	Soil - ES	Soil - ES	Solid	_	₹	od ref
Sample Matrix Code	4AE	4A	4AE	4A	4A	7	Units	Limit	Method
Asbestos in Soil (inc. matrix)									
Asbestos in soil _D #	NAD	NAD	NAD	NAD	NAD	-			A-T-045
Asbestos ACM - Suitable for Water Absorption Test? _D	N/A	N/A	N/A	N/A	N/A	-			A-T-045

					Chefft F10	ect Ret: Bu	73090			
Lab Sample ID	20/10811/8	20/10811/9	20/10811/10	20/10811/11	20/10811/12	20/10811/13				
Client Sample No	1	1	1	1	1	1				
Client Sample ID	WS03	WS06	HP01	WS04	BH05	WS01				
Depth to Top	0.40	0.45	0.50	0.40	1.20	1.70				
Depth To Bottom					1.40	3.00			ion	
Date Sampled	07-Dec-20	08-Dec-20	08-Dec-20	07-Dec-20	08-Dec-20	09-Dec-20			Limit of Detection	*
Sample Type	Soil - ES	Soil - ES	Soil - ES	Soil - ES	Soil - ES	Solid		,	t of D	Method ref
Sample Matrix Code	4AE	4A	4AE	4A	4A	7		Units	Limi	Meth
PAH-16MS (MSD order)										
Naphthalene _A M#	<0.03	<0.03	<0.03	<0.03	<0.03	-		mg/kg	0.03	A-T-019s
Acenaphthylene _A ^{M#}	<0.01	<0.01	<0.01	<0.01	<0.01	-		mg/kg	0.01	A-T-019s
Acenaphthene _A ^{M#}	<0.01	0.01	<0.01	<0.01	<0.01			mg/kg	0.01	A-T-019s
Fluorene _A ^{M#}	0.02	0.01	0.02	<0.01	<0.01	-		mg/kg	0.01	A-T-019s
Phenanthrene _A ^{M#}	0.08	0.14	0.19	0.06	<0.03			mg/kg	0.03	A-T-019s
Anthracene _A ^{M#}	<0.02	<0.02	0.03	<0.02	<0.02	-		mg/kg	0.02	A-T-019s
Fluoranthene _A ^{M#}	0.08	0.16	0.32	<0.08	<0.08	-		mg/kg	0.08	A-T-019s
Pyrene _A M#	0.08	0.14	0.28	<0.07	<0.07	-		mg/kg	0.07	A-T-019s
Benzo(a)anthracene _A M#	<0.04	0.06	0.14	<0.04	<0.04	-		mg/kg	0.04	A-T-019s
Chrysene _A M#	0.07	0.11	0.18	<0.06	<0.06	-		mg/kg	0.06	A-T-019s
Benzo(b)fluoranthene _A ^{M#}	<0.05	0.05	0.10	<0.05	<0.05	-		mg/kg	0.05	A-T-019s
Benzo(k)fluoranthene ^{M#}	<0.07	<0.07	<0.07	<0.07	<0.07	-		mg/kg	0.07	A-T-019s
Benzo(a)pyrene _A ^{M#}	<0.04	<0.04	0.06	<0.04	<0.04	-		mg/kg	0.04	A-T-019s
Indeno(123-cd)pyrene _A ^{M#}	<0.03	<0.03	0.04	<0.03	<0.03	-		mg/kg	0.03	A-T-019s
Dibenzo(ah)anthracene _A M#	<0.04	<0.04	<0.04	<0.04	<0.04	-		mg/kg	0.04	A-T-019s
Benzo(ghi)perylene _A ^{M#}	<0.05	<0.05	<0.05	<0.05	<0.05	-		mg/kg	0.05	A-T-019s
Total PAH-16MS (MSD order)A ^{M#}	0.33	0.68	1.36	<0.08	<0.08	-		mg/kg	0.03	A-T-019s

					0.10.11.1.10	ect Ret: Bu			
Lab Sample ID	20/10811/8	20/10811/9	20/10811/10	20/10811/11	20/10811/12	20/10811/13			
Client Sample No	1	1	1	1	1	1]
Client Sample ID	WS03	WS06	HP01	WS04	BH05	WS01]
Depth to Top	0.40	0.45	0.50	0.40	1.20	1.70]
Depth To Bottom					1.40	3.00		ion	
Date Sampled	07-Dec-20	08-Dec-20	08-Dec-20	07-Dec-20	08-Dec-20	09-Dec-20		etect	4 _
Sample Type	Soil - ES	Soil - ES	Soil - ES	Soil - ES	Soil - ES	Solid		Limit of Detection	Method ref
Sample Matrix Code	4AE	4A	4AE	4A	4A	7	Units	Limit	Meth
TPH CWG									
Ali >C5-C6 _A #	<0.01	<0.01	<0.01	<0.01	<0.01	-	mg/kg	0.01	A-T-022s
Ali >C6-C8 _A #	<0.01	<0.01	<0.01	<0.01	<0.01	-	mg/kg	0.01	A-T-022s
Ali >C8-C10 _A	<1	<1	<1	<1	<1	-	mg/kg	1	A-T-055s
Ali >C10-C12 _A ^{M#}	3	<1	<1	<1	<1	-	mg/kg	1	A-T-055s
Ali >C12-C16 _A ^{M#}	13	2	5	2	<1	-	mg/kg	1	A-T-055s
Ali >C16-C21 _A ^{M#}	15	4	10	2	<1	-	mg/kg	1	A-T-055s
Ali >C21-C35 _A ^{M#}	67	48	117	11	2	-	mg/kg	1	A-T-055s
Total Aliphatics _A	99	54	131	15	2	-	mg/kg	1	A-T-055s
Aro >C5-C7 _A #	<0.01	<0.01	<0.01	<0.01	<0.01	-	mg/kg	0.01	A-T-022s
Aro >C7-C8 _A #	<0.01	<0.01	<0.01	<0.01	<0.01	-	mg/kg	0.01	A-T-022s
Aro >C8-C10A	14	15	6	3	<1	-	mg/kg	1	A-T-055s
Aro >C10-C12 _A	2	<1	<1	<1	<1	-	mg/kg	1	A-T-055s
Aro >C12-C16 _A	8	2	4	2	<1	-	mg/kg	1	A-T-055s
Aro >C16-C21 _A ^{M#}	8	5	8	3	<1	-	mg/kg	1	A-T-055s
Aro >C21-C35 _A ^{M#}	30	25	34	9	<1	-	mg/kg	1	A-T-055s
Total Aromatics _A	62	47	51	16	<1	-	mg/kg	1	A-T-055s
TPH (Ali & Aro >C5-C35)A	161	101	183	31	3	-	mg/kg	1	A-T-055s
BTEX - Benzene _A #	<0.01	<0.01	<0.01	<0.01	<0.01	-	mg/kg	0.01	A-T-022s
BTEX - Toluene _A #	<0.01	<0.01	<0.01	<0.01	<0.01	-	mg/kg	0.01	A-T-022s
BTEX - Ethyl Benzene _A #	<0.01	<0.01	<0.01	<0.01	<0.01	-	mg/kg	0.01	A-T-022s
BTEX - m & p Xylene _A #	<0.01	<0.01	<0.01	<0.01	<0.01	-	mg/kg	0.01	A-T-022s
BTEX - o Xylene _A #	<0.01	<0.01	<0.01	<0.01	<0.01	-	mg/kg	0.01	A-T-022s
MTBE _A #	<0.01	<0.01	<0.01	<0.01	<0.01	-	mg/kg	0.01	A-T-022s

REPORT NOTES

General

This report shall not be reproduced, except in full, without written approval from Envirolab.

The results reported herein relate only to the material supplied to the laboratory.

The residue of any samples contained within this report, and any received with the same delivery, will be disposed of six weeks after initial scheduling. For samples tested for Asbestos we will retain a portion of the dried sample for a minimum of six months after the initial Asbestos testing is completed.

Analytical results reflect the quality of the sample at the time of analysis only.

Opinions and interpretations expressed are outside the scope of our accreditation.

If results are in italic font they are associated with an AQC failure, these are not accredited and are unreliable.

A deviating samples report is appended and will indicate if samples or tests have been found to be deviating. Any test results affected may not be an accurate record of the concentration at the time of sampling and, as a result, may be invalid.

The Client Sample No, Client Sample ID, Depth to Top, Depth to Bottom and Date Sampled were all provided by the client.

Soil chemical analysis:

All results are reported as dry weight (<40°C).

For samples with Matrix Codes 1 - 6 natural stones, brick and concrete fragments >10mm and any extraneous material (visible glass, metal or twigs) are removed and excluded from the sample prior to analysis and reported results corrected to a whole sample basis. This is reported as '% stones >10mm'.

For samples with Matrix Code 7 the whole sample is dried and crushed prior to analysis and this supersedes any "A" subscripts All analysis is performed on the sample as received for soil samples which are positive for asbestos or the client has informed asbestos may be present and/or if they are from outside the European Union and this supersedes any "D" subscripts.

TPH analysis of water by method A-T-007:

Free and visible oils are excluded from the sample used for analysis so that the reported result represents the dissolved phase only.

Electrical Conductivity of water by Method A-T-037:

Results greater than 12900μS/cm @ 25°C / 11550μS/cm @ 20°C fall outside the calibration range and as such are unaccredited.

Asbestos:

Asbestos in soil analysis is performed on a dried aliquot of the submitted sample and cannot guarantee to identify asbestos if only present in small numbers as discrete fibres/fragments in the original sample.

Stones etc. are not removed from the sample prior to analysis.

Quantification of asbestos is a 3 stage process including visual identification, hand picking and weighing and fibre counting by sedimentation/phase contrast optical microscopy if required. If asbestos is identified as being present but is not in a form that is suitable for analysis by hand picking and weighing (normally if the asbestos is present as free fibres) quantification by sedimentation is performed. Where ACMs are found a percentage asbestos is assigned to each with reference to 'HSG264, Asbestos: The survey guide' and the calculated asbestos content is expressed as a percentage of the dried soil sample aliquot used.

Predominant Matrix Codes:

1 = SAND, 2 = LOAM, 3 = CLAY, 4 = LOAM/SAND, 5 = SAND/CLAY, 6 = CLAY/LOAM, 7 = OTHER, 8 = Asbestos bulk ID sample. Samples with Matrix Code 7 & 8 are not predominantly a SAND/LOAM/CLAY mix and are not covered by our BSEN 17025 or MCERTS accreditations, with the exception of bulk asbestos which are BSEN 17025 accredited.

Secondary Matrix Codes:

A = contains stones, B = contains construction rubble, C = contains visible hydrocarbons, D = contains glass/metal, E = contains roots/twigs.

Key:

IS indicates Insufficient Sample for analysis.

US indicates Unsuitable Sample for analysis.

NDP indicates No Determination Possible.

NAD indicates No Asbestos Detected.

N/A indicates Not Applicable.

Superscript # indicates method accredited to ISO 17025.

Superscript "M" indicates method accredited to MCERTS.

Subscript "A" indicates analysis performed on the sample as received.

Subscript "D" indicates analysis performed on the dried sample, crushed to pass a 2mm sieve

Please contact us if you need any further information.

Envirolab Deviating Samples Report

Units 7&8 Sandpits Business Park, Mottram Road, Hyde, SK14 3AR Tel. 0161 368 4921 email. ask@envlab.co.uk

Client: Curtins Consulting (Manchester), Merchant Exchange, 17-19 Whitworth Street, **Project No:** 20/10811

Manchester, UK, M1 5WG

Date Received: 14/12/2020 (am)

Project: WC. Hospital Cool Box Temperatures (°C): 7.9

Clients Project No: B073096

NO DEVIATIONS IDENTIFIED

If, at any point before reaching the laboratory, the temperature of the samples has breached those set in published standards, e.g. BS-EN 5667-3, ISO 18400-102:2017, then the concentration of any affected analytes may differ from that at the time of sampling.

FINAL ANALYTICAL TEST REPORT

Envirolab Job Number: 21/00605

Issue Number: 1 **Date:** 28 January, 2021

Client: Curtins Consulting (Manchester)

Merchant Exchange 17-19 Whitworth Street

Manchester

UK

M1 5WG

Project Manager: Joe James

Project Name: West Cumberland Hospital

Project Ref: 73096
Order No: EBMA2667
Date Samples Received: 21/01/21
Date Instructions Received: 21/01/21

Date Instructions Received: 21/01/21

Date Analysis Completed: 28/01/21

Prepared by: Approved by:

Melanie Marshall

Marshall

Laboratory Coordinator

Danielle Brierley Client Manager

Envirolab Job Number: 21/00605 Client Project Name: West Cumberland Hospital

				00	ect net. 73			
Lab Sample ID	21/00605/1	21/00605/2	21/00605/3					
Client Sample No	1	2	3					
Client Sample ID	BH01	BH06	BH03					
Depth to Top	0.50	0.50	1.50					
Depth To Bottom							ion	
Date Sampled	20-Jan-21	20-Jan-21	20-Jan-21				etect	+
Sample Type	Water - EW	Water - EW	Water - EW				Limit of Detection	Method ref
Sample Matrix Code	N/A	N/A	N/A			Units	Limit	Meth
pH (w) _A #	11.65	11.37	11.25			pН	0.01	A-T-031w
Hardness Total [#]	276	137	250			mg/l Ca CO3	2	A-T-049w
Sulphate (w) _A #	52	124	250			mg/l	1	A-T-026w
Cyanide (total) (w) _A #	<0.005	<0.005	<0.005			mg/l	0.005	A-T-042wTCN
Phenois - Total by HPLC (w)A	<0.01	0.17	<0.01			mg/l	0.01	A-T-050w
Sulphide (w) _A	<0.1	5.8	<0.1			mg/l	0.1	A-T-S2-w
DOC (w) _A #	4.5	17.0	8.3			mg/l	0.2	A-T-032w
Arsenic (dissolved) _A #	4	31	5			μg/l	1	A-T-025w
Boron (dissolved) _A #	17	17	16			μg/l	10	A-T-025w
Cadmium (dissolved) _A #	<0.2	<0.2	<0.2			μg/l	0.2	A-T-025w
Calcium (dissolved) _A #	110	54	100			mg/l	1	A-T-049w
Copper (dissolved) _A #	11	3	15			μg/l	1	A-T-025w
Chromium (dissolved) _A #	11	9	13			μg/l	1	A-T-025w
Lead (dissolved) _A #	<1	<1	<1			μg/l	1	A-T-025w
Mercury (dissolved) _A #	<0.1	<0.1	<0.1			μg/l	0.1	A-T-025w
Nickel (dissolved) _A #	2	14	3			μg/l	1	A-T-025w
Selenium (dissolved) _A #	1	1	2			μg/l	1	A-T-025w
Zinc (dissolved) _A #	<1	2	20			μg/l	1	A-T-025w

Envirolab Job Number: 21/00605 Client Project Name: West Cumberland Hospital

					ect nei. 73			
Lab Sample ID	21/00605/1	21/00605/2	21/00605/3					
Client Sample No	1	2	3					
Client Sample ID	BH01	BH06	BH03					
Depth to Top	0.50	0.50	1.50					
Depth To Bottom							ion	
Date Sampled	20-Jan-21	20-Jan-21	20-Jan-21				etect	_
Sample Type	Water - EW	Water - EW	Water - EW				Limit of Detection	Method ref
Sample Matrix Code	N/A	N/A	N/A			Units	Limi1	Meth
PAH 16MS (w)								
Acenaphthene (w) _A #	0.02	0.02	0.02			μg/l	0.01	A-T-019w
Acenaphthylene (w) _A #	<0.01	<0.01	<0.01			μg/l	0.01	A-T-019w
Anthracene (w) _A #	<0.01	<0.01	<0.01			μg/l	0.01	A-T-019w
Benzo(a)anthracene (w) _A #	<0.01	<0.01	<0.01			μg/l	0.01	A-T-019w
Benzo(a)pyrene (w) _A #	<0.01	<0.01	<0.01			μg/l	0.01	A-T-019w
Benzo(b)fluoranthene (w)A#	<0.01	<0.01	<0.01			μg/l	0.01	A-T-019w
Benzo(ghi)perylene (w) _A #	<0.01	<0.01	<0.01			μg/l	0.01	A-T-019w
Benzo(k)fluoranthene (w) _A #	<0.01	<0.01	<0.01			μg/l	0.01	A-T-019w
Chrysene (w) _A #	<0.01	<0.01	<0.01			μg/l	0.01	A-T-019w
Dibenzo(ah)anthracene (w) _A #	<0.01	<0.01	<0.01			μg/l	0.01	A-T-019w
Fluoranthene (w) _A #	<0.01	<0.01	<0.01			μg/l	0.01	A-T-019w
Fluorene (w) _A #	<0.01	<0.01	<0.01			μg/l	0.01	A-T-019w
Indeno(123-cd)pyrene (w) _A #	<0.01	<0.01	<0.01			μg/l	0.01	A-T-019w
Naphthalene (w)A#	0.04	0.03	0.06			μg/l	0.01	A-T-019w
Phenanthrene (w) _A #	0.04	0.02	0.03			μg/l	0.01	A-T-019w
Pyrene (w) _A #	<0.01	<0.01	<0.01			μg/l	0.01	A-T-019w
Total PAH 16MS (w)A#	0.10	0.07	0.11			μg/l	0.01	A-T-019w

Envirolab Job Number: 21/00605 Client Project Name: West Cumberland Hospital

Client Project Ref: 73096

					ect Ret: 73			
Lab Sample ID	21/00605/1	21/00605/2	21/00605/3					
Client Sample No	1	2	3					
Client Sample ID	BH01	BH06	BH03					
Depth to Top	0.50	0.50	1.50					
Depth To Bottom							ion	
Date Sampled	20-Jan-21	20-Jan-21	20-Jan-21				etect	.
Sample Type	Water - EW	Water - EW	Water - EW				t of D	Method ref
Sample Matrix Code	N/A	N/A	N/A			Units	Limit of Detection	Meth
TPH CWG (w)								
Ali >C5-C6 (w)A#	<1	<1	<1			μg/l	1	A-T-022w
Ali >C6-C8 (w) _A #	<1	<1	<1			μg/l	1	A-T-022w
Ali >C8-C10 (w) _A #	<5	<5	<5			μg/l	5	A-T-055w
Ali >C10-C12 (w) _A #	<5	<5	<5			μg/l	5	A-T-055w
Ali >C12-C16 (w) _A #	<5	<5	<5			μg/l	5	A-T-055w
Ali >C16-C21 (w) _A #	<5	<5	<5			μg/l	5	A-T-055w
Ali >C21-C35 (w) _A #	<5	8	<5			μg/l	5	A-T-055w
Total Aliphatics (w) _A #	<5	8	<5			μg/l	5	A-T-055w
Aro >C5-C7 (w) _A #	<1	<1	<1			μg/l	1	A-T-022w
Aro >C7-C8 (w) _A #	<1	<1	<1			μg/l	1	A-T-022w
Aro >C8-C10 (w) _A	<5	6	<5			μg/l	5	A-T-055w
Aro >C10-C12 (w) _A #	<5	18	8			μg/l	5	A-T-055w
Aro >C12-C16 (w) _A #	<5	15	11			μg/l	5	A-T-055w
Aro >C16-C21 (w) _A #	<5	18	13			μg/l	5	A-T-055w
Aro >C21-C35 (w) _A #	<10	15	12			μg/l	10	A-T-055w
Total Aromatics (w) _A	<10	72	44			μg/l	10	A-T-055w
TPH (Ali & Aro >C5-C35) (w) _A	<10	80	44			μg/l	10	A-T-055w
BTEX - Benzene (w)A#	<1	<1	<1			μg/l	1	A-T-022w
BTEX - Toluene (w) _A #	<1	<1	<1			μg/l	1	A-T-022w
BTEX - Ethyl Benzene (w) _A #	<1	<1	<1			μg/l	1	A-T-022w
BTEX - m & p Xylene (w) _A #	<1	<1	<1			μg/l	1	A-T-022w
BTEX - o Xylene (w) _A #	<1	<1	<1		_	μg/l	1	A-T-022w
MTBE (w) _A #	<1	<1	<1			μg/l	1	A-T-022w

REPORT NOTES

General

This report shall not be reproduced, except in full, without written approval from Envirolab.

The results reported herein relate only to the material supplied to the laboratory.

The residue of any samples contained within this report, and any received with the same delivery, will be disposed of six weeks after initial scheduling. For samples tested for Asbestos we will retain a portion of the dried sample for a minimum of six months after the initial Asbestos testing is completed.

Analytical results reflect the quality of the sample at the time of analysis only.

Opinions and interpretations expressed are outside the scope of our accreditation.

If results are in italic font they are associated with an AQC failure, these are not accredited and are unreliable.

A deviating samples report is appended and will indicate if samples or tests have been found to be deviating. Any test results affected may not be an accurate record of the concentration at the time of sampling and, as a result, may be invalid.

The Client Sample No, Client Sample ID, Depth to Top, Depth to Bottom and Date Sampled were all provided by the client.

Soil chemical analysis:

All results are reported as dry weight (<40°C).

For samples with Matrix Codes 1 - 6 natural stones, brick and concrete fragments >10mm and any extraneous material (visible glass, metal or twigs) are removed and excluded from the sample prior to analysis and reported results corrected to a whole sample basis. This is reported as '% stones >10mm'.

For samples with Matrix Code 7 the whole sample is dried and crushed prior to analysis and this supersedes any "A" subscripts All analysis is performed on the sample as received for soil samples which are positive for asbestos or the client has informed asbestos may be present and/or if they are from outside the European Union and this supersedes any "D" subscripts.

TPH analysis of water by method A-T-007:

Free and visible oils are excluded from the sample used for analysis so that the reported result represents the dissolved phase only.

Electrical Conductivity of water by Method A-T-037:

Results greater than 12900μS/cm @ 25°C / 11550μS/cm @ 20°C fall outside the calibration range and as such are unaccredited.

Asbestos:

Asbestos in soil analysis is performed on a dried aliquot of the submitted sample and cannot guarantee to identify asbestos if only present in small numbers as discrete fibres/fragments in the original sample.

Stones etc. are not removed from the sample prior to analysis.

Quantification of asbestos is a 3 stage process including visual identification, hand picking and weighing and fibre counting by sedimentation/phase contrast optical microscopy if required. If asbestos is identified as being present but is not in a form that is suitable for analysis by hand picking and weighing (normally if the asbestos is present as free fibres) quantification by sedimentation is performed. Where ACMs are found a percentage asbestos is assigned to each with reference to 'HSG264, Asbestos: The survey guide' and the calculated asbestos content is expressed as a percentage of the dried soil sample aliquot used.

Predominant Matrix Codes:

1 = SAND, 2 = LOAM, 3 = CLAY, 4 = LOAM/SAND, 5 = SAND/CLAY, 6 = CLAY/LOAM, 7 = OTHER, 8 = Asbestos bulk ID sample. Samples with Matrix Code 7 & 8 are not predominantly a SAND/LOAM/CLAY mix and are not covered by our BSEN 17025 or MCERTS accreditations, with the exception of bulk asbestos which are BSEN 17025 accredited.

Secondary Matrix Codes:

A = contains stones, B = contains construction rubble, C = contains visible hydrocarbons, D = contains glass/metal, E = contains roots/twigs.

Key:

IS indicates Insufficient Sample for analysis.

US indicates Unsuitable Sample for analysis.

NDP indicates No Determination Possible.

NAD indicates No Asbestos Detected.

N/A indicates Not Applicable.

Superscript # indicates method accredited to ISO 17025.

Superscript "M" indicates method accredited to MCERTS.

Subscript "A" indicates analysis performed on the sample as received.

Subscript "D" indicates analysis performed on the dried sample, crushed to pass a 2mm sieve

Please contact us if you need any further information.

Envirolab Deviating Samples Report

Units 7&8 Sandpits Business Park, Mottram Road, Hyde, SK14 3AR Tel. 0161 368 4921 email. ask@envlab.co.uk

Client: Curtins Consulting (Manchester), Merchant Exchange, 17-19 Whitworth Street, **Project No:** 21/00605

Manchester, UK, M1 5WG

Date Received: 21/01/2021 (am)

Project: West Cumberland Hospital Cool Box Temperatures (°C): 4.2

Clients Project No: 73096

NO DEVIATIONS IDENTIFIED

If, at any point before reaching the laboratory, the temperature of the samples has breached those set in published standards, e.g. BS-EN 5667-3, ISO 18400-102:2017, then the concentration of any affected analytes may differ from that at the time of sampling.

073983-CUR-00-XX-RP-GE-002 West Cumberland Hospital

Ground Investigation Report

Appendix D – (Geotechnical	Laboratory	/ Testing	Results
----------------	--------------	------------	-----------	---------

STRUCTURAL SOILS LTD TEST REPORT

Report No. 584418-01 (00) 1774

Date 18-January-2021 Contract B073906

Client Envirolab Address Units 7-8

Sandpits Business Park

Mottram Road

Hyde SK14 3AR

For the Attention of Michael Knight

Samples submitted by client 18-December-2020 Client Reference 20/10811
Testing Started 05-January-2021 Client Order No. P0745381
Testing Completed 18-January-2021 Instruction Type Written

Tests marked 'Not UKAS Accredited' in this report are not included in the UKAS Accreditation Schedule for our Laboratory.

UKAS Accredited Tests

1.10 Particle Size Distribution wet sieve method BS1377:Part 2:1990,clause 9.2 (superseded)*

Please Note: Remaining samples will be retained for a period of one month from today and will then be disposed of . Test were undertaken on samples 'as received' unless otherwise stated.

Opinions and interpretations expressed in this report are outside the scope of accreditation for this laboratory.

Structural Soils Ltd 18 Frogmore Rd Hemel Hempstead HP3 9RT Tel.01442 416661 e-mail dimitris.xirouchakis@soils.co.uk

^{*} This clause of BS1377 is no longer the most up to date method due to the publication of ISO17892

GINT_LIBRARY_V10_01.GLB LibVersion: v8_07_001 PrjVersion: v8_07_0 I GrfcText L - LAB VERIFICATION REPORT - V02 - A4P | 584418-B073096-ENVIROLAB-2010811.GPJ - v10_01. Structural Solis Ltd, Branch Office - Hemel Hempstead: 18 Frogmore Road, Hemel Hempstead, Hertfordshire, HP3 9RT. Tel: 01442 262323, Fax: 01442 262683, Web: www.solis.co.uk, Email: ask@solis.co.uk, | 18/01/21 - 15:16 | SC1 |

TESTING VERIFICATION CERTIFICATE

1774

The test results included in this report are certified as:-

ISSUE STATUS: FINAL

In accordance with the Structural Soils Ltd Laboratory Quality Management System, results sheets and summaries of results issued by the laboratory are checked by an approved signatory. The integrity of the test data and results are ensured by control of the computer system employed by the laboratory as part of the Software Verification Program as detailed in the Laboratory Quality Manual.

This testing verification certificate covers all testing compiled on or before the following datetime: **18/01/2021 14:47:37**.

Testing reported after this date is not covered by this Verification Certificate.

56

Approved Signatory

Sharon Cairns (Laboratory Manager)

(Head Office)
Bristol Laboratory
Unit 1A, Princess Street
Bedminster
Bristol
BS3 4AG

Castleford Laboratory
The Potteries, Pottery Street
Castleford
West Yorkshire
WF10 1NJ

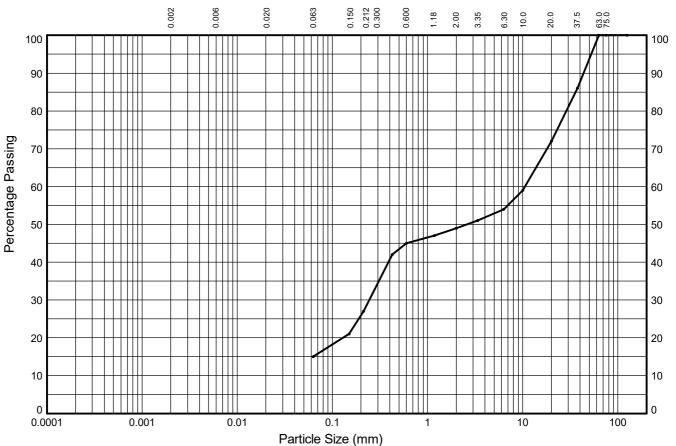
Hemel Laboratory 18 Frogmore Road Hemel Hempstead Hertfordshire HP3 9RT Tonbridge Laboratory
Anerley Court, Half Moon Lane
Hildenborough
Tonbridge
TN11 9HU

STRUCTURAL SOILS LTD

Contract:

Job No:

B073096


584418

PARTICLE SIZE DISTRIBUTION TEST

In accordance with clauses 9.2 of BS1377:Part 2:1990

Window Sample: **WS01** Sample Ref: **13** Sample Type: **B** Depth (m): **1.70**

				`	,					
	fine	medium	coarse	fine	medium	coarse	fine	medium	coarse	
CLAY	-	-	-	11%	19%	4%	5%	18%	28%	COBBLES
		SILT			SAND			GRAVEL	_	
15%		34%			51%		0%			

	Passing %)
75.0 63.0 37.5 20.0 710.0 6.30 3.35 2.00 41.18 0.600 0.425 0.212 0.150	00 00 00 6 22 99 44 11 99 7 5 5 22 7

Particle Diameter (mm)	Percent Passing (%)			
Sedimentation sample was not pre-treated				

	Coeff	icients
1	D ₁₀ (mm)	NA
	D ₁₅ (mm)	0.063
	D ₃₀ (mm)	0.244
	D ₅₀ (mm)	2.588
	D ₆₀ (mm)	10.548
	D ₈₅ (mm)	35.853
	D ₉₀ (mm)	43.492
	C _U	NA
	C _c	NA

Soil Description:

Brown very sandy clayey GRAVEL

Key: C_U = Uniformity coefficient. C_C = Coefficient of curvature as defined in BS EN ISO 14688-2

STRUCTURAL SOILS 18 Frogmore Road Hemel Hempstead Hertfordshire HP3 9RT

Compiled By		
SHARON CAIRNS		
Contract	Contract Ref:	•

B073096 584418

LABORATORY TEST CERTIFICATE

10 Queenslie Point Queenslie Industrial Estate 120 Stepps Road Glasgow

G33 3NQ

Tel: 0141 774 4032

email: info@mattest.org Website: www.mattest.org

Certificate No: 21/073 - 01

To: Jillian Lafferty

Client : Phoenix Drilling Limited

2 Nairn Road

Deans Industrial Estate

Livingston EH54 8AY

Dear Sirs,

LABORATORY TESTING OF ROCK

Introduction

We refer to samples taken from West Cumberland Hospital and delivered to our laboratory on 27th January 2021.

Material & Source

Sample Reference : See Report Plates

Sampled By : Client

Sampling Certificate : Not Supplied

Location : See Report Plates

Description : Rock Cores

Date Sampled : Not Supplied

Date Tested : 27th January 2021 Onwards

Source : 3670 - West Cumberland Hospital

Test Results;

As Detailed On Page 2 to Page 11 inclusive

Comments:

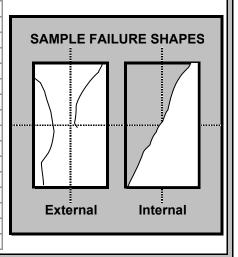
Opinions and interpretations expressed herein are outside the scope of UKAS accreditation. This report should not be reproduced except in full without the written approval of the laboratory. All remaining samples for this project will be disposed of 28 days after issue of this test certificate.

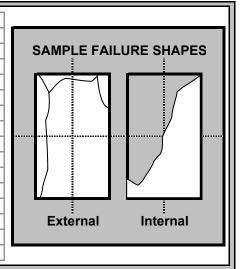
Remarks;

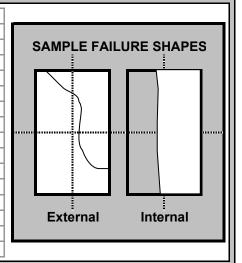
Approved for Issue

T McLelland (Director)

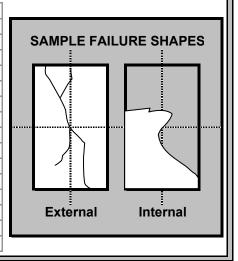
Date

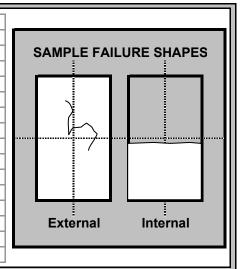

03/02/2021

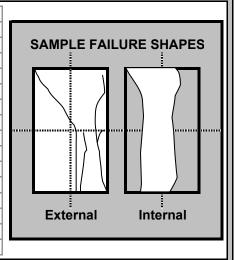

Issue No. 01 Page 1 of 11


BOREHOLE		BH01
SAMPLE		С
DEPTH	m	3.50
SAMPLE DIAMETER	mm	72.34
SAMPLE HEIGHT	mm	167.45
TEST CONDITION		As Received
RATE OF LOADING	kN/s	0.5
TEST DURATION	min.sec	4.55
DATE OF TESTING		02/02/2021
LOAD FRAME USED		2000kN
LOAD DIRECTION WITH RESPECT TO LITHOLOGY		Unknown
FAILURE LOAD	kN	138.0
UNCONFINED COMPRESSIVE STRENGTH	MPa	33.6
WATER CONTENT (ISRM Suggested Methods)	%	4.7
BULK DENSITY (ISRM Suggested Methods)	Mg/m ³	2.39
DRY DENSITY (ISRM Suggested Methods)	Mg/m ³	2.28

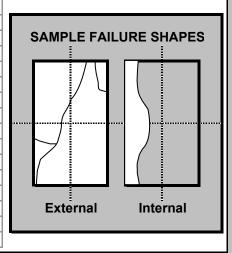
BOREHOLE		BH01
SAMPLE		С
DEPTH	m	6.50
SAMPLE DIAMETER	mm	72.50
SAMPLE HEIGHT	mm	160.31
TEST CONDITION		As Received
RATE OF LOADING	kN/s	0.5
TEST DURATION	min.sec	6.09
DATE OF TESTING		02/02/2021
LOAD FRAME USED		2000kN
LOAD DIRECTION WITH RESPECT TO LITHOLOGY		Unknown
FAILURE LOAD	kN	171.4
UNCONFINED COMPRESSIVE STRENGTH	MPa	41.5
WATER CONTENT (ISRM Suggested Methods)	%	4.5
BULK DENSITY (ISRM Suggested Methods)	Mg/m ³	2.31
DRY DENSITY (ISRM Suggested Methods)	Mg/m ³	2.21

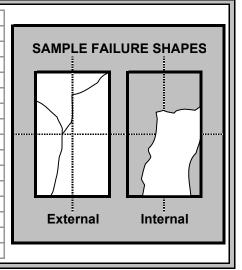

BOREHOLE		BH01
SAMPLE		С
DEPTH	m	10.00
SAMPLE DIAMETER	mm	72.12
SAMPLE HEIGHT	mm	162.12
TEST CONDITION		As Received
RATE OF LOADING	kN/s	0.5
TEST DURATION	min.sec	5.43
DATE OF TESTING		02/02/2021
LOAD FRAME USED		2000kN
LOAD DIRECTION WITH RESPECT TO LITHOLOGY		Unknown
FAILURE LOAD	kN	160.2
UNCONFINED COMPRESSIVE STRENGTH	MPa	39.2
WATER CONTENT (ISRM Suggested Methods)	%	4.3
BULK DENSITY (ISRM Suggested Methods)	Mg/m ³	2.44
DRY DENSITY (ISRM Suggested Methods)	Mg/m ³	2.34

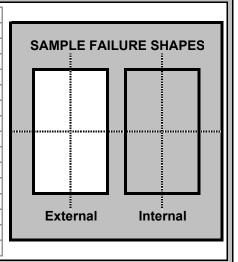

Tested in accordance with ASTM D7012 - 14


BOREHOLE		BH02
SAMPLE		С
DEPTH	m	1.50
SAMPLE DIAMETER	mm	72.55
SAMPLE HEIGHT	mm	161.50
TEST CONDITION		As Received
RATE OF LOADING	kN/s	0.5
TEST DURATION	min.sec	4.39
DATE OF TESTING		02/02/2021
LOAD FRAME USED		2000kN
LOAD DIRECTION WITH RESPECT TO LITHOLOGY		Unknown
FAILURE LOAD	kN	127.3
UNCONFINED COMPRESSIVE STRENGTH	MPa	30.8
WATER CONTENT (ISRM Suggested Methods)	%	4.4
BULK DENSITY (ISRM Suggested Methods)	Mg/m ³	2.31
DRY DENSITY (ISRM Suggested Methods)	Mg/m ³	2.21

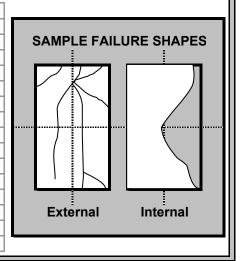
BOREHOLE		BH02
SAMPLE		С
DEPTH	m	5.50
SAMPLE DIAMETER	mm	72.36
SAMPLE HEIGHT	mm	161.13
TEST CONDITION		As Received
RATE OF LOADING	kN/s	0.5
TEST DURATION	min.sec	3.55
DATE OF TESTING		02/02/2021
LOAD FRAME USED		2000kN
LOAD DIRECTION WITH RESPECT TO LITHOLOGY		Unknown
FAILURE LOAD	kN	109.3
UNCONFINED COMPRESSIVE STRENGTH	MPa	26.6
WATER CONTENT (ISRM Suggested Methods)	%	3.9
BULK DENSITY (ISRM Suggested Methods)	Mg/m ³	2.34
DRY DENSITY (ISRM Suggested Methods)	Mg/m ³	2.26

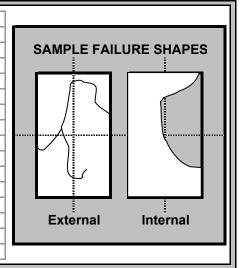

BOREHOLE		BH02
SAMPLE		С
DEPTH	m	13.00
SAMPLE DIAMETER	mm	72.33
SAMPLE HEIGHT	mm	158.23
TEST CONDITION		As Received
RATE OF LOADING	kN/s	0.5
TEST DURATION	min.sec	4.41
DATE OF TESTING		02/02/2021
LOAD FRAME USED		2000kN
LOAD DIRECTION WITH RESPECT TO LITHOLOGY		Unknown
FAILURE LOAD	kN	135.4
UNCONFINED COMPRESSIVE STRENGTH	MPa	33.0
WATER CONTENT (ISRM Suggested Methods)	%	0.3
BULK DENSITY (ISRM Suggested Methods)	Mg/m ³	2.67
DRY DENSITY (ISRM Suggested Methods)	Mg/m ³	2.66

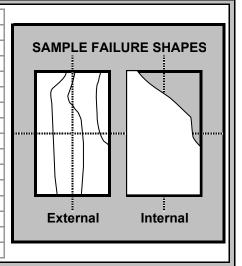

Tested in accordance with ASTM D7012 - 14


BOREHOLE		BH03
SAMPLE		С
DEPTH	m	4.50
SAMPLE DIAMETER	mm	72.73
SAMPLE HEIGHT	mm	171.70
TEST CONDITION		As Received
RATE OF LOADING	kN/s	0.5
TEST DURATION	min.sec	5.59
DATE OF TESTING		02/02/2021
LOAD FRAME USED		2000kN
LOAD DIRECTION WITH RESPECT TO LITHOLOGY		Unknown
FAILURE LOAD	kN	168.3
UNCONFINED COMPRESSIVE STRENGTH	MPa	40.5
WATER CONTENT (ISRM Suggested Methods)	%	4.5
BULK DENSITY (ISRM Suggested Methods)	Mg/m ³	2.31
DRY DENSITY (ISRM Suggested Methods)	Mg/m ³	2.21

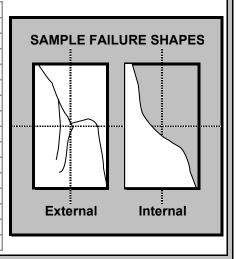
BOREHOLE		BH03
SAMPLE		С
DEPTH	m	8.50
SAMPLE DIAMETER	mm	72.39
SAMPLE HEIGHT	mm	161.76
TEST CONDITION		As Received
RATE OF LOADING	kN/s	0.5
TEST DURATION	min.sec	4.54
DATE OF TESTING		02/02/2021
LOAD FRAME USED		2000kN
LOAD DIRECTION WITH RESPECT TO LITHOLOGY		Unknown
FAILURE LOAD	kN	136.6
UNCONFINED COMPRESSIVE STRENGTH	MPa	33.2
WATER CONTENT (ISRM Suggested Methods)	%	6.0
BULK DENSITY (ISRM Suggested Methods)	Mg/m ³	2.37
DRY DENSITY (ISRM Suggested Methods)	Mg/m ³	2.24

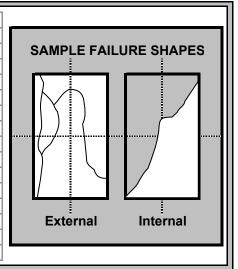

l	BOREHOLE		
l	SAMPLE		
ı	DEPTH	m	
ı	SAMPLE DIAMETER	mm	
ı	SAMPLE HEIGHT	mm	
ı	TEST CONDITION		
l	RATE OF LOADING	kN/s	
ı	TEST DURATION	min.sec	
ı	DATE OF TESTING		
ı	LOAD FRAME USED		
ı	LOAD DIRECTION WITH RESPECT TO LITHOLOGY		
ı	FAILURE LOAD	kN	
ı	UNCONFINED COMPRESSIVE STRENGTH	MPa	
ı	WATER CONTENT (ISRM Suggested Methods)	%	
l	BULK DENSITY (ISRM Suggested Methods)	Mg/m ³	
l	DRY DENSITY (ISRM Suggested Methods)	Mg/m ³	
- 1		· ·	· ·

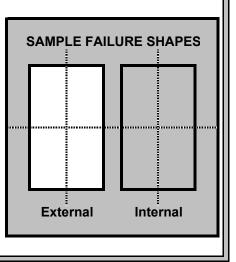

Tested in accordance with ASTM D7012 - 14


BOREHOLE		BH04
SAMPLE		С
DEPTH	m	3.50
SAMPLE DIAMETER	mm	72.44
SAMPLE HEIGHT	mm	164.58
TEST CONDITION		As Received
RATE OF LOADING	kN/s	0.5
TEST DURATION	min.sec	7.21
DATE OF TESTING		02/02/2021
LOAD FRAME USED		2000kN
LOAD DIRECTION WITH RESPECT TO LITHOLOGY		Unknown
FAILURE LOAD	kN	209.0
UNCONFINED COMPRESSIVE STRENGTH	MPa	50.7
WATER CONTENT (ISRM Suggested Methods)	%	3.9
BULK DENSITY (ISRM Suggested Methods)	Mg/m ³	2.47
DRY DENSITY (ISRM Suggested Methods)	Mg/m ³	2.38

BOREHOLE		BH04
SAMPLE		C
DEPTH	m	7.50
SAMPLE DIAMETER	mm	72.28
SAMPLE HEIGHT	mm	161.69
TEST CONDITION		As Received
RATE OF LOADING	kN/s	0.4
TEST DURATION	min.sec	5.01
DATE OF TESTING		02/02/2021
LOAD FRAME USED		2000kN
LOAD DIRECTION WITH RESPECT TO LITHOLOGY		Unknown
FAILURE LOAD	kN	132.9
UNCONFINED COMPRESSIVE STRENGTH	MPa	32.4
WATER CONTENT (ISRM Suggested Methods)	%	3.1
BULK DENSITY (ISRM Suggested Methods)	Mg/m ³	2.48
DRY DENSITY (ISRM Suggested Methods)	Mg/m ³	2.41


BOREHOLE		BH04
		C
SAMPLE		<u> </u>
DEPTH	m	11.50
SAMPLE DIAMETER	mm	72.44
SAMPLE HEIGHT	mm	165.35
TEST CONDITION		As Received
RATE OF LOADING	kN/s	0.5
TEST DURATION	min.sec	6.41
DATE OF TESTING		02/02/2021
LOAD FRAME USED		2000kN
LOAD DIRECTION WITH RESPECT TO LITHOLOGY		Unknown
FAILURE LOAD	kN	189.4
UNCONFINED COMPRESSIVE STRENGTH	MPa	46.0
WATER CONTENT (ISRM Suggested Methods)	%	0.6
BULK DENSITY (ISRM Suggested Methods)	Mg/m ³	2.40
DRY DENSITY (ISRM Suggested Methods)	Mg/m ³	2.39


Tested in accordance with ASTM D7012 - 14


BOREHOLE		BH05
SAMPLE		С
DEPTH	m	4.50
SAMPLE DIAMETER	mm	72.43
SAMPLE HEIGHT	mm	164.23
TEST CONDITION		As Received
RATE OF LOADING	kN/s	0.5
TEST DURATION	min.sec	4.16
DATE OF TESTING		02/02/2021
LOAD FRAME USED		2000kN
LOAD DIRECTION WITH RESPECT TO LITHOLOGY		Unknown
FAILURE LOAD	kN	122.4
UNCONFINED COMPRESSIVE STRENGTH	MPa	29.7
WATER CONTENT (ISRM Suggested Methods)	%	2.4
BULK DENSITY (ISRM Suggested Methods)	Mg/m ³	2.26
DRY DENSITY (ISRM Suggested Methods)	Mg/m ³	2.21

BOREHOLE		BH05
SAMPLE		С
DEPTH	m	8.50
SAMPLE DIAMETER	mm	72.67
SAMPLE HEIGHT	mm	167.69
TEST CONDITION		As Received
RATE OF LOADING	kN/s	0.5
TEST DURATION	min.sec	6.09
DATE OF TESTING		02/02/2021
LOAD FRAME USED		2000kN
LOAD DIRECTION WITH RESPECT TO LITHOLOGY		Perpendicular
FAILURE LOAD	kN	169.6
UNCONFINED COMPRESSIVE STRENGTH	MPa	40.9
WATER CONTENT (ISRM Suggested Methods)	%	3.3
BULK DENSITY (ISRM Suggested Methods)	Mg/m ³	2.32
DRY DENSITY (ISRM Suggested Methods)	Mg/m ³	2.24

BOREHOLE		
SAMPLE		
DEPTH	m	
SAMPLE DIAMETER	mm	
SAMPLE HEIGHT	mm	
TEST CONDITION		
RATE OF LOADING	kN/s	
TEST DURATION	min.sec	
DATE OF TESTING		
LOAD FRAME USED		
LOAD DIRECTION WITH RESPECT TO LITHOLOGY		
FAILURE LOAD	kN	
UNCONFINED COMPRESSIVE STRENGTH	MPa	
WATER CONTENT (ISRM Suggested Methods)	%	
BULK DENSITY (ISRM Suggested Methods)	Mg/m ³	
DRY DENSITY (ISRM Suggested Methods)	Mg/m ³	

Tested in accordance with ASTM D7012 - 14

BH01 C 1.50 As Received D 72.73 72.73 72.73 14.20 A 72.22 72.84 57.70 12.45 A 72.61 71.93 55.97 11.19 C 2.50 As Received D 72.85 72.85 72.85 9.44 A 72.98 74.59 59.88 6.89 A 72.83 75.11 60.84 8.56	BH01	2.68 3.18
C 4.50 As Received A 72.41 72.41 10.33 12.55 A 72.50 71.14 54.83 10.67 C 5.50 As Received D 72.42 72.42 72.42 6.66 A 72.30 68.13 50.42 6.69 A 72.40 73.32 58.31 7.01 C 7.50 As Received D 72.40 72.40 72.40 4.21 A 72.30 81.89 72.84 10.71 C 8.50 As Received D 72.37 72.37 72.37 11.00 A 72.40 73.15 58.04 11.41 A 72.35 62.34 42.19 6.78		2.35 2.78 2.16 2.55 1.78 2.11 1.24 1.48 1.52 1.82 1.97 2.33 2.35 2.79 2.11 2.47 1.27 1.50 1.44 1.66 1.30 1.55 0.80 0.95 2.88 3.68 1.60 1.99 2.10 2.48 2.13 2.53 1.74 1.93

NOTE: N/M - Not measured NOTE: A dash (-) signifies that scale

did not register a reading

* I = IRREGULAR TEST D = DIAMETRAL TEST A = AXIAL TEST

Tested in accordance with ISRM (2007)

BOREHOLE	SAMPLE	DEPTH (m)	MOISTURE CONTENT (%)	TYPE OF TEST * (see below)	CORE DIAMETER (mm)	EQUIVALENT DIAMETER (mm)	PLATEN SEPARATION (mm)	FAILURE LOAD (kN)	Is (MPa)	Is(50) (MPa)
BH02	C C C C		CONTENT	TEST * (see below)	DIAMETER	DIAMETER	SEPARATION	LOAD		

NOTE: N/M - Not measured NOTE: A dash (-) signifies that scale

did not register a reading

* I = IRREGULAR TEST D = DIAMETRAL TEST A = AXIAL TEST

Mean Is(50) - Axial tests	2.58
Mean Is(50) - Diametrical tests	2.48
la(50)	1.04

Tested in accordance with ISRM (2007)

BOREHOLE	SAMPLE	DEPTH (m)	MOISTURE CONTENT (%)	TYPE OF TEST * (see below)	CORE DIAMETER (mm)	EQUIVALENT DIAMETER (mm)	PLATEN SEPARATION (mm)	FAILURE LOAD (kN)	Is (MPa)	Is(50) (MPa)
BH03	С	3.50	As Received	D A	71.99 72.14	71.99 71.96	71.99 56.37	4.40 7.71	0.85 1.49	1.00 1.76
				Α	72.06	67.55	49.73	7.52	1.65	1.89
	С	5.50	As Received	D A	71.78 71.90	71.78 83.84	71.38 76.79	4.54 9.06	0.88 1.29	1.04 1.63
	С	6.50	As Received	A D	71.80 72.39	84.17 72.39	77.49 72.39	6.97 3.18	0.98 0.61	1.24 0.72
				A A	72.51 72.21	78.95 80.73	67.51 70.88	8.14 10.98	1.31 1.69	1.60 2.09
	С	7.50	As Received	D A	72.65 72.31	72.65 72.97	72.65 57.84	5.94 7.60	1.13 1.43	1.33 1.69
	С	9.50	As Received	A D	72.78 72.72	68.39 72.72	50.47 72.72	6.71 12.19	1.44 2.30	1.65 2.73
				A A	72.10 72.28	79.66 75.84	69.12 62.49	5.03 6.63	0.79 1.15	0.98 1.39

NOTE: N/M - Not measured NOTE: A dash (-) signifies that scale

did not register a reading

* I = IRREGULAR TEST D = DIAMETRAL TEST A = AXIAL TEST

Mean Is(50) - Axial tests	1.59
Mean Is(50) - Diametrical tests	1.36
Ia(50)	1.17

Tested in accordance with ISRM (2007)

BOREHOLE	SAMPLE	DEPTH (m)	MOISTURE CONTENT (%)	TYPE OF TEST * (see below)	CORE DIAMETER (mm)	EQUIVALENT DIAMETER (mm)	PLATEN SEPARATION (mm)	FAILURE LOAD (kN)	Is (MPa)	Is(50) (MPa)
BH04	С	4.50	As Received	D A	72.36 72.41	72.36 75.06	72.36 61.11	12.80 9.66	2.44 1.71	2.89 2.06
	С	5.50	As Received	A D A	72.30 72.39 72.11	66.63 72.39 61.49	48.23 72.39 41.18	8.31 5.72 6.90	1.87 1.09 1.82	2.13 1.29 2.00
	С	6.50	As Received	A D A	72.40 72.21 72.39	64.86 72.21 90.48	45.63 72.21 88.81	6.51 16.74 17.87	1.55 3.21 2.18	1.74 3.79 2.85
	С	8.50	As Received	A D A	72.19 72.73 72.50	86.48 72.73 68.14	81.37 72.73 50.30	12.18 12.64 13.08	1.63 2.39 2.82	2.08 2.83 3.24
	С	9.50	As Received	A D A	72.30 72.10 72.30 72.48	64.31 72.30 82.33	45.05 72.30 73.45	17.66 30.74 28.84	4.27 5.88 4.26	4.78 6.94 5.33
	С	10.50	As Received	A D A	72.25 72.32 72.15	80.56 72.32 79.15	70.54 72.32 68.19	28.79 25.54 16.22	4.44 4.88 2.59	5.50 5.77 3.18
				A	72.13	72.81	57.65	19.69	3.71	4.40

NOTE: N/M - Not measured NOTE: A dash (-) signifies that scale

did not register a reading

* I = IRREGULAR TEST D = DIAMETRAL TEST A = AXIAL TEST

Mean Is(50) - Axial tests	3.27
Mean Is(50) - Diametrical tests	3.92
la(50)	0.84

Tested in accordance with ISRM (2007)

BOREHOLE	SAMPLE	DEPTH (m)	MOISTURE CONTENT (%)	TYPE OF TEST * (see below)	CORE DIAMETER (mm)	EQUIVALENT DIAMETER (mm)	PLATEN SEPARATION (mm)	FAILURE LOAD (kN)	Is (MPa)	Is(50) (MPa)
BH05	C C C C		CONTENT	TEST * (see below)	DIAMETER	DIAMETER	SEPARATION	LOAD		

NOTE: N/M - Not measured

NOTE: A dash (-) signifies that scale

did not register a reading

* I = IRREGULAR TEST D = DIAMETRAL TEST A = AXIAL TEST

Mean Is(50) - Axial tests	1.87
Mean Is(50) - Diametrical tests	1.06
la(50)	1.77

Tested in accordance with ISRM (2007)

Dynamic Cone Penetrometer

Documented In House Method No DIHM 302

Client: CURTINS CONSULTING ENGINEERS

Report No:

51061689/21/02

Edinburgh

Job No:

51061689

United Kingdom EH4 3BL

Date Tested:

09/03/2021

Date Reported:

17/03/2021

Contact: 1a Belford Road

Site:

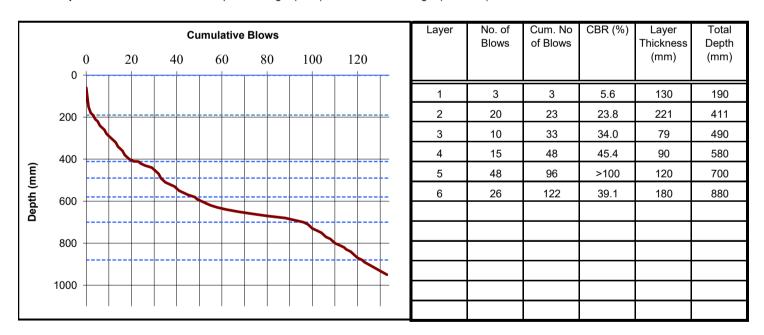
West Cumberland Hospital, Whitehaven

Material:

Clay/ Stone

Location:

Proposed Waste Compound


Reference:

No 2

Start Depth(mm): 60

Interpretative Method :

TRL Equation : Log10(CBR) = $2.480 - 1.057 \times \text{Log10(mm/blow)}$

Comments:

Signed:

Mark R. Dawkins - Laboratory Manager

✓ Paul Thomas - Section Manager

For and on behalf of SOCOTEC UK Limited

Dynamic Cone Penetrometer

Documented In House Method No DIHM 302

CURTINS CONSULTING ENGINEERS Client:

51061689/21/03

Edinburgh

EH4 3BL

Job No:

51061689

United Kingdom

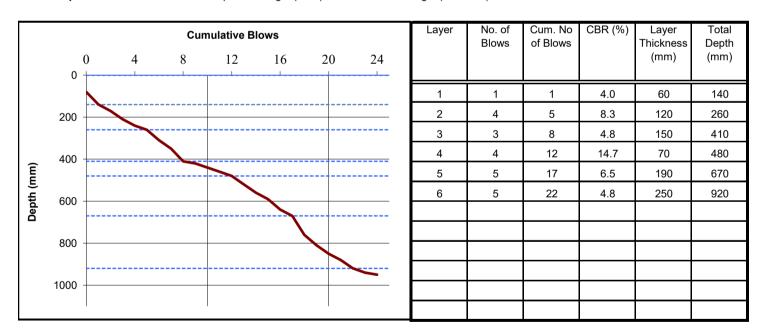
Date Tested:

Report No:

09/03/2021

Date Reported: 17/03/2021

Contact: 1a Belford Road


West Cumberland Hospital, Whitehaven Site:

Clay/ Stone Material:

Location: **Proposed Waste Compound** Reference: No 3

Start Depth(mm): 80

Interpretative Method: TRL Equation : Log10(CBR) = $2.480 - 1.057 \times \text{Log10(mm/blow)}$

Comments:

Mark R. Dawkins - Laboratory Manager ✓ Paul Thomas - Section Manager Signed:

For and on behalf of SOCOTEC UK Limited

Dynamic Cone Penetrometer

Documented In House Method No DIHM 302

Client: CURTINS CONSULTING ENGINEERS

Report No:

51061689/21/04

Edinburgh

Job No:

51061689

United Kingdom

Date Tested:

09/03/2021

EH4 3BL

Date Reported:

17/03/2021

Contact: 1a Belford Road

Site:

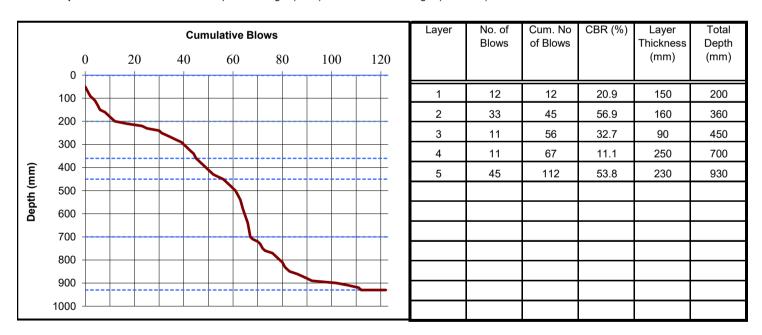
West Cumberland Hospital, Whitehaven

Material:

Clay/ Stone

Location:

Proposed Waste Compound


Reference:

No 4

Start Depth(mm): 50

Interpretative Method:

TRL Equation : Log10(CBR) = $2.480 - 1.057 \times \text{Log10(mm/blow)}$

Comments:

	0 17	Mark R. Dawkins - Laboratory Manage
Signed:	1. I homes.	Paul Thomas - Section Manager

For and on behalf of SOCOTEC UK Limited

Dynamic Cone Penetrometer

Documented In House Method No DIHM 302

Client: CURTINS CONSULTING ENGINEERS

Report No:

51061689/21/05

Edinburgh

EH4 3BL

Job No:

51061689

United Kingdom

Date Tested:

09/03/2021

Date Reported:

17/03/2021

Contact: 1a Belford Road

Site:

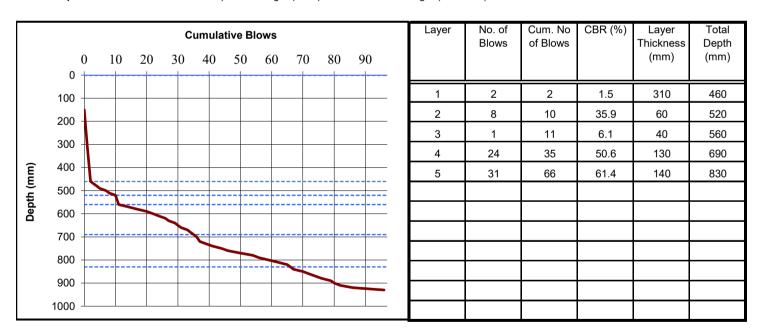
West Cumberland Hospital, Whitehaven

Material:

Clay/ Stone

Location:

Proposed Waste Compound


Reference:

No 5

Start Depth(mm): 150

Interpretative Method :

TRL Equation : Log10(CBR) = $2.480 - 1.057 \times \text{Log10(mm/blow)}$

Comments:

	0 -17	Mark R. Dawkins - Laboratory Manager
Signed:	P. Thomas.	Paul Thomas - Section Manager

For and on behalf of SOCOTEC UK Limited

Dynamic Cone Penetrometer

Documented In House Method No DIHM 302

Client: CURTINS CONSULTING ENGINEERS

Report No:

51061689/21/06

Edinburgh

Job No:

51061689

United Kingdom

Date Tested:

09/03/2021

EH4 3BL

Date Reported:

17/03/2021

Contact: 1a Belford Road

Site:

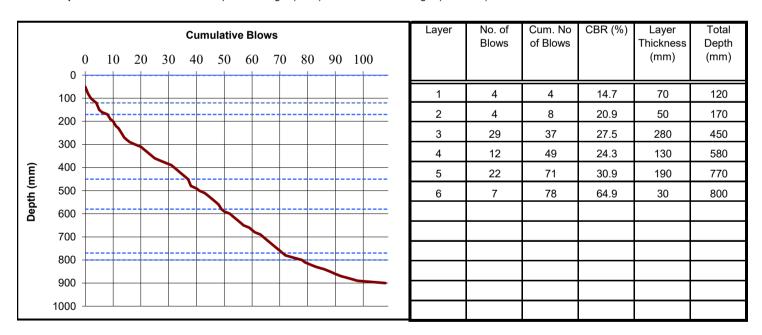
West Cumberland Hospital, Whitehaven

Material:

Clay/ Stone

Location:

Proposed Waste Compound


Reference:

No 6

Start Depth(mm): 50

Interpretative Method:

TRL Equation : Log10(CBR) = $2.480 - 1.057 \times \text{Log10(mm/blow)}$

Comments:

Mark R. Dawkins - Laboratory Manager

✓ Paul Thomas - Section Manager

For and on behalf of SOCOTEC UK Limited

Dynamic Cone Penetrometer

Documented In House Method No DIHM 302

Client: CURTINS CONSULTING ENGINEERS

Report No:

51061689/21/07

Edinburgh

Job No:

51061689

United Kingdom

Date Tested:

09/03/2021

EH4 3BL

Date Reported:

eported: 17/03/2021

Contact: 1a Belford Road

Site:

West Cumberland Hospital, Whitehaven

Material:

Clay/ Stone

Location:

Proposed Waste Compound

Reference:

No 7

Start Depth(mm): 80

Interpretative Method: TRL Equation: Log10(CBR) = 2.480 - 1.057 x Log10(mm/blow)

Comments:

Signed:	P. Thomas.	☐ Mark R. Dawkins - Laboratory Manager ☐ Paul Thomas - Section Manager
	For and on behalf of SOCOTEC UK Limited	

SOCOTEC UK Limited 29 Rufford Court Hardwick Grange Warrington Cheshire WA1 4RF

Telephone: +44 (0) 1925 286220

Dynamic Cone Penetrometer

Documented In House Method No DIHM 302

Client: CURTINS CONSULTING ENGINEERS

Report No:

51061689/21/01

Edinburgh

Job No:

51061689

United Kingdom

Date Tested:

09/03/2021

EH4 3BL

Date Reported:

17/03/2021

Contact: 1a Belford Road

Site:

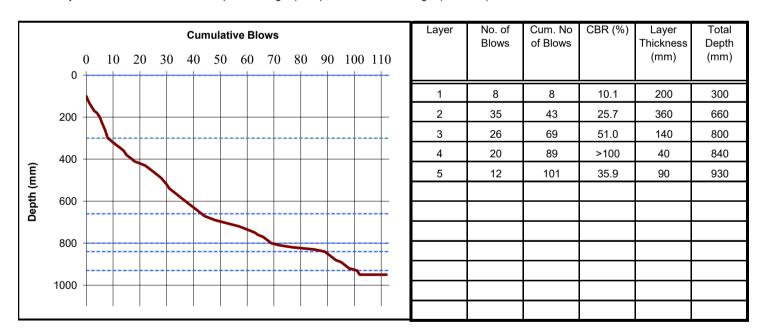
West Cumberland Hospital, Whitehaven

Material:

Clay & Stone

Location:

Proposed Waste Compound


Reference:

No 1

Start Depth(mm): 100

00

Interpretative Method: TRL Equation: Log10(CBR) = 2.480 - 1.057 x Log10(mm/blow)

Comments:

Signed:

Mark R. Dawkins - Laboratory Manager

✓ Paul Thomas - Section Manager

For and on behalf of SOCOTEC UK Limited

Particle Size Distribution

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Tested in Accordance with: BS 1377-2: 1990

CURTINS Client:

Client Address: Rose Wharf, Ground Floor,

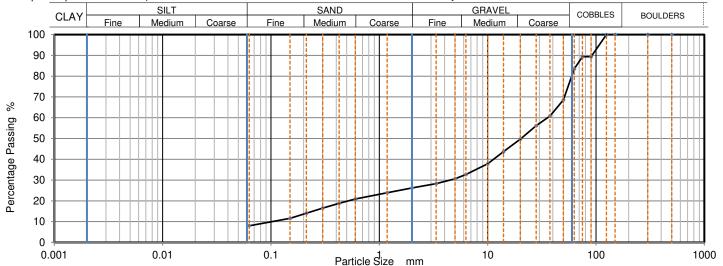
78-80 East Street, Leeds,

LS9 8EE

Contact: Joe James

Site Address: West Cumberland Hospital (WCH)

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland


Client Reference: 73096 Job Number: 21-93976 Date Sampled: 03/08/2021 Date Received: 10/08/2021 Date Tested: 26/08/2021 Sampled By: Not Given

Test Results:

Laboratory Reference: 1979022 Depth Top [m]: 0.50 BH21 Depth Base [m]: 1.00 Hole No.: Sample Reference: Not Given Sample Type: D

Sample Description: Brown slightly clayey sandy GRAVEL with cobbles

Sample Preparation: Sample was whole tested, oven dried at 106.0 °C and broken down by hand.

Siev	rina	Sedimentation			
Particle Size mm	% Passing	Particle Size mm	% Passing		
500	100				
300	100				
150	100				
125	100				
90	89				
75	89				
63	84				
50	69				
37.5	61				
28	56				
20	50				
14	44				
10	38				
6.3	33				
5	31				
3.35	28				
2	26	1			
1.18	24				
0.6	21	1			
0.425	19	1			
0.3	17	1			
0.212	14				
0.15	12	1			
0.063	8				

Sample Proportions	% dry mass	
Very coarse	16	
Gravel	57	
Sand	18	
Fines <0.063mm	8	

Grading Analysis	;	
D100	mm	125
D60	mm	35.6
D30	mm	4.49
D10	mm	0.101
Uniformity Coefficient		350
Curvature Coefficient		5.6

Uniformity Coefficient and Coefficient of Curvature calculated in accordance with BS EN ISO 14688-2: 2004 + A1: 2013

Note: Tested in Accordance with BS1377:Part 2:1990, clause 9.2

The material submitted - fails to meet the minimum mass requirements as stated in BS1377 Part 2 Table 3 Remarks:

Preliminary report 3

Signed:

Szczepan Bielatowicz PL Deputy Head of Geotechnical Section

for and on behalf of i2 Analytical Ltd

Particle Size Distribution

Tested in Accordance with: BS 1377-2: 1990

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Date Received: 10/08/2021

4041

Client: CURTINS

Client Reference: 73096

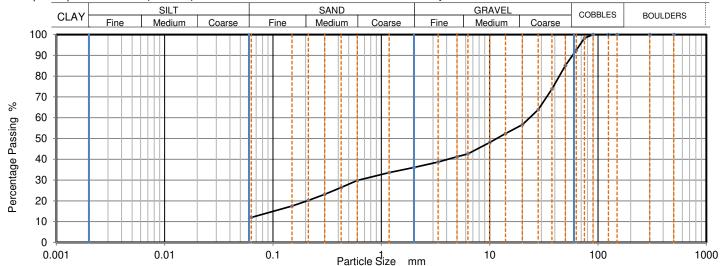
Client Address: Rose Wharf, Ground Floor.

Job Number: 21-939

Rose Wharf, Ground Floor,
78-80 East Street, Leeds,
Job Number: 21-93976
Date Sampled: 04/08/2021

LS9 8EE act: Joe James

Contact: Joe James Date Tested: 28/08/2021 Site Address: West Cumberland Hospital (WCH) Sampled By: Not Given


Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Test Results:

Laboratory Reference:1979023Depth Top [m]: 0.30Hole No.:TP02 TWDepth Base [m]: 0.40Sample Reference:Not GivenSample Type: B

Sample Description: Brown clayey sandy GRAVEL

Sample Preparation: Sample was quartered, oven dried at 106.1 °C and broken down by hand.

Sieving		Sedime	Sedimentation	
Particle Size mm	% Passing	Particle Size mm	% Passing	
500	100			
300	100			
150	100			
125	100			
90	100			
75	98			
63	93			
50	85			
37.5	74			
28	64			
20	57			
14	52			
10	48			
6.3	43			
5	41			
3.35	39			
2	36			
1.18	34			
0.6	30	1		
0.425	26			
0.3	23	1		
0.212	20			
0.15	18	1		
0.063	13	7		

Sample Proportions	% dry mass	
Very coarse	7	
Gravel	56	
Sand	23	
Fines <0.063mm	13	

Grading Analysis		
D100	mm	90
D60	mm	23.4
D30	mm	0.626
D10	mm	
Uniformity Coefficient		> 370
Curvature Coefficient		

Uniformity Coefficient and Coefficient of Curvature calculated in accordance with BS EN ISO 14688-2: 2004 + A1: 2013

Note: Tested in Accordance with BS1377:Part 2:1990, clause 9.2

Remarks: Preliminary report 3

Signed:

Szczepan Bielatowicz PL Deputy Head of Geotechnical Section for and on behalf of i2 Analytical Ltd

or testing.

Particle Size Distribution

Tested in Accordance with: BS 1377-2: 1990

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Client: CURTINS

Client Address: Rose Wharf, Ground Floor,

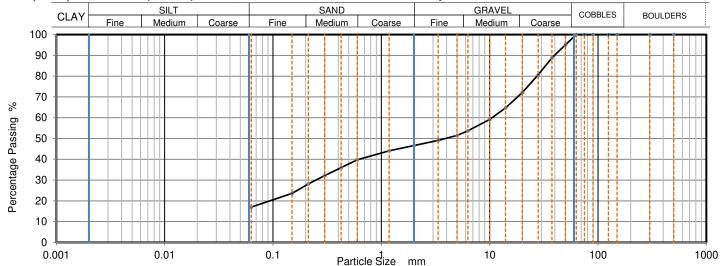
78-80 East Street, Leeds,

LS9 8EE

Contact: Joe James

Site Address: West Cumberland Hospital (WCH)

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland


Client Reference: 73096 Job Number: 21-93976 Date Sampled: 04/08/2021 Date Received: 10/08/2021 Date Tested: 26/08/2021 Sampled By: Not Given

Test Results:

Laboratory Reference:1979024Depth Top [m]: 1.40Hole No.:TW TP04Depth Base [m]: 1.50Sample Reference:Not GivenSample Type: B

Sample Description: Brown clayey very sandy GRAVEL

Sample Preparation: Sample was quartered, oven dried at 106.1 °C and broken down by hand.

Sievin Particle Size mm 500 300 150 125 90 75 63 50	% Passing 100 100 100 100	Particle Size mm	% Passing
300 150 125 90 75 63	100 100 100		
150 125 90 75 63	100 100		
125 90 75 63	100		
90 75 63			
75 63	100		
63	100		
	100		
50	100		
30	95		
37.5	89		
28	81		
20	72		
14	65		
10	59		
6.3	54		
5	52		
3.35	49		
2	47	1	
1.18	44		
0.6	40	1	
0.425	36	1	
0.3	32	1	
0.212	28		
0.15	24		
0.063		_	

Sample Proportions	% dry mass	
Very coarse	0	
Gravel	53	
Sand	29	
Fines <0.063mm	17	

Grading Analysis		
D100	mm	63
D60	mm	10.5
D30	mm	0.249
D10	mm	
Uniformity Coefficient		> 170
Curvature Coefficient		

Uniformity Coefficient and Coefficient of Curvature calculated in accordance with BS EN ISO 14688-2: 2004 + A1: 2013

Note: Tested in Accordance with BS1377:Part 2:1990, clause 9.2

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This

Remarks: Preliminary report 3

Signed:

Szczepan Bielatowicz

Date Reported: 12/10/2021

PL Deputy Head of Geotechnical Section for and on behalf of i2 Analytical Ltd

report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Page 1 of 1

for and on behalf of i2 Analytical Ltd

GF 100.20

Particle Size Distribution

Tested in Accordance with: BS 1377-2: 1990

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Client: CURTINS

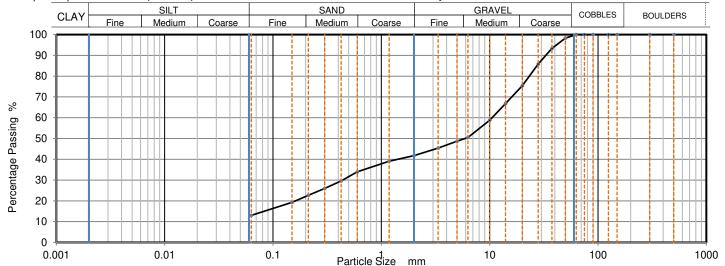
Client Address: Rose Wharf, Ground Floor, 78-80 East Street, Leeds,

LS9 8EE

Contact: Joe James

Site Address: West Cumberland Hospital (WCH)

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland


Client Reference: 73096 Job Number: 21-93976 Date Sampled: 04/08/2021 Date Received: 10/08/2021 Date Tested: 28/08/2021 Sampled By: Not Given

Test Results:

Laboratory Reference:1979025Depth Top [m]: 0.50Hole No.:TW TP01Depth Base [m]: 0.60Sample Reference:Not GivenSample Type: B

Sample Description: Brown clayey sandy GRAVEL

Sample Preparation: Sample was quartered, oven dried at 106.3 °C and broken down by hand.

Ciavi	Sieving		.4.4:
Siev	ing	Sedimer	itation
Particle Size mm	% Passing	Particle Size mm	% Passing
500	100		
300	100		
150	100		
125	100		
90	100		
75	100		
63	100		
50	98		
37.5	93		
28	86		
20	75		
14	67		
10	59		
6.3	51		
5	49		
3.35	45		
2	42	1	
1.18	39		
0.6	34		
0.425	30		
0.3	26	1	
0.212	23		
0.15	19		
0.063	14		

Sample Proportions	% dry mass	
Very coarse	0	
Gravel	58	
Sand	28	
Fines <0.063mm	14	

Grading Analysis		
D100	mm	63
D60	mm	10.5
D30	mm	0.439
D10	mm	
Uniformity Coefficient		> 170
Curvature Coefficient		

Uniformity Coefficient and Coefficient of Curvature calculated in accordance with BS EN ISO 14688-2: 2004 + A1: 2013

Note: Tested in Accordance with BS1377:Part 2:1990, clause 9.2

Remarks: Preliminary report 3

Signed:

Szczepan Bielatowicz PL Deputy Head of Geotechnical Section

PL Deputy Head of Geotechnical Section for and on behalf of i2 Analytical Ltd

GF 100.20

Page 1 of 1

f 1 Date Reported: 12/10/2021

Particle Size Distribution

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Tested in Accordance with: BS 1377-2: 1990

CURTINS Client: Client Address: Rose Wharf, Ground Floor,

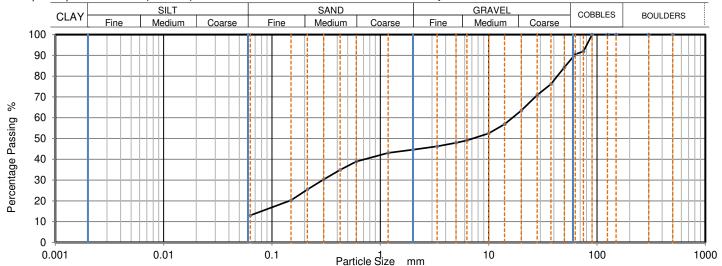
78-80 East Street, Leeds,

LS9 8EE

Contact: Joe James

Site Address: West Cumberland Hospital (WCH)

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland


Client Reference: 73096 Job Number: 21-93976 Date Sampled: 05/08/2021 Date Received: 10/08/2021 Date Tested: 28/08/2021 Sampled By: Not Given

Test Results:

Laboratory Reference: 1979026 Depth Top [m]: 0.90 **TW TP03** Depth Base [m]: 1.00 Hole No.: Sample Reference: Not Given Sample Type: B

Sample Description: Brown clayey sandy GRAVEL

Sample Preparation: Sample was quartered, oven dried at 107.7 °C and broken down by hand.

Siev	Sieving		ntation
Particle Size mm	% Passing	Particle Size mm	% Passing
500	100		
300	100		
150	100		
125	100		
90	100		
75	92		
63	91		
50	84		
37.5	76		
28	71		
20	64		
14	57		
10	53		
6.3	49		
5	48		
3.35	46		
2	45	1	
1.18	43		
0.6	39	1	
0.425	35		
0.3	30		
0.212	25		
0.15	20	1	
0.063	14	7	

Sample Proportions	% dry mass		
Very coarse	10		
Gravel	46		
Sand	31		
Fines <0.063mm	14		

Grading Analysis		
D100	mm	90
D60	mm	16.5
D30	mm	0.293
D10	mm	
Uniformity Coefficient		> 260
Curvature Coefficient		

Uniformity Coefficient and Coefficient of Curvature calculated in accordance with BS EN ISO 14688-2: 2004 + A1: 2013

Note: Tested in Accordance with BS1377: Part 2:1990, clause 9.2

Remarks: Preliminary report 3

Signed:

Szczepan Bielatowicz PL Deputy Head of Geotechnical Section

for and on behalf of i2 Analytical Ltd

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Date Reported: 12/10/2021

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Determination of resistance to fragmentation by the Los Angeles test method

Tested in Accordance with: BS EN 1097-2:2020

CURTINS Client:

Client Address: Rose Wharf, Ground Floor,

78-80 East Street, Leeds,

LS9 8EE

Contact: Joe James

Site Address: West Cumberland Hospital (WCH)

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Size Fraction which test portion obtained

Percent Passing

100

35

0

59

Client Reference: 73096

Job Number: 21-93976

Date Sampled: 04/08/2021 Date Received: 10/08/2021

Date Tested: 01/09/2021 Sampled By: Not Given

Depth Top [m]: 0.30

Depth Base [m]: 0.40

Sample Type: B

Test Results:

Laboratory Reference: 1979023 TP02 TW Hole No.: Sample Reference: Not Given

Sieve Size

14.0 mm

11.2 mm

10.0 mm

Los Angeles Coefficent

Remarks:

Sample Description: Brown clayey sandy GRAVEL

Specification %	
100	
30-40	
Zero	

Coarse fragments were crushed to obtain sufficient mass of size fraction suitable to carry out the test. Results obtained by laboratory may vary from real aggregate parameters due to different crushing method. Preliminary report 3

Signed:

Szczepan Bielatowicz PL Deputy Head of Geotechnical Section for and on behalf of i2 Analytical Ltd

Date Reported: 12/10/2021

Page 1 of 1

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

GF 143.13

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Determination of resistance to fragmentation by the Los Angeles test method

Tested in Accordance with: BS EN 1097-2:2020

CURTINS Client:

Client Address: Rose Wharf, Ground Floor,

78-80 East Street, Leeds,

LS9 8EE

Contact: Joe James

Site Address: West Cumberland Hospital (WCH)

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Size Fraction which test portion obtained

Percent Passing

100

35

0

64

Client Reference: 73096

Depth Top [m]: 1.40

Depth Base [m]: 1.50

Sample Type: B

Job Number: 21-93976 Date Sampled: 04/08/2021

Date Received: 10/08/2021 Date Tested: 01/09/2021 Sampled By: Not Given

Test Results:

Laboratory Reference: 1979024 TW TP04 Hole No.: Sample Reference: Not Given

Sieve Size

14.0 mm

11.2 mm

10.0 mm

Los Angeles Coefficent

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This

Remarks:

Sample Description: Brown clayey very sandy GRAVEL

Specification %	
100	
30-40	
Zero	

Coarse fragments were crushed to obtain sufficient mass of size fraction suitable to carry out the test. Results obtained by laboratory may vary from real aggregate parameters due to different crushing method. Preliminary report 3

Signed:

Szczepan Bielatowicz PL Deputy Head of Geotechnical Section for and on behalf of i2 Analytical Ltd

Date Reported: 12/10/2021

report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Page 1 of 1

GF 143.13

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Determination of resistance to fragmentation by the Los Angeles test method

Tested in Accordance with: BS EN 1097-2:2020

57

CURTINS Client:

Client Address: Rose Wharf, Ground Floor,

78-80 East Street, Leeds,

LS9 8EE

Contact: Joe James

Site Address: West Cumberland Hospital (WCH)

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: 73096 Job Number: 21-93976

Date Sampled: 04/08/2021 Date Received: 10/08/2021

Date Tested: 01/09/2021 Sampled By: Not Given

Depth Top [m]: 0.50

Depth Base [m]: 0.60

Sample Type: B

Test Results:

Laboratory Reference: 1979025 TW TP01 Hole No.: Sample Reference: Not Given

Los Angeles Coefficent

Remarks:

Sample Description: Brown clayey sandy GRAVEL

Size Fraction which test portion obtained		Specification 9/	
Sieve Size	Percent Passing	Specification %	
14.0 mm	100	100	
11.2 mm	35	30-40	
10.0 mm	0	Zero	
walaa Oaaffiaant	-7		

Coarse fragments were crushed to obtain sufficient mass of size fraction suitable to carry out the test. Results obtained by laboratory may vary from real aggregate parameters due to different crushing method. Preliminary report 3

Signed:

Szczepan Bielatowicz PL Deputy Head of Geotechnical Section for and on behalf of i2 Analytical Ltd

Page 1 of 1

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Date Reported: 12/10/2021

GF 143.13

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Determination of resistance to fragmentation by the Los Angeles test method

Tested in Accordance with: BS EN 1097-2:2020

CURTINS Client:

Client Address: Rose Wharf, Ground Floor,

78-80 East Street, Leeds,

LS9 8EE

Contact: Joe James

Site Address: West Cumberland Hospital (WCH)

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: 73096

Job Number: 21-93976 Date Sampled: 05/08/2021

Date Received: 10/08/2021 Date Tested: 01/09/2021

Test Results:

Laboratory Reference: 1979026 **TW TP03** Hole No.: Sample Reference: Not Given

Sample Description: Brown clayey sandy GRAVEL

Sampled By: Not Given Depth Top [m]: 0.90

Depth Base [m]: 1.00

Sample Type: B

Size Fraction which	n test portion obtained	Specification %
Sieve Size	Percent Passing	Specification %
14.0 mm	100	100
11.2 mm	35	30-40
10.0 mm	0	Zero
Los Angeles Coefficent	82	

Remarks:

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This

Coarse fragments were crushed to obtain sufficient mass of size fraction suitable to carry out the test. Results obtained by laboratory may vary from real aggregate parameters due to different crushing method. Preliminary report 3

Signed:

Szczepan Bielatowicz PL Deputy Head of Geotechnical Section for and on behalf of i2 Analytical Ltd

report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Page 1 of 1 **Date Reported: 12/10/2021** GF 143.13

Dry Density/ Moisture Content

Relationship Vib. Hammer Compaction Tested in Accordance with: BS 1377-4: 1990: Clause 3.7

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Client: **CURTINS**

Client Address: Rose Wharf, Ground Floor,

78-80 East Street, Leeds,

LS9 8EE

Contact: Joe James

Site Address: West Cumberland Hospital (WCH)

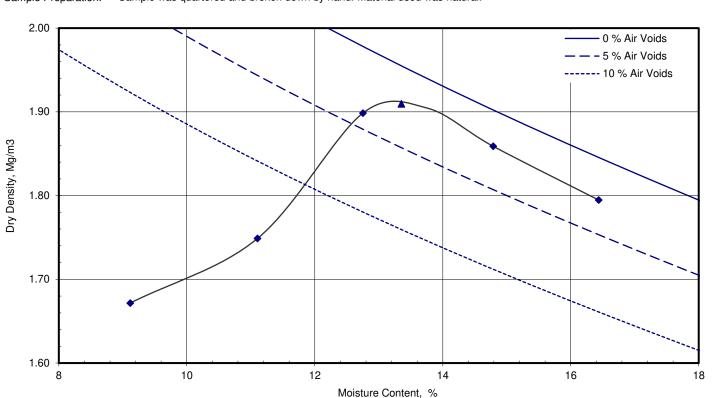
Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: 73096 Job Number: 21-93976 Date Sampled: 04/08/2021 Date Received: 10/08/2021 Date Tested: 23/09/2021

Sampled By: Not Given

Depth Top [m]: 0.30

Depth Base [m]: 0.40


Sample Type: B

Test Results:

Laboratory Reference: 1979023 TP02 TW Hole No.: Sample Reference: Not Given

Sample Description: Brown clayey sandy GRAVEL

Sample Preparation: Sample was quartered and broken down by hand. Material used was natural.

Compaction Point No.		1	2	3	4	5
Moisture Content	%	9.1	11	13	15	16
Dry Density	Mg/m³	1.67	1.75	1.90	1.86	1.79

Mould Type		CBR		
Samples Used		Single sample tested		
Material Retained on 37.5 mm Sieve	%	26		
Material Retained on 20.0 mm Sieve	%	43		
Particle Density - Assumed	Mg/m³	2.65		
As received Moisture Content	%	10		
Maximum Dry Density	Mg/m³	1.91		

Optimum Moisture Content	%	13	

Zone X - test carried out as per client request Remarks:

Preliminary report 3

Signed:

Szczepan Bielatowicz PL Deputy Head of Geotechnical Section for and on behalf of i2 Analytical Ltd

Date Reported: 12/10/2021

Dry Density/ Moisture Content

Relationship Vib. Hammer Compaction

Tested in Accordance with: BS 1377-4: 1990: Clause 3.7 i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Client: **CURTINS**

Client Address: Rose Wharf, Ground Floor,

78-80 East Street, Leeds,

LS9 8EE

Contact: Joe James

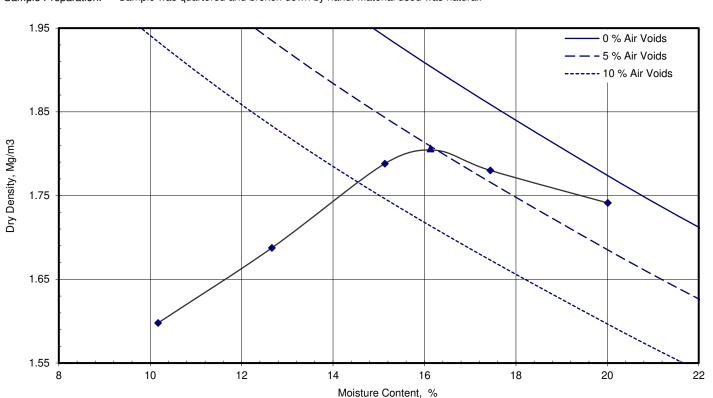
Site Address: West Cumberland Hospital (WCH)

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: 73096 Job Number: 21-93976 Date Sampled: 04/08/2021 Date Received: 10/08/2021 Date Tested: 23/09/2021 Sampled By: Not Given

Depth Top [m]: 1.40

Depth Base [m]: 1.50


Sample Type: B

Test Results:

Laboratory Reference: 1979024 TW TP04 Hole No.: Sample Reference: Not Given

Sample Description: Brown clayey very sandy GRAVEL

Sample Preparation: Sample was quartered and broken down by hand. Material used was natural.

Compaction Point No.	1	2	3	4	5
Moisture Content %	10	13	15	17	20
Dry Density Mg/m ³	1.60	1.69	1.79	1.78	1.74

Mould Type		CBR
Samples Used		Single sample tested
Material Retained on 37.5 mm Sieve	%	11
Material Retained on 20.0 mm Sieve	%	26
Particle Density - Assumed	Mg/m³	2.75
As received Moisture Content	%	14
Maximum Dry Density	Mg/m³	1.81

Optimum Moisture Content	%	16	

Zone X - test carried out as per client request Remarks:

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This

Preliminary report 3

Signed:

Szczepan Bielatowicz PL Deputy Head of Geotechnical Section for and on behalf of i2 Analytical Ltd

Page 1 of 1

GF 111.21

Dry Density/ Moisture Content Relationship Vib. Hammer Compaction

Tested in Accordance with: BS 1377-4: 1990: Clause 3.7 i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Client: **CURTINS**

Client Address: Rose Wharf, Ground Floor,

78-80 East Street, Leeds,

LS9 8EE

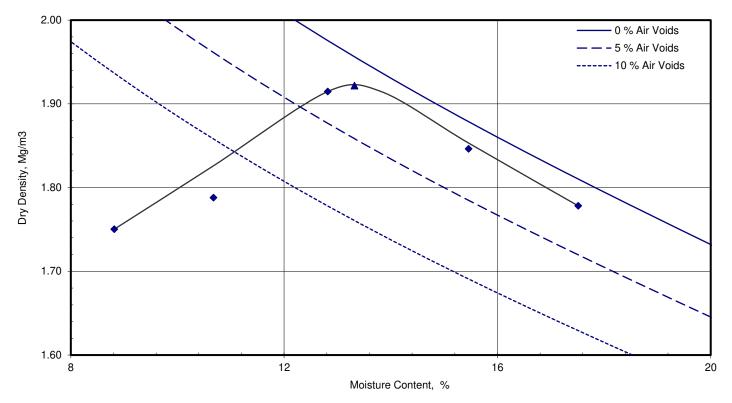
Contact: Joe James

Site Address: West Cumberland Hospital (WCH)

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: 73096 Job Number: 21-93976 Date Sampled: 04/08/2021 Date Received: 10/08/2021 Date Tested: 23/09/2021

Sampled By: Not Given


Test Results:

Laboratory Reference: 1979025 TW TP01 Hole No.: Not Given Sample Reference:

Sample Description: Brown clayey sandy GRAVEL

Depth Top [m]: 0.50 Depth Base [m]: 0.60 Sample Type: B

Sample Preparation: Sample was quartered and broken down by hand. Material used was natural.

Compaction Point No.		1	2	3	4	5
Moisture Content	%	8.8	11	13	15	18
Dry Density Mg/n	n³	1.75	1.79	1.91	1.85	1.78

Mould Type		CBR
Samples Used		Single sample tested
Material Retained on 37.5 mm Sieve	%	7
Material Retained on 20.0 mm Sieve	%	25
Particle Density - Assumed	Mg/m³	2.65
As received Moisture Content	%	10.0
Maximum Dry Density	Mg/m³	1.92

Optimum Moisture Content	%	13	

Preliminary report 3 Remarks:

Signed:

Szczepan Bielatowicz PL Deputy Head of Geotechnical Section for and on behalf of i2 Analytical Ltd

Date Reported: 12/10/2021

DETERMINATION OF SHEAR STRENGTH BY DIRECT SHEAR

(LARGE SHEARBOX APPARATUS)

Tested in Accordance with:BS 1377-7:1990: Clause 5.5.4

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

CURTINS Client:

Client Address: Rose Wharf, Ground Floor,

78-80 East Street, Leeds,

LS9 8EE

Contact: Joe James

Site Address: West Cumberland Hospital (WCH)

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: 73096 Job Number: 21-93976 Date Sampled: Not Given Date Received: 10/08/2021 Date Tested: 21/10/2021

Sampled By: Not Given

Depth Top [m]: 0.30

Depth Base [m]: 0.40

Sample Type: B

Test Results:

Laboratory Reference: 1979023 TP02 TW Hole No.: Sample Reference: Not Given

Brown clayey sandy GRAVEL Sample Description:

Preparation Details

Specimen Details	Test No.	1	2	3	
	Height	140.0	140.0	140.0	mm
	Length	300.0	300.0	300.0	mm
	Breadth	300.0	300.0	300.0	mm
	Particle Density - (assumed)	2.65	2.65	2.65	Mg/m
Initial	Bulk Density	1.99	1.99	1.99	Mg/m
	Moisture Content	13.0	13.0	13.0	%
	Dry density	1.76	1.76	1.76	Mg/m
	Voids ratio	0.506	0.506	0.506	
	Degree of Saturation	68	68	68	%
	Consolidation / Normal Stress applied	50	100	200	kPa
Consolidation	Change in height during consolidation	0.870	1.585	6.898	mm
	Voids ratio after consolidation	0.497	0.489	0.432	
After test	Final Moisture Content	12.6	12.7	12.5	%

Shearing stage(s)

Rate of displacement	Peak	1.00000	1.00000	1.00000			•	mm/mir
riate of displacement	Residual							mm/mir
Peak values, (o)	Relative horizontal displacement	44.99	44.99	44.99				mm
	Shear stress	71.7	115.6	211.1				kPa
	Shear stress 71.7 115.6 211.1		mm					
	No. of traverses (including peak run)	1	1	1				
Posidual values (v)	Relative horizontal displacement							mm
nesiduai values, (x)	Shear stress							kPa
	Vertical movement at residual shear stress							mm
050			-		Total test t	ime	<1	davs

Total test time

days

Shear Strength Parameters

Peak s	trength, (o) Regression		Manual
с'	kPa	24	-
ø'	degrees	43.0	-

Pocidual strongth (y)

nesiu	iuai sirengin	, (X)	
ă	kPa.	not	
C	c 'R kPa	assessed	-
Ø'R	degrees	not	
υn	uegrees	assessed	_

250 200 Shear stress kPa 150 100 50 0 50 100 150 200 250 300 350 400 450 500 Normal stress kPa

Test carried out on material passing 20 mm; Standard pressures 50/100/200 kPa; Target Dry Density 1.72-1.80 Mg/m3; Target Moisture Content 13 %; Recompacted using Remarks: Vibrating Hammer; Rate of displacement 1 mm/min; Sample not immersed in water as per Specification for Highway Works Series 600 Clause 636

Signed:

Dudaińska

Anna Dudzinska Deputy Head of Geo Office Section for and on behalf of i2 Analytical Ltd

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Page 1 of 2

Date Reported: 29/10/2021

DETERMINATION OF SHEAR STRENGTH BY DIRECT SHEAR

(LARGE SHEARBOX APPARATUS)

Tested in Accordance with:BS 1377-7:1990: Clause 5.5.4

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

4041

Client:

CURTINS

Client Address: Rose Wharf, Ground Floor,

78-80 East Street, Leeds,

LS9 8EE

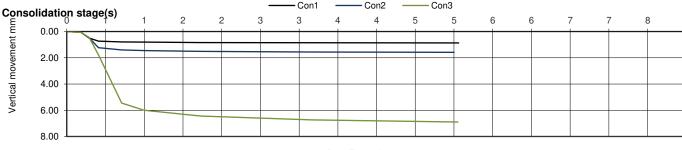
Contact: Joe James

Site Address: West Cumberland Hospital (WCH)

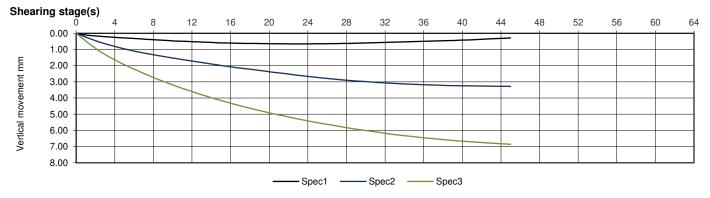
Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: 73096 Job Number: 21-93976 Date Sampled: Not Given Date Received: 10/08/2021 Date Tested: 21/10/2021

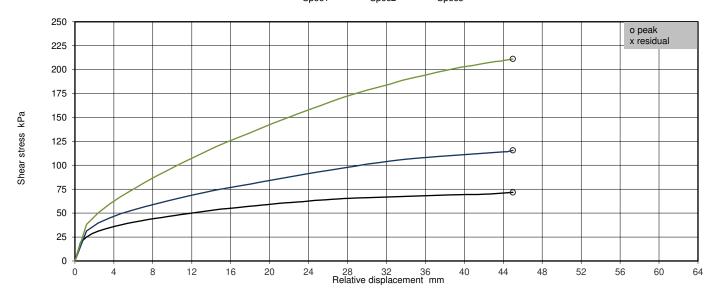
Sampled By: Not Given


Test Results:

Laboratory Reference: 1979023 Hole No.: TP02 TW Sample Reference: Not Given


Sample Description: Brown clayey sandy GRAVEL

Depth Top [m]: 0.30 Depth Base [m]: 0.40


Sample Type: B

Root Time mins

—— Spec1 —— Spec2 —— Spec3

Remarks:

Test carried out on material passing 20 mm; Standard pressures 50/100/200 kPa; Target Dry Density 1.72-1.80 Mg/m3; Target Moisture Content 13 %; Recompacted using Vibrating Hammer; Rate of displacement 1 mm/min; Sample not immersed in water as per Specification for Highway Works Series 600 Clause 636.

Signed:

Duariska

Anna Dudzinska
Deputy Head of Geo Office Section
for and on behalf of i2 Analytical Ltd

testing.

Page 2 of 2 **Date Reported:** 29/10/2021

ed: 29/10/2021 GF 402.8

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

DETERMINATION OF SHEAR STRENGTH BY DIRECT SHEAR

(LARGE SHEARBOX APPARATUS)

Tested in Accordance with:BS 1377-7:1990: Clause 5.5.4

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

4041

Client: CURTINS

Client Address: Rose Wharf, Ground Floor,

78-80 East Street, Leeds,

LS9 8EE

Contact: Joe James

Site Address: West Cumberland Hospital (WCH)

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: 73096 Job Number: 21-93976 Date Sampled: Not Given Date Received: 10/08/2021 Date Tested: 18/10/2021

Sampled By: Not Given

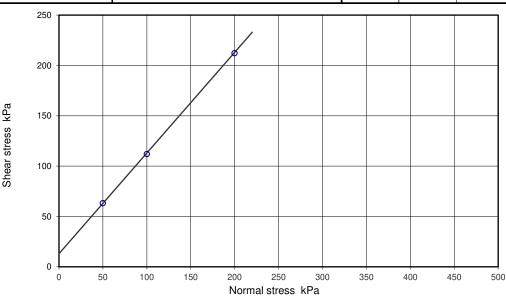
Depth Top [m]: 1.40

Depth Base [m]: 1.50

Sample Type: B

Test Results:

Laboratory Reference: 1979024
Hole No.: TW TP04
Sample Reference: Not Given


Sample Description: Brown clayey very sandy GRAVEL

Preparation Details

Specimen Details	Test No.	1	2	3	
	Height	140.0	140.0	140.0	mm
	Length	300.0	300.0	300.0	mm
	Breadth	300.0	300.0	300.0	mm
	Particle Density - (assumed)	2.65	2.65	2.65	Mg/r
Initial	Bulk Density	1.93	1.93	1.93	Mg/r
	Moisture Content	16.0	16.0	16.0	%
	Dry density	1.66	1.66	1.66	Mg/r
	Voids ratio	0.596	0.596	0.596	
	Degree of Saturation	71	71	71	%
	Consolidation / Normal Stress applied	50	100	200	kPa
Consolidation	Change in height during consolidation	1.105	1.677	5.650	mm
	Voids ratio after consolidation	0.583	0.577	0.532	
After test	Final Moisture Content	15.5	15.1	14.5	%

Shearing stage(s)

Peak values, (o)	Peak	1.00000	1.00000	1.00000				mm/mir
	Residual							mm/mir
Residual	Relative horizontal displacement	36.02	44.72	44.99				mm
	Shear stress	63.1	111.9	212.1				kPa
				mm				
	No. of traverses (including peak run)	1	1	1				
Posidual values (v)	Relative horizontal displacement							mm
nesiduai vaides, (x)	Shear stress							kPa
	Vertical movement at residual shear stress							mm
250					Total test tin	ne	<1	days

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This

Shear Strength Parameters

Peak s	strength, (o)	Regression	Manual
с'	kPa	13	-
ø'	degrees	45.0	-

Residual strength, (x)

riesiduai strengtii, (x)							
c 'R	kPa	not					
сн	κra	assessed					
Ø'R	dogroos	not					
חש	degrees	assessed	-				

Remarks:

Test carried out on material passing 20 mm; Standard pressures 50/100/200 kPa; Target Dry Density 1.63-1.70 Mg/m3; Target Moisture Content 16 %; Recompacted using Vibrating Hammer; Rate of displacement 1 mm/min; Sample not immersed in water as per Specification for Highway Works Series 600 Clause 636.

Signed:

Dudaińska

Anna Dudzinska Deputy Head of Geo Office Section for and on behalf of i2 Analytical Ltd

report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Page 1 of 2

f 2 Date Reported: 29/10/2021

DETERMINATION OF SHEAR STRENGTH BY DIRECT SHEAR

(LARGE SHEARBOX APPARATUS)

Tested in Accordance with:BS 1377-7:1990: Clause 5.5.4

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

4041

Client: CURTINS

Client Address: Rose Wharf, Ground Floor,

78-80 East Street, Leeds,

LS9 8EE

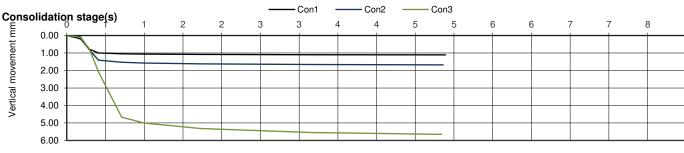
Contact: Joe James

Site Address: West Cumberland Hospital (WCH)

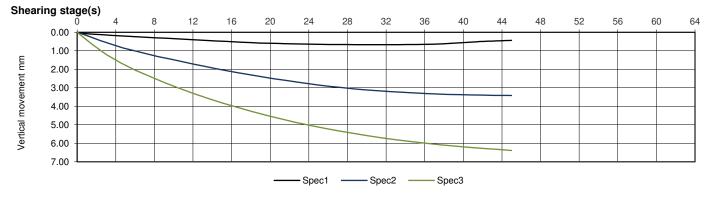
Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: 73096 Job Number: 21-93976 Date Sampled: Not Given Date Received: 10/08/2021 Date Tested: 18/10/2021

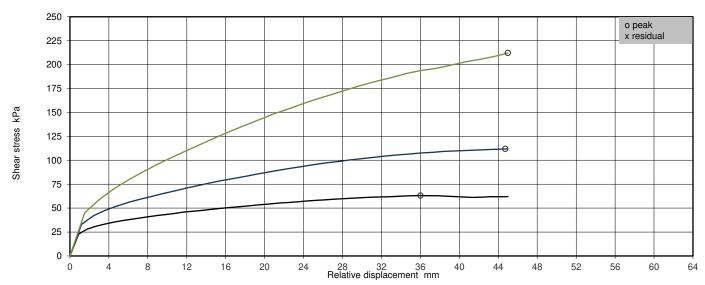
Sampled By: Not Given


Test Results:

Laboratory Reference: 1979024
Hole No.: TW TP04
Sample Reference: Not Given


Sample Description: Brown clayey very sandy GRAVEL

Depth Top [m]: 1.40 Depth Base [m]: 1.50


Sample Type: B

Root Time mins

Remarks:

Test carried out on material passing 20 mm; Standard pressures 50/100/200 kPa; Target Dry Density 1.63-1.70 Mg/m3; Target Moisture Content 16 %; Recompacted using Vibrating Hammer; Rate of displacement 1 mm/min; Sample not immersed in water as per Specification for Highway Works Series 600 Clause 636.

Signed:

Anna Dudzinska
Deputy Head of Geo Office Section
for and on behalf of i2 Analytical Ltd

Duariska

DETERMINATION OF SHEAR STRENGTH BY DIRECT SHEAR

(LARGE SHEARBOX APPARATUS)

Tested in Accordance with:BS 1377-7:1990: Clause 5.5.4

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

4041

Client: CURTINS

Client Address: Rose Wharf, Ground Floor,

78-80 East Street, Leeds,

Final Moisture Content

LS9 8EE

Contact: Joe James

Site Address: West Cumberland Hospital (WCH)

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: 73096
Job Number: 21-93976
Date Sampled: Not Given
Date Received: 10/08/2021
Date Tested: 20/10/2021

Sampled By: Not Given

Depth Top [m]: 0.50

Depth Base [m]: 0.60

Sample Type: B

Test Results:

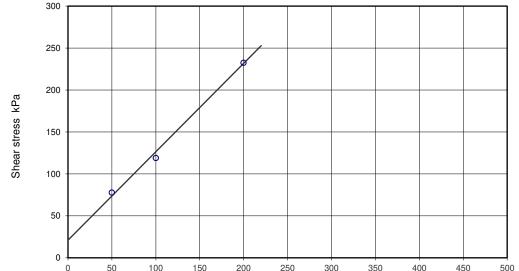
Laboratory Reference: 1979025 Hole No.: TW TP01 Sample Reference: Not Given

Sample Description: Brown clayey sandy GRAVEL

Preparation Details

2 3 **Specimen Details** Height 140.0 140.0 140.0 mm 300.0 300.0 Length 300.0 mm 300.0 300.0 300.0 Breadth mm 2.65 2.65 Particle Density - (assumed) 2.65 Mg/m³ Initial Bulk Density 2.00 2.00 2.00 Mg/m³ Moisture Content 13.0 13.0 13.0 % Dry density 1.77 1.77 1.77 Mg/m³ Voids ratio 0.497 0.497 0.497 69 69 Degree of Saturation 69 % Consolidation / Normal Stress applied 50 100 200 kPa Consolidation Change in height during consolidation 0.878 1.484 3.307 mm Voids ratio after consolidation 0.488 0.481 0.462

Shearing stage(s)


After test

Rate of displacement	Peak	1.00000	1.00000	1.00000				mm/m
nate of displacement	Residual							mm/m
	Relative horizontal displacement	30.29	42.02	44.99				mm
Peak values, (o)	Shear stress	77.6	118.9	232.4				kPa
	Vertical Movement at peak shear stress	-1.49	1.74	4.75				mm
	No. of traverses (including peak run)	1	1	1				
Residual values, (x)	Relative horizontal displacement							mm
nesiduai values, (x)	Shear stress							kPa
	Vertical movement at residual shear stress							mm
300 -					Total test tim	e	<1	days

13.0

12.8

12.3

Normal stress kPa

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This

report may not be reproduced other than in full without the prior written approval of the issuing

Shear Strength Parameters

Peak s	strength, (o)	Regression	Manual
с'	kPa	21	-
ø'	degrees	46.5	-

Residual strength (x)

	nesiduai strengtii, (x)													
	c 'R	kPa	not											
L	c	NΓα	assessed	-										
	Ø'R	degrees	not											
	ח ש	uegrees	assessed	-										

Remarks:

Test carried out on material passing 20 mm; Standard pressures 50/100/200 kPa; Target Dry Density 1.73-1.80 Mg/m3; Target Moisture Content 13 %; Recompacted using Vibrating Hammer; Rate of displacement 1 mm/min; Sample not immersed in water as per Specification for Highway Works Series 600 Clause 636.

Signed:

Dudaińska

Anna Dudzinska Deputy Head of Geo Office Section for and on behalf of i2 Analytical Ltd

laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Page 1 of 2 **Date Reported:** 29/10/2021

DETERMINATION OF SHEAR STRENGTH BY DIRECT SHEAR

(LARGE SHEARBOX APPARATUS)

Tested in Accordance with:BS 1377-7:1990: Clause 5.5.4

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

CURTINS Client:

Client Address: Rose Wharf, Ground Floor,

78-80 East Street, Leeds,

LS9 8EE

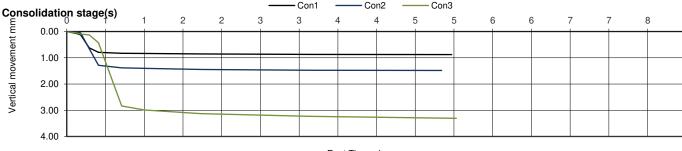
Contact: Joe James

Site Address: West Cumberland Hospital (WCH)

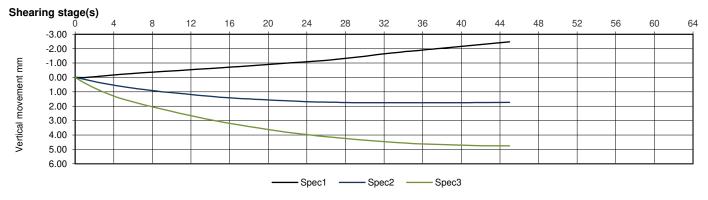
Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: 73096 Job Number: 21-93976 Date Sampled: Not Given Date Received: 10/08/2021 Date Tested: 20/10/2021

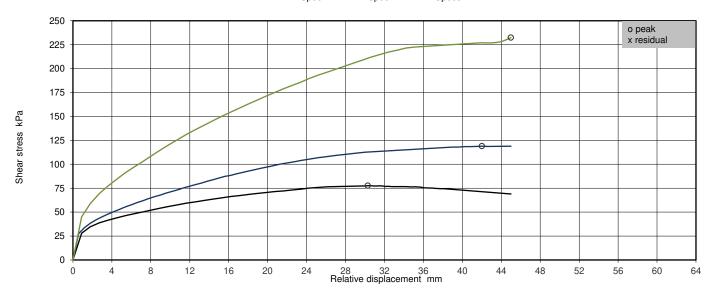
Sampled By: Not Given


Test Results:

Laboratory Reference: 1979025 TW TP01 Hole No.: Sample Reference: Not Given


Sample Description: Brown clayey sandy GRAVEL

Depth Top [m]: 0.50 Depth Base [m]: 0.60


Sample Type: B

Root Time mins

Remarks:

Test carried out on material passing 20 mm; Standard pressures 50/100/200 kPa; Target Dry Density 1.73-1.80 Mg/m3; Target Moisture Content 13 %; Recompacted using Vibrating Hammer; Rate of displacement 1 mm/min; Sample not immersed in water as per Specification for Highway Works Series 600 Clause 636

Signed:

Duariska

Anna Dudzinska Deputy Head of Geo Office Section for and on behalf of i2 Analytical Ltd

Page 2 of 2 **Date Reported: 29/10/2021** GF 402.8

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Ground Investigation Report

Appendix E – (Ground Gas	and Groundwater	^r Monitoring	Results
----------------	------------	-----------------	-------------------------	---------

Merchant Exchange, 17-19 Whitworth Street West, Manchester, M1 5WG

Tel: 0161 236 2394 Fax: 0161 228 7902

GAS MONITORING LOG SHEET

Project: West Cumberland Hospital **Date**: 07/01/2021

Job Number: B073096.302 **Visit:** 1

 Client:
 CCL Solutions
 Weather:
 cold, cloudy

 Barometric State:
 Falling
 Ground Conditions:
 wet / frozen

Borehole Reference	Barometric Pressure	Flo			Methane %										Dioxid		xide	Oxygen	Hydrogen Sulphide	Carbon Monoxide	Water Level	Borehole Base	Note
	mb	I/h						%	ppm	ppm	m bgl	m bgl											
		Max	SS	Max	SS	Max	SS																
WS03	986	-22.7	-0.2	0.0	0.0		0.0	112.1	0	0	0.40	1.80											
WS05	988	0.0	0.0	0.0	0.0	0.0	0.0	15.2	0	0	2.05	2.16											
BH01	986	-0.6	0.0	0.0	0.0	0.0	0.0	19.8	0	0	0.77	11.22											
BH02A													1										
BH03	987	-63.7	0.0	0.0	0.0	0.0	0.0	18.5	0	0	1.97	13.14	2										
BH06	986	-63.8	0.0	0.0	0.0	0.0	0.0	20.0	0	0	0.66	11.55	2										

Notes	Logged by

SH

1% gas volume = 10,000 ppm

¹ Top of borehole frozen / flooded, could not open

² Flow monitored for 5mins as it slowly reduced to 0.0

Merchant Exchange, 17-19 Whitworth Street West, Manchester, M1 5WG

Tel: 0161 236 2394 Fax: 0161 228 7902

GAS MONITORING LOG SHEET

Project: West Cumberland Hospital **Date:** 20/01/2021

Job Number:B073096.302Visit:2Client:CCL SolutionsWeather:Rain

Barometric State: Falling Ground Conditions: Water-logged

Borehole Reference	Barometric Pressure	FIG	ow		nane	Dio	bon xide	Oxygen	_	Monoxide	Water Level	Borehole Base	Note
	mb		hr		6		6	%	ppm	ppm	m bgl	m bgl	·
		Max	SS	Max	SS	Max	SS						
WS03	953										0.00	1.76	1
WS05	954	0.1	0.1	0.0	0.0	0.1	0.0	18.60	0	0	1.02	1.15	
BH01	959										0.00	11.27	1, 2, 3
BH02A	956	4.5	1.8	0.0	0.0	1.3	1.3	14.80	0	0	11.20	11.58	
BH03	956	1.8	1.8	0.0	0.0	0.0	0.0	18.20	0	0	0.98	13.12	3
BH06	959										0.00	11.63	1, 3

Notes	Logged by

SH

1% gas volume = 10,000 ppm

¹ Borehole flooded

² Groundwater was originally measured at 0.33m bgl, but rose to ground level when being purged for sampling

³ Borehole purged and groundwater sample collected

Merchant Exchange, 17-19 Whitworth Street West, Manchester, M1 5WG

Tel: 0161 236 2394 Fax: 0161 228 7902

МН

GAS MONITORING LOG SHEET

Project: West Cumberland Hospital Date: 04/02/2021

Job Number:B073096.302Visit:3Client:CCL SolutionsWeather:RainBarometric State:SteadyGround Conditions:Wet

Borehole Reference	Barometric Pressure mb	Pressure Flow				Dio	bon xide ⁶	Oxygen %	Hydrogen Sulphide ppm	Carbon Monoxide ppm	Water Level m bgl	Borehole Base m bgl	Note
		Max	SS	Max	SS	Max	SS						
WS03											0.00	1.77	1
WS05	993	0.0	0.0	0.0	0.0	0.0	0.0	19.3	0	2	1.63	2.10	
BH01											0.00	11.10	1
BH02A	992	0.0	0.0	0.0	0.0	1.0	1.0	17.8	1	2	10.80	11.45	2
BH03	992	-58.1	0.0	0.0	0.0	0.0	0.0	20.6	1	2	1.57	12.85	3
BH06											0.00	11.40	1

Notes	Logged by

2 - Monitoring stopped after 30 seconds due to inflow of water into monitoring pipe.

3 - Steady state air flow rate recorded after 6 minutes.

1% gas volume = 10,000 ppm

^{1 -} Monitoring well flooded.

Merchant Exchange, 17-19 Whitworth Street West, Manchester, M1 5WG

Tel: 0161 236 2394 Fax: 0161 228 7902

GAS MONITORING LOG SHEET

Project: West Cumberland Hospital Date: 17/02/2021

Job Number: B073096.302 **Visit**: 4

 Client:
 CCL Solutions
 Weather:
 Sunny

 Barometric State:
 Steady
 Ground Conditions:
 Damp

Borehole Reference	Barometric Pressure	Flov			nane	Dio	bon xide	Oxygen	Hydrogen Sulphide	Monoxide	Water Level	Borehole Base	Note
	mb	l/hr		9	6	9	6	%	ppm	ppm	m bgl	m bgl	
		Max	SS	Max	SS	Max	SS						
WS03											0.00	1.76	1
WS05	1014	0.0	0.0	0.0	0.0	0.0	0.0	18.9	0	13	1.96	2.14	
BH01											0.65	11.25	1
BH02A	1014	0.0	0.0	0.0	0.0	0.0	0.0	20.8	0	13	11.09	11.33	
BH03	1014	-43.0	0.0	0.0	0.0	0.0	0.0	20.2	1	10	1.96	12.83	
BH06											0.04	10.50	1

Notes Logged by

2 - Steady state air flow rate achieved after 4 minutes.

MH

1% gas volume = 10,000 ppm

^{1 -} Not gas mointored due to historic high water levels. Bung removed to check water levels on arrival, releasing any gas within the well. Monitoring would provide non-representative results.

Merchant Exchange, 17-19 Whitworth Street West, Manchester, M1 5WG

Tel: 0161 236 2394 Fax: 0161 228 7902

GAS MONITORING LOG SHEET

Project: West Cumberland Hospital Date: 08/03/2021

Job Number: B073096.302 **Visit:** 5

Client: CCL Solutions Weather: Overcast, showers

Barometric State: Steady Ground Conditions: damp

Borehole Reference	Barometric Pressure	Flo	w		nane	Dio	bon xide	Oxygen	Hydrogen Sulphide	Carbon Monoxide	Water Level	Borehole Base	Note
	mb	I/h	nr	9	%	9	6	%	ppm	ppm	m bgl	m bgl	۱۳
		Max	SS	Max	SS	Max	SS						
WS03													1
WS05	1013	0.4	0.4	0.0	0.0	0.0	0.0	17.0	0	2	1.95	2.17	
BH01	1012	-23.7	-0.1	0.0	0.0	0.0	0.0	20.8	1	6	0.99	11.32	2
BH02A	1013	-0.4	0.0	0.0	0.0	0.0	0.0	21.9	0	0	11.00	11.40	
BH03	1013	0.7	0.4	0.0	0.0	0.0	0.0	19.5	0	8	1.91	13.00	
BH06	1014	-55.6	0.0	0.0	0.0	0.0	0.0	19.3	1	6	0.75	10.60	3

Notes	Logged by

1 Could not locate

NF

3 Fell to steady state flow rate after circa 3 mins.

1% gas volume = 10,000 ppm

² Fell to steady state flow rate after circa 4mins.

Merchant Exchange, 17-19 Whitworth Street West, Manchester, M1 5WG

Tel: 0161 236 2394 Fax: 0161 228 7902

GAS MONITORING LOG SHEET

18/03/2021 Project: West Cumberland Hospital Date:

Job Number: B073096.302 Visit:

Client: **CCL** Solutions Weather: Sunny **Barometric State:** Falling **Ground Conditions:** Dry

Borehole Reference	Barometric Pressure		ow hr		nane	Dio	bon xide ⁶	Oxygen %	Hydrogen Sulphide	Carbon Monoxide ppm	Water Level m bgl	Borehole Base m bgl	Note
		Max		Max	SS	Max	SS		FF	PP	9	29	
WS03											0.00	1.76	1
WS05	1018	0.0	0.0	0.0	0.0	0.0	0.0	20.4	0	0	1.80	2.15	
BH01											0.36	11.30	1
BH02A													2
BH03	1019	17.3	0.0	0.0	0.0	0.0	0.0	20.8	0	0	1.74	13.10	
ВН06											0.10	10.65	1

Notes		Logged by
1	Borehole flooded and not gas monitored	SH

Could not locate

1% gas volume = 10,000 ppm

Borehole flooded and not gas monitored 1

Ground Investigation Report

Adopted Soil Generic Assessment Criteria Sandy loam with 6% SOM

1						
Contaminants	Residential with home grown produce	Residential without home grown produce	Allotments	Commercial	Public open space near residential housing POS _{resi}	Public park POS _{park}
M-1-1-	,				→ - resi	
Metals Downlines	1.7	1.7	25	10	0.0	60
Beryllium Boron	1.7 290	1.7 11,000	35 45	12 240,000	2.2 21,000	63 46,000
	10 ⁽¹³ 22	85 ⁽¹³ <u>150</u>				
Cadmium			1.8 <u>3.9</u>	230 <u>410</u>	120 <u>220</u>	560 <u>880</u>
Chromium III	910	910	18,000	8,600	1,500	33,000
Chromium VI	6 <u>21</u>	6 <u>21</u>	1.8 <u>170</u>	<i>33</i> <u>49</u>	7.7 <u>21</u>	220 <u>250</u>
Lead	<u>200</u>	<u>310</u>	<u>80</u>	<u>2,300</u>	<u>630</u>	1,300
Mercury (elemental)	1	1	26	26	16	26 ⁽⁸ [<i>30</i>]
Mercury (inorganic)	170	240	80	3600	120	240
Nickel	130 ⁽¹⁰	180 ⁽¹⁰	53 ⁽¹¹	980 ⁽¹⁰	230	800
Vanadium	410	1200	91	9000	2000	5000
Copper	2400	7100	520	68000	12000	44000
Zinc	3700	40000	620	730000	81000	170000
Semi-Metals and non-metals						
Arsenic	32 ⁽¹² <u>37</u>	35 ⁽¹² 40	43 ⁽¹² 49	640 ⁽¹² 640	<i>79</i> <u>79</u>	170 <u>170</u>
Antimony	J 52 57	550	-10 <u>-10</u>	7500	1500	3300
Selenium	350	600	120	13000	1100	1800
Inorganic chemicals	330	000	120	15000	1100	7000
Cyanide	34	34	34	34	34	34
Organic contaminants	37	J-		, , , , , , , , , , , , , , , , , , ,	J-	3-
Aliphatic risk banded hydrocarbons - TPHCWG method						
EC ₋₅ - EC ₆	160	160	3900	12000	600000	180000
20 0						
EC _{>6} - EC ₈	530	530	13000	40000	620000	320000
EC _{>8} - EC ₁₀	150	150	1700	11000	13000	21000
EC ₁₀ -EC ₁₂	760	770	7300	47000	13000	24000
EC ₁₂ -EC ₁₆	4300	4400	13000	90000	13000	26000
EC _{>16} - EC ₃₅	110000	110000	270000	1800000	250000	490000
EC>35 - EC44	110000	110000	270000	1800000	250000	490000
Aromatic risk banded hydrocarbons - TPHCWG method						
EC>5 - EC7	300	1400	57	86000	56000	92000
EC>7 - EC8						100000
	660	3900	120	180000	56000	
EC _{>8} - EC ₁₀	190	270	51	17000	5000	9300
EC ₁₀ - EC ₁₂	380	1200	74	34000	5000	10000
EC ₁₂ - EC ₁₆	660	2500	130	38000	5000	10000
EC _{>16} - EC ₂₁	930	1900	260	28000	3800	7800
EC _{>21} - EC ₃₅	1700	1900	1600	28000	3800	7900
EC>35 - EC44	1700	1900	1600	28000	3800	7900
Aliph + Arom EC >44-70	1900	1900	3000	28000	3800	7900
Aromatic						
Benzene	0.33 <u>0.87</u>	1.0 <u>3.3</u>	0.07 <u>0.18</u>	95 <u>98</u>	73 <u>140</u>	110 <u>230</u>
Ethyl benzene	350	840	90	2800 ⁽⁸ [66000]	2800 ⁽⁸ [25000]	2800 ⁽⁸ [<i>27000</i>]
Toluene	610	2700	120	4400 ⁽⁸ [190000]	4400 ⁽⁸ [<i>56000</i>]	4400 ⁽⁸ [100000]
Xylene ⁽⁹				2600 ⁽⁸ [32000]	2600 ⁽⁸ [<i>43000</i>]	2600 ⁽⁸ [<i>31000</i>]
1 *	230	290	160			
Phenol	420	520	280	3200 ⁽¹⁴ (38000)	3200 ⁽¹⁴ (<i>10000</i>)	3200 ⁽¹⁴ (<i>9300</i>)
Polycyclic Aromatic Hydrocarbons (PAH)	10	40	0.4	1100	4000	0000
Naphthalene	13	13	24	1100	4900	3000
Acenaphthylene	920	6000	160	100000	15000	30000
Acenaphthene	1100	6000	200	100000	15000	30000
Fluorene	860	4500 1500	160	71000	9900	20000
Phenanthrene Anthracene	440	1500 37000	90	23000 540000	3100 74000	6300 150000
	11000	37000 1600	2200	540000 22000	74000 3100	6400
Fluoranthene	890	1600	290	23000	3100 7400	
Pyrene Penz (a) anthrocone	2000	3800	620	54000	7400	15000
Benz(a)anthracene	13	15 22	13 19	180	29 57	<i>62</i>
Chrysene Benzo(b)fluoranthene	27 3.7	32 4.0	19 3.9	350 45	5/ 7.2	120 16.0
Benzo(k)fluoranthene	100	4.0 110	3.9 130	1200	7.2 190	16.0 440
\ ','						
Benzo(a)pyrene	3.0 <u>5.0</u>	3.2 <u>5.3</u>	3.5 <u>5.7</u>	36 <u>77</u> 510	5.7 <u>10</u>	13 <u>21</u>
Indeno(123cd)pyrene	41	46	39	510 3.6	82	180
Dibenzo(ah)anthracene	0.3	0.32	0.43	3.6 4000	0.58	1.4
Benzo(ghi)perylene	350	360	640	4000	640	1600
Chlorinated Aliphatic Hydrocarbons	0.0011	0.0015	0.0010	0.42	0.5	<i>- - - - - - - - - -</i>
Vinyl chloride	0.0014	0.0015	0.0018	0.12	3.5	5.4
Trichloroethene (TCE)	0.075	0.08	0.21	5.7	120	120
1,1,1,2 Tetrachlorethane	6.4	8.2	4.4	560	1400	2100
Tetrachlorethene (PCE)	0.90	0.92	3.6	95	1400	1500
1,1,1 Trichlorethane	39	40	240	3000	140000	100000

- Notes
 1. All values above are in mg/kg
- 2. Numbers in bold are SGVs or GAC that are derived based on SGV report input parameters, numbers in italics are S4ULs, numbers in bold-italics are based on EIC/AGS/CL:AIRE numbers & input parameters and underlined numbers are C4SLs
- 3. Soil organic matter (SOM) is assumed to be 6% DEFAULT VALUE
- 4. Soil type is assumed to be sandy loam DEFAULT SOIL TYPE
- 5. For residential, the building type is conservatively assumed to be a small terrace house where the development includes bungalows change to more conservative bungalow setting in computer model
- 6. For commercial, the building type is conservatively assumed to be a pre 1970s office building, where the proposed development comprises houses, flat with living spaces changes setting in model accordingly
- 7. For classrooms consider increasing the dust loading fator in the 'Soil and Building Data' of the CLEA 1.04 model from 50 to 100 μ g m⁻³
- 8. Based on vapour saturation limt as suggested by EA / [] model value 9. Lowest of o-, m- and p-xylene
- 10. Based on comparison of inhalation exposure with inhalation TDI
- 11. Based on comparison of oral, dermal, and inhalation exposure with the oral TDI
- 12. Based on a comparison of oral and dermal soil exposure with oral Index Dose only
- 13. Averaged over and based on lifetime exposure
- 14. Based on critical concentration for skin irritation in humans arising from contact with phenol in aqueous solution (number in brackets based on health effects following long term exposure for illustration)
- 15. NA: Not applicable

Adopted Soil Generic Assessment Criteria Sandy loam with 2.5% SOM

,						
Contaminants		Residential without	Allotments	Commercial	Public open space	Public park
	home grown	home grown			near residential housing POS _{resi}	POS_{park}
	produce	produce			nousing POS _{resi}	
Metals						
Beryllium	1.7	1.7	35 45	12	2.2	63
Boron Cadmium	290 10 ⁽¹³ 22	<i>11,000</i> 85 ⁽¹³ <u>150</u>	45	240,000	21,000	46,000
Cadmium Chromium III	910	910	1.8 <u>3.9</u> 18.000	230 <u>410</u> 8.600	120 <u>220</u> 1,500	560 <u>880</u> 33.000
Chromium VI	6 <u>21</u>	6 <u>21</u>	1.8 <u>170</u>	33 <u>49</u>	7,500 7.7 <u>21</u>	220 <u>250</u>
Lead	<u>200</u>	310	80	<u>2,300</u>	630	1,300
						26 ⁽⁸ [<i>30</i>]
Mercury (elemental) Mercury (inorganic)	1 170	1 240	26 80	26 3600	16 120	2 6 ° [30] 240
	130 ⁽¹⁰	180 ⁽¹⁰	53 ⁽¹¹			
Nickel				980 ⁽¹⁰	230	800
Vanadium Copper	410 2400	1200 7100	91 520	9000 68000	2000 12000	5000 44000
Zinc	3700	40000	620	730000	81000	170000
Semi-Metals and non-metals	0700	40000	020	700000	07000	770000
Arsenic	32 ⁽¹² 37	35 ⁽¹² 40	43 ⁽¹² <u>49</u>	640 ⁽¹² 640	<i>7</i> 9 <u>79</u>	<i>170</i> 170
Antimony	<u> </u>	550	4 0 40	7500	1500	3300
Selenium	350	600	120	13000	1100	1800
Inorganic chemicals						
Cyanide	34	34	34	34	34	34
Organic contaminants						
Aliphatic risk banded hydrocarbons - TPHCWG method EC _{>5} - EC ₆	78	<i>78</i>	1700	5900	590000	130000
EC _{>6} - EC ₈ EC _{>8} - EC ₁₀	230 65	230 65	5600 770	17000 4800	610000 13000	220000 18000
EC ₁₀ -EC ₁₂	330	330	4400	23000	13000	23000
EC ₁₂ -EC ₁₆	2400	2400	13000	82000	13000	25000
EC>16 - EC35 EC>35 - EC44	92000	92000	270000	1700000	250000	480000
Aromatic risk banded hydrocarbons - TPHCWG method	92000	92000	270000	1700000	250000	480000
EC> ₅ - EC ₇	140	690	27	46000	56000	84000
EC> ₇ - EC ₈	290	1800	51	110000	56000	95000
EC _{>8} - EC ₁₀	83	110	21	8100	5000	8500
EC ₁₀ - EC ₁₂	180	590	21 31	28000	5000	9700
EC ₁₂ - EC ₁₆	330		57		5100 5100	10000
EC _{>16} - EC ₂₁		2300		37000		7700
EC _{>21} - EC ₃₅	540 1500	1900 1900	110 820	28000 28000	3800 3800	7800 7800
EC> ₃₅ - EC ₄₄	1500	1900	820	28000	3800	7800
3544	1000	7000	020	20000	0000	7000
Aliph + Arom EC >44-70	1800	1900	2100	28000	3800	7800
Aromatic						
Benzene	0.16	0.49	0.035	50	72	100
Ethyl benzene	150	380	39	1200 ⁽⁸ [35000]	1200 ⁽⁸ [<i>24000</i>]	1200 ⁽⁸ [22000]
Toluene	270	1300	51	1900 ⁽⁸ [110000]	1900 ⁽⁸ [<i>56000</i>]	1900 ⁽⁸ [<i>95000</i>]
Xylene ⁽⁹⁾	98	120	70	1200 ⁽⁸ [14000]	1200 ⁽⁸ [<i>42000</i>]	1200 ⁽⁸ [<i>23000</i>]
Phenol	290	420	140	1500 ⁽¹⁴ (35000)	1500 ⁽¹⁴ (<i>10000</i>)	1500 ⁽¹⁴ (<i>8300</i>)
Polycyclic Aromatic Hydrocarbons (PAH) Naphthalene	5.0	F.C.	10	400	4000	1000
Acenaphthylene	5.6 420	5.6 4600	10 69	460 97000	4900 15000	1900 30000
Acenaphthene	420 510	4700 4700	69 85	97000 97000	15000	30000
Fluorene	400	3800	67	68000	9900	20000
Phenanthrene	220	1500	38	22000	3100	6200
Anthracene	5400	35000	950	540000	74000	150000
Fluoranthene	560	1600	130	23000	3100	6300
Pyrene	1200	3800	270	54000	7400	15000
Benz(a)anthracene	11	14 31	6.5	170 350	29 57	56 110
Chrysene Benzo(b)fluoranthene	22 3.3	4.0	9.4 2.1	350 44	57 7.2	110 15
Benzo(k)fluoranthene	93	110	2.1 75	1200	190	410
Benzo(a)pyrene	2.7	3.2	2	35	5.7	12
Indeno(123cd)pyrene	36	46	21	510	82	170
Dibenzo(ah)anthracene	0.28	0.32	0.27	3.6	0.57	1.3
Benzo(ghi)perylene	340	360	470	4000	640	1500
Chlorinated Aliphatic Hydrocarbons	0.00007	0.004	0.001	0.077	0.5	
Vinyl chloride Trichloroethene (TCE)	0.00087 0.034	0.001 0.036	0.001 0.091	0.077 2.6	3.5 120	5 91
1,1,1,2 Tetrachlorethane	2.8	0.036 3.5	0.091 1.9	2.6 250	120 1400	91 1800
Tetrachlorethene (PCE)	0.39	0.4	1.5	42	1400	1100
1,1,1 Trichlorethane	18	18	110	1300	140000	76000
.,.,		.0		,500		, 5000

Notes

- All values above are in mg/kg
- 2. Numbers in bold are SGVs or GAC that are derived based on SGV report input parameters, numbers in italics are S4ULs, numbers in bold-italics are based on EIC/AGS/CL:AIRE numbers & input parameters and underlined numbers are C4SLs
 3. Soil organic matter (SOM) is assumed to be 2.5% DEFAULT VALUE
- 4. Soil type is assumed to be sandy loam DEFAULT SOIL TYPE
- 5. For residential, the building type is conservatively assumed to be a small terrace house where the development includes bungalows change to more conservative bungalow setting in computer model
- 6. For commercial, the building type is conservatively assumed to be a pre 1970s office building, where the proposed development comprises houses, flat with living spaces changes setting in model accordingly
- $7. For classrooms consider increasing the dust loading fator in the 'Soil and Building Data' of the CLEA 1.04 model from 50 to 100 \mu g m ^3 to 100 \mu g m ^3$
- 8. Based on vapour saturation limt as suggested by EA / [] model value
- 9. Lowest of o-, m- and p-xylene
- 10. Based on comparison of inhalation exposure with inhalation TDI
- 11. Based on comparison of oral, dermal, and inhalation exposure with the oral TDI
- 12. Based on a comparison of oral and dermal soil exposure with oral Index Dose only
- 13. Averaged over and based on lifetime exposure
- 14. Based on critical concentration for skin irritation in humans arising from contact with phenol in aqueous solution (number in brackets based on health effects following long term exposure for illustration)
- 15. NA: Not applicable

Adopted Soil Generic Assessment Criteria Sandy loam with 1% SOM

Contaminants	Residential with	Residential without	Allotments	Commercial	Public open space	Public park
	home grown produce	home grown produce			near residential housing POS _{resi}	POS _{park}
	produce	produce			Alouding I Ouresi	
Metals Downlines	1.7	1.7	35	12	0.0	63
Beryllium Boron	1.7 290	11,000	35 45	240,000	2.2 21,000	46,000
	10 ⁽¹³ 22	85 ⁽¹³ 150		230 410	120 <u>220</u>	560 <u>880</u>
Cadmium	_		1.8 <u>3.9</u>			33.000
Chromium III	910	910 6.21	18,000	8,600	1,500	,
Chromium VI	6 <u>21</u>	6 <u>21</u>	1.8 <u>170</u>	33 <u>49</u>	7.7 <u>21</u>	220 <u>250</u>
Lead	<u>200</u>	<u>310</u>	<u>80</u>	<u>2,300</u>	<u>630</u>	<u>1,300</u>
Mercury (elemental)	1	1	26	26	16	26 ⁽⁸ [<i>30</i>]
Mercury (inorganic)	170	240	80	3600	120	240
Nickel	130 ⁽¹⁰	180 ⁽¹⁰	53 ⁽¹¹	980 ⁽¹⁰	230	800
Vanadium	410	1200	91	9000	2000	5000
Copper	2400	7100	520	68000	12000	44000
Zinc	3700	40000	620	730000	81000	170000
Semi-Metals and non-metals						
Arsenic	32 ⁽¹² <u>37</u>	35 ⁽¹² <u>40</u>	43 ⁽¹² <u>49</u>	640 ⁽¹² <u>640</u>	<i>7</i> 9 <u>79</u>	170 <u>170</u>
Antimony	_	550	_	7500	1500	3300
Selenium	350	600	120	13000	1100	1800
Inorganic chemicals						
Cyanide	34	34	34	34	34	34
Organic contaminants						
Aliphatic risk banded hydrocarbons - TPHCWG method						
EC _{>5} - EC ₆	42	42	730	3200	570000	95000
EC _{>6} - EC ₈	100	100	2300	7800	600000	150000
EC _{>8} - EC ₁₀	27	27	320	2000	13000	14000
EC ₁₀ -EC ₁₂	130	130	2200	9700	13000	21000
I						
EC ₁₂ -EC ₁₆	1100	1100	11000	59000	13000	25000
EC _{>16} - EC ₃₅	65000	65000	260000	1600000	250000	450000
EC>35 - EC44	65000	65000	260000	1600000	250000	450000
Aromatic risk banded hydrocarbons - TPHCWG method						
EC>5 - EC7	70	370	13	26000	56000	76000
EC>7 - EC8	130	860	22	56000	56000	87000
EC _{>8} - EC ₁₀	34	47	8.6	3500	5000	7200
EC ₁₀ - EC ₁₂	74	250	13	16000	5000	9200
EC ₁₂ - EC ₁₆	140	1800	23	36000	5100	10000
	-					
EC _{>16} - EC ₂₁	260	1900	46	28000	3800	7600
EC _{>21} - EC ₃₅	1100	1900	370	28000	3800	7800
EC> ₃₅ - EC ₄₄	1100	1900	370	28000	3800	7800
Aliah Assas FO 44.70	4000	1000	1000	00000	0000	7000
Aliph + Arom EC >44-70	1600	1900	1200	28000	3800	7800
Aromatic Benzene	0.08	0.2	0.017	28	72	00
		0.3				90
Ethyl benzene	65	170	16	520 ⁽⁸ [17000]	520 ⁽⁸ [24000]	520 ⁽⁸ [17000]
Toluene	120	610	22	860 ⁽⁸ [59000]	860 ⁽⁸ [56000]	860 ⁽⁸ [87000]
Xylene ⁽⁹⁾	41	53	28	480 ⁽⁸ [69000]	480 ⁽⁸ [41000]	480 ⁽⁸ [17000]
Phenol	180	310	66	760 ⁽¹⁴ (31000)	760 ⁽¹⁴ (10000)	760 ⁽¹⁴ (7600)
Polycyclic Aromatic Hydrocarbons (PAH)						
Naphthalene						
Acenaphthylene	2.3	2.3	4.1	190	4900	1200
	2.3 170	2900	4.1 28	83000	15000	29000
Acenaphthene	170 210	2900 3000		83000 84000		29000 29000
Fluorene	170 210 170	2900 3000 2800	28 34 27	83000 84000 63000	15000 15000 9900	29000 29000 20000
Fluorene Phenanthrene	170 210 170 95	2900 3000 2800 1300	28 34 27 15	83000 84000 63000 22000	15000 15000 9900 3100	29000 29000 20000 6200
Fluorene Phenanthrene Anthracene	170 210 170 95 2400	2900 3000 2800 1300 31000	28 34 27 15 380	83000 84000 63000 22000 520000	15000 15000 9900 3100 74000	29000 29000 20000 6200 150000
Fluorene Phenanthrene Anthracene Fluoranthene	170 210 170 95 2400 280	2900 3000 2800 1300 31000 1500	28 34 27 15 380 52	83000 84000 63000 22000 520000 23000	15000 15000 9900 3100 74000 3100	29000 29000 20000 6200 150000 6300
Fluorene Phenanthrene Anthracene Fluoranthene Pyrene	170 210 170 95 2400 280 620	2900 3000 2800 1300 31000 1500 3700	28 34 27 15 380 52 110	83000 84000 63000 22000 520000 23000 54000	15000 15000 9900 3100 74000 3100 7400	29000 29000 20000 6200 150000 6300 15000
Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benz(a)anthracene	170 210 170 95 2400 280 620 7.2	2900 3000 2800 1300 31000 1500 3700	28 34 27 15 380 52 110 2.9	83000 84000 63000 22000 520000 23000 54000 170	15000 15000 9900 3100 74000 3100 7400 29	29000 29000 20000 6200 150000 6300 15000 49
Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benz(a)anthracene Chrysene	170 210 170 95 2400 280 620 7.2	2900 3000 2800 1300 31000 1500 3700 11 30	28 34 27 15 380 52 110 2.9 4.1	83000 84000 63000 22000 520000 23000 54000 170 350	15000 15000 9900 3100 74000 3100 7400 29 57	29000 29000 20000 6200 150000 6300 15000 49 93
Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benz(a)anthracene Chrysene Benzo(b)fluoranthene	170 210 170 95 2400 280 620 7.2 15 2.6	2900 3000 2800 1300 31000 1500 3700 11 30 3.9	28 34 27 15 380 52 110 2.9 4.1 0.99	83000 84000 63000 22000 520000 23000 54000 170 350 44	15000 15000 9900 3100 74000 3100 7400 29 57 7.1	29000 29000 20000 6200 150000 6300 15000 49 93 13
Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benz(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene	170 210 170 95 2400 280 620 7.2 15 2.6	2900 3000 2800 1300 31000 1500 3700 11 30 3.9	28 34 27 15 380 52 110 2.9 4.1 0.99	83000 84000 63000 22000 520000 23000 54000 170 350 44 1200	15000 15000 9900 3100 74000 3100 7400 29 57 7.1 190	29000 29000 20000 6200 150000 6300 15000 49 93 13
Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benz(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene	170 210 170 95 2400 280 620 7.2 15 2.6 77 2.2	2900 3000 2800 1300 31000 1500 3700 11 30 3.9 110	28 34 27 15 380 52 110 2.9 4.1 0.99 37 0.97	83000 84000 63000 22000 520000 23000 54000 170 350 44 1200 35	15000 15000 9900 3100 74000 3100 7400 29 57 7.1 190 5.7	29000 29000 20000 6200 150000 6300 15000 49 93 13 370
Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benz(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(123cd)pyrene	170 210 170 95 2400 280 620 7.2 15 2.6 77 2.2	2900 3000 2800 1300 31000 1500 3700 11 30 3.9 1110 3.2	28 34 27 15 380 52 110 2.9 4.1 0.99 37 0.97	83000 84000 63000 220000 520000 230000 54000 1770 350 44 1200 35 500	15000 15000 9900 3100 74000 3100 7400 29 57 7.1 190 5.7 82	29000 29000 20000 6200 150000 6300 15000 49 93 13 370 11
Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benz(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(a)pyrene Indeno(123cd)pyrene Dibenzo(ah)anthracene	170 210 170 95 2400 280 620 7.2 15 2.6 77 2.2 27	2900 3000 2800 1300 31000 1500 3700 11 30 3.9 1110 3.2 45 0.31	28 34 27 15 380 52 110 2.9 4.1 0.99 37 0.97 9.5	83000 84000 63000 22000 520000 23000 54000 170 350 44 1200 35 500 3.5	15000 15000 9900 3100 74000 3100 7400 29 57 7.1 190 5.7 82 0.57	29000 29000 20000 6200 150000 6300 15000 49 93 13 370 11 150 1.1
Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benz(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(123cd)pyrene Dibenzo(ah)anthracene Benzo(ghi)perylene	170 210 170 95 2400 280 620 7.2 15 2.6 77 2.2	2900 3000 2800 1300 31000 1500 3700 11 30 3.9 1110 3.2	28 34 27 15 380 52 110 2.9 4.1 0.99 37 0.97	83000 84000 63000 220000 520000 230000 54000 1770 350 44 1200 35 500	15000 15000 9900 3100 74000 3100 7400 29 57 7.1 190 5.7 82	29000 29000 20000 6200 150000 6300 15000 49 93 13 370 11
Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benz(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(a)pyrene Indeno(123cd)pyrene Dibenzo(a)hanthracene Benzo(a)hibperylene Chlorinated Aliphatic Hydrocarbons	170 210 170 95 2400 280 620 7.2 15 2.6 77 2.2 27 0.24 320	2900 3000 2800 1300 31000 1500 3700 11 30 3.9 110 3.2 45 0.31	28 34 27 15 380 52 110 2.9 4.1 0.99 37 0.97 9.5 0.14 290	83000 84000 63000 22000 520000 23000 54000 170 350 44 1200 35 500 3.5 3900	15000 15000 9900 3100 74000 3100 7400 29 57 7.1 190 5.7 82 0.57 640	29000 29000 20000 6200 150000 6300 15000 49 93 13 370 11 150 1.1
Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benz(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(123cd)pyrene Dibenzo(an)anthracene Benzo(ghi)perylene Chlorinated Aliphatic Hydrocarbons Vinyl chloride	170 210 170 95 2400 280 620 7.2 15 2.6 77 2.2 27 0.24 320	2900 3000 2800 1300 31000 1500 3700 11 30 3.9 1110 3.2 45 0.31 360	28 34 27 15 380 52 110 2.9 4.1 0.99 37 0.97 9.5 0.14 290	83000 84000 63000 220000 520000 230000 54000 1770 350 44 1200 35 500 3.5 3900	15000 15000 9900 3100 74000 3100 7400 29 57 7.1 190 5.7 82 0.57 640	29000 29000 20000 6200 150000 6300 15000 49 93 13 370 11 150 1.1 1400
Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benz(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(123cd)pyrene Dibenzo(ah)anthracene Benzo(ghi)perylene Chlorinated Aliphatic Hydrocarbons Vinyl chloride Trichloroethene (TCE)	170 210 170 95 2400 280 620 7.2 15 2.6 77 2.2 27 0.24 320	2900 3000 2800 1300 31000 1500 3700 11 30 3.9 1110 3.2 45 0.31 360	28 34 27 15 380 52 110 2.9 4.1 0.99 37 0.97 9.5 0.14 290 0.00055 0.041	83000 84000 63000 22000 520000 23000 54000 170 350 44 1200 35 500 3.5 3900	15000 15000 9900 3100 74000 3100 7400 29 57 7.1 190 5.7 82 0.57 640	29000 29000 20000 6200 150000 6300 15000 49 93 13 370 11 150 1.1 1400
Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benz(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(123cd)pyrene Dibenzo(ah)anthracene Benzo(ghi)perylene Chlorinated Aliphatic Hydrocarbons Vinyl chloride Trichloroethene (TCE) 1,1,1,2 Tetrachlorethane	170 210 170 95 2400 280 620 7.2 15 2.6 77 2.2 27 0.24 320	2900 3000 2800 1300 31000 1500 3700 11 30 3.9 1110 3.2 45 0.31 360	28 34 27 15 380 52 110 2.9 4.1 0.99 37 0.97 9.5 0.14 290 0.00055 0.041 0.79	83000 84000 63000 22000 520000 23000 54000 170 355 44 1200 35 5000 3.5 3900	15000 15000 9900 3100 74000 3100 7400 29 57 7.1 190 5.7 82 0.57 640	29000 29000 20000 6200 150000 6300 15000 49 93 13 370 11 150 1.1 1400
Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benz(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(123cd)pyrene Dibenzo(ah)anthracene Benzo(ghi)perylene Chlorinated Aliphatic Hydrocarbons Vinyl chloride Trichloroethene (TCE)	170 210 170 95 2400 280 620 7.2 15 2.6 77 2.2 27 0.24 320	2900 3000 2800 1300 31000 1500 3700 11 30 3.9 1110 3.2 45 0.31 360	28 34 27 15 380 52 110 2.9 4.1 0.99 37 0.97 9.5 0.14 290 0.00055 0.041	83000 84000 63000 22000 520000 23000 54000 170 350 44 1200 35 500 3.5 3900	15000 15000 9900 3100 74000 3100 7400 29 57 7.1 190 5.7 82 0.57 640	29000 29000 20000 6200 150000 6300 15000 49 93 13 370 11 150 1.1 1400

Notes

- 1. All values above are in mg/kg
- 2. Numbers in bold are SGVs or GAC that are derived based on SGV report input parameters, numbers in italics are S4ULs, numbers in bold-italics are based on EIC/AGS/CL:AIRE numbers & input parameters and underlined numbers are C4SLs
- parameters and underlined numbers are C4SLs
 3. Soil organic matter (SOM) is assumed to be 1% DEFAULT VALUE
- 4. Soil type is assumed to be sandy loam DEFAULT SOIL TYPE
- 5. For residential, the building type is conservatively assumed to be a small terrace house where the development includes bungalows change to more conservative bungalow setting in computer model
- 6. For commercial, the building type is conservatively assumed to be a pre 1970s office building, where the proposed development comprises houses, flat with living spaces changes setting in model accordingly
- $7. \, For \, classrooms \, consider \, increasing \, the \, dust \, loading \, fator \, in \, the \, 'Soil \, and \, Building \, Data' \, of \, the \, CLEA \, 1.04 \, model \, from \, 50 \, to \, 100 \mu g \, \, m^{-3} \, dust \, consider \, increasing \, the \, dust \, loading \, fator \, in \, the \, 'Soil \, and \, Building \, Data' \, of \, the \, CLEA \, 1.04 \, model \, from \, 50 \, to \, 100 \mu g \, \, m^{-3} \, dust \, consider \, increasing \, the \, dust \, loading \, fator \, in \, the \, 'Soil \, and \, Building \, Data' \, of \, the \, CLEA \, 1.04 \, model \, from \, 50 \, to \, 100 \mu g \, \, m^{-3} \, dust \, consider \, increasing \, the \, dust \, loading \, fator \, in \, the \, 'Soil \, and \, Building \, Data' \, of \, the \, CLEA \, 1.04 \, model \, from \, 50 \, to \, 100 \mu g \, \, m^{-3} \, dust \, consider \, increasing \, the \, dust \, loading \, fator \, in \, the \, CLEA \, 1.04 \, model \, from \, 50 \, to \, 100 \mu g \, \, m^{-3} \, dust \, consider \, co$
- 8. Based on vapour saturation limt as suggested by EA / [] model value $\,$
- 9. Lowest of o-, m- and p-xylene
- 10. Based on comparison of inhalation exposure with inhalation TDI
- 11. Based on comparison of oral, dermal, and inhalation exposure with the oral TDI
- 12. Based on a comparison of oral and dermal soil exposure with oral Index Dose only
- 13. Averaged over and based on lifetime exposure
- 14. Based on critical concentration for skin irritation in humans arising from contact with phenol in aqueous solution (number in brackets based on health effects following long term exposure for illustration)
- 15. NA: Not applicable

Ground Investigation Report

Appendix G	i – Soakaway	/ Infiltration	Results
------------	--------------	----------------	---------

CALCULATION SHEET - SOIL INFILTRATION RATE

Project:	West Cumberland Hospital
Job Number:	73039
Author:	ZH

Hole Ref.:	SA01
Test Date:	03/08/2021
Test No.:	1 of 3

3.678 m ²	Internal surface area (50% effective depth) (a ₅₀) Time for head to fall from 75% to 25% effective depth (t ₇₅₋₂₅)
0.473 m ³	Effective storage volume (V ₇₅₋₂₅)
0.845 m bgl	Effective storage depth (25% full)
0.635 m bgl	Effective storage depth (75% full)
0.420 m	Effective storage depth
0.95 m bgl	Water level at end of test
0.53 m bgl	Water level at start of test (approximate invert level)
2.25 m ²	Area of trial pit base
0.95 m	Depth (total) of trial pit
0.90 m	Width of trial pit
2.50 m	Length of trial pit

2.12E-04 m/s	Soil infiltration rate (f)	

RAW DATA

Project:	West Cumberland Hospital
Job Number:	73039
Author:	ZH

Hole Ref.:	SA01
Test Date:	03/08/2021
Test No.:	1 of 3

С	Time (min)	u	Time (s)	Depth (mm bgl)	Stratum
	0	П	0	0.53	
П	1	Т	60	0.56	
	2	T	120	0.57	
	3		180	0.59	
	4		240	0.61	
	5		300	0.62	
	6		360	0.63	
П	7	Т	420	0.64	
	8		480	0.65	Grey and brown
П	9	Т	540	0.67	slightly weathered SANDSTONE with
	10	П	600	0.68	clay infill between
	11		660	0.71	fractures.
	12		720	0.74	
П	13	П	780	0.77	
	14		840	0.78	
	16	П	960	0.83	
	18		1080	0.89	
	20		1200	0.92	
	22		1320	0.95	
П		П			

CALCULATION SHEET - SOIL INFILTRATION RATE

Project:	West Cumberland Hospital
Job Number:	73039
Author:	ZH

Hole Ref.:	SA01
Test Date:	03/08/2021
Test No.:	2 of 3

125	0 s	Time for head to fall from 75% to 25% effective depth (t_{75-25})
3.67	8 m²	Internal surface area (50% effective depth) (a ₅₀)
0.47	3 m³	Effective storage volume (V ₇₅₋₂₅)
0.84	5 m bgl	Effective storage depth (25% full)
	•	
0.63	5 m bgl	Effective storage depth (75% full)
0.42	0 m	Effective storage depth
0.9	0 m bgl	Water level at end of test
0.5	3 m bgl	Water level at start of test (approximate invert level)
2.2	5 m ²	Area of trial pit base
0.9	5 m	Depth (total) of trial pit
0.9	0 m	Width of trial pit
2.5	0 m	Length of trial pit

1.03E-04 m/s	Soil infiltration rate (f)

RAW DATA

Project:	West Cumberland Hospital
Job Number:	73039
Author:	ZH

Hole Ref.:	SA01
Test Date:	03/08/2021
Test No.:	2 of 3

С	Time (min)	uı	Time (s)	Depth (mm bgl)	Stratum
Г	0	П	0	0.53	
Г	1	П	60	0.55	
	2		120	0.56	
	3		180	0.575	
	4		240	0.59	
	5		300	0.6	
	6		360	0.61	
	7		420	0.62	
	8		480	0.63	
	9		540	0.64	
	10		600	0.64	
	11		660	0.66	
	12		720	0.67	Grey medium to
	13		780	0.68	coarse graind
	14	П	840	0.69	crystalline
	16		960	0.7	SANDSTONE
	18	П	1080	0.73	
Г	20	П	1200	0.75	
	22		1320	0.77	
Г	24	П	1440	0.79	
	26	П	1560	0.81	
	28	Π	1680	0.83	
	30		1800	0.85	
	32	Π	1920	0.86	
	34		2040	0.87	
Г	36	Т	2160	0.89	
	38	П	2280	0.9	

Tel: 0121 643 4694

Project:	West Cumberland Hospital	
Job Number:	73039	
Author:	ZH	

CALCULATION SHEET - SOIL INFILTRATION RATE

Hole Ref.:	SA01
Test Date:	03/08/2021
Test No.:	3 of 3

1900	s	Time for head to fall from 75% to 25% effective depth (t_{75-25})
3.780	m²	Internal surface area (50% effective depth) (a_{50})
0.506	m³	Effective storage volume (V ₇₅₋₂₅)
0.838	m bgl	Effective storage depth (25% full)
0.613	m bgl	Effective storage depth (75% full)
0.450	m	Effective storage depth
0.90	m bgl	Water level at end of test
0.50	m bgl	Water level at start of test (approximate invert level)
2.25	m ²	Area of trial pit base
0.95	m	Depth (total) of trial pit
0.90	m	Width of trial pit
2.50	m	Length of trial pit


7.05E-05 m/c	Soil infiltration rate (f)	

RAW DATA	
et Cumberland Hospital	

West Cumberland Hospital
73039
ZH

Hole Ref.:	SA01	
Test Date:	03/08/2021	
Test No.:	3 of 3	

C Time (min) u	Time (s)	Depth (mm bgl)	Stratum
0	0	0.5	
1	60	0.51	
2	120	0.52	
3	180	0.52	
4	240	0.52	
5	300	0.53	
6	360	0.54	
7	420	0.55	
8	480	0.56	
9	540	0.57	
10	600	0.58	
11	660	0.59	
12	720	0.6	
13	780	0.61	
14	840	0.61	
16	960	0.63	
18	1080	0.64	Grey medium to
20	1200	0.66	coarse graind
22	1320	0.67	crystalline
24	1440	0.69	SANDSTONE
26	1560	0.7	
28	1680	0.72	
30	1800	0.72	
32	1920	0.74	
34	2040	0.76	
36	2160	0.77	
38	2280	0.78	
40	2400	0.79	
42	2520	0.81	
44	2640	0.82	
46	2760	0.84	
48	2880	0.85	
50	3000	0.87	
52	3120	0.88	
54	3240	0.89	
56	3360	0.9	

Curtins Ltd 17 - 19 Whitworth St W, Manchester M1 5WG Tel: 0121 643 4694

CALCULATION SHEET - SOIL INFILTRATION RATE

Project: West Cumberland Hospital Job Number: 73039 Author: ZH

Hole Ref.:	SA02
Test Date:	03/08/2021
Test No.:	1 of 1

N/A	s	Time for head to fall from 75% to 25% effective depth (t ₇₅₋₂₅)
3.499	m²	Internal surface area (50% effective depth) (a ₅₀)
0.485	m³	Effective storage volume (V ₇₅₋₂₅)
1.528	m bgl	Effective storage depth (25% full)
	m bgl	Effective storage depth (75% full)
0.490		Effective storage depth
1.16	m bgl	Water level at end of test
	m bgl	Water level at start of test (approximate invert level)
1.98	m ²	Area of trial pit base
1.65	m	Depth (total) of trial pit
0.90	m	Width of trial pit
2.20	m	Length of trial pit

N/A m/s Soil infiltration rate (f)

RAW DATA

Project:	West Cumberland Hospital
Job Number:	73039
Author:	ZH

Hole Ref.:	SA02
Test Date:	03/08/2021
Test No.:	1 of 1

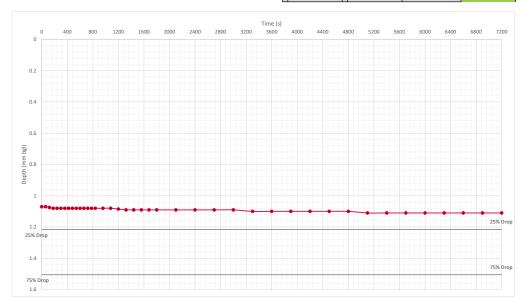
c	Time (min)	ш	Time (s)	Depth (mm bgl)	Stratum
L	0	Ц	0	1.16	
	1	Ш	60	1.16	
	2		120	1.16	
	3		180	1.16	
	4		240	1.16	
Т	5	П	300	1.16	
Т	6	П	360	1.16	
Т	7	П	420	1.16	
	8		480	1.16	
Т	9	П	540	1.16	
Т	10		600	1.16	
Т	11	П	660	1.16	
	12		720	1.16	
Г	13	П	780	1.16	
	14	П	840	1.16	
	16	П	960	1.16	
	18	Ħ	1080	1.16	
П	20	П	1200	1.16	
	22	H	1320	1.16	
П	24	П	1440	1.16	
	26	Н	1560	1.16	
Н	28	Н	1680	1.16	
	30	Н	1800	1.16	
Н	32	Н	1920	1.16	
Н	34	Н	2040	1.16	
Н	36	Н	2160	1.16	
Н	38	Н	2280	1.16	
Н	40	Н	2400	1.16	Light brown and
Н	42	Н	2520	1.16	grey weathered SANDSTONE.
Н	44	Н	2640	1.16	recovered as a
Н	46	Н	2760	1.16	sandy slightly
Н	48	Н	2880	1.16	clayey gravel of angular to
Н	50	Н	3000	1.16	subrounded
-	52	Н	3120	1.16	sandstone.
Н	54	Н	3240		
Н	56	Н	3360	1.16	
Н	58	Н	3480		
Н	60	Н	3600	1.16	
Н		Н			
H	62	Н	3720	1.16	
L	64	Н	3840	1.16	
	66	Н	3960	1.16	
_	68	Н	4080	1.16	
L	70	Н	4200	1.16	
L	72	Ц	4320	1.16	
	74	Ш	4440	1.16	
L	76	Ц	4560	1.16	
	78	Ш	4680	1.16	
L	80	Ц	4800	1.16	
	82	Ш	4920	1.16	
L	84	Ц	5040	1.16	
	86	Ш	5160	1.16	
	88	Ш	5280	1.16	
	90		5400	1.16	
L	92	Ц	5520	1.16	
	94		5640	1.16	
	96	П	5760	1.16	
	98	Π	5880	1.16	
Γ	100	П	6000	1.16	
	102	П	6120	1.16	
ш.			6240	1.16	

CALCULATION SHEET - SOIL INFILTRATION RATE

Project:	West Cumberland Hospital
Job Number:	73039
Author:	ZH

Hole Ref.:	SA03
Test Date:	03/08/2021
Test No.:	1 of 1

N/A	s	Time for head to fall from 75% to 25% effective depth (t_{75-25})
4.054	m ²	Internal surface area (50% effective depth) (a ₅₀)
0.462	m³	Effective storage volume (V ₇₅₋₂₅)
1.318	m bgl	Effective storage depth (25% full)
		,
	m bgl	Effective storage depth (75% full)
0.330	m	Effective storage depth
1.11	m bgl	Water level at end of test
1.07	m bgl	Water level at start of test (approximate invert level)
2.80	m ²	Area of trial pit base
1.40	m	Depth (total) of trial pit
1.00	m	Width of trial pit
2.80	m	Length of trial pit


N/A m/s So	oil infiltration rate (f)

RAW DATA

Project:	West Cumberland Hospital
Job Number:	73039
Author:	ZH

Hole Ref.:	SA03
Test Date:	03/08/2021
Test No.:	1 of 1

C Time (min)	uı Time (s)	Depth (mm bgl)	Stratum
0	0	1.07	
1	60	1.07	
2	120	1.075	
3	180	1.08	
4	240	1.08	
5	300	1.08	
6	360	1.08	
7	420	1.08	
8	480	1.08	
9	540	1.08	
10	600	1.08	
11	660	1.08	
12	720	1.08	
13	780	1.08	
14	840	1.08	
16	960	1.08	
18	1080	1.08	
20	1200	1.085	Light brown and
22	1320	1.09	grey weathered
24	1440	1.09	SANDSTONE, recovered as a
26	1560	1.09	sandy slightly
28	1680	1.09	clayey gravel of
30	1800	1.09	angular to subrounded
35	2100	1.09	sandstone.
40	2400	1.09	
45	2700	1.09	
50	3000	1.09	
55	3300	1.1	
60	3600	1.1	
65	3900	1.1	
70	4200	1.1	
75	4500	1.1	
80	4800	1.1	
85	5100	1.11	
90	5400	1.11	
95	5700	1.11	
100	6000	1.11	
105	6300	1.11	
110	6600	1.11	
115	6900	1.11	
120	7200	1.11	

Ground Investigation Report

Appendix H - Risk Assessment Methodology

The site-specific risk assessment, presented in this report, follows the principle of establishing whether there is a viable linkage between a contaminant source to a potential receptor, via an exposure pathway.

The risk assessment corresponds with the total site area and incorporates both descriptive (qualitative) and, where available, numerical (quantitative) lines of evidence.

Risk assessment is the process of collating known information on a hazard or set of hazards to estimate actual or potential risk to receptors. The receptor may be humans, a water resource, a sensitive local ecosystem or future construction materials. Receptors can be connected to the source by one or several exposure pathways such as direct contact for example. Risks are generally managed by isolating the receptor or intercepting the exposure pathway or by isolating or removing the hazard.

Without the three essential components of a source, pathway and receptor there can be no risk. Therefore, the presence of contaminant source on a site does not necessarily mean there is a risk.

The risk assessment considers the likelihood of an event taking place (accounting for the presence of the source and receptor and the viability of the exposure pathway) in conjunction with the severity of the potential consequence (accounting for the potential severity of the hazard and the sensitivity of the receptor).

In the risk assessment, the consequence of the hazard has been classified as severe or medium or mild or minor and the probability (likelihood) of the circumstances occurring classified as high likelihood or likely or low likelihood or unlikely.

The consequences and probabilities are subsequently cross-correlated to give a qualitative estimation of the risk using Department of the Environment risk classifications as detailed in the table below and as referenced in CIRIA C552.

		Consequence			
		Severe	Medium	Mild	Minor
(1	High Likelihood	Very High Risk	High Risk	Moderate Risk	Moderate/Low Risk
Probability (Likelihood)	Likely	High Risk	Moderate Risk	Moderate/Low Risk	Low Risk
	Low Likelihood	Moderate Risk	Moderate/Low Risk	Low Risk	Very Low Risk
	Unlikely	Moderate/Low Risk	Low Risk	Very Low Risk	Very Low Risk

Ground Investigation Report

In accordance with DoE guidance, the following categorisation of **consequence** has been developed.

Classification	Definition	Examples
Severe	Short-term (acute) risk to human health likely to result in "significant harm" as defined by the Environment Protection Act 1990, Part IIA. Short-term risk of pollution of sensitive water resource. Catastrophic damage to buildings/property. A short-term risk to an ecosystem or organisation forming part of such ecosystem.	High concentrations of cyanide on the surface of an informal recreation area. Major spillage of contaminants from site into controlled water. Explosion, causing building collapse (can also equate to a short-term human health risk if buildings are occupied).
Medium	Chronic damage to Human Health. Pollution of sensitive water resources. A significant change in an ecosystem or organism forming part of such ecosystem.	Concentration of a contaminant from site exceeds the generic or site-specific assessment criteria. Leaching of contaminants from a site to a Principal or Secondary A aquifer. Death of a species within a designated nature reserve. Lesser toxic and asphyxiate effects
Mild	Pollution of non-sensitive water resources. Significant damage to crops, buildings, structures and services. Damage to sensitive buildings/structures/services or the environment.	Pollution of non-classified groundwater (inc. Secondary B aquifers). Damage to building rendering it unsafe to occupy (e.g. foundation damage resulting in instability).
Minor	Harm, although not necessarily significant harm, which may result in a financial loss or expenditure to resolve. Non-permanent health effects to human health (easily prevented by means such as personal protective clothing, etc). Easily repairable effects of damage to buildings, structures and services.	The presence of contaminants at such concentrations that protective equipment is required during site works. The loss of plants in a landscaping scheme. Discoloration of concrete.

Ground Investigation Report

In accordance with DoE guidance, the following categorisation of **probability** has been developed.

Classification	Definition
High Likelihood	There is a pollution linkage and an event that either appears very likely in the short term and almost inevitable over the long term or there is evidence at the receptor of harm or pollution.
Likely	There is a pollution linkage and all the elements are present and in the right place, which means that it is probable that an event will occur. Circumstances are such that an event is not inevitable, but possible in the short term and likely over the long term.
Low Likelihood	There is a pollution linkage and circumstances are possible under which an event could occur. However, it is by no means certain that even over a longer period such event would take place, and is less likely in the shorter term.
Unlikely	There is a pollution linkage but circumstances are such that it is improbable that an event would occur even in the very long term.

In accordance with DoE guidance, the following categorisation of risk has been developed.

Classification	Definition
Very High Risk	There is a <i>high probability</i> that <i>severe harm</i> could arise to a designated receptor from an identified hazard at the site without appropriate further action.
High Risk	Harm is likely to arise to a designated receptor from an identified hazard at the site without appropriate further action.
Moderate Risk	It is possible that without appropriate further action harm could arise to a designated receptor. It is relatively unlikely that any such harm would be severe, and if any harm were to occur it is more likely that such harm would be relatively mild.
Low Risk	It is possible that harm could arise to a designated receptor from an identified hazard. It is likely that, at worst, if any harm was realised any effects would be mild.
Very Low Risk	The presence of an identified hazard does not give rise to the potential to cause harm to a designated receptor.

The term 'risk' in this instance refers to the risk that the source, pathway, receptor linkage for a given source of contamination is complete. It does not refer to immediate risk to individuals or features present on the site from potential contaminants and is intended to be used as a tool to assess the necessity of further investigation.

Our Locations

Birmingham

2 The Wharf Bridge Street Birmingham B1 2JS T. 0121 643 4694 birmingham@curtins.com

Bristol

Quayside 40-58 Hotwell Road Bristol BS8 4UQ T. 0117 302 7560 bristol@curtins.com

Cambridge

50 Cambridge Place Cambridge CB2 1NS T. 01223 631 799 cambridge@curtins.com

Cardiff

3 Cwrt-y-Parc Earlswood Road Cardiff CF14 5GH T. 029 2068 0900 cardiff@curtins.com

Douglas

Varley House 29-31 Duke Street Douglas Isle of Man IM1 2AZ T. 01624 624 585 douglas@curtins.com

Dublin

39 Fitzwilliam Square Dublin 2 Ireland T. 00353 1 507 9447 dublin@curtins.com

Edinburgh

1a Belford Road Edinburgh EH4 3BL T. 0131 225 2175 edinburgh@curtins.com

Glasgow

Queens House 29 St Vincent Place Glasgow G1 2DT T. 0141 319 8777 glasgow@curtins.com

Kendal

28 Lowther Street Kendal Cumbria LA9 4DH T. 01539 724 823 kendal@curtins.com

Leeds

Rose Wharf Ground Floor Leeds L29 8EE T. 0113 274 8509 leeds@curtins.com

Liverpool

51-55 Tithebarn Street Liverpool L2 2SB T. 0151 726 2000 liverpool@curtins.com

London

40 Compton Street London EC1V 0BD T. 020 7324 2240 london@curtins.com

Manchester

Merchant Exchange 17-19 Whitworth Street West Manchester M1 5WG T. 0161 236 2394 manchester@curtins.com

Nottingham

56 The Ropewalk Nottingham NG1 5DW T. 0115 941 5551 nottingham@curtins.com

