Plot A Stage 2 - Analytical Results - WATER PAHs

Field Identification							WS115	WS124
Sample Type							Water	Water
Sample Round							Oct-01	Oct-01
	4			GAC pro	tective of:			
	Method							
	Detection		Human		Controlled			
Chemical	Limit	Units	Health	Source	Waters	Source		
Acenaphthene	0.01	μg/l	nv	F	365	В	1.12	0.02
Acenaphthylene	0.01	μg/l	17,700	F	10	Α	0.85	0.01
Anthracene	0.01	μg/l	nv	F	1,825	В	0.16	<mdl< td=""></mdl<>
Benzo(a)anthracene	0.01	μg/l	nv	F	0.1	В	0.11	<mdl< td=""></mdl<>
Benzo(a)pyrene	0.01	μg/l	164	F	0.01	Α	0.02	<mdl< td=""></mdl<>
Benzo(b)fluoranthene	0.01	μg/l	nv	F	nv	Α	0.03	<mdl< td=""></mdl<>
Benzo(g,h,i)perylene	0.01	μg/l	nv	F	nv	Α	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
Benzo(k)fluoranthene	0.01	μg/l	nv	F	nv	Α	0.02	<mdl< td=""></mdl<>
Chrysene	0.01	μg/l	nv	F	9	В	0.06	<mdl< td=""></mdl<>
Dibenz(a,h)anthracene	0.01	μg/l	nv	F	0.01	В	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
Fluoranthene	0.01	μg/l	nv	F	0.2	Α	0.70	<mdl< td=""></mdl<>
Fluorene	0.01	μg/l	nv	F	243	В	0.50	<mdl< td=""></mdl<>
I <mdleno(1,2,3-cd)pyrene< td=""><td>0.01</td><td>μg/l</td><td>nv</td><td>F</td><td>nv</td><td>Α</td><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdleno(1,2,3-cd)pyrene<>	0.01	μg/l	nv	F	nv	Α	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
Naphthalene	0.01	μg/l	1,590	F	5	E	0.46	0.61
Phenanthrene	0.01	μg/l	nv	F	10	Α	0.05	<mdl< td=""></mdl<>
Pyrene	0.01	μg/l	nv	F	183	В	0.61	<mdl< td=""></mdl<>
Total PAH	0.01	μg/l	nv	nv	nv	nv	4.69	0.64
Total PAH (Sum of UK 4)	0.01	μg/l	nv	nv	0.1	Α	0.05	<mdl< td=""></mdl<>

LEGEND

TP = Trial Pit

BH = Borehole

"-" = not analysed

nv = no value

<mdl = below method detection limit

- A = UK Drinking Water Standards (DWS) 2000
- B = USEPA Region 9 (pathway specific)
- C = World Health Organisation Drinking Water Guidelines (WHO DWG)
- D = UK Marine / Estuarine EQS Surface Waters (Dangerous Substances)(Classification) Regulations 1997
- E = UK Marine / Estuarine EQS Surface Waters (Dangerous Substances) (Classification) Regulations 1989
- F = URS Generic Assessment Criteria (GAC)
- G = UK Marine / Estuarine EQS Surface Waters (Dangerous Substances)(Classification) Regulations 1998
- H = UK Marine / Estuarine EQS Surface Waters (Dangerous Substances) (Classification) Regulations 1992
- J = UK Marine / Estuarine Environmental Quality Standards (EQS) UK EQS
- K = UK Soil Guideline Values (SGV)
- L = Dutch SRC
- M = US EPA Region 9 PRG
- N = Corrected DIV
- P = US EPA Region 3
- Q = Dutch SRC: NB based on Res with Gardens
- R = Dutch Indicative Intervention Value

XX	Reported concentration exceeds Stage 2 human health and controlled waters screening criteria
XX	Reported concentration exceeds Stage 2 human health screening criteria
XX	Reported concentration exceeds Stage 2 controlled waters screening criteria

Plot A Stage 2 - Analytical Results - WATER Misc

Field Identification	7						WS115	WS120	WS124	WS506A	WS100A	WS507A	WS510A	WS101A	ERM3
Sample Round]						Oct-01	Oct-01	Oct-01	Mar-07	Mar-07	Mar-07	Mar-07	Mar-07	Mar-07
Sample Type	1						Water	Water	Water	Water	Duplicate WS506A	Water	Water	Duplicate WS510A	Water
	GAC protective of:														
Chemical	Method Detection Limit	Units	Human Health	Source	Controlled Waters	Source									
Electrical Conductivity	0.014	nν	nv	nv	nv	nv	-	-	-	0.75	0.72	0.93	0.79	0.78	-
Ph	1	nv	6.5 - 10	Α	6 - 8.56	Α	<mdl< td=""><td>7.2</td><td>8.19</td><td>8.57</td><td>8.53</td><td>8.59</td><td>7.81</td><td>7.8</td><td>1</td></mdl<>	7.2	8.19	8.57	8.53	8.59	7.81	7.8	1
Total Cyanide	50	μg/L	50	Α	50	Α	-	-	-	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>-</td><td>-</td><td>-</td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td>-</td><td>-</td><td>-</td></mdl<></td></mdl<>	<mdl< td=""><td>-</td><td>-</td><td>-</td></mdl<>	-	-	-
Sulphate Water Soluble	300	μg/L	150,000	Α	150,000	Α	313,000	<mdl< td=""><td>928,000</td><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>-</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	928,000	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>-</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>-</td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>-</td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td>-</td></mdl<></td></mdl<>	<mdl< td=""><td>-</td></mdl<>	-
Thiocyanate	200	μg/L	nv	nv	nv	nv	500	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>-</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>-</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>-</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>-</td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>-</td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td>-</td></mdl<></td></mdl<>	<mdl< td=""><td>-</td></mdl<>	-
Total Cyanide	50	μg/L	50	Α	50	Α	1,670	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
Total Phenols	10	μg/L	nv	nv	nv	nv	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>-</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>-</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>-</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>-</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>-</td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>-</td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td>-</td></mdl<></td></mdl<>	<mdl< td=""><td>-</td></mdl<>	-

LEGEND

TP = Trial Pit

BH = Borehole

"-" = not analysed

nv = no value

<mdl = below method detection limit

- A = UK Drinking Water Standards (DWS) 2000
- B = USEPA Region 9 (pathway specific)
- C = World Health Organisation Drinking Water Guidelines (WHO DWG)
- D = UK Marine / Estuarine EQS Surface Waters (Dangerous Substances)(Classification) Regulations 1997
- E = UK Marine / Estuarine EQS Surface Waters (Dangerous Substances)(Classification) Regulations 1989
- F = URS Generic Assessment Criteria (GAC)
- G = UK Marine / Estuarine EQS Surface Waters (Dangerous Substances)(Classification) Regulations 1998
- H = UK Marine / Estuarine EQS Surface Waters (Dangerous Substances) (Classification) Regulations 1992
- J = UK Marine / Estuarine Environmental Quality Standards (EQS) UK EQS
- K = UK Soil Guideline Values (SGV)
- L = Dutch SRC
- M = US EPA Region 9 PRG
- N = Corrected DIV
- P = US EPA Region 3
- Q = Dutch SRC: NB based on Res with Gardens
- R = Dutch Indicative Intervention Value

XX	Reported concentration exceeds Stage 2 human health and controlled waters screening criteria
XX	Reported concentration exceeds Stage 2 human health screening criteria
XX	Reported concentration exceeds Stage 2 controlled waters screening criteria