27 Lowther Street Whitehaven Cumbria **CA28 7DN**

Tel:0194667182

Proj: 2022.98 Ref: 1.1 top Rail

Date: 14/07/22

Page: 1

Ponsonby Tarn Footbridge General components

Joist section design

End notch type (a)

End notch type (b)

Calculations for timber joists are in accordance with BS EN 1995-1-1:2004+A1:2008

Timber size 47 mm wide x

150 mm deep

Span of joist SPAN 0.6 m

Number of pieces = 1 np End bearing - left hand end = 50 mm Y,I

> - Right hand end Y,r = 50 mm C16

Strength class from Table 1 Service class 2 (Covered and heated or

unheated)

Variable load duration Short term No

Load sharing

Notches details

End notches - left hand end - none specified

> - right hand end - none specified

Design effects

Moment due to permanent load
Moment due to variable load
Shear due to permanent load at left support
Shear due to variable load load at left support
Shear due to permanent load at right support
Shear due to variable load load at right support
Deflection due to permanent load
Deflection due to variable load

MEdGd	= 0 kNm
MEdQd	= 0.05 kNm
VEdGd,L	= 0 kN
VEdQd,L	= 0.333 kN
VEdGd,R	= 0 kN
VEdQd,R	= 0.333 kN
U,Gk	= 0 mm
U,Qk	= 0.0231 mm

Load Description В Gk Qk **Type** Horizonal load UDL 0.6 0.0 0.74

27 Lowther Street Whitehaven Cumbria CA28 7DN

Tel:0194667182

Proj: 2022.98 **Ref :** 1.1 top Rail

Ponsonby Tarn Footbridge General components

Deflection (1.0Gk+1.0Qk) mm

Section properties

Area	Α	$= 7050 \text{ mm}^2$
Section modulus	Wy	= 176250 mm ³
Second moment of area	ly	= 13218750 mm ⁴

Grade stresses - from Table 1 of EN 338:2009

Grade stresses - from Table 1 of EN 338:2009		
Bending stress	fm,k	= 16 N/mm ²
Tension stress parallel to grain	ft,0,k	$= 10 \text{ N/mm}^2$
Tension stress perpendicular to grain	ft,90,k	$= 0.4 \text{ N/mm}^2$
Compression stress parallel to grain	fc,0,k	= 17 N/mm ²
Compression stress perpendicular to grain	fc,90,k	$= 2.2 \text{ N/mm}^2$
Shear stress	fv,k	$= 3.2 \text{ N/mm}^2$
Mean modulus of elasticity parallel	Eomean	$= 8 \text{ kN/mm}^2$
5% modulus of elasticity parallel	Eo05	$= 5.4 \text{ kN/mm}^2$
Mean shear modulus	Gmean	$= 0.5 \text{ kN/mm}^2$
Density	ρk	$= 310 \text{ kg/m}^3$

Modification factors

27 Lowther Street Whitehaven Cumbria CA28 7DN

Tel:0194667182

Proj: 2022.98 **Ref :** 1.1 top Rail

Page: 3

Date: 14/07/22

Ponsonby Tarn Footbridge General components

Depth factor	kh	= 1
Load duration factor (Table 3.1)	kmod	= 0.9
Permanent load duration factor (Table 3.1)	kmodp	= 0.6
System length factor (cl 6.6 of EN 1995)	ksys	= 1
Reduced bending stress factor (cl 6.3.3)	kcrit	= 1
Load configuration factor (cl 6.1.5)	kc,90	= 1.5
Shear crack factor (cl 6.1.7)	kcr	= 0.67
Deformation factor (Table 3.2)	kdef	= 0.8

Partial safety factors

Material safety factor $\gamma M = 1.3$

Bending check

Bending Stresses

Bending stress due to permanent load

 σ mydGd = MEdGd*10⁶/Wy

 $= 0 \text{ N/mm}^2$

Bending stress due to variable load

 σ mydQd = MEdQd*10⁶/Wy

 $= 0.283 \text{ N/mm}^2$

Total bending stress

 σ myd = σ mydGd+ σ mydQd

 $= 0.283 \text{ N/mm}^2$

Design bending strength

fmd = $fmk*kh*kmod*ksys*kcrit/\gamma M$

 $= 11.077 \text{ N/mm}^2$

Bending stress utilisation

Ubm = σ myd/fmd

= 0.0256

Bending status - PASS.

Shear check

Left support

27 Lowther Street Whitehaven Cumbria CA28 7DN

Date: 14/07/22

Proj: 2022.98

Ref: 1.1 top Rail

Page: 4

Ponsonby Tarn Footbridge General components

Tel:0194667182

Shear stress due to total permanent load

 τ dGdl = 1.5*(VEdGd,L*10³)/(kcr*b*hef_L*np)

 $= 0 N/mm^2$

Shear stress due to total variable load

 $_{\tau}$ dQdl = 1.5*(VEdQd,L*10³)/(kcr*b*hef_L*np)

 $= 0.106 \text{ N/mm}^2$

Total shear stress

 $_{\tau}$ dl = $_{\tau}$ dGdl+ $_{\tau}$ dQdl

 $= 0.106 \text{ N/mm}^2$

Design shear strength

fvdl = $fvk*kmod*ksys*KvL/\gamma M$

 $= 2.215 \text{ N/mm}^2$

Shear utilisation

Ushl = $\tau dl/fvdl$

= 0.0477

Shear status at left support - PASS.

Right support

Shear stress due to total permanent load

 $_{\tau}$ dGdr = 1.5*(VEdGd,R*10³)/(kcr*b*hef_R*np)

 $= 0 \text{ N/mm}^2$

Shear stress due to total variable load

 $_{\tau}$ dQdr = 1.5*(VEdQd,R*10³)/(kcr*b*hef_R*np)

 $= 0.106 \text{ N/mm}^2$

Total shear stress

 $_{\tau}$ dr = $_{\tau}$ dGdr+ $_{\tau}$ dQdr

 $= 0.106 \text{ N/mm}^2$

Design shear strength

fvdr = $fvk*kmod*ksys*KvR/_{\gamma}M$

 $= 2.215 \text{ N/mm}^2$

Shear utilisation

Ushr = $\tau dr/fvdr$

= 0.0477

27 Lowther Street Whitehaven Cumbria CA28 7DN

Tel:0194667182

Proj: 2022.98 **Ref :** 1.1 top Rail

Ponsonby Tarn Footbridge General components

Shear status at right support - PASS.

Bearing check

Left support bearing check

Bearing contact length

cl = Y,l+minbear

= 80 mm

Bearing stress due to permanent load

 σ c90dGdl = VEdGd,L*10³/(b*cl*np)

 $= 0 \text{ N/mm}^2$

Bearing stress due to variable load

 σ c90dQdl = VEdQd,L*10³/(b*cl*np)

 $= 0.0886 \text{ N/mm}^2$

Total bearing stress

 σ c90dl = σ c90dGdl+ σ c90dQdl

 $= 0.0886 \text{ N/mm}^2$

Design bearing strength

fc90dl = fc90k*kmod*ksys*kc,90/ γ M

 $= 2.285 \text{ N/mm}^2$

Bearing stress utilisation

Ubl = σ c90dl/fc90dl

= 0.0388

Bearing status at left support - PASS.

Right support bearing check

Bearing contact length

:l = Y,r+minbear

= 80 mm

Bearing stress due to permanent load

 $_{\circ}$ c90dGdr = VEdGd,R*10³/(b*cl*np)

 $= 0 \text{ N/mm}^2$

Bearing stress due to variable load

27 Lowther Street Whitehaven Cumbria CA28 7DN **Proj:** 2022.98 **Ref :** 1.1 top Rail

Ponsonby Tarn Footbridge General components

Tel:0194667182

 σ c90dQdr = VEdQd,R* 10^3 /(b*cl*np)

 $= 0.0886 \text{ N/mm}^2$

Total bearing stress

 σ c90dr = σ c90dGdr+ σ c90dQdr

 $= 0.0886 \text{ N/mm}^2$

Design bearing strength

fc90dr = fc90k*kmod*ksys*kc,90/ γ M

 $= 2.285 \text{ N/mm}^2$

Bearing stress utilisation

Ubr = σ c90dr/fc90dr

= 0.0388

Bearing status at right support - PASS.

Deflection check

Section properties used to calculate bending and shear deflection

Second moment of area

 $= 1320 \text{ mm}^4$

Modulus of elasticity

Eomean = 8000 N/mm^2

Area

A = 70.5 mm^2

Shear modulus

Gmean = 500 N/mm^2

Section factor

F = 1.2 (For rectangular section)

Final deflection due to permanent load,

UfnG = U,Gk*(1+kdef)

= 0 mm

Final deflection due to variable load,

UfnQ = $U,Qk*(1+(kdef*_{U}21))$

= 0.0286 mm

Total deflection,

27 Lowther Street Whitehaven Cumbria CA28 7DN

A28 /DN

Tel:0194667182

Ponsonby Tarn Footbridge

General components

Ref: 1.1 top Rail

Page: 7

Proj: 2022.98

Date: 14/07/22

Ufin = UfnG+UfnQ

= 0.0286 mm

Allowable deflection,

Uallow = SPAN*1000/250

= 2.4 mm

Deflection utilisation,

Udef = Ufin/Uallow

= 0.0119

Deflection status - PASS.

The section 47 x 150 mm PASSES all checks