Redstone	Project: Ponson
Consulting Engineers	
5 - 13 - 13 - 13 - 13	Section:

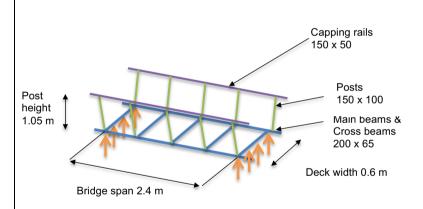
<u> </u>	Project: Ponsonby Tarn Footbridge	Ref: 96.01 rev -
	_	Date: 15/07/2022
	Section: Timber Footbridge	By: PLC

	ı
Introduction Design of new pedestrian footbridge at Ponsonby Tarn. Bridge span 2.4m and is support on concrete base on each bank.	
Design Codes Building Regulations Part A: 2010 BS EN 1990: 2002 Basis of structural design BS EN 1991-1: Actions on structures NA to BS EN 1991-1-1: 2005 Part 1-1 BS EN 1995-1-1:2004 + A1:2008 Design of timber structures	
General Loading Conditions From BS EN 1991-1: Actions on structures National Annex to BS EN 1991-1-1: 2005 Part 1-1	
Material DataTimber Characteristic Values - C16Bending $f_{m,k}$ = 16 N/mm²Compression Parallel $f_{c,0,k}$ = 17 N/mm²Compression Perpendicular $f_{c,90,k}$ = 2.2 N/mm²Shear $f_{v,k}$ = 3.2 N/mm²Mean modulus of elasticity parallel to grain $E_{0,mean}$ = 8 kN/mm²5% modulus of elasticity perpen to grain $E_{0,05}$ = 5.4 kN/mm²Mean modulus of elasticity perpen to grain $E_{90,mean}$ = 0.27 kN/mm²Mean shear modulus G_{mean} = 0.5 kN/mm²Density $F_{0,0}$ = 310 kg/mm³For solid timber V_m = 1.3 V_m V_m V_m = 310 kg/mm³For solid timber V_m = 0.8Medium term Action: 0.80Use V_m V_m Use V_m <	

Consult	ina En	aineers
Consult	ing Li	igii icci s

Project: Ponsonby Tarn Footbridge	Ref: 96.01 rev -
	Date: 15/07/2022
Section: Timber Footbridge	By: PLC

Design Loadings


Permanent Actions

- 1. Timber elements
- 1.1 Decking 125 x 32 at 200 c/cs = 0.08 kN/m^2
- 1.2 Main beams & Cross beams $-200 \times 65 = 0.05 \text{ kN/m}$
- 1.3 Capping Rails 150 x 50 = 0.03 kN/m
- 1.4 Intermediate Rails -100×50 = 0.02 kN/m
- 1.5 Posts 150 x 100 = 0.06 kN/m

Variable Actions

- 1. Decking (vertical)
- $q_k = 4.0 \text{ kN/m}^2$, $Q_k = 2.0 \text{ kN}$
- 2. Handrail (horizontal)
- $q_k = 0.74 \text{ kN/m}$ $Q_k = 1.8 \text{ kN}$

1.0 **Structure Layout**

1.1 Top Rail

Design Span = 0.6 m

Check for horizontal parapet load,

Loading

Imposed Horizontal $q_k = 0.74 \text{ kN/m}$

Design

Beam analysed using CADS SMART engineer (output at appendix App A 1.1)

Use min 47 x 150 grade C16.

Consulting Engineers

Project: Ponsonby Tarn Footbridge

96.01 rev -Date:

15/07/2022

Ref:

Section: Timber Footbridge

PLC

1.2 **Posts**

Post length = 1.05 m

Cantilever supports loading from Top rail (1.1)

Loading

Imposed $q_k = 0.6 \times 0.74$ = 0.44 kN

Ultimate Limit State Design

ULS Actions - Persistent/transient design situation

$$F_d = \gamma_G G_k + \gamma_Q Q_k$$

where $\gamma_G = 1.35$, $\gamma_Q = 1.50$

$$F_d = 1.50 \times 0.44 = 0.66 \text{ kN}$$

Bendina

$$M_{y,d} = FL$$

$$M_{y,d} = 0.66 \times 1.05 = 0.69 \text{ kNM}$$

For bending about the y-y axis only the following expression shall be satisfied:

$$\sigma_{m,v,d} \leq f_{m,v,d}$$

$$\sigma_{m,y,d} = \frac{M_{y,d}}{W_v}$$

Using 150 x 100 C16 timber

 $W_v = 375,000 \text{ mm}^3$

$$\sigma_{m,y,d} = \frac{0.69 \times 10^6}{375.000} = 1.85 \text{ N/mm}^2$$

Design bending strength $f_{m,v,d} = (f_{m,v,k} \times k_{mod} \times k_h \times k_{sys})/\gamma_m$

$$f_{m,v,k} = 16$$

$$k_{mod} = 0.8$$

$$k_h = 1.0$$

$$k_{sys} = 1.0$$

$$f_{m,y,d} = (16.0 \times 0.8 \times 1.0 \times 1.0) / 1.3$$
 = 9.8 N/mm²

.. section satisfactory for bending

Shear

$$F_{v,d} = 0.66 \text{ kN}$$

For stress components the following expression shall be satisfied: $f_{v,d} \ge T_d$

For Shear Stress at end (assume no notch)

$$\tau_{d} = 1.5 \times F_{v,d}$$

$$\mathsf{bh}_{\mathsf{ef}}$$

$$\tau_{d} = \frac{1.5 \times 0.66 \times 10^{3}}{150 \times 100}$$

$$= 0.07 \text{ N/mm}^2$$

Consulting Engineers

Frojeci.		
Ponsonby	Tarn	Footbridge

96.01 rev -Date:

15/07/2022

Section: Timber Footbridge

PLC

Ref:

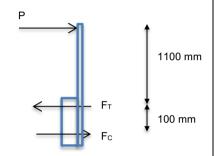
Design shear strength $f_{v,d} = (f_{v,k} x k_{mod} x k_v x k_{sys}) / \gamma_m$

$$v_{vk} = 3.2$$

$$k_{mod} = 0.8$$

$$k_v = 1.0$$

$$k_{sys} = 1.0$$


$$f_{v,d} = (3.2 \times 0.8 \times 1.0 \times 1.0) / 1.3$$
 = 1.97 N/mm²

$$= 1.97 \text{ N/mm}^2$$

: section satisfactory for shear.

Connection to beam

Bolted connection to beam. Bolts acting in tension and compression to resist moment in post

Taking moments about C

$$F_T = 0.66 \times 1.2 / 0.1 = 7.9 \text{ kN}$$

For Axial loaded bolts the capacity is taken as the lower of:

- The bolt tensile capacity
- The load bearing capacity of the washer

Bolt Tensile capacity

Using M8 grade 8.8 bolts

Tensile strength $F_{t,Rd} = 21 \text{ kN}$

Washer Bearing capacity

$$\sigma_{c,90,d} \leq f_{c,90,d}$$

$$f_{c.90,d} = 3.0 f_{c.90,k} = 3.0 \times 2.2 = 6.6 \text{ N/mm}^2$$

Area required = $1.3 \times 7.9 \times 10^3 / 6.6 = 1,556 \text{ mm}^2$

Use M8 bolts with 50 x 50 x 3 square plate washer

Consulting Engineers

Project:
Ponsonby Tarn Footbridge

96.01 rev -Date: 15/07/2022

By: PLC

Ref:

Section:
Timber Footbridge

1.3 Decking Boards

Design Span = 0.6 m

Loading

Permanent $g_k = 0.08 \times 0.2$ = 0.016 kN/m Imposed $q_k = 4.0 \times 0.2$ = 0.8 kN/m

Ultimate Limit State Design

ULS Actions - Persistent/transient design situation

$$F_d = \gamma_G G_k + \gamma_Q Q_k$$

where $\gamma_G = 1.35$, $\gamma_Q = 1.50$

$$\therefore$$
 F_d = 1.35 x 0.016 + 1.50 x 0.8 = 1.22 kN/m

Bending

$$M_{y,d} = FL^2/8$$

$$M_{y,d} = 1.22 \times 0.6^2/8 = 0.05 \text{ kNM}$$

For bending about the y-y axis only the following expression shall be satisfied:

$$\sigma_{m,y,d} \leq f_{m,y,d}$$

$$\sigma_{m,y,d} = \frac{M_{y,d}}{W_v}$$

Using 125w x 32 dp C16 timber

 $W_y = 21,333 \text{ mm}^3$

$$\sigma_{m,y,d} = \frac{0.05 \times 10^6}{21,333}$$
 = 2.58 N/mm²

Design bending strength $f_{m,y,d} = (f_{m,y,k} x k_{mod} x k_h x k_{sys}) / \gamma_m$

$$f_{m,v,k} = 16$$

$$k_{mod} = 0.8$$

$$k_h = 1.0$$

$$k_{sys} = 1.0$$

$$f_{m,y,d} = (16.0 \times 0.8 \times 1.0 \times 1.0) / 1.3$$
 = 9.8 N/mm²

.. section satisfactory for bending

Shear

$$F_{v,d} = 1.22 \times 0.6/2 = 0.37 \text{ kN}$$

For stress components the following expression shall be satisfied: $f_{v,d} \ge \tau_d$

For Shear Stress at end (assume no notch)

$$\tau_{d} = \underline{1.5 \times F_{v,d}}$$

$$bh_{ef}$$

$$\tau_d = 1.5 \times 0.37 \times 10^3 = 0.14 \text{ N/mm}^2$$
 125×32

Consulting Engineers

Project: Ponsonby Tarn Footbridge	Ref: 96.01 rev -
	Date: 15/07/2022
Section: Timber Footbridge	By: PLC

	Design shear strength $f_{v,d} = (f_{v,k} \times k_{mod} \times k_v \times k_{sys}) / \gamma_m$ $v_{v,k} = 3.2$ $k_{mod} = 0.8$ $k_v = 1.0$ $k_{sys} = 1.0$ $f_{v,d} = (3.2 \times 0.8 \times 1.0 \times 1.0) / 1.3$ $= 1.97 \text{ N/mm}^2$ $\therefore \text{ section satisfactory for shear.}$
1.4	Main Beams
	Design Span = 2.4 m
	Loading
	Permanent $g_k = 0.6/2 \times 0.08 + 0.05 + 0.03 + 2 \times 0.02$
	$+ 5/2.4 \times (0.3 \times 0.05 + 1.1 \times 0.06) = 0.31 \text{ kN/m}$ Imposed $q_k = 0.6/2 \times 4.0 = 1.2 \text{ kN/m}$
	Process de la companya de la company
	Design
	Beam analysed using CADS SMART engineer (output at appendix App A 1.1)
	Use min 65 x 200 grade C16.
1.5	Stability
	Examine overall stability
	with full parapet loading (P)
	and minimum deck loading (permanent only)
	1100 mm
	Deck Loading
	Bolted connection to
	▼ beam. Bolts acting in tension and
	A B compression to resist
	moment in nost

Taking moments about B.

 $R_A = 1.1 \times (1.5 \times 0.74)/0.6 - 0.31 = 1.73 \text{ kN/m uplift (ULS)}$

moment in post

Note: less than ULS design loads on beam at 1.4 but foundations will need to take account of uplift.

Anchor load at Support = $2.4/2 \times 1.73 = 2.1 \text{ kN}$

Use M8 Anchors into foundations

Redstone	Project: Ponsonby Tarn Footbridge	Ref: 96.01 rev
Consulting Engineers		Date: 15/07/2022
	Section: Timber Footbridge	By: PLC

1.6 <u>Fo</u>	undations	
50	sign strip footings to walls for allowable Bearing Pressure of kN/m ² adding from full bridge (3.0m length)	
Lo	ading	
	manent $g_k = 3.0/2 \times 0.31 \times 2$ = 0.93 kN posed $q_k = 3.0/2 \times 0.6 \times 4.0$ = 3.6 kN	
Str kN	p footing Self Weight gk = 0.4 x 0.6 x 0.8 x 25 = 4.8 kN m	
Ult	mate Limit State Design	
At	JLS, $F_d = \gamma_G G_k + \gamma_Q Q_k$ where $\gamma_G = 1.0$, $\gamma_Q = 1.3$	
F _d	= 1.0 x (0.93+4.8) + 1.3 x 3.6 = 10.41 kN	
Are	a = 0.6 x 0.8 = 0.48 m	
BF	= 10.41/0.482 = 21.7 kN/m ²	