

Surface Water Drainage Assessment

Proposed Housing development, Meadow Road, Mirehouse, Cumbria

Home Group

The drainage statement has been prepared to accompany a planning application for the proposed housing scheme at Meadow Road, Mirehouse, Cumbria.

This drainage statement sets out the principles for the proposed surface water drainage disposal.

Surface Water Drainage

The proposed surface water drainage scheme should seek to meet the requirements of National Planning Policy Framework (NPPF) and the current Building Regulations Part H and follow the selection hierarchy. Consideration should be given firstly to infiltration techniques (to ground), to watercourse and then to sewer. Guidance contained within NPPG (Reference ID:7) also requires the use of Sustainable Urban Drainage Systems (SUDS) wherever possible to mimic as far as practicable the natural run-off regime, improve water quality and attenuate peak flows.

A ground investigation has been undertaken on the main development site and this encountered made ground predominately comprised of black/dark grey sany clayey gravel at depths of 1.0m up to 2.0m bgl. Glacial Till is underlying this made ground as a very sandy gravely clay at depths of 2.0m to 3.0m bgl, and as such are not suitable for the use of infiltration techniques to be used on the site.

The nearest watercourse to the site is the 'Pow Beck' which is situated approximately 125m east of the development boundary. The tidal reach of the watercourse is approximately 2.1km North West of the site.

1

Within the site there are 3no. existing surface water sewers shown crossing the development, these were picked up on the topographical survey and using record information. United Utilities show two of these sewers being adopted. One of which is shown to be a 450mm diameter sewer entering the site from the south and exiting the site in front of Uldale Road, along with a 300mm diameter sewer serving the old garage.

Another sewer has been picked up from the topographical survey and is shown to be a 300mm diameter sewer serving the most north building previously located on site and running through the centre of the development.

It is therefore proposed to connect into the existing surface water sewer which previously served the site. This sewer ultimately discharges to the 'Pow Beck' watercourse located east/northeast to the development. To connect directly into the 'Pow Beck' has been discounted due to the extent of the proposed outfall required.

The EA flood map indicates that the site is location within flood zone 1. Flood zone 1 has a probability of 1 in 1000 in any one year (0.1%). Therefore, the risk of flooding from this source is expected to be low. The flood maps can be viewed in **Appendix B**.

Due to the size of the proposed development and to achieve the minimum acceptable orifice size of 75mm it is proposed to restrict surface water flows from this development to a maximum of 2.7 l/s. Attenuation from this area will be provided within the sub base of the porous car parking bays and through attenuation crates.

Calculations have been undertaken for all storm events upto the 1 in 100 year+40% event. Flooding will be contained within the system up to the 1 in 100 year+40% storm event.

Microdrainage calculations allow for 10% urban creep within the site.

Porous paving is proposed to provide treatment of surface water flows from this area of the car park in line with current Ciria guidance.

A copy of the calculations and proposed drainage layout plan are attached in Appendix A.

Appendix A

HEALTH & SAFETY 1. CONTRACTOR SHOULD BE AWARE OF GENERAL CONSTRUCTION RISKS TO PREVENT SLIPS, TRIPS AND FALLS AND TAKE NECESSARY PRECAUTIONS WITHOUT SPECIAL INSTRUCTION. ROADS & DRAINAGE 2. CONTRACTOR TO PROVIDE TRENCH SUPPORTS AS APPROPRIATE AND ENSURE THAT PLANT

 CONTRACTOR TO PROVIDE TRENCH SUPPORTS AS APPROPRIATE AND ENSURE THAT PLANT REMAINS A SAFE DISTANCE FROM TRENCHES PRIOR TO INSTALLING DRAINAGE
THE THAT EXCAVATIONS ARE OPEN ON SITE SHOULD BE KEPT TO A MINIMUM AND ALL TRENCHES SHOULD BE SURROUNDED BY A BARRIER.
CONNECTIONS TO EXISTING SEWERS TO BE MADE BY NWL APPROVED CONTRACTOR ONLY. 5. CONTRACTOR TO MAKE OPERATIVES AWARE OF ASSOCIATED DANGERS TO HEALTH SUCH AS LEPTOSPIROSIS (WEILS DISEASE) AND RECOMMENDED PRECAUTIONS. ADEQUATE WELFARE FACILITIES AND PROTECTIVE CLOTHING TO BE PROVIDED AS REQUIRED. 6. UNFINISHED MANHOLES MUST BE COVERED WITH LOAD BEARING MATERIALS AND SURROUNDED WITH BARRIER.

PIPES & CABLES 7. SERVICE RECORDS TO BE REFERRED TO PRIOR TO WORK COMMENCING. CONTRACTOR TO PROCEED WITH CAUTION AND SERVICES TO BE LOCATED BY HAND DIG AND PROTECTED ACCORDINGLY.

EXCAVATION/FILL 8. CONTRACTOR TO ENSURE RELEVANT MEASURES ARE TAKEN TO KEEP PLANT AND PEOPLE A SAFE DISTANCE FROM STEEP SLOPES DURING THE WORKS. 9. CONTRACTOR TO ENSURE THAT PROCEDURES ARE IN PLACE TO KEEP PEOPLE A SAFE DISTANCE FROM WORKING PLANT WHERE NECESSARY. 10. CONTRACTOR TO REFER TO GROUND INVESTIGATION REPORT FOR CONTAMINATION TESTS AND TO PROVIDE ADEQUATE WELFARE FACILITIES AND PROTECTIVE CLOTHING AS REQUIRED.

A1 - Do Not Scale

Only PDF / DWF Issues of this drawing are controlled. All other formats (eg. DWG AutoCAD FILES) are UN-controlled and are used at your own risk. This drawing is copyright ©.

It is sent to you in confidence and must not be copied, used or disclosed to any third parties without 3E permission. It remains the property of 3E and must be returned on request.

Contractors should refer to the residual risks contained in the CDM Pre Construction Information before carrying out any site operations and should not issue parts of this drawing without including the CDM notes and references.

This information will include details of the SIGNIFICANT risks which 3E have considered beyond

that which a competent contractor should be aware.	
Legend	
Adoptable Drainage	
Proposed Adoptable Foul sewer and manhole	- · - · -
Proposed Adoptable Storm sewer and manhole	
All adoptable drainage to be installed in edition of Sewers For Adoption and any reg	accordance with the relevant gional water authority variations
Proposed private Foul sewer and manhole	· ·
Proposed private Storm sewer and manhole	
Proposed slab floor gully	
Porous Paving (Sub-base Depth Varies)	
Existing public Foul sewer and manhole	EX 225Ø FW SEWER
Existing public Surface Water sewer and manhole	EX 300Ø SW SEWER
Retaining walls, steps & external works	
Retaining wall (retained height shown). (edge protection required over 600mm ht)	RW 0.6M
Tanking to specialist details	<u> </u>
Double damp proof course	DOUBLE DPC
Steps to paths - 300mm Going 150mm Rise (Handrails required to heights over 600mm)	6 STEPS
Proposed Finished Floor Level	FFL 141.000
Proposed spot height	+141.00
Proposed Garden / Drive Gradient	1:12
Proposed Engineered Batter / Embankment. (1:3 Grad Max unless notes otherwise)	1:2 Batter

26/06/20	Preliminary Issue			00	P1
Date Purpose of	Revisions			Drawn Drawing Sta	Rev.
i aipeee ei	PR	ELIMINARY		-	
Wakefie 4 Calde	eld Office r Close		Ne	ewcastle 2 Esh	Office Plaza
Calder F Wakefie WF4 3E	Park eld BA	S	Sir Bobl Newca	by Robson Grea astle upor NE1	n Way t Park n Tyne 3 9BA
Calder F Wakefie WF4 3E	Park eld BA	<u>S</u>	Sir Bobl Newca	by Robson Grea astle upor NE1	n Way t Park n Tyne 3 9BA
Calder F Wakefie WF4 3E tel 019 wakefie	Park eld BA 124 240420 Id@3econsult.com	consulting engineers www.3econsult.com	Sir Bobl Newca tel newcastle@	by Robson Grea astle upor NE1 0191 230 23econsu	n Way t Park n Tyne 3 9BA) 2993 It.com
Calder I Wakefie WF4 3E tel 019 wakefie Client	Park eld BA 124 240420 Id@3econsult.com HOME GRC	consulting engineers www.3econsult.com	Sir Bobl Newca tel newcastle@	by Robson Grea astle upor NE1 0191 230 23econsu	n Way t Park n Tyne 3 9BA) 2993 It.com
Calder H Wakefie WF4 3E tel 019 wakefie Client	Park eld BA I24 240420 Id@3econsult.com HOME GRC MEADOW F	consulting engineers www.3econsult.com	Sir Bobl Newca tel newcastle@	by Robsol Grea astle upor NE1 0191 230 23econsu	n Way t Park n Tyne 3 9BA) 2993 It.com
Calder H Wakefie WF4 3E tel 019 wakefie Client	Park Bld BA HOME GRC MEADOW F MIREHOUS	consulting engineers www.3econsult.com	Sir Bobł Newca tel newcastle@	by Robsol Grea astle upor NE1 0191 230 203econsu	n Way t Park n Tyne 3 9BA 0 2993 It.com
Calder H Wakefie WF4 3E tel 019 wakefie Client	Park Bld BA HOME GRC MEADOW F MIREHOUS CUMBRIA	Consulting engineers www.3econsult.com	Sir Bobł Newca tel newcastle@	by Robsol Grea astle upor NE1 0191 230 203econsu	n Way t Park n Tyne 3 9BA 0 2993 It.com
Calder H Wakefie WF4 3E tel 019 wakefie Client Project	Park P24 240420 Id@3econsult.com HOME GRC MEADOW F MIREHOUS CUMBRIA PROPOSEI	Consulting engineers www.3econsult.com	Sir Bobl Newca tel newcastle@	by Robsol Grea astle upor NE1 0191 230 203econsu	n Way t Park 1 Tyne 3 9BA 0 2993 It.com
Calder H Wakefie WF4 3E tel 019 wakefie Client Project	Park Bld BA HOME GRC HOME GRC MEADOW F MIREHOUS CUMBRIA PROPOSEI	Consulting engineers www.3econsult.com	Sir Bobl Newca tel newcastle@	by Robsol Grea astle upor NE1 0191 230 23econsu	n Way t Park 1 Tyne 3 9BA 0 2993 It.com
Calder H Wakefie WF4 3E tel 019 wakefie Client Project Title	Park P24 240420 P24 240420 PADDE GRC MEADOW F MIREHOUS CUMBRIA PROPOSEI PROPOSEI	Checked	Sir Bobi Newca tel newcastle@ OUT	by Robsol Grea astle upor NE1 0191 230 23econsu 39econsu	n Way t Park 1 Tyne 3 9BA 0 2993 1t.com

THIS PLAN CURRENTLY SHOWS SEWER EASEMENTS AND ESTIMATED WATER MAIN EASEMENTS ONLY - SUBJECT TO SURVEY AND APPROVALS

SUBJECT TO THE APPROVAL OF ALL RELEVANT AUTHORITIES

3e Consulti	ng En	ginee	ers									Page	2
Ist Floor B Holland Par	⊥ock k	C											
Newcastle U	pon T	yne	NE2	4LD								Mic	
Date 01/07/	2020	15 : 43	3		Des	signed by	y fay	.bent	tley	7			יט המתנ
File 2020.0	6.23	- MIC	CRO I	DRAI	. Che	ecked by						DIG	nage
Micro Drainage Network 2020.1													
Network Design Table for Storm													
PN	Length (m)	Fall (m)	Slope (1:X)	I.Area (ha)	T.E. (mins)	Base Flow (l/s)	k (mm)	HYD SECT	DIA (mm)	Sect	ion Typ	e Auto Design	
S4.001	7.129#	0.026	274.2	0.000	0.00	0.0	0.600	0	300	Pipe	/Condui	t 💣	
S1.004	3.732	0.375	10.0	0.018	0.00	0.0	0.600	0	375	Pipe	/Condui	t 🍵	
S5.000	23.019	0.250	92.1	0.024	5.00	0.0	0.600	0	150	Pipe	/Condui	t 🗂	
S6.000 S6.001	11.111 5.651	0.150 0.100	74.1 56.5	0.012	5.00 0.00	0.0	0.600 0.600	0	100 100	Pipe Pipe	/Condui /Condui	t 🧬 t 💣	
S5.001 S5.002	11.719 9.605	0.150 0.100	78.1 96.1	0.010 0.005	0.00 0.00	0.0	0.600 0.600	0	150 150	Pipe Pipe	/Condui /Condui	t 🔐 t 🔐	
s1.005	3.993	0.045	88.7	0.000	0.00	0.0	0.600	0	375	Pipe	/Condui	t 🍵	
				Net	work	Results	Table	<u>e</u>					
P	N Ra (mm)	in / /hr) (1	T.C. mins)	US/IL Σ (m)	I.Area (ha)	Σ Base Flow (l/s)	Foul (1/s)	Add Fl (1/s	Low) (Vel m/s)	Cap (1/s)	Flow (1/s)	
S4.	001 4	4.51	5.40	9.451	0.000	0.0	0.0	C	0.0	0.94	66.8	0.0	
S1.	004 4	2.30	6.17	9.425	0.141	0.0	0.0	C	0.0	5.77	637.5	16.2	
S5.	000 4	4.63	5.37	9.550	0.024	0.0	0.0	C	0.0	1.05	18.5	2.9	
S6. S6.	000 4 001 4	5.14 4.85	5.21 5.30	<mark>9.600</mark> 9.450	0.012 0.022	0.0	0.0	C).0).0	0.90 1.03	7.0 8.1	1.5 2.7	
S5. S5.	001 4 002 4	4.10 3.64	5.54 5.69	9.300 9.150	0.056 0.061	0.0	0.0	C).0).0	1.14 1.03	20.1 18.1	6.7 7.2	
S1.	005 4	2.20	6.20	9.050	0.202	0.0	0.0	C	0.0	1.92	212.5	23.1	

3e Consulting Engineers		Page 3
1st Floor Block C		
Holland Park		
Newcastle Upon Tyne NE2 4LD		Mirro
Date 01/07/2020 15:43	Designed by fay.bentley	
File 2020.06.23 - MICRO DRAI	Checked by	Diamage
Micro Drainage	Network 2020.1	•

Area Summary for Storm

Pipe	PIMP	PIMP	PIMP	Gross	Imp.	Pipe Total
Number	Туре	Name	(%)	Area (ha)	Area (ha)	(ha)
1.000	_	-	100	0.010	0.010	0.010
2.000	-	-	100	0.020	0.020	0.020
2.001	-	-	100	0.014	0.014	0.014
3.000	-	-	100	0.028	0.028	0.028
3.001	-	-	100	0.000	0.000	0.000
2.002	-	-	100	0.000	0.000	0.000
1.001	-	-	100	0.035	0.035	0.035
1.002	-	-	100	0.000	0.000	0.000
1.003	-	-	100	0.016	0.016	0.016
4.000	-	-	100	0.000	0.000	0.000
4.001	-	-	100	0.000	0.000	0.000
1.004	-	-	100	0.018	0.018	0.018
5.000	-	-	100	0.024	0.024	0.024
6.000	-	-	100	0.012	0.012	0.012
6.001	-	-	100	0.010	0.010	0.010
5.001	-	-	100	0.010	0.010	0.010
5.002	-	-	100	0.005	0.005	0.005
1.005	-	-	100	0.000	0.000	0.000
				Total	Total	Total
				0.202	0.202	0.202

3e Consulting	Engi	lneer	S						Page 4
1st Floor Blo	ck C								
Holland Park									
Newcastle Upor	n Tyr	ne N	IE2 4LD						Micro
Date 01/07/20	20 15	5:43		Des	igned by :	fay.	bentl	еу	
File 2020.06.	23 -	MICR	O DRAI	. Che	cked by				Dialitatje
Micro Drainage	e			Net	work 2020	.1			
		1	Network C	lassi	fications	for	Stor	m	
PN	USMH Name	Pipe Dia	Min Cover Ma Depth	ax Cover Depth	Ріре Туре	MH Dia	MH Width	MH Ring Depth	МН Туре
		(mm)	(m)	(m)		(mm)	(mm)	(m)	
S1.000	SP02	100	0.530	0.580	Unclassified	450	0	0.530	Unclassified
S2.000	SRE2	100	0.460	0.580	Unclassified	100	0	0.460	Unclassified
S2.001	SP03	100	0.580	0.730	Unclassified	450	0	0.580	Unclassified
S3.000	SP04	100	0.550	0.675	Unclassified	1200	0	0.675	Unclassified
S3.001	SP05	100	0.550	0.730	Unclassified	1200	0	0.550	Unclassified
SZ.002	SPU6	150	0.580	0.730	Unclassified	600	0	0.730	Unclassified
S1.001 S1.002	SPU/	150	0.580	0.600	Unclassified	600	0	0.580	Unclassified
S1.002	SW01	375	0.670	0.750	Unclassified	600	0	0.750	Unclassified
S4.000 S	SW ATT	300	0.899	1.000	Unclassified	600	0	1.000	Unclassified
S4.001	SW04	300	0.745	0.899	Unclassified	1200	0	0.899	Unclassified
S1.004	SW02	375	0.670	0.895	Unclassified	600	0	0.670	Unclassified
S5.000	SRE3	150	0.600	1.000	Unclassified	150	0	0.600	Unclassified
S6.000	SP09	100	0.890	1.140	Unclassified	450	0	0.890	Unclassified
S6.001	SP10	100	1.000	1.140	Unclassified	450	0	1.140	Unclassified
S5.001	SP11	150	1.000	1.150	Unclassified	600	0	1.000	Unclassified
\$5.002	SP12	150	1.120	1.150	Unclassified	1500	0	1.150	Unclassified
\$1.005	SW03	375	0.895	1.195	Unclassified	1500	0	0.895	Unclassified
		<u>Fre</u> Outf Pipe N	e Flowing all Outfal umber Name	g Outf .1 C. Le (m)	all Detai vel I. Level (m)	ls f Min I. Ley	or St	L W	
		ripe n	under Hume	(,	(,	(m)		., (,	
		S	1.005 SWC)4 10.	575 9.005	9.0	005 30	0 0	
			Simulat	ion C	riteria fo	or St	lorm		
	Vol	umetri	c Runoff Coe	ff 0 750) Additional	Flow	- & of	Total B	Clow 0 000
	Ar	eal Re	duction Fact	or 1.000) MADD H	Factor	* 10m ³	/ha Stor	rage 2.000
		Но	t Start (min	s) ()		Inlet C	oeffieci	lent 0.800
	1	Hot St	art Level (m	m) () Flow per Per	rson p	er Day	(l/per/c	lay) 0.000
Manho	ole Hea	dloss	Coeff (Globa	1) 0.500		0+ 2	Run ut Into	Time (mi	ins) 60
FOU	11 Sewa	ge per	nectare (1/	s) 0.000	J	Outp	ut inte	rval (mi	ins) I
Number of I Number of	nput H	ydrogra e Conti	aphs 0 Num rols 1 Numbe	nber of (er of Sto	Dffline Contro Drage Structur	ls O es 6	Number Number	of Time of Real	/Area Diagrams 0 Time Controls 0
			Synthe	etic F	ainfall D	etai	ls		
	Retur	Kaini n Peri/	all Model		FSR 2	E	cv (Sur	Type Su mmer) (ummer).750
	necuri	1	Region E 15-60 (mm) Ratio R	ngland a	nd Wales 16.000 Stor 0.257	m Dura	Cv (Win Ation (1	nter) (mins)	0.840 30

3e Consulting Engineers	Page 5
1st Floor Block C	
Holland Park	
Newcastle Upon Tyne NE2 4LD	Micro
Date 01/07/2020 15:43	Designed by fay.bentley
File 2020.06.23 - MICRO DRAI	Checked by
Micro Drainage	Network 2020.1
Online	Controls for Storm
Hudro-Brake® Ontimum Manhole	e. SW03 DS/DN. S1 005 Volume (m^3) . 2 7
ingato brakes opermum Mannore	e. 5w05, 55/1N. 51.005, Volume (m). 2.7
Uni	it Reference MD-SHE-0075-2700-1200-2700
Design	rign Head (m) 1.200
	Flush-Flom Calculated
	Objective Minimise upstream storage Application Surface
Sun	Imp Available Yes
Inver	ert Level (m) 9.050
Minimum Outlet Pipe Di Suggested Manhole Di	viameter (mm) 100 Diameter (mm) 1200
Control Points Head (m) Fi	LOW (1/S) CONTROL POINTS Head (m) Flow (1/S)
Design Point (Calculated) 1.200 Flush-Flo™ 0.330	2.7 Kick-Flo® 0.670 2.1
The hydrological calculations have been base Optimum as specified. Should another type	sed on the Head/Discharge relationship for the Hydro-Brake® of control device other than a Hydro-Brake Optimum® be utilised
then these storage routing calculations wil	ll be invalidated
Depth (m) Flow (1/s) Depth (m) Flow (1/s) De	epth (m) Flow (l/s) Depth (m) Flow (l/s) Depth (m) Flow (l/s)
0.100 2.1 0.800 2.2	2.000 3.4 4.000 4.7 7.000 6.1
0.200 2.5 1.000 2.5	2.200 3.6 4.500 5.0 7.500 6.3 2.400 3.7 5.000 5.2 8.000 6.5
0.400 2.5 1.400 2.9	2.600 3.9 5.500 5.5 8.500 6.7
0.500 2.5 1.600 3.1 0.600 2.3 1.800 3.2	3.000 4.1 6.000 5.7 9.000 6.9 3.500 4.4 6.500 5.9 9.500 7.1
©198	82-2020 Innovyze

3e Consulting Engineers		Page 6
1st Floor Block C		
Holland Park		
Newcastle Upon Tyne NE2 4LD		Micco
Date 01/07/2020 15:43	Designed by fay.bentley	
File 2020.06.23 - MICRO DRAI	Checked by	Dialitacje
Micro Drainage	Network 2020.1	
Storage	Structures for Storm	
Poroug Car Park	Manhala, SD07 DS/DN, S1 001	
POIOUS Cal Park	Mannore: SP07, DS/PN: S1.001	
Infiltration Coefficient Base	e (m/hr) 0.00000 Width (m) 5.4	
Membrane Percolation	(mm/hr) 1000 Length (m) 11.1	
Max Percolatio Safety	Factor 2.0 Depression Storage (mm) 5	
P Invert Le	Porosity 0.30 Evaporation (mm/day) 3	
Porous Car Park	Manhole: SP08, DS/PN: S1.002	
Infiltration Coefficient Base Membrane Percolation	(m/hr) 0.00000 Width (m) 5.5 (mm/hr) 1000 Length (m) 16.8	
Max Percolatio	on (1/s) 25.7 Slope (1:X) 100.0	
Safety	Factor 2.0 Depression Storage (mm) 5	
Invert Le	evel (m) 9.980 Membrane Depth (mm) 0	
Tank or Pond Mar	nhole: SW ATT, DS/PN: S4.000	
Inv	vert Level (m) 9.500	
Deptn (m) Area (m ²) D	epth (m) Area (m ²) Depth (m) Area (m ²)	
0.000 85.5	0.600 85.5 0.601 0.0	
Porous Car Park	Manhole, SP11 DS/PN, S5 001	
Infiltration Coefficient Base	e (m/hr) 0.00000 Width (m) 5.4	
Membrane Percolation	(mm/hr) 1000 Length (m) 21.8	
Safety	Factor 2.0 Depression Storage (mm) 5	
P Invert Le	Porosity 0.30 Evaporation (mm/day) 3	
Porous Car Park	Manhole: SP12, DS/PN: S5.002	
Infiltration Coefficient Base	(m/hr) 0.00000 Width (m) 5.2 (mm/hr) 1000 Length (m) 11.0	
Max Percolatio	on (1/s) 15.9 Slope (1:X) 100.0	
Safety	Factor 2.0 Depression Storage (mm) 5 Perosity 0.30 Evaporation (mm/day) 3	
Invert Le	evel (m) 9.890 Membrane Depth (mm) 0	
Porous Car Park	Manhole: SW03, DS/PN: S1.005	
Infiltration Coefficient Base	(m/hr) 0.00000 Width (m) 5.1	
Max Percolation	Image: market for the second	
Safety	Factor 2.0 Depression Storage (mm) 5	
Invert Le	vel (m) 10.020 Membrane Depth (mm) 0	
	-	
©198	32-2020 Innovyze	

1st Eleer Plack C	Pa	ge 7
ISC FIOOL BLOCK C		
Holland Park		
Newcastle Upon Tyne NE2 4LD	M	irm
Date 01/07/2020 15:43 Designed by fay.bentley	n	
File 2020.06.23 - MICRO DRAI Checked by		anaye
Micro Drainage Network 2020.1	ŀ	
100 year Return Period Summary of Critical Results by Maximu	ım Leve	l (Rank
<u>1) for Storm</u>		
Simulation Criteria		
Areal Reduction Factor 1.000 Additional Flow - % of Total Flow Hot Start (mins) 0 MADD Factor * 10m³/ha Storage	v 0.000 e 2.000	
Hot Start Level (mm) 0 Inlet Coefficient	0.800	
Foul Sewage per hectare (1/s) 0.000	0.000	
Number of Input Hydrographs 0 Number of Offline Controls 0 Number of Time/Ar	ea Diagrar	ns O
Number of Online Controls 1 Number of Storage Structures 6 Number of Real Ti	me Control	ls O
Synthetic Rainfall Details		
Rainfall Model FSR M5-60 (mm) 16.000 Cv (Summer) 0.7 Region England and Wales Ratio R 0.269 Cv (Winter) 0.8	50 40	
	-	
Margin for Flood Risk Warning (mm) 300.0 Analysis Timestep 2.5 Second Increment (Extended)		
DTS Status ON		
Inertia Status ON		
Profile(s) Summer and Winter		
Return Period(s) (mins) 15, 30, 60, 120, 240, 360, 480, 960, 1440 100		
Climate Change (%) 40		
US/MH Return Climate First (X) First (Y) First (Z) Overflow	Water S Level	Surcharged
PN Name Storm Period Change Surcharge Flood Overflow Act.	(m)	Depth
		Depth (m)
S1.000 SP02 15 Winter 100 +40%	10.746	Depth (m) -0.054
S1.000 SP02 15 Winter 100 +40% S2.000 SRE2 15 Winter 100 +40% 100/15 Winter S2.001 SP03 15 Winter 100 +40% 100/15 Summer	10.746 11.712 11.298	Depth (m) -0.054 0.012 0.448
S1.000 SP02 15 Winter 100 +40% S2.000 SRE2 15 Winter 100 +40% 100/15 Winter S2.001 SP03 15 Winter 100 +40% 100/15 Summer S3.000 SP04 15 Winter 100 +40% 100/15 Summer	10.746 11.712 11.298 11.688	Depth (m) -0.054 0.012 0.448 0.188
S1.000 SP02 15 Winter 100 +40% S2.000 SRE2 15 Winter 100 +40% 100/15 Winter S2.001 SP03 15 Winter 100 +40% 100/15 Summer S3.000 SP04 15 Winter 100 +40% 100/15 Summer S3.001 SP05 15 Winter 100 +40% 100/15 Summer S3.001 SP05 15 Winter 100 +40% 100/15 Summer S2.002 SP06 15 Winter 100 +40% 100/15 Summer	10.746 11.712 11.298 11.688 11.012 10.756	Depth (m) -0.054 0.012 0.448 0.188 0.312 0.206
S1.000 SP02 15 Winter 100 +40% S2.000 SRE2 15 Winter 100 +40% 100/15 Winter S2.001 SP03 15 Winter 100 +40% 100/15 Summer S3.000 SP04 15 Winter 100 +40% 100/15 Summer S3.001 SP05 15 Winter 100 +40% 100/15 Summer S2.002 SP06 15 Winter 100 +40% 100/15 Summer S1.001 SP07 15 Winter 100 +40% 100/15 Summer	10.746 11.712 11.298 11.688 11.012 10.756 10.653	Depth (m) -0.054 0.012 0.448 0.188 0.312 0.206 0.203
S1.000 SP02 15 Winter 100 +40% S2.000 SRE2 15 Winter 100 +40% 100/15 Winter S2.001 SP03 15 Winter 100 +40% 100/15 Summer S3.000 SP04 15 Winter 100 +40% 100/15 Summer S3.001 SP05 15 Winter 100 +40% 100/15 Summer S2.002 SP06 15 Winter 100 +40% 100/15 Summer S1.001 SP07 15 Winter 100 +40% 100/15 Summer S1.002 SP08 360 Winter 100 +40% 100/15 Summer S1.003 SW01 360 Winter 100 +40% 100/15 Summer	10.746 11.712 11.298 11.688 11.012 10.756 10.653 10.267 10.265	Depth (m) -0.054 0.012 0.448 0.188 0.312 0.206 0.203 0.317 0.415
S1.000 SP02 15 Winter 100 +40% S2.000 SRE2 15 Winter 100 +40% 100/15 Winter S2.001 SP03 15 Winter 100 +40% 100/15 Summer S3.000 SP04 15 Winter 100 +40% 100/15 Summer S3.001 SP05 15 Winter 100 +40% 100/15 Summer S2.002 SP06 15 Winter 100 +40% 100/15 Summer S1.001 SP07 15 Winter 100 +40% 100/15 Summer S1.002 SP08 360 Winter 100 +40% 100/15 Summer S1.003 SW01 360 Winter 100 +40% 100/15 Summer S4.000 SWATT 360 Winter 100 +40% 100/15 Summer S4.001 SW04 260 Winter 100 +40% 100/15 Summer	10.746 11.712 11.298 11.688 11.012 10.756 10.653 10.267 10.265 10.264	Depth (m) -0.054 0.012 0.448 0.188 0.312 0.206 0.203 0.317 0.415 0.464 0.513
S1.000 SP02 15 Winter 100 +40% S2.000 SRE2 15 Winter 100 +40% 100/15 Winter S2.001 SP03 15 Winter 100 +40% 100/15 Summer S3.000 SP04 15 Winter 100 +40% 100/15 Summer S3.001 SP05 15 Winter 100 +40% 100/15 Summer S2.002 SP06 15 Winter 100 +40% 100/15 Summer S1.001 SP07 15 Winter 100 +40% 100/15 Summer S1.002 SP08 360 Winter 100 +40% 100/15 Summer S1.003 SW01 360 Winter 100 +40% 100/15 Summer S4.000 SW ATT 360 Winter 100 +40% 100/15 Summer S4.001 SW04 360 Winter 100 +40% 100/15 Summer S4.001 SW04 360 Winter 100 +40% 100/15 Summer S1.004 SW02 360 Winter 100 +40% 100/15 Summer	10.746 11.712 11.298 11.688 11.012 10.756 10.653 10.267 10.265 10.264 10.264	Depth (m) -0.054 0.012 0.448 0.312 0.206 0.203 0.317 0.415 0.464 0.513 0.464
S1.000 SP02 15 Winter 100 +40% S2.000 SRE2 15 Winter 100 +40% 100/15 Winter S2.001 SP03 15 Winter 100 +40% 100/15 Summer S3.000 SP04 15 Winter 100 +40% 100/15 Summer S3.001 SP05 15 Winter 100 +40% 100/15 Summer S2.002 SP06 15 Winter 100 +40% 100/15 Summer S1.001 SP07 15 Winter 100 +40% 100/15 Summer S1.002 SP08 360 Winter 100 +40% 100/15 Summer S1.003 SW01 360 Winter 100 +40% 100/15 Summer S4.000 SW ATT 360 Winter 100 +40% 100/15 Summer S4.001 SW04 360 Winter 100 +40% 100/15 Summer S1.004 SW02 360 Winter 100 +40% 100/15 Summer S5.000 SRE3 360 Winter 100 +40% 100/15 Summer S6 SRE3	10.746 11.712 11.298 11.688 11.012 10.756 10.653 10.267 10.265 10.264 10.264 10.264 10.264 10.271	Depth (m) -0.054 0.012 0.448 0.188 0.312 0.206 0.203 0.317 0.415 0.464 0.513 0.464 0.571 0.572
S1.000 SP02 15 Winter 100 +40% S2.000 SRE2 15 Winter 100 +40% 100/15 Winter S2.001 SP03 15 Winter 100 +40% 100/15 Summer S3.000 SP04 15 Winter 100 +40% 100/15 Summer S3.001 SP05 15 Winter 100 +40% 100/15 Summer S2.002 SP06 15 Winter 100 +40% 100/15 Summer S1.001 SP07 15 Winter 100 +40% 100/15 Summer S1.002 SP08 360 Winter 100 +40% 100/15 Summer S1.003 SW01 360 Winter 100 +40% 100/15 Summer S4.000 SW ATT 360 Winter 100 +40% 100/15 Summer S4.001 SW04 360 Winter 100 +40% 100/15 Summer S1.004 SW02 360 Winter 100 +40% 100/15 Summer S5.000 SRE3 360 Winter 100 +40% 100/15 Summer S6.001 SP10	10.746 11.712 11.298 11.688 11.012 10.756 10.653 10.267 10.265 10.264 10.264 10.264 10.271 10.272 10.271	Depth (m) -0.054 0.012 0.448 0.188 0.312 0.206 0.203 0.317 0.415 0.464 0.513 0.464 0.571 0.572 0.721
S1.000 SP02 15 Winter 100 +40% S2.000 SRE2 15 Winter 100 +40% 100/15 Winter S2.001 SP03 15 Winter 100 +40% 100/15 Summer S3.000 SP04 15 Winter 100 +40% 100/15 Summer S3.001 SP05 15 Winter 100 +40% 100/15 Summer S2.002 SP06 15 Winter 100 +40% 100/15 Summer S1.001 SP07 15 Winter 100 +40% 100/15 Summer S1.002 SP08 360 Winter 100 +40% 100/15 Summer S1.003 SW01 360 Winter 100 +40% 100/15 Summer S4.000 SW ATT 360 Winter 100 +40% 100/15 Summer S4.001 SW04 360 Winter 100 +40% 100/15 Summer S5.000 SRE3 360 Winter 100 +40% 100/15 Summer S6.001 SP10 360 Winter 100 +40% 100/15 Summer S6.001 SP10	10.746 11.712 11.298 11.688 11.012 10.756 10.265 10.265 10.264 10.264 10.264 10.271 10.272 10.271 10.269 10.267	Depth (m) -0.054 0.012 0.448 0.188 0.312 0.206 0.203 0.317 0.415 0.464 0.513 0.464 0.571 0.572 0.721 0.819 0.967
S1.000 SP02 15 Winter 100 +40% S2.000 SRE2 15 Winter 100 +40% 100/15 Winter S2.001 SP03 15 Winter 100 +40% 100/15 Summer S3.000 SP04 15 Winter 100 +40% 100/15 Summer S3.001 SP05 15 Winter 100 +40% 100/15 Summer S2.002 SP06 15 Winter 100 +40% 100/15 Summer S1.001 SP07 15 Winter 100 +40% 100/15 Summer S1.002 SP06 360 Winter 100 +40% 100/15 Summer S1.003 SW01 360 Winter 100 +40% 100/15 Summer S4.000 SW ATT 360 Winter 100 +40% 100/15 Summer S4.001 SW04 360 Winter 100 +40% 100/15 Summer S1.004 SW02 360 Winter 100 +40% 100/15 Summer S5.000 SRE3 360 Winter 100 +40% 100/15 Summer S6.001 SP10	$\begin{array}{c} 10.746\\ 11.712\\ 11.298\\ 11.688\\ 11.012\\ 10.756\\ 10.265\\ 10.265\\ 10.264\\ 10.264\\ 10.264\\ 10.264\\ 10.271\\ 10.272\\ 10.272\\ 10.272\\ 10.269\\ 10.267\\ 10.264\\ \end{array}$	Depth (m) -0.054 0.012 0.448 0.188 0.312 0.206 0.203 0.317 0.415 0.464 0.513 0.464 0.571 0.572 0.721 0.819 0.967 0.839
S1.000 SP02 15 Winter 100 +40% S2.000 SRE2 15 Winter 100 +40% 100/15 Winter S2.001 SP03 15 Winter 100 +40% 100/15 Summer S3.001 SP05 15 Winter 100 +40% 100/15 Summer S2.002 SP06 15 Winter 100 +40% 100/15 Summer S1.001 SP07 15 Winter 100 +40% 100/15 Summer S1.002 SP06 360 Winter 100 +40% 100/15 Summer S1.003 SW01 360 Winter 100 +40% 100/15 Summer S4.000 SW ATT 360 Winter 100 +40% 100/15 Summer S4.001 SW04 360 Winter 100 +40% 100/15 Summer S1.004 SW02 360 Winter 100 +40% 100/15 Summer S5.000 SRE3 360 Winter 100 +40% 100/15 Summer S6.001 SP10 360 Winter 100 +40% 100/15 Summer S6.001 SP11	$\begin{array}{c} 10.746\\ 11.712\\ 11.298\\ 11.688\\ 11.012\\ 10.756\\ 10.265\\ 10.264\\ 10.264\\ 10.264\\ 10.271\\ 10.272\\ 10.271\\ 10.272\\ 10.264\\ 10.264\\ 10.264\\ \end{array}$	Depth (m) -0.054 0.012 0.448 0.188 0.312 0.206 0.203 0.317 0.415 0.464 0.513 0.464 0.571 0.572 0.721 0.819 0.967 0.839
S1.000 SP02 15 Winter 100 +40% S2.000 SRE2 15 Winter 100 +40% 100/15 Winter S2.001 SP03 15 Winter 100 +40% 100/15 Summer S3.000 SP04 15 Winter 100 +40% 100/15 Summer S3.001 SP05 15 Winter 100 +40% 100/15 Summer S2.002 SP06 15 Winter 100 +40% 100/15 Summer S1.001 SP07 15 Winter 100 +40% 100/15 Summer S1.001 SP07 15 Winter 100 +40% 100/15 Summer S1.002 SP08 360 Winter 100 +40% 100/15 Summer S1.003 SW01 360 Winter 100 +40% 100/15 Summer S4.000 SWATT 360 Winter 100 +40% 100/15 Summer S1.004 SW02 360 Winter 100 +40% 100/15 Summer S1.004 SW02 360 Winter 100 +40% 100/15 Summer S6.001 SP10	10.746 11.712 11.298 11.688 11.012 10.756 10.265 10.264 10.264 10.264 10.264 10.271 10.272 10.271 10.269 10.267 10.264	Depth (m) -0.054 0.012 0.448 0.188 0.312 0.206 0.203 0.317 0.415 0.464 0.513 0.464 0.571 0.572 0.721 0.819 0.967 0.839
S1.000 SP02 15 Winter 100 +40% S2.000 SRE2 15 Winter 100 +40% 100/15 Summer S3.001 SP03 15 Winter 100 +40% 100/15 Summer S3.001 SP05 15 Winter 100 +40% 100/15 Summer S2.002 SP06 15 Winter 100 +40% 100/15 Summer S1.001 SP07 15 Winter 100 +40% 100/15 Summer S1.002 SP06 15 Winter 100 +40% 100/15 Summer S1.003 SW01 360 Winter 100 +40% 100/15 Summer S1.004 SW02 360 Winter 100 +40% 100/15 Summer S4.001 SW04 360 Winter 100 +40% 100/15 Summer S1.004 SW02 360 Winter 100 +40% 100/15 Summer S5.000 SRE3 360 Winter 100 +40% 100/15 Summer S6.001 SP10 360 Winter 100 +40% 100/15 Summer S5.002 SP12	10.746 11.712 11.298 11.688 11.012 10.756 10.265 10.265 10.264 10.264 10.264 10.264 10.271 10.272 10.277 10.269 10.264 10.264 20.271 20.271 20.264	Depth (m) -0.054 0.012 0.448 0.312 0.206 0.203 0.317 0.415 0.464 0.513 0.464 0.571 0.572 0.721 0.819 0.967 0.839
S1.000 SP02 15 Winter 100 +40% S2.000 SRE2 15 Winter 100 +40% 100/15 Summer S3.000 SP04 15 Winter 100 +40% 100/15 Summer S3.001 SP05 15 Winter 100 +40% 100/15 Summer S2.002 SP06 15 Winter 100 +40% 100/15 Summer S1.001 SP07 15 Winter 100 +40% 100/15 Summer S1.002 SP06 360 Winter 100 +40% 100/15 Summer S1.003 SW01 360 Winter 100 +40% 100/15 Summer S4.000 SW ATT 360 Winter 100 +40% 100/15 Summer S4.001 SW04 360 Winter 100 +40% 100/15 Summer S1.004 SW02 360 Winter 100 +40% 100/15 Summer S5.000 SRE3 360 Winter 100 +40% 100/15 Summer S6.001 SP10 360 Winter 100 +40% 100/15 Summer S1.005 SW03	10.746 11.712 11.298 11.688 11.012 10.756 10.265 10.264 10.264 10.271 10.272 10.271 10.269 10.267 10.264 evel cevel	Depth (m) -0.054 0.012 0.448 0.188 0.312 0.206 0.203 0.317 0.415 0.464 0.513 0.464 0.571 0.572 0.721 0.819 0.967 0.839
S1.000 SP02 15 Winter 100 +40% S2.000 SRE2 15 Winter 100 +40% 100/15 Summer S2.001 SP03 15 Winter 100 +40% 100/15 Summer S3.000 SP04 15 Winter 100 +40% 100/15 Summer S3.001 SP05 15 Winter 100 +40% 100/15 Summer S2.002 SP06 15 Winter 100 +40% 100/15 Summer S1.001 SP07 15 Winter 100 +40% 100/15 Summer S1.002 SP08 360 Winter 100 +40% 100/15 Summer S1.003 SW01 360 Winter 100 +40% 100/15 Summer S4.000 SW ATT 360 Winter 100 +40% 100/15 Summer S1.004 SW02 360 Winter 100 +40% 100/15 Summer S6.000 SP09 360 Winter 100 +40% 100/15 Summer S6.001 SP10 360 Winter 100 +40% 100/15 Summer S1.005 SW03	10.746 11.712 11.298 11.688 11.012 10.756 10.265 10.264 10.264 10.264 10.264 10.264 10.271 10.272 10.271 10.269 10.267 10.264 evel	Depth (m) -0.054 0.012 0.448 0.188 0.312 0.206 0.203 0.317 0.415 0.464 0.513 0.464 0.571 0.572 0.721 0.819 0.967 0.839
S1.000 SP02 15 Winter 100 +40% S2.000 SR22 15 Winter 100 +40% 100/15 Winter S2.001 SP03 15 Winter 100 +40% 100/15 Summer S3.000 SP04 15 Winter 100 +40% 100/15 Summer S3.001 SP05 15 Winter 100 +40% 100/15 Summer S2.002 SP06 15 Winter 100 +40% 100/15 Summer S1.001 SP07 15 Winter 100 +40% 100/15 Summer S1.002 SP08 360 Winter 100 +40% 100/15 Summer S1.003 SW01 360 Winter 100 +40% 100/15 Summer S4.001 SW04 360 Winter 100 +40% 100/15 Summer S1.004 SW02 360 Winter 100 +40% 100/15 Summer S6.001 SP10 360 Winter 100 +40% 100/15 Summer S5.001 SP11 360 Winter 100 +40% 100/15 Summer S1.005 SW03	10.746 11.712 11.298 11.688 11.012 10.756 10.265 10.265 10.264 10.264 10.264 10.271 10.272 10.271 10.269 10.264	Depth (m) -0.054 0.012 0.448 0.312 0.206 0.203 0.317 0.415 0.464 0.513 0.464 0.571 0.572 0.721 0.819 0.967 0.839
S1.000 SP02 15 Winter 100 +40% S2.000 SRE2 15 Winter 100 +40% 100/15 Summer S3.000 SP04 15 Winter 100 +40% 100/15 Summer S3.001 SP05 15 Winter 100 +40% 100/15 Summer S2.002 SP06 15 Winter 100 +40% 100/15 Summer S1.001 SP07 15 Winter 100 +40% 100/15 Summer S1.002 SP08 360 Winter 100 +40% 100/15 Summer S4.000 SW ATT 360 Winter 100 +40% 100/15 Summer S4.001 SW04 360 Winter 100 +40% 100/15 Summer S1.004 SW02 360 Winter 100 +40% 100/15 Summer S5.000 SRE3 360 Winter 100 +40% 100/15 Summer S5.001 SP11 360 Winter 100 +40% 100/15 Summer S1.005 SW03 360 Winter 100 +40% 100/15 Summer S1.005 SW03 360 Wi	10.746 11.712 11.298 11.688 11.012 10.756 10.653 10.267 10.264 10.264 10.264 10.264 10.271 10.272 10.271 10.269 10.267 10.264 evel seeded	Depth (m) -0.054 0.012 0.448 0.188 0.312 0.206 0.203 0.317 0.415 0.464 0.513 0.464 0.571 0.572 0.721 0.819 0.967 0.839
S1.000 SP02 15 Winter 100 +40% S2.000 SRE2 15 Winter 100 +40% 100/15 Winter S3.001 SP03 15 Winter 100 +40% 100/15 Summer S3.001 SP05 15 Winter 100 +40% 100/15 Summer S3.001 SP05 15 Winter 100 +40% 100/15 Summer S1.001 SP07 15 Winter 100 +40% 100/15 Summer S1.002 SP06 360 Winter 100 +40% 100/15 Summer S1.003 SW01 360 Winter 100 +40% 100/15 Summer S4.000 SW ATT 360 Winter 100 +40% 100/15 Summer S4.001 SW04 360 Winter 100 +40% 100/15 Summer S6.000 SP09 360 Winter 100 +40% 100/15 Summer S6.001 SP13 360 Winter 100 +40% 100/15 Summer S5.002 SP12 360 Winter 100 +40% 100/15 Summer S1.005 SW03	10.746 11.712 11.298 11.688 11.012 10.756 10.265 10.265 10.264 10.264 10.264 10.264 10.271 10.272 10.271 10.269 10.269 10.264 evel seeded	Depth (m) -0.054 0.012 0.448 0.188 0.312 0.206 0.203 0.317 0.415 0.464 0.513 0.464 0.571 0.572 0.721 0.819 0.967 0.839
S1.000 SP02 15 Winter 100 +40% S2.000 SP24 15 Winter 100 +40% 100/15 Summer S3.001 SP03 15 Winter 100 +40% 100/15 Summer S3.001 SP04 15 Winter 100 +40% 100/15 Summer S3.001 SP05 15 Winter 100 +40% 100/15 Summer S1.001 SP07 15 Winter 100 +40% 100/15 Summer S1.002 SP08 360 Winter 100 +40% 100/15 Summer S1.002 SP08 360 Winter 100 +40% 100/15 Summer S4.000 SW ATT 360 Winter 100 +40% 100/15 Summer S1.004 SW02 360 Winter 100 +40% 100/15 Summer S5.000 SRE3 360 Winter 100 +40% 100/15 Summer S6.001 SP10 360 Winter 100 +40% 100/15 Summer S1.001 SP11 360 Winter 100 +40% 100/15 Summer S1.005 SW03	10.746 11.712 11.298 11.688 11.012 10.756 10.265 10.264 10.264 10.264 10.264 10.271 10.272 10.271 10.269 10.267 10.264	Depth (m) -0.054 0.012 0.448 0.312 0.206 0.203 0.317 0.415 0.464 0.513 0.464 0.571 0.572 0.721 0.819 0.967 0.839

3e Consulting Engineers		Page 8
1st Floor Block C		
Holland Park		
Newcastle Upon Tyne NE2 4LD		Micro
Date 01/07/2020 15:43	Designed by fay.bentley	Dcainago
File 2020.06.23 - MICRO DRAI	Checked by	Diamage
Micro Drainage	Network 2020.1	

100 year Return Period Summary of Critical Results by Maximum Level (Rank 1) for Storm

	US/MH	Flooded Volume	Flow /	Overflow	Half Drain Time	Pipe Flow		Level
PN	Name	(m³)	Cap.	(l/s)	(mins)	(1/s)	Status	Exceeded
S4.000	SW ATT	0.000	0.08			4.1	SURCHARGED	
S4.001	SW04	0.000	0.07			3.4	SURCHARGED	
S1.004	SW02	0.000	0.02			4.5	FLOOD RISK	
S5.000	SRE3	0.000	0.11			1.9	FLOOD RISK	
S6.000	SP09	0.000	0.14			1.0	SURCHARGED	
S6.001	SP10	0.000	0.24			1.7	SURCHARGED	
S5.001	SP11	0.000	0.22		178	3.9	FLOOD RISK	
S5.002	SP12	0.000	0.27		162	4.3	FLOOD RISK	
S1.005	SW03	0.000	0.03		235	2.7	FLOOD RISK	

Appendix B

4

● High ● Medium ● Low ○ Very low ◆ Location you selected

Online EA Flood Maps – Surface Water Flooding

Extent of flooding from reservoirs

Maximum extent of flooding 🔶 Location you selected

Online EA Flood Maps – Reservoir Flooding

Online EA Flood Maps – River Flooding