Remediation Statement Appendix K

CHP Investigation, former Albright and Wilson Works, Whitehaven Cumbria

12 February 2009 Final

Issue No 3 49308165 MARP0002

Project Title:	Remediation Statement Appendix K
Report Title:	CHP Investigation, former Albright and Wilson Works, Whitehaven Cumbria
Project No:	49308165
Report Ref:	MARP0003
Status:	Final – Issue 3
Client Contact Name:	Tom Dutton, John Moorhouse
Client Company Name:	Rhodia UK Limited
Issued By:	URS Corporation Ltd. 4th Floor, St James Building 61-95 Oxford Street Manchester M1 6EJ United Kingdom

Document Production / Approval Record

Issue No: 1	Name	Signature	Date	Position
Prepared by	Paula Marshall		10 February 2009	Environmental Scientist
Checked by	Selena Pearce		12 February 2009	Technical Director
Approved by	Tammy Sullivan		12 February 2009	Associate Director

Document Revision Record

Issue No	Date	Details of Revisions
1	20 June 2008	Final – Original issue
2	19 January 2009	Final – Including further work
3	10 Feb 2009	Final – Client comments

LIMITATION

URS Corporation Limited (URS) has prepared this Report for the sole use of Rhodia UK Limited in accordance with the Agreement under which our services were performed. No other warranty, expressed or implied, is made as to the professional advice included in this Report or any other services provided by us. This Report may not be relied upon by any other party without the prior and express written agreement of URS. Unless otherwise stated in this Report, the assessments made assume that the sites and facilities will continue to be used for their current purpose without significant change. The conclusions and recommendations contained in this Report are based upon information provided by others and upon the assumption that all relevant information has been provided by those parties from whom it has been requested. Information obtained from third parties has not been independently verified by URS, unless otherwise stated in the Report.

Where field investigations have been carried out, these have been restricted to a level of detail required to achieve the stated objectives of the services. The results of any measurements taken may vary spatially or with time and further confirmatory measurements should be made after any significant delay in using this Report.

Where assessments of works or costs required to reduce or mitigate any environmental liability identified in this Report are made, such assessments are based upon the information available at the time and are subject to further investigations or information, which may become available. Costs may therefore vary outside the ranges quoted. No allowance has been made for changes in prices or exchange rates or changes in any other conditions, which may result in price fluctuations in the future. Where assessments of works or costs necessary to achieve compliance have been made these are based upon measures which, in URS's experience, could normally be negotiated with the relevant authorities under present legislation and enforcement practice, assuming a pro-active and reasonable approach by site management.

COPYRIGHT

© This Report is the copyright of URS Corporation Limited. Any unauthorised reproduction or usage by any person other than the addressee is strictly prohibited.

CONTENTS

Sectio	n Page No)
EXEC	UTIVE SUMMARYI	
1.	INTRODUCTION1	
1.1. 1.2. 1.3.	General Introduction	
2.	SITE WORK AND FINDINGS	
2.1. 2.2. 2.3.	Preliminary Investigation	
3.	CONTROLLED WATERS RISK ASSESSMENT	
3.1. 3.2. 3.3. 3.4. 3.5. 3.6. 3.7. 3.8. 3.9.	Introduction.5Potential Sources5Potential Receptors5Potential Pathways5Screening Criteria6Source Concentration6Source Area7Source Migration to the Irish Sea7Risk Assessment Results9	
4.	CONCLUSIONS AND REMEDIATION ACTIONS 10	
4.1. 4.2.	Summary of remediation actions required due to the CHP oil spill	

FIGURES

APPENDIX A - PHOTOGRAPHIC RECORD

APPENDIX B - ANALYTICAL RESULTS

APPENDIX C - TRIAL PIT LOGS

EXECUTIVE SUMMARY

URS Corporation Limited (URS) was commissioned by Rhodia UK Limited (Rhodia) to carry out minor remedial works and further intrusive investigation, followed by a controlled waters risk assessment in the area of the former combined heat and power (CHP) plant on the former Albright & Wilson site (now owned by Rhodia) in Whitehaven, Cumbria.

In January 2008, an area of surface staining was identified on a concrete slab in the CHP plant area, which is understood to have been caused by a minor oil spill during the dismantling and demolition of the CHP plant in 2007.

The objectives of the work completed by URS were to investigate the oil staining in the CHP area, remove as much as possible from the concrete slab and to assess the associated risks to controlled waters from any remaining contamination associated with the CHP oil spill.

A site walkover was completed in January 2008 and in June 2008 stained material was removed from the top of the concrete slab and the slab was inspected. The concrete was found to be in good condition and there was no evidence to suggest that the oil spill had extended beyond the edge of the slab.

The second stage of site works was conducted in November 2008 and involved excavating four trial pits in the vicinity of the concrete slab to retrieve soil samples for laboratory testing. Evidence of hydrocarbon contamination was encountered in two trial pits and it cannot be ruled out that this is associated with the 2007 oil spill.

A controlled waters risk assessment was completed to assess the potential risks to the Irish Sea from the hydrocarbon impact that was encountered in the trial pits; however, no significant potential risks were identified. It is considered that further remedial action is not required in the CHP area to deal with the impact from the oil spill in 2007.

1. INTRODUCTION

1.1. General Introduction

URS Corporation Limited (URS) was commissioned by Rhodia UK Limited (Rhodia) to investigate the potential impacts of an oil spill that occurred in 2007 in the area of the former combined heat and power (CHP) plant on the former Albright & Wilson site (now owned by Rhodia) in Whitehaven, Cumbria. The location of the Rhodia/former Albright and Wilson site is presented in Figure 1.

This report details the works carried out, which were completed in accordance with the Site Remediation Statement, which has been approved by the Environment Agency. The report will act as Appendix K of the Remediation Statement.

1.2. Project Background

The Rhodia site was designated by Copeland Borough Council as statutory "Contaminated Land" under Part 2A of the Environmental Protection Act 1990. The entire site was subsequently declared a "Special Site" and is now regulated by the Environment Agency.

URS has undertaken a variety of investigations on the site dating back to 1995. The site was divided into "Plots" and each plot was subject to intrusive investigation to identify potential contamination issues. The CHP area was not designated as a "plot", as per the draft remediation statement produced in 2006. Prior to the CHP plant operations in this area, it formed part of the cement production area. The main process areas associated with cement production were investigated as part of the Plot G investigations and no significant risks were identified.

Since 1995, Rhodia's operations at the site have ceased and URS understands that decommissioning of above ground structures is now complete. URS understands that after remediation and minimal site preparation is complete the site is proposed for use as public open space.

The CHP plant area is located in the south west of the Rhodia Site (see Figure 2). The plant operated between 2000 and 2004, after which it remained non-operational until it was decommissioned and demolished by Cogen in 2007.

During a site walkover undertaken by the Environment Agency and Copeland Borough Council in January 2008, an area of surface staining was identified on a concrete slab in the CHP plant area. URS understands that the staining was caused by a minor oil spill that occurred during the dismantling and demolition of the CHP plant. The Environment Agency subsequently requested that the extent and environmental significance of this staining be investigated in order to address the environmental risk as part of the Remediation Statement for the site.

The presently reported investigation within the CHP plant area is different to the previous investigations within the "plots" since it was designed to assess the extent of contamination caused by a spillage that had occurred after site operations had ceased.

1.3. **Project Objectives**

The objectives of the works in the CHP area were to investigate the oil staining, remove as much as physically possible from the concrete slab and to assess potential risks to controlled waters from any remaining contamination associated with the CHP oil spill.

2. SITE WORK AND FINDINGS

2.1. Preliminary Investigation

A preliminary walkover was undertaken by URS on 23 January 2008 to assess the scope of work for an investigation in the former CHP plant area. Free phase oil product was not observed although there was some minor surface staining and a sheen on puddles present on the concrete slab. The stained materials were restricted to a small amount of demolition-related debris and soil on top of the concrete hardstanding. A photograph from this visit is presented in Appendix A.

Given that the materials affected by the spill were easily identifiable due to obvious staining, it was proposed that the impacted material be removed and the area validated by visual inspection, photographic record, and, if appropriate the collection of soils samples for total petroleum hydrocarbon (TPH) analysis if the spill were found to extend beyond the edge of the concrete hardstanding.

2.2. Minor Remedial Works – June 2008

Following the preliminary investigation URS attended the site in June 2008 to perform minor remedial works in the CHP area.

The concrete slab underlying the area of the former CHP plant was covered in places by a thin layer of soil (no more than 50mm thick) comprising light brown sandy silt and gravel of red brick and concrete. Staining of the soil was identified in two separate areas on the concrete slab, each approximately 2m². Evidence of staining did not extend to soils beyond the edge of the concrete slab.

Soil samples from each stained area (CHP1 and CHP2) were collected and sent to a URS-approved subcontract laboratory (Alcontrol Geochem, Chester) for analyses for waste disposal purposes. The results of the analyses are presented in Appendix B.

Following sampling, the stained materials were removed from the concrete slab using an excavator with toothless ditching bucket and transferred to an on-site skip for disposal to a suitably licensed waste disposal facility. The volume removed was estimated at approximately 0.5m³.

The scraped concrete was inspected for cracks or other damage that may provide a pathway for contaminants to migrate to the underlying soils. The slab was found to be in good condition.

Photographs of the concrete slab from before and after removal of the stained soils are presented in Appendix A.

2.3. Soil Sampling – November 2008

2.3.1. Site Works

An additional phase of verification works was completed to assess the source-pathwayreceptor linkages in the event that hydrocarbon contamination had migrated from the slab to the surrounding soils. Visual evidence from the site visits indicated that this had probably not occurred.

Four trial pits (TP1, TP2, TP4 and TP6) were advanced to depths of between 0.4m and 3.0m below ground level (bgl) around the edge of the concrete slab. Trial pit TP1 was located next to the concrete slab at a point where the spill appeared to have extended closest to the edge of the slab.

Soil samples were collected from the trial pits along with two surface samples (SS1 and SS2) from the top of the concrete slab. Trial pit and sample locations are shown on Figure 2 and the trial pit logs are provided in Appendix C.

The soil samples were submitted to a URS-approved laboratory (Alcontrol Geochem of Chester) for TPH (total petroleum hydrocarbon), BTEX (benzene, toluene, ethyl benzene and xylene) and one sample (TP2, 2mbgl) for VOC (volatile organic compound) analysis. The analytical results from the June and November investigations are presented in Appendix B.

2.3.2. Ground Conditions

Made ground (comprising gravelly clay, silt, gravel and cobbles) was encountered to depths of up to 2.3mbgl. The base of the made ground was not proven in two locations (TP2 and TP4) to depths of up to 2.0mbgl. In each case the trial pit was terminated within a low-permeability horizon.

Natural soils comprising firm to stiff clay were encountered in two locations (TP1 and TP6) from depths of 2.3mbgl and 1.2mbgl respectively. A deep borehole (BH101) drilled approximately 30m from the CHP area in a previous investigation, determined this low permeability horizon of clay to be over 2.5m thick, underlain by low permeability dolomitic limestone of the St. Bees Evaporites.

There was no visual or olfactory evidence of hydrocarbon contamination in trial pits TP4 or TP6. Evidence of contamination encountered in trial pits TP1 and TP2 is as follows:

- Hydrocarbon odour within clay made ground at TP1, 0.4mbgl. A sample of this material was submitted for laboratory chemical analysis.
- Strong hydrocarbon odour within cobbles at TP2 in places between depths of 0.4mbgl and 2.0mbgl. A sample of clay from beneath the impacted cobbles was submitted for laboratory chemical analysis. It was not possible to sample the cobbles.

2.3.3. Analysis Results

The chemical analysis results are given in the laboratory certificates provided in Appendix B. No samples contained BTEX or MTBE concentrations above the detection limit of the analysis method. The VOC concentrations in the one sample tested (TP2, 2mbgl) were all below the method detection limit.

The TPH results from both the June and November investigations and percentage composition are tabulated in Appendix B and summarised in the table below.

Date	June 08	June 08	Nov 08	Nov 08	Nov 08	Nov 08	Nov 08	Nov 08
Sample	CHP1	CHP2	SS1	SS2	TP1	TP1	TP2	TP6
Sample Origin	Fror	n top of o	concrete	slab	From	trial pits	s around	edge
Depth (m)	GL	GL	GL	GL	0.4	3.0	2.0	0.2
TOTAL ALIPHATICS	18000	18000	290	5000	550	1.3	98	31
TOTAL AROMATICS	5500	5700	88	1400	180	ND	5.1	3.1
TOTAL TPH	23000	24000	380	6400	730	1.3	100	34
Total aliphatics (%)*	75	74	75	79	74	98	99	91
Total aromatics (%)*	24	24	23	22	25	0	5	9

Table 1 - Summary of TPH Results

Table Notes:NDNot detected (i.e. below detection limit of analytical method)**Not all percentage calculations add up to exactly 100%

The highest total TPH concentration (24,000mg/kg) was recorded in surface sample CHP2 removed from the concrete slab in June 08. The majority (>75%) of this TPH was due to the aliphatic component with approximately 40% of the total due to the C16 to C21 aliphatic fraction alone.

The second highest total TPH concentration (6400mg/kg) was recorded in surface sample SS2, taken from the concrete slab in November 2008. The majority (>78%) of this TPH was also due to aliphatic fractions with more than 43% of the total TPH concentration due to the C16 to C21 aliphatic fraction.

For below surface soil samples, the highest total TPH concentration (730mg/kg) was recorded in trial pit TP1 at a depth of 0.4mbgl. The percentage speciation of the TPH detected in this sample bore close similarity to surface sample SS2. A deeper sample from trial pit TP1 (3mbgl) contained a significantly lower TPH concentration of 1.3mg/kg and all the recorded TPH was due to aliphatic fractions.

The second highest TPH concentration in the trial pit samples was 100mg/kg in a clay sample from TP2 (2.0mbgl), taken from beneath a layer of cobbles containing a hydrocarbon odour (it was not possible to sample the cobbles). The sample comprised 98% aliphatics, with 53% of the total due to aliphatic fraction C16 to C21.

Whilst unsupported by visual evidence on site, there is still a possibility that the spillage during decommissioning and demolition works in 2007 was not restricted to the surface of the concrete slab in the CHP area. A further risk assessment has therefore been undertaken for controlled waters under the Part 2A determination for this site. This is discussed further in Section 3.

3. CONTROLLED WATERS RISK ASSESSMENT

3.1. Introduction

The risks to the Irish Sea from TPH contamination identified in the soils around the concrete slab have been assessed in a controlled waters risk assessment using the URS 3A/3B detailed modelling process that has been used elsewhere on the site in previous investigations.

This risk assessment adopts the methodology utilised in the Plot D Controlled Waters Risk Assessment as detailed in the report entitled Additional Site Investigation: Plot D, Plot F and Plot G (REF: 49308127/MARP0003).

3.2. Potential Sources

The hydrocarbon residue remaining on the concrete slab is not of significant volume and isolated from the surrounding ground. This material is therefore not considered to be a potential source.

Whilst unlikely, it is possible that the TPH identified within trial pits around the edge of the slab could be derived from the 2007 spillage. Therefore the TPH encountered in TP1 and TP2 is considered as the source for this risk assessment.

3.3. Potential Receptors

It should be noted that there is no statutory requirement to investigate pollutant linkages to human health under Part 2A as the determination relates to controlled waters receptors only.

A route to Sandwith Beck via overland flow or shallow groundwater is not considered likely given the distance to the receptor, the lack of a continuous shallow groundwater table, and the low permeability of the shallow soils.

The potential controlled waters receptor considered in this assessment is therefore the Irish Sea.

3.4. Potential Pathways

As for the site specific risk assessments previously undertaken by URS, the risk-driving pathway has been determined as leaching of contaminated soil horizons into pore water, followed by the vertical migration through low permeability drift, and then low permeability dolomitic limestone (the uppermost horizons of the St. Bees Evaporite sequence). This is followed by the entry of contamination into the underlying void network within the St. Bees Evaporite sequence. There is no evidence of voids being present in this area; however, in order to be conservative, it has been assumed that these voids are present beneath the CHP plant. Once in the void network, the contamination has been assumed to be incorporated into a stream network, and follow a rapid pathway towards the Irish Sea.

3.5. Screening Criteria

There are currently no published screening criteria for TPH in coastal waters; therefore, as a highly conservative approach, the UK Drinking Water Standard for TPH of $10\mu g/l$ has been used as the screening value to assess potential risks at the receptor.

3.6. Source Concentration

From concentrations of each hydrocarbon fraction in soil, simulated pore water concentrations have been calculated using published or site-derived values of bulk density, porosity (water and air filled), fraction of organic carbon, H (Henry's Law constant), and K_{OC} (partition coefficient).

In Section 3.2, the impacted material remaining on top of the concrete slab has been discounted as a potential source; however, as a conservative approach to the risk assessment we have considered the potential risks from this material rather than the impacted soils encountered in the trial pits. Consequently the highest TPH concentrations from the surface samples taken in November 2008 (results for sample SS2) have been used to simulate pore water concentrations. The soil concentrations for the surface and trial pit samples are compared in the table below.

Hydrocarbon Fraction	Soil Concentration (mg/kg)				
	SS2	TP1, 0.4m			
C5-C6 ALIPHATIC	ND	ND			
>C6-C8 ALIPHATIC	ND	ND			
>C8-C10 ALIPHATIC	0.41	0.8			
>C10-C12 ALIPHATIC	0.96	1.8			
>C12-C16 ALIPHATIC	960	110			
>C16-C21 ALIPHATIC	2800	300			
>C21-C35 ALIPHATIC	1300	130			
C6-C7 AROMATIC	ND	ND			
>C7-C8 AROMATIC	ND	ND			
>C8-EC10 AROMATIC	0.62	1.2			
>C10-EC12 AROMATIC	1.4	2.8			
>C12-EC16 AROMATIC	130	25			
>C16-EC21 AROMATIC	610	88			
>C21-EC35 AROMATIC	650	64			

Table 2 - Soil Concentrations used to generate Pore water Concentrations

Table Notes:

ND Concentration not detected above the method detection limit of the method

The simulated pore water concentrations generated using concentrations from SS2 are given in the table below.

Hydrocarbon Fraction	Soil Concentration in SS2 (mg/kg)	Кос	H.	UK DWS for TPH (μg/l)	Simulated Pore water Concentration (µg/l)
C5-C6 ALIPHATIC	ND	794	33	10	
>C6-C8 ALIPHATIC	ND	3981	50	10	
>C8-C10 ALIPHATIC	0.41	31623	80	10	1.9
>C10-C12 ALIPHATIC	0.96	251189	120	10	0.6
>C12-C16 ALIPHATIC	960	5011872	520	10	29
>C16-C21 ALIPHATIC	2800	6.3.E+08	4.9.E+03	10	0.7
>C21-C35 ALIPHATIC	1300	7.6.E+09	2.0.E+04	10	0.03
C6-C7 AROMATIC	ND	1000	0.230	10	
>C7-C8 AROMATIC	ND	1259	0.270	10	
>C8-EC10 AROMATIC	0.62	1585	0.480	10	57
>C10-EC12 AROMATIC	1.4	2512	0.140	10	82
>C12-EC16 AROMATIC	130	5012	0.053	10	3852
>C16-EC21 AROMATIC	610	1.58E+04	1.30E-02	10	5736
>C21-EC35 AROMATIC	650	1.26E+05	6.70E-04	10	770

Table 3 - Simulated Pore Water Concentrations

Table Notes:

ND Concentration not detected above the method detection limit of the method

The highest calculated pore water concentration is $5736\mu g/l$ and is for the C16-C21 aromatic TPH fraction. This value was taken forward into the risk assessment model, described below.

3.7. Source Area

The concrete slab covers an area of approximately 20m by 15m, which results in a source area of approximately 160m² (see Figure 2). URS has assumed that the source area is the area from the edge of the concrete slab to 2m beyond it on all sides. Taking into account the visual observations on site, the distance any surface spill would have been likely to travel and the actual source concentration encountered in the trial pits, it is considered that a distance of 2m from the edge of the slab is extremely conservative.

3.8. Source Migration to the Irish Sea

Since pore water migrates vertically from the made ground into the underlying drift and consolidated horizons, the rate at which it migrates is controlled by the permeability of the strata. The presence of low permeability silt and dolomitic limestone is likely to be the reason for the existence of water in shallow horizons.

The hydraulic conductivity values for dolomitic limestone were used to determine a typical discharge rate through the limestone out of the source zone (and subsequently into the presumed void area), using Darcy's Law. Once in the evaporite voids, the "contaminant flux" of the C16 to C21 Aromatic TPH fraction (source zone discharge x source zone concentration) was determined.

The 3B model (dilution from infilitrating clean rainwater on the St.Bees Sandstone) was then applied to generate a concentration at the coastline.

The modelling calculations are presented in the table below.

Stage	Description	Value	Units
	Discharge out of Dolomitic Evaporites		
1	Hydraulic Conductivity of dolomite, Kh*	1.00E-09	m/s
	Vertical Hydraulic Conductivity of dolomite, Kv	1.00E-10	m/s
	Hydraulic gradient, I **	1.41	no units
	Size of Source Area	160	m²
	Discharge, Q	2.26E-08	m ³ /sec
	Discharge, Q	2	litres/day
	Contaminant Flux passing out of source zone		
2	Concentration of TPH adopted in model***	5736	μg/litre
2	Discharge, Q	2	litres/day
	Flux	28290	µg/day
	Effective Rainfall		
3	Rainfall	0.003	m/day
	Infiltration	7.5	%
	Effective Rainfall	2.20E-04	m/day
	Discharge Contribution from St. Bees Sandstone		
	Length of catchment	300	m
1	Width of catchment	12.6	m
4	Effective Rainfall	2.20E-04	m/day
	Discharge	1	m ³ /day
	Discharge	834	litres/day
	Total discharge (sum of both areas)		
5	Source Discharge	2	litres/day
5	St. Bees Discharge	834	litres/day
	Discharge	836	litres/day
	Concentration of TPH C16-C21 AROMATIC at coast		
6	Flux from Source Area	28288	μg/day
0	Total Discharge	836	litres/day
	Concentration	13.4	μg/litre

Table 4 - Modelling Calculation

Table Notes

- Environment Agency R&D Publication 120 (Landsim manual).
- ** Hydraulic Gradient determined from measured "shallow" water level in the drift horizon, and "deep" water level in the evaporites, and the thickness of the dry low permeability dolomitic evaporites.
- *** TPH fraction aromatic C16 to C21 in the surface sample SS2

3.9. Risk Assessment Results

Using the maximum TPH concentrations encountered in surface sample SS2 and an area equivalent to the area reaching 2m beyond the concrete slab, the concentration of TPH fraction aromatic C16 to C21 at the coastline is calculated as 13.4μ g/l, which is slightly above the screening criteria for TPH of 10μ g/l (UK DWS).

The risk assessment described above is considered to be extremely conservative for the following reasons:

- The source concentration used is an order of magnitude above that measured in the soils around the edge of the concrete slab. This concentration is assumed to be present consistently over the whole of the assumed source area. It is considered unlikely that the concentration is this high and distributed consistently over such a large area.
- The assumed source area extends 2m from the edge of the concrete slab along all sides. Staining was not observed to extend beyond the edge of the slab. If oil from the 2007 spill had extended beyond the edge of the slab it is considered very unlikely to have reached 2m beyond the edge of the slab along all sides.
- The presence of a rapid pathway to the Irish Sea through voids beneath the CHP area is a conservative approach since there is no evidence of voids beneath the CHP area.
- The screening value is a Drinking Water Standard, which is applicable to potable water. The Irish Sea is not used for drinking and this standard is therefore highly conservative when considering risks to coastal waters.

When the risk modelling was repeated using the concentration found in TP1 of 88mg/kg for the C16 to C21 aromatic fraction, the simulated pore water concentration was calculated to be $827\mu g/l$. The resultant concentration of TPH fraction aromatic C16 to C21 modelled at the coastline is $1.9\mu g/l$, which is below the UK DWS of $10\mu g/l$ for TPH.

Considering the results of the modelling and the conservatism of the model, URS concludes that there are not likely to be potential risks to the Irish Sea from the residual TPH associated with the CHP oil spill in 2007. URS therefore considers that the spillage on the concrete slab in the CHP area that occurred during decommissioning and demolition in 2007 does not represent a significant risk to controlled waters.

4. CONCLUSIONS AND REMEDIATION ACTIONS

4.1. Summary of remediation actions required due to the CHP oil spill

The material on the concrete slab that was contaminated by the oil spill in 2007 was removed in June 2008. An insignificant volume of residue remained on the concrete which was too small to be removed with the plant and equipment used.

TPH concentrations above site background were identified in one trial pit on the northern side of the concrete slab and it cannot be discounted that this TPH is associated with the 2007 oil spill.

A risk assessment was performed using analysis results from a surface sample (a conservative approach), which did not identify any theoretical potential risks to the Irish Sea. It is therefore considered that remediation actions will not be necessary in the CHP area as a result of the 2007 oil spill.

4.2. Summary of remediation actions required due to Part 2A pollutant linkages identified for the overall site area

For regulatory purposes, Table 6 is presented to summarise the findings of the investigation and to demonstrate how each pollutant linkage listed by Copeland Borough Council in their determination of the site as statutory Contaminated Land has been dealt with in the CHP plant area, specifically in relation to contamination from the oil spill in 2007.

Copeland Borough Council Pollutant Linkage	Findings and Remediation Actions for CHP Oil Spill
Petroleum Hydrocarbons in soil, migrating from soil to groundwater (and through drains) impacting identified controlled waters receptor.	Materials affected by the oil spill have been removed. Residual hydrocarbons in the shallow soils surrounding the concrete slab possibly related to the CHP oil spill. A controlled waters risk assessment indicates that there is no significant pollutant linkage (no source).
Polycyclic Aromatic Hydrocarbons in soil, migrating from soil to groundwater and through drains impacting undefined controlled waters receptor.	No significant pollutant linkage (no significant source).
Surfactants in soil, migrating from soil to groundwater and through drains impacting undefined controlled waters receptor.	No significant pollutant linkage (no source).
Phosphates in soil, migrating from soil to groundwater and through drains impacting undefined controlled waters receptor.	No significant pollutant linkage (no source).

Table 6 – Summary of Remedial Actions

Copeland Borough Council Pollutant Linkage	Findings and Remediation Actions for CHP Oil Spill
Arsenic in soil, migrating from soil to groundwater and through drains impacting undefined controlled waters receptor.	No significant pollutant linkage (no source).
Boron in soil, migrating from soil to groundwater and through drains impacting undefined controlled waters receptor.	No significant pollutant linkage (no source).
Cadmium in soil, migrating from soil to groundwater and through drains impacting undefined controlled waters receptor.	No significant pollutant linkage (no source).
Chromium in soil, migrating from soil to groundwater and through drains impacting undefined controlled waters receptor.	No significant pollutant linkage (no source).
Copper in soil, migrating from soil to groundwater and through drains impacting undefined controlled waters receptor.	No significant pollutant linkage (no source).
Lead in soil, migrating from soil to groundwater and through drains impacting undefined controlled waters receptor.	No significant pollutant linkage (no source).
Mercury in soil, migrating from soil to groundwater and through drains impacting undefined controlled waters receptor.	No significant pollutant linkage (no source).
Nickel in soil, migrating from soil to groundwater and through drains impacting undefined controlled waters receptor.	No significant pollutant linkage (no source).
Selenium in soil, migrating from soil to groundwater and through drains impacting undefined controlled waters receptor.	No significant pollutant linkage (no source).
Zinc in soil, migrating from soil to groundwater and through drains impacting undefined controlled waters receptor.	No significant pollutant linkage (no significant source).
VOCs/ SVOCs in soil, migrating from soil to groundwater and through drains impacting undefined controlled waters receptor.	No significant pollutant linkage (no source).

Figures

Appendix A - Photographic Record

Appendix B - Analytical Results

Rhodia Whitehaven

CHP Investigation - Appendix K of Remediation Statement Appendix B1 - TPH Testing Results from June and November 2008 Investigations

			Analytical Results										
TPH Fraction	мы	Sample	CHP1	CHP2	SS1	SS2	TP1	TP1	TP2	TP3	TP5	TP6	TP7
	MIDE	Depth (m)	0.1	GL	GL	GL	0.4	3.0	2.0	1.5	0.4	0.2	0.5
		Units		Surface	Samples			Soil samples					
>C8-C10 ALIPHATIC	0.01	mg/kg	ND	ND	ND	0.41	0.8	ND	ND	ND	ND	ND	ND
>C10-C12 ALIPHATIC	0.01	mg/kg	ND	0.18	ND	0.96	1.8	ND	ND	ND	ND	ND	ND
>C12-C16 ALIPHATIC	0.1	mg/kg	1700	3100	2.1	960	110	0.32	13	1.6	3.6	2.1	8
>C16-C21 ALIPHATIC	0.1	mg/kg	10000	10000	83	2800	300	0.95	53	5.5	3.7	10	41
>C21-C35 ALIPHATIC	0.1	mg/kg	5500	4700	200	1300	130	ND	33	1.4	17	19	140
TOTAL ALIPHATICS (C5-C35)	0.1	mg/kg	18000	18000	290	5000	550	1.3	98	8.5	24	31	190
>EC8-EC10 AROMATIC	0.01	mg/kg	ND	ND	ND	0.62	1.2	ND	ND	ND	ND	ND	0.032
>EC10-EC12 AROMATIC	0.01	mg/kg	ND	0.27	ND	1.4	2.8	ND	ND	ND	ND	ND	ND
>EC12-EC16 AROMATIC	0.1	mg/kg	520	800	0.23	130	25	ND	0.26	ND	0.95	0.41	0.33
>EC16-EC21 AROMATIC	0.1	mg/kg	2600	3000	8.3	610	88	ND	3.5	ND	1.2	0.47	1.3
>EC21-EC35 AROMATIC	0.1	mg/kg	2400	1900	80	650	64	ND	1.3	ND	3.1	2.2	9.1
TOTAL AROMATICS (C6-C35)	0.1	mg/kg	5500	5700	88	1400	180	ND	5.1	ND	5.2	3.1	11
TPH (SUM													
ALIPHATICS&AROMATICS C5													
C35)	0.1	mg/kg	23000	24000	380	6400	730	1.3	100	8.5	29	34	200

Fractions not shown recorded less than detection limit in all samples

GL - Ground level

TPH (SUM

C35)

MDL - Method dection limit

ND - Not detected above the MDL

TPH Fraction >C8-C10 ALIPHATIC >C10-C12 ALIPHATIC >C12-C16 ALIPHATIC >C16-C21 ALIPHATIC >C21-C35 ALIPHATIC >C21-C35 ALIPHATICS (C5-C35) >EC8-EC10 AROMATIC >EC10-EC12 AROMATIC >EC10-EC21 AROMATIC >EC21-EC35 AROMATIC TOTAL AROMATICS (C6-C35)

ALIPHATICS&AROMATICS C5

* Result for aliphatic aromatic mix

	Percentage of TPH Concentration											
Sample	CHP1	CHP2	SS1	SS2	TP1	TP1	TP2	TP3	TP5	TP6	TP7	
Depth (m)	0.1	GL	GL	GL	0.4	3.0	2.0	1.5	0.4	0.2	0.5	
Units		Surface	Samples			Soil samples						
%				0.0	0.1							
%		0.0		0.0	0.2							
%	7.4	12.9	0.6	15.0	15.1	24.6	13.0	18.8	12.4	6.2	4.0	
%	43.5	41.7	21.8	43.8	41.1	73.1	53.0	64.7	12.8	29.4	20.5	
%	23.9	19.6	52.6	20.3	17.8		33.0	16.5	58.6	55.9	70.0	
%	78.3	75.0	76.3	78.1	75.3	100.0	98.0	100.0	82.8	91.2	95.0	
%				0.0	0.2						0.0	
%		0.0		0.0	0.4							
%	2.3	3.3	0.1	2.0	3.4		0.3		3.3	1.2	0.2	
%	11.3	12.5	2.2	9.5	12.1		3.5		4.1	1.4	0.7	
%	10.4	7.9	21.1	10.2	8.8		1.3		10.7	6.5	4.6	
%	23.9	23.8	23.2	21.9	24.7		5.1		17.9	9.1	5.5	
%	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	

ALcontrol Laboratories Analytical Services Sample Descriptions

Job Number:	08/09940/02/01
Client:	URS Corporation Limited
Client Ref :	49308165

Grain sizes

<0.063mm	Very Fine
0.1mm - 0.063mm	Fine
0.1mm - 2mm	Medium
2mm - 10mm	Coarse
>10mm	Very Coarse

Sample Identity	Depth (m)	Colour	Grain Size	Description	Batch
CHP1	0.1	Brown	0.1mm - 0.063mm	Silt with some Stones	1
CHP2	0.0	Dark Brown	0.1mm - 2mm	Sand with some Stones	1
TP601Z	1.0	Red	0.1mm - 0.063mm	Silty Clay with some Stones	1
TP602Z	0.7	Red	<0.063mm	Clay with some Stones	1

* These descriptions are only intended to act as a cross check if sample identities are questioned, and to provide a log of sample matrices with respect to MCERTS validation. They are not intended as full geological descriptions.

We are accredited to MCERTS for sand, clay and loam/topsoil, or any of these materials-whether these are derived from naturally occurring soil profiles, or from fill/made ground, as long as these materials constitute the major part of the sample.

Other coarse granular materials such as concrete, gravel and brick are not accredited if they comprise the major part of the sample. ¹ Sample Description supplied by client

Validated Preliminary	ALcontrol Laboratories Analytical Service Table Of Results								 [#] ISO 17 ^M MCEF * Subcost 	7025 accred RTS accred ntracted test	dited lited st
Job Number: Client: Client Ref. No.:	08/0994 URS Co 493081	40/02/01 orporatio 65	on Limit	ted	Matrix Locatio Client	: on: Contact	SOLID Not Spe Paula N	ecified Iarshall	» Showr	n on prev. 1	report
Sample Identity	CHP1	CHP2	TP601Z	TP602Z							
Depth (m)	0.1	0.0	1.0	0.7						Μ	_
Sample Type	SOLID	SOLID	SOLID	SOLID						etho	L0D
Sampled Date	02.06.08	02.06.08	02.06.08	02.06.08						od C	/Un
Sample Received Date	03.06.08	03.06.08	03.06.08	03.06.08						ode	its
Batch	1	1	1	1							
Sample Number(s)	1-2	3-4	5	6							
Total Organic Carbon	1.0	0.9	-	_						TM132 [#] _M	<0.2 %
pH Value	8.24	7.90	-	-						TM133 [#] _M	<1.00 pH Units

Validated 🗸 Preliminary	ALcontrol Laboratories Analytical Services Table Of Results									 [#] ISO 17025 accredited ^M MCERTS accredited * Subcontracted test » Shown on prev. report 		
Job Number:	08/0994	40/02/01			Matrix	•	SOLID		» Shown	n on prev. 1	report	
Client:	URS C	orporatio	on Limit	ed	Locatio	n:	Not Spe	ecified				
Client Ref. No.:	493081	65			Client	Contact	Paula N	/arshall				
	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,										1	
Sample Identity	CHP1	CHP2	TP601Z	TP602Z								
Depth (m)	0.1	0.0	1.0	0.7						Me	L	
Sample Type	SOLID	SOLID	SOLID	SOLID						tho	oD/	
Sampled Date	02.06.08	02.06.08	02.06.08	02.06.08						d C	Units	
Sample Received Date	03.06.08	03.06.08	03.06.08	03.06.08						ode		
Batch	1	1	1	1								
Sample Number(s)	1-2	3-4	5	6								
GRO (C4-C12)	<10	450	-	-						TM089	<10 ug/kg	
МТВЕ	<10	<10	-	-						TM089 [#]	<10 ug/kg	
Benzene	<10	<10	-	-						TM089 [#] _M	<10 ug/kg	
Toluene	<10	<10	-	-						TM089 [#] _M	<10 ug/kg	
Ethyl benzene	<10	<10	-	-						TM089 [#] _M	<10 ug/kg	
m & p Xylene	<10	<10	-	-						TM089 [#] _M	<10 ug/kg	
o Xylene	<10	<10	-	-						TM089 [#] _M	<10 ug/kg	
Aliphatics C5-C6	<10	<10	-	-						TM089	<10 ug/kg	
Aliphatics >C6-C8	<10	<10	-	-						TM089	<10 ug/kg	
Aliphatics >C8-C10	<10	<10	-	-						TM089	<10 ug/kg	
Aliphatics >C10-C12	<10	180	-	-						TM089	<10 ug/kg	
Aliphatics >C12-C16	1700000	3100000	-	-						TM173 [#]	<100 ug/kg	
Aliphatics >C16-C21	10000000	1000000	-	-						TM173 [#]	<100 ug/kg	
Aliphatics >C21-C35	5500000	4700000	-	-						TM173 [#]	<100 ug/kg	
Total Aliphatics C5-C35	18000000	18000000	-	-						TM61/89	<100 ug/kg	
Aromatics C6-C7	<10	<10	-	-						TM089	<10 ug/kg	
Aromatics >C7-C8	<10	<10	-	-						TM089	<10 ug/kg	
Aromatics >EC8-EC10	<10	<10	-	-						TM089	<10 ug/kg	
Aromatics >EC10-EC12	<10	270	-	-						TM089	<10 ug/kg	
Aromatics >EC12-EC16	520000	800000	-	-						TM173 [#]	<100 ug/kg	
Aromatics >EC16-EC21	2600000	3000000	-	-						TM173 [#]	<100 ug/kg	
Aromatics >EC21-EC35	2400000	1900000	-	-						TM173 [#]	<100 ug/kg	
Total Aromatics C6-C35	5500000	5700000	-	-						TM61/89	<100 ug/kg	
TPH (Aliphatics and Aromatics C5-C35)	23000000	24000000	-	-						TM61/89	<100 ug/kg	

Validated 🗸 Preliminary	ALcontrol Laboratories Analytical Services Table Of Results								 [#] ISO 17 ^M MCEF * Subcost 	 [#] ISO 17025 accredited ^M MCERTS accredited * Subcontracted test * Shown on prov. report 			
Job Number: Client: Client Ref. No.:	08/09940/02/01Matrix:URS Corporation LimitedLocation:49308165Client Contact:				SOLID Not Spe Paula N	ecified Iarshall	» Showr	n on prev. r	eport				
Sample Identity	CHP1	CHP2	TP601Z	TP602Z									
Depth (m)	0.1	0.0	1.0	0.7						Μ	_		
Sample Type	SOLID	SOLID	SOLID	SOLID						etho	_oD		
Sampled Date	02.06.08	02.06.08	02.06.08	02.06.08)d (/Un		
Sample Received Date	03.06.08	03.06.08	03.06.08	03.06.08						ode	its		
Batch	1	1	1	1									
Sample Number(s)	1-2	3-4	5	6									
трн с6-40	-	-	<10	<10						TM154 [#]	<10 mg/kg		

Validated Preliminary	ALcontrol Laboratories Analytical Services Table Of Results									 [#] ISO 17025 accredited ^M MCERTS accredited * Subcontracted test 		
Job Number:	08/0994	40/02/01			Matrix	:	SOLID		» Showr	n on prev. r	eport	
Client:	URS C	orporatio	on Limit	ted	Locatio	on:	Not Spe	ecified				
Client Ref. No.:	493081	65			Client Contact: Paula Mars		Iarshall					
Sample Identity	CHP1	CHP2	TP601Z	TP602Z								
Depth (m)	0.1	0.0	1.0	0.7						M	Ι	
Sample Type	SOLID	SOLID	SOLID	SOLID						etho	_0D,	
Sampled Date	02.06.08	02.06.08	02.06.08	02.06.08						od C	/Uni	
Sample Received Date	03.06.08	03.06.08	03.06.08	03.06.08						ode	lts	
Batch	1	1	1	1								
Sample Number(s)	1-2	3-4	5	6								
PAH by GCMS												
Naphthalene	120	120	-	-						$TM074^{\#}_{M}$	<10 ug/kg	
Acenaphthylene	870	1000	-	-						$TM074^{\#}_{M}$	<5 ug/kg	
Acenaphthene	3000	3100	-	-						$TM074^{\#}_{M}$	<14 ug/kg	
Fluorene	1400	3700	-	-						$TM074^{\#}_{M}$	<12 ug/kg	
Phenanthrene	2200	3000	-	-						$TM074^{\#}_{M}$	<21 ug/kg	
Anthracene	1200	5500	-	-						$TM074^{\#}_{M}$	<9 ug/kg	
Fluoranthene	2900	2800	-	-						$TM074^{\#}_{M}$	<25 ug/kg	
Pyrene	4600	5500	-	-						$TM074^{\#}_{M}$	<22 ug/kg	
Benz(a)anthracene	120	380	-	-						$TM074^{\#}_{M}$	<12 ug/kg	
Chrysene	1300	1600	-	-						$TM074^{\#}_{M}$	<10 ug/kg	
Benzo(b)fluoranthene	130	440	-	-						$TM074^{\#}_{M}$	<16 ug/kg	
Benzo(k)fluoranthene	<125	230	-	-						$TM074^{\#}_{M}$	<25 ug/kg	
Benzo(a)pyrene	79	210	-	-						$TM074^{\#}_{M}$	<12 ug/kg	
Indeno(123cd)pyrene	<55	210	-	-						$TM074^{\#}_{M}$	<11 ug/kg	
Dibenzo(ah)anthracene	<40	160	-	-						$TM074^{\#}_{M}$	<8 ug/kg	
Benzo(ghi)perylene	74	270	-	-						$TM074^{\#}_{M}$	<10 ug/kg	
PAH 16 Total	18000	28000	-	-						TM074 [#] _M	<25 ug/kg	

Validated 🗸 Preliminary	ALcontrol Laboratories Analytical Services Table Of Results								 ISO 17 M MCEF * Subcor 	 [#] ISO 17025 accredited ^M MCERTS accredited * Subcontracted test Shown on providement 			
Job Number: Client: Client Ref. No.:	08/09940/02/01Matrix:SOLIDURS Corporation LimitedLocation:Not Specified49308165Client Contact: Paula Marsha					ecified Iarshall	» Shown	i on prev. r	eport				
Sample Identity	CHP1	CHP2	TP601Z	TP602Z									
Depth (m)	0.1	0.0	1.0	0.7						М	_		
Sample Type	SOLID	SOLID	SOLID	SOLID						eth	LoD		
Sampled Date	02.06.08	02.06.08	02.06.08	02.06.08						od (/Un		
Sample Received Date	03.06.08	03.06.08	03.06.08	03.06.08						ode	its		
Bainpic Received Date	1	1	1	1						()			
Sample Number(s)	1-2	3-4	5	6									
PCBs (vs Aroclor 1254)	_	_	<35	<35						TM070 [#]	<35 ug/kg		

ALcontrol Laboratories Analytical Services Table Of Results - Appendix

Job Number: **Client: Client Ref. No.:**

08/09940/02/01 URS Corporation Limited 49308165

Report Kov .

Kepoi	It Key.		Results expressed as (e.g.) 1.03E -07 is equivalent to 1.03×10^{-7}
NDP	No Determination Possible	*	Subcontracted test
NFD	No Fibres Detected	»	Result previously reported (Incremental reports only)
#	ISO 17025 accredited	М	MCERTS Accredited
PFD	Possible Fibres Detected	EC	Equivalent Carbon (Aromatics C8-C35)

Note: Method detection limits are not always achievable due to various circumstances beyond our control.

Summary of Method Codes contained within report :

Summa	ry of Method Codes cont	tained within report :	ISC Acc	M(Acc	Sa W	Su
Method No.	Reference	Description) 17025 redited)ERTS redited	et/Dry mple 1	rogate rrected
TM070	Modified: US EPA Method 8250 & 625	Determination of Total Polychlorinated Biphenyls (PCB's) as Aroclor 1254 by GC-MS in Soils	~		DRY	
TM074	Modified: US EPA Method 8100	Determination of Polynuclear Aromatic Hydrocarbons (PAH) by GC-MS. MCERTS Accreditation on Soils for Naphthalene except when Kerosene present.	~		DRY	
TM074	Modified: US EPA Method 8100	Determination of Polynuclear Aromatic Hydrocarbons (PAH) by GC-MS. MCERTS Accreditation on Soils for Naphthalene except when Kerosene present.	~	~	DRY	
TM089	Modified: US EPA Methods 8020 & 602	Determination of Gasoline Range Hydrocarbons (GRO) and BTEX (MTBE) compounds by Headspace GC-FID (C4-C12)			WET	
TM089	Modified: US EPA Methods 8020 & 602	Determination of Gasoline Range Hydrocarbons (GRO) and BTEX (MTBE) compounds by Headspace GC-FID (C4-C12)	~		WET	
TM089	Modified: US EPA Methods 8020 & 602	Determination of Gasoline Range Hydrocarbons (GRO) and BTEX (MTBE) compounds by Headspace GC-FID (C4-C12)	~	~	WET	
TM132	In - house Method	ELTRA CS800 Operators Guide	~	~	DRY	
TM133	BS 1377: Part 3 1990	Determination of pH in Soil and Water using the GLpH pH Meter	~	~	WET	
TM154	In - house Method	Determination of Petroleum Hydrocarbons by EZ Flash GC-FID in the Carbon range C6- C40	~		WET	
TM173		Determination of Speciated Extractable Petroleum Hydrocarbons in Soils by GC-FID	~		DRY	
TM61/89		see TM061 and TM089 for details			WET	

ALcontrol Laboratories Analytical Services Table Of Results - Appendix

 Job Number:
 08/09940/02/01

 Client:
 URS Corporation Limited

 Client Ref. No.:
 49308165

Summary of Coolbox temperatures

Batch No.	Coolbox Temperature (°C)
1	7*C

Validated Preliminary	ALc	ontro	 ISO 1 M MCEI Subco 	 ISO 17025 accredited MCERTS accredited Subcontracted test Shown on previdence 							
Job Number:	08/174	14/02/01	l		Matrix: SOLID			» Snowi	1 on prev. 1	report	
Client:	URS C	orporation Lir		ted	Location:		RHODIA				
Client Ref. No.:					Client	Contact	:Niklas L	.ehto			
Sample Identity	SS1	SS2	TP1	TP1	TP2	TP6					
Depth (m)	0M	0M	0.4	3.0	2M	0.2				Z) and
Sample Type	SOLID	SOLID	SOLID	SOLID	SOLID	SOLID				etho	oD
Sampled Date	05.11.08	05.11.08	05.11.08	05.11.08	05.11.08	05.11.08				d C	/Un
Sample Received Date	07.11.08	07.11.08	07.11.08	07.11.08	07.11.08	07.11.08	n Berkennen of Sector	a		ode	its
Batch	2	2	2	2	2	2					
Sample Number(s)	7-9	10-12	13-15	16-18	19-21	28-30		ingene renteres cineças I			
GRO (C4-C12)	<10	3400	6600	<10	<10	<10		******		TM089	<10 ug/kg
MTBE	<10	<10	<10	<10	<10	<10		elizariazainariatutetetete 3 3	naangeer paraija n mari j }	TM089 [#]	<10 ug/kg
Benzene	<10	<10	<10	<10	<10	<10		un dan serenti menen mit		ТМ089 [#] м	<10 ug/kg
Toluene	<10	<10	<10	<10	<10	<10				ТМ089 [#] м	<10 ug/kg
Ethyl benzene	<10	<10	<10	<10	<10	<10			9	ТМ089 [#] м	<10 ug/kg
m & p Xylene	<10	<10	<10	<10	<10	<10				ТМ089 [#] м	<10 ug/kg
o Xylene	<10	<10	<10	<10	<10	<10				ТМ089 [#] м	<10 ug/kg
Aliphatics C5-C6	<10	<10	<10	<10	<10	<10				TM089	<10 ug/kg
Aliphatics >C6-C8	<10	<10	<10	<10	<10	<10				TM089	<10 ug/kg
Aliphatics >C8-C10	<10	410	800	<10	<10	<10				TM089	<10 ug/kg
Aliphatics >C10-C12	<10	960	1800	<10	<10	<10				TM089	<10 ug/kg
Aliphatics >C12-C16	2100	960000	110000	320	13000	2100				TM173 [#]	<100 ug/kg
Aliphatics >C16-C21	83000	2800000	300000	950	53000	10000	1			TM173 [#]	<100 ug/kg
Aliphatics >C21-C35	200000	1300000	130000	<100	33000	19000	į			TM173 [#]	<100 ug/kg
Total Aliphatics C5-C35	290000	5000000	550000	1300	98000	31000		minniminansian		TM61/89	<100 ug/kg
Aromatics C6-C7	<10	<10	<10	<10	<10	<10				TM089	<10 ug/kg
Aromatics >C7-C8	<10	<10	<10	<10	<10	<10				TM089	<10 ug/kg
Aromatics >EC8-EC10	<10	620	1200	<10	<10	<10				TM089	<10 ug/kg
Aromatics >EC10-EC12	<10	1400	2800	<10	<10	<10				TM089	<10 ug/kg
Aromatics >EC12-EC16	230	130000	25000	<100	260	410				TM173 [#]	<100 ug/kg
Aromatics >EC16-EC21	8300	610000	88000	<100	3500	470				TM173 [#]	<100 ug/kg
Aromatics >EC21-EC35	80000	650000	64000	<100	1300	2200	gan a de ananan ar sang an	angani minani mangi		TM173 [#]	<100 ug/kg
Total Aromatics C6-C35	88000	1400000	180000	<100	5100	3100	ana ina manana ana ana ana ana ana ana ana an			TM61/89	<100 ug/kg
TPH (Aliphatics and Aromatics C5-C35)	380000	6400000	730000	1300	100000	34000		ang kananakanakan kanan		TM61/89	<100 ug/kg
											anananananin i munimpoint
		nie mienie weine weine wie		mana is actors da a dama						nan inne posterstjement	nažiona in an ina ang
na na sana sa	a a internetian and			-	ana sy si mananananana	aia,					
lingen ingen open open in dem inder er med der er state ander son der son der son der son der son der son der s	manima in Company			Maanaanin danga web	uin antinantina sportant	ininan india antominada		nie wakasta na międzawa w	Santasan da mana é anan dan	nini ang mangina ang	ine is provide a company and
								pinasisteine soonnaa	n and a state of the		tan ininini na pana mana mana mana mana mana mana m
เกาะนี้ 1. และ เหมาะ เป็นสามารถสาวเป็นสามารถสาวเป็นสามารถ เป็นสามารถ เป็นสามารถ เป็นสามารถ เป็นสามารถ เป็นสามาร		994-14-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1						a in a contraction of the second		nna kásusztartortortortortortortortortortortortortor	n naira ania mary inana ana pinanana
			3								

All results expressed on a dry weight basis.

Date 11.02.2009

Validated 🗹 Preliminary	ALc	ontro	l Labo T	cal Services	 [#] ISO 17025 accredited ^M MCERTS accredited * Subcontracted test 						
Job Number: Client: Client Ref. No.:	08/174 URS C	14/02/01 orporatio	on Limi	ted	Matrix Locatio Client	: on: Contact	SOLID RHODIA Niklas Lehto	» Shown on prev. report			
Sample Identity	SS1	SS2	TP1	TP1	TP2	TP6					
Depth (m)	0M	0М	0.4	3.0	2M	0.2			M	jaaq	
Sample Type	SOLID	SOLID	SOLID	SOLID	SOLID	SOLID			etho	.oD	
Sampled Date	05.11.08	05.11.08	05.11.08	05.11.08	05.11.08	05.11.08			ě O	/Uni	
Sample Received Date	07.11.08	07.11.08	07.11.08	07.11.08	07.11.08	07.11.08			ode	its	
Batch	2	2	2	2	2	2					
Sample Number(s)	7-9	10-12	13-15	16-18	19-21	28-30		an in constant and a second			
Volatile Organic Com	pounds	222003300330370370330338								aran ana amin'ny fisiana amin'ny fisiana amin'ny fisiana amin'ny fisiana amin'ny fisiana amin'ny fisiana amin'	
Dichlorodifluoromethane	-	-	- ;		<4	- -			TM116 [#]	<4 ug/kg	
Chloromethane	-	-	-	-	<7	innerational anamar inte			TM116 [#]	<7 ug/kg	
Vinyl Chloride	-	-	-	- · · ·	<10	-			TM116 [#] _M	<10 ug/kg	
Bromomethane		•••		en in andre en andre 	<13	. - .	ni kasayyaka sasa saka > 1 mita mita in na i sasi wani manani in		TM116	<13 ug/kg	
Chloroethane	- :	,	·-	_	<14	- -			TM116 [#]	<14 ug/kg	
Trichlorofluoromethane	-	-	-	- :	<6	-			TM116 [#] M	<6 ug/kg	
trans-1-2-Dichloroethene	·-	-	·-		<11	•			TM116 [#]	<11 ug/kg	
Dichloromethane	-	-	-		<10	-			TM116 [#]	<10 ug/kg	
Carbon Disulphide	·- j		-	-	<7	-			ТМ116 [#] м	<7 ug/kg	
1.1-Dichloroethene		-		•	<10	-	**************************************		тм116 [#] м	<10 ug/kg	
1.1-Dichloroethane	-	-	• · · · ·	-	<8	-			TM116 [#] M	<8 ug/kg	
Methyl Tertiary Butyl Ether	-	-	-	-	<11	-			TM116	<11 ug/kg	
cis-1-2-Dichloroethene	-	-	-		<5	-			TM116 [#] M	<5 ug/kg	
Bromochloromethane	-	-	-	-	<14	-			TM116 [#]	<14 ug/kg	
Chloroform	-	-	-	-	<8	-			TM116 [#] M	<8 ug/kg	
2.2-Dichloropropane	-	-	-	-	<12	-			TM116	<12 ug/kg	
1.2-Dichloroethane	-	-		-	<5	-			TM116 [#]	<5 ug/kg	
1.1.1-Trichloroethane	-	-	-	-	<7	-			ТМ116 [#] м	<7 ug/kg	
1.1-Dichloropropene	-	-	- ;	-	<11	-			ТМ116 [#] м	<11 ug/kg	
Benzene	-	-	-	-	<9	-			ТМ116 [#] м	<9 ug/kg	
Carbontetrachloride	-	-	-	-	<14	-			ТМ116 [#] м	<14 ug/kg	
Dibromomethane	-	-	-	-	<9	-			TM116 [#]	<9 ug/kg	
1.2-Dichloropropane	-	-	-	-	<12	-			TM116 [#] M	<12 ug/kg	
Bromodichloromethane	-	-	-	-	<7	-			TM116 [#] M	<7 ug/kg	
Trichloroethene	-		-	-	<9	-			TM116 [#] M	<9 ug/kg	
cis-1-3-Dichloropropene	-	-	-	-	<14	-	4	TM116 [#] _M <		<14 ug/kg	
trans-1-3-Dichloropropene	-	-	-	-	<14	-	and the second		TM116 [#] M	<14 ug/kg	
1.1.2-Trichloroethane	-	-	-	-	<10				TM116 [#]	<10 ug/kg	
Toluene	-	-		-	<5			l	ТМ116 [#] м	<5 ug/kg	
1.3-Dichloropropane	-	-	-	-	<7	-			TM116 [#]	<7 ug/kg	

Date 11.02.2009

Validated Preliminary	ALc	ontro	l Labo T	orator Sable (ries An Of Re	nalytio sults	cal Services	 [#] ISO 17025 accredited ^M MCERTS accredited * Subcontracted test * Shown on previous report 					
Job Number: Client: Client Ref. No.:	08/174 URS C	14/02/01 orporati	l on Limi	ted	Matrix Locatio Client	: on: Contact	SOLID RHODIA Niklas Lehto	» Shown on prov. report					
Sample Identity	SS1	SS2	TP1	TP1	TP2	TP6							
Depth (m)	0M	0М	0.4	3.0	2M	0.2			Μ	janaj			
Sample Type	SOLID	SOLID	SOLID	SOLID	SOLID	SOLID			etho	oD			
Sampled Date	05.11.08	05.11.08	05.11.08	05.11.08	05.11.08	05.11.08			ă C	Ún.			
Sample Received Date	07.11.08	07.11.08	07.11.08	07.11.08	07.11.08	07.11.08			ode	ts			
Batch	2	2	2	2	2	2							
Sample Number(s)	7-9	10-12	13-15	16-18	19-21	28-30	in an ann an an ann ann an an an an an an						
Volatile Organic Com	pounds	(cont)			*****								
Dibromochloromethane	-	-	-		<13	-	. 		TM116 [#]	<13 ug/kg			
1.2-Dibromoethane	-	-	-	••••••••••••••••••••••••••••••••••••••	<12	-	• • • • • • • • • • • • • • • • • • •		TM116 [#]	<12 ug/kg			
Tetrachloroethene	-	-		-	<5	-			TM116 [#]	<5 ug/kg			
1.1.1.2-Tetrachloroethane	-	-	-	. .	<10	-			TM116 [#] M	<10 ug/kg			
Chlorobenzene	-	-	-	-	<5	. –	n ar naga na magananga sang panangangan na mang panangan na mang pang pang pang pang pang pang pang p		TM116 [#] M	<5 ug/kg			
Ethylbenzene	-	-	-		<4	-			TM116 [#]	<4 ug/kg			
p/m-Xylene	-	-	-	-	<14	-			TM116 [#]	<14 ug/kg			
Bromoform	-	-	-	-	<10	-			TM116 [#]	<10 ug/kg			
Styrene	-	-	-	-	<10	-			TM116 [#]	<10 ug/kg			
1.1.2.2-Tetrachloroethane	-	-	-	-	<10	-			TM116 [#]	<10 ug/kg			
o-Xylene	-	-	-	-	<10	-			TM116 [#]	<10 ug/kg			
1.2.3-Trichloropropane	-	-	-	-	<17	-			TM116 [#]	<17 ug/kg			
Isopropylbenzene	-	-	-	-	<5	-			TM116 [#]	<5 ug/kg			
Bromobenzene	-	-	-	-	<10	-			TM116 [#] M	<10 ug/kg			
2-Chlorotoluene	-	-	-	-	<9				TM116 [#]	<9 ug/kg			
Propylbenzene	-	-	-	-	<11	-			TM116 [#]	<11 ug/kg			
4-Chlorotoluene	-		-	-	<12	-			TM116 [#]	<12 ug/kg			
1.2.4-Trimethylbenzene	-	-	-	-	<9	-			TM116 [#]	<9 ug/kg			
4-Isopropyltoluene	-	-	-	-	<11	 		ine and the second	TM116 [#]	<11 ug/kg			
1.3.5-Trimethylbenzene	-	-	-	-	<8	-			TM116 [#]	<8 ug/kg			
1.2-Dichlorobenzene		-	-	-	<12	-			тм116 [#] м	<12 ug/kg			
1.4-Dichlorobenzene	-	-	-		<5	-	a na in antipani pangan na pana ina di minana ana	eren and a second s	ТМ116 [#] м	<5 ug/kg			
sec-Butylbenzene	-	-	-	-	<10	-	ana sa ana ang ang ang ang ang ang ang ang an		TM116 [#]	<10 ug/kg			
tert-Butylbenzene	-	- 	-	-	<12	-			TM116 [#]	<12 ug/kg			
1.3-Dichlorobenzene	اً. مربعہ میں	-	-	ndramoja in compressionad	<6	-			TM116 [#]	<6 ug/kg			
n-Butylbenzene	, -	-	-	-	<10	-			TM116 [#]	<10 ug/kg			
1.2-Dibromo-3-chloropropane	-	-	-	-	<14	-		and a second a second second	TM116 [#]	<14 ug/kg			
1.2.4-Trichlorobenzene	-	-	-	-	<6	-	-		TM116 [#]	<6 ug/kg			
Naphthalene	 	-	-		<13	-			TM116 [#]	<13 ug/kg			
1.2.3-Trichlorobenzene	-	-	-	-	<11	-			TM116 [#]	<11 ug/kg			

All results expressed on a dry weight basis.

Date 11.02.2009

Validated Preliminary	ALc	ontro	l Labo T	orator 'able (ties Au Of Re	nalytio sults	cal Services	 [#] ISO 17025 accredited ^M MCERTS accredited * Subcontracted test » Shown on prev. report 					
Job Number:	08/174	14/02/01	l		Matrix	e e	SOLID	» Show	n on prev.	героп			
Client:	URS C	orporati	on Limi	ted	Locatio)n:	RHODIA	DIA					
Client Ref. No.:		-			Client	Contact	t:Niklas Lehto	nto					
	1	1		<u> </u>		<u> </u>	T		1	ſ			
Sample Identity	SS 1	SS2	TP1	TP1	TP2	TP6							
Depth (m)	0M	0M	0.4	3.0	2M	0.2			M) Jacobia			
Sample Type	SOLID	SOLID	SOLID	SOLID	SOLID	SOLID			etho	oD,			
Sampled Date	05.11.08	05.11.08	05.11.08	05.11.08	05.11.08	05.11.08			Å	/Um			
Sample Received Date	07.11.08	07.11.08	07.11.08	07.11.08	07.11.08	07.11.08			ode	ts			
Batch	2	2	2	2	2	2							
Sample Number(s)	7-9	10-12	13-15	16-18	19-21	28-30							
Volatile Organic Com	pounds	(cont)											
Hexachlorobutadiene	-	-	-	-	<12	-			TM116 [#]	<12 ug/kg			
ala vivu yurvivu i varaa in shuarai maraanaa aadaa aa aa aa aa													
ator up consignation of coperation and in the second second second second second second second second second se		maninananinaninan											
an 100 it remandiration international international analysis and													

เกิดแล้งและเป็นการนี้และเหลือเหลือเป็นการเป็นการเป็นเหลือเหลือเหลือเหลือเหลือเหลือเหลือเหลือ										a a sa da damanda a sa a sa da da da da			
										والمراجعة والمراجع والمراجع والمراجع			
	monen de la institución			******			nimenonenenismetere eresteren eresteren eresteren eresteren eresteren eresteren eresteren eresteren eresteren e						
na n								-					
เหตุการการการการการการการการการการการการการก						*********							

		electronic de la constanción de la cons Constanción de la constanción de la cons			*****	••••••••••••••••••••••••							
สารร้างระรับระกับหลายสารสารสารสารสารสารสารสารสารสารสารสารสารส						****							
้. เกมาะกลุ่งการในการสองสุดที่สุดทางสามารถสามารถสามารถสามารถสามารถสามารถสามารถสามารถสามารถสามารถสามารถสามารถสามาร													
entimetina inaliana inaliana inaliana ana ana ana ana ana ana ana							anno a caracterica da ana parta da aquera a			a a si a			
ana a 1977 na 2011 an an ann an	inniono annio mari correit												
ะ การการการการการการการการการการการการการก	na kana ya ang majarang kana ng	i ya inan inayaharan wayooni											
ninenen der de erse beserieren sin en mennen minnen minnen minnen minnen minnen minnen minnen minnen minnen min		1	eises eises innen marianen ma	and the sector of the sector o			ana ana amin'ny tanàna amin'ny taona mandritra dia kaominina dia kaominina dia kaominina dia kaominina dia kaom	an a		anamata a simula a isang			
nian (in receipent analisis provinsi matematikan pana analasi provinsi provinsi pana analasi provinsi provinsi	•••••		n dan kan dan dan dan na										
La la construcción construcción de la construcción de la construcción de la construcción de la construcción de				Manalpan biytanaly anang tar ting a	ang inang sing na hanaking termenta	ijeneryt tijnyt is onteti gan. Mil	n den glen úr eiter skraveler stanskart sport vægt helfen har at veskelser heter skravester samset er opper det	Rimminen olympiken symmetry		nina jaro a dona ang main S			
สถารประเทศสารรรมของเป็น และรูปขึ้นรูปการได้การสารสารสารสารสารสารสารสารสารสารสารสารสา				/////						*****			
nie de steraine an de ser anne anne anne anne anne anne anne an	airmainean ann an airrig	e contration and a second s					anningaine chun ann i ceaigeannan		and the second second	n viça i «ç i ver navç a nav a			
				ainan primine a sina mining						ni sasa na			
		1998 (1997) - An		na si sumi mana si s	ranan ian soo an am ian soo am		nonnaiseannisea suinnanna sins cirse actaiseann impéraisea			เหตุสาราชการ์การการราช การเป็นการ			
	79	. 1 4 3	L.		i ya da da da kata kata siya d	ning gaing i		L	L	J			

-

Date 11.02.2009

Appendix C - Trial Pit Logs

BOREHOLE NUMBER: BH101 PAGE 1010 UPDE 1010 0 DRILLING DATES: 28.11.015.12.01 DRILLING DATES: 28.11.015.12.01 DRILLER: Norwest Holst BOREHOLE DIAMETER: 100mm DIRILLER: Norwest Holst BOREHOLE DIAMETER: 100mm DIRILLER: Norwest Holst BOREHOLE DIAMETER: 100mm CORE DBY: SNL SCREEN TYPE & DIAM. HDPE. 50mm OHECKED BY: JM SCREEN SLOT SIZE: 3mm 19% 0.5 19% 0.5 19% 0.5 19% 0.5 10.5 0.5 0.5 0.5 10.6 NO RECOVERY 10.7 0.5 10.8 0.5 10.7 Soft, brown slightly silty CLAY. 10.7 Soft, brown slightly silty CLAY. 10.7 5.5 10.7 5.5 10.7 5.5													1 10	
Did Build B							BO	REHOLE NUMBER: BH	101		P/	AGE	1 of 6	
Bigging Solution Solution BORLLER: Norwest Hoist BORLLER: 100mm LOGGED BY : SNL SCREEN TYPE & DIAMETER : 100mm CHECKED BY : JM SCREEN SLOT SIZE: 3mm 19% 0.0 DESCRIPTION COMMENTS 0.0 19% 0.0 MADE GROUND COMMENTS 0.0 19% 1.0 Soft, brown slightly silty CLAY. Top Boulder Clay 0.0 91% 1.1 Soft, brown slightly silty CLAY. Top Magnesian Linestone 0.0 91% FH102 Soft, brown slightly silty CLAY. Top Magnesian Linestone 0.0 91% FH102 Soft, brown slightly silty CLAY. Top Magnesian Linestone 0.0 91% FH102 Soft, brown slightly silty CLAY. Top Magnesian Linestone 0.0	CTIG		RQL				DR	ILLING DATES: 28.11.01-5.1	12.01	DRILLING	METHO	DS : 0	Core	
Store Store <th< td=""><td>H H H H H H H H H H H H H H H H H H H</td><td>(9</td><td>Ę</td><td>щ</td><td><u> </u></td><td>کو ا</td><td>DR</td><td>LLER : Norwest Holst</td><td></td><td>BOREHOL</td><td>e diame</td><td>TER</td><td>: 100mm</td><td></td></th<>	H H H H H H H H H H H H H H H H H H H	(9	Ę	щ	<u> </u>	کو ا	DR	LLER : Norwest Holst		BOREHOL	e diame	TER	: 100mm	
Q Q Q Q Q Q CHECKED BY : JM SCREEN SLOT SLZE: 3mm 19% 0.0 DESCRIPTION COMMENTS 0.0 <td< td=""><td>BOF NST</td><td>۲ (%</td><td>RA</td><td>ЧРГ</td><td>E </td><td>OLO</td><td>LOC</td><td>GGED BY : SNL</td><td></td><td>SCREEN 1</td><td>TYPE & D</td><td>DIAM:</td><td>HDPE, 50r</td><td>nm</td></td<>	BOF NST	۲ (%	RA	ЧРГ	E	OLO	LOC	GGED BY : SNL		SCREEN 1	TYPE & D	DIAM:	HDPE, 50r	nm
19% 0.0 DESCRIPTION COMMENTS 0.0 19% 0.5 NO RECOVERY 0.5 0.5 0.5 19% 0.5 MADE GROUND Cobbles of subangular red brick over concrete. 1.5 0.6 0.6 1.5 Soft, brown slightly silty CLAY. Top Boulder Clay Top Boulder Clay 1.5 3.6 91% FL10.2 ROD-58% Soft, brown slightly silty CLAY. Top Magnesian Limestone Top Boulder Clay 3.6 91% FL10.2 ROD-58% 5.5 Top Soft Top Boulder Clay Top Boulder Clay 91% FL10.2 ROD-58% Soft Top Boulder Clay Top Boulder Clay 3.6 91% FL10.2 ROD-58% Soft NVO 5.5		TCF	sci	SAN		ЭЮ	CHI	ECKED BY : JM		SCREEN S	SLOT SIZ	<u>′E:</u> 3r	mm	
19% NO RECOVERY 0.5 19% 0.5 MADE GROUND Cobbles of subangular red brick over concrete. 10 91% 1.5 Soft, brown slightly silty CLAY. Top Boulder Clay 15 91% Fi-10.2 Soft, brown slightly silty CLAY. Top Boulder 15 91% Fi-10.2 Soft, brown slightly silty CLAY. Top Boulder 15 91% Fi-10.2 Soft, brown slightly silty CLAY. Top Boulder 16 91% Fi-10.2 Soft, brown slightly silty CLAY. Top Boulder 16 91% Fi-10.2 Soft, brown slightly silty CLAY. Top Magnesian Limestone 5.6				c	0.0			DESCF	RIPTION			CC	MMENTS	0.0
19% 0.5 MADE GROUND Cobbles of subangular red brick over concrete. 1.0 1.0 91% 1.5 Soft, brown slightly silty CLAY. Top Boulder Clay Top Boulder Clay 1.5 91% 1.5 Soft, brown slightly silty CLAY. Top Boulder Clay 1.6 91% FI-10.2 RDD-8% 5.0 Top Soft, brown slightly silty CLAY. Top Magnesian Limestone 1.6					-		NC	D RECOVERY						-
19% 0.5 0.5 91% 1.0 MADE GROUND Cobbles of subangular red brick over concrete. 1.0 91% 1.5 Soft, brown slightly silty CLAY. Top Boulder Clay Top Boulder Clay 91% F-102 4.5 Soft, brown slightly silty CLAY. Top Boulder Clay 1.5 91% F-102 5.5 Soft, brown slightly silty CLAY. Top Boulder Clay 1.5 91% F-102 5.5 Soft, brown slightly silty CLAY. Top Magnesian Linestone Soft, brown slightly silty CLAY.	V// V//				-									_
19% MADE GROUND Cobbles of subangular red brick over concrete. 10 91% 1.5 Soft, brown slightly silty CLAY. Top Boulder Clay 2.0 2.5 3.0 3.0 3.5 3.6 91% Ft-10.2 5.5 Soft, brown slightly silty CLAY. Top Boulder Clay 91% Ft-10.2 5.5 NVO 5.5	V/Λ $V//$			C	0.5									0.5
91% Fi-10.2 ROD-58% Fi-10.2 5.5 Fi-10.2 5.5 Fi-10.2 5.5 Fi-10.2 5.5 Top Boulder Cobbles of subangular red brick over concrete. Top Boulder Clay Top Boulder Clay Top Boulder Clay Top Boulder Clay Top Boulder Clay Top Boulder Clay Top Boulder Clay Top Soft, brown slightly silty CLAY. Top Boulder Clay Top Soft, brown slightly silty CLAY. Top Soft, slightly s	V//x V///	19%			4	~~~								_
91% FI-102 ROD-58% Soft, brown slightly silty CLAY. Top Boulder Clay Top Boulder Clay Top Boulder Cla	V/X V//				4	MADE GROUND Cobbles of subangular red brick over concrete.								_
91% FI-102 RQD-58% 5.5 91% FI-102 8.5 91% FI-102 RQD-58% 5.5 91% FI-102 RQD-58% 5.5 91% FI-102 RQD-58% 5.5 91% FI-102 RQD-58% 5.5 91% FI-102 8.5 91% FI-102 91% FI-102 91% FI-102 91% FI-102 91% FI-102 9	V/A V//			1	1.0									1.0
91% FL02 Soft, brown slightly silty CLAY. Top Boulder Clay	V//x V///					\otimes								-
91% Fi-102 91% Fi-102 91% Fi-102 91% Fi-102 00 5.0 5.0 5.0 5.0 5.0 5.0 5.0	V/A V//			1	15	\bigotimes								15
Soft, brown slightly slity CLAY. Boulder Clay 2.0 2.0 2.5 2.5 3.0 3.0 3.0 3.5 3.5 3.5 4.0 4.5 4.5 5.0 5.0 5.0 5.5 NVO 5.5	V// V//	91%				<u>~~~</u>			A\/				D	1
91% Fi-102 ROD-58% 4.5 Top 5.5 Top Magnesian Limestone Top Magnesian Limestone NVO 5.5	V/X V//				-	===	SC	off, brown slightly slity CL	AY.			Bo	ulder	-
91% FI-102 ROD-56% 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	V/A V//			2	2.0	====							ау	2.0
91% FL10.2 RQD-58% 5.5 S.0 NVO 55-	V//x V//				-	===								
91% FI-10.2 RQD-58%	V/A V//				_	===								_
91% Fi-10.2 RQD-58% 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5	V/A V//			2	2.5	===								2.5
91% Fi-10.2 RQD-58% 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	V// V//				_	===								_
91% FI-10.2 91% FI-10.2 S.0 5.5 S.0 S.0 S.0 S.0 S.0 S.0 S.0 S.0	V/Λ $V//$				2 A T	===								30
91% Fi-10.2 RQD-58% 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	V//x V//				3.0 _	===								- 3.0
91% FI-10.2 RQD-58% 5.0 5.5 NVO 5.5	V/X V//				-	===								
91% FI-10.2 RQD-58%	V/A V//			3	3.5	===								3.5_
91% FI-10.2 RQD-58% 5.0 5.5 NVO 5.5	V//x V///					===								-
91% FI-10.2 RQD-58% FI-10.2 S.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5	V/A V//					===								-
91% FI-10.2 RQD-58% 5.0 5.5 NVO 5.5	V//x V//			4	4.0	===								4.0
91% FI-10.2 RQD-58% 4.5 5.0 5.0 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5	V/X V//				-	===								_
91% FI-10.2 RQD-58% 5.0 5.0 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5	V/A V//					===								
91% FI-10.2 RQD-58% 5.0 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5	V//x V///			4	4.5	===								4.5_
Magnesian 5.0 5.5 5.5 NVO 5.5	V// V//	91%	FI-10.2			<u>-</u> - 						То	р	
5.5 NVO 5.5	V// V//		1.40-30%	5	5.0							Ma	agnesian	5.0
5.5 NVO 5.5	V//X V//				_							Lin	nesione	-
NVO 5.5	V/A V//				_									_
	V//x V//			5	5.5							N\	/0	5.5
	V/A V//				-									-
	V/A V//				– –									-
	<u> </u>			6	0.U 				1			N\	/0	6.0
LOCATION / NOTES: LEGEND BOREHOLE LOG		LOCATION / NOTES:					м	LEGEND Disturbed Sample	Jah Titler E	BOREI	HOLE	LO	G	
Undisturbed Sample							Ň	Undisturbed Sample	JOD LITTLE: Deep Bo	prehole				
contamination	INVO - INO VISUAI OF OITACTORY EVIDENCE OF contamination						*	Headspace Analysis	Client: Rhodia	ven				
TCR-Total Core Recovery (%)	TCR-Total Core Recovery (%) FI-Fracture index						+	Down Borehole Analysis			App'd: JM		Date: 11.12.01	
RQD-Rock Quality Determinand (%)	RQD-Rock Q	FI-Fracture index RQD-Rock Quality Determinand (%)					1	Groundwater Table	TT	25	Drawn : SN	L	Ref:	
Perched Water Table		RQD-Rock Quality Determinand (%)					¥	Perched Water Table			Scale: As s	hown	Job No: 44557-0	21-787 LOG

30REHOLE VSTRUCTION	ર (%)	R AND RQD	APLE	(ш) НТ ^с	огоду	BOREHOLE NUMBER: BH101 DRILLING DATES: 28.11.01-5.12.01 DRILLER : Norwest Holst LOGGED BY : SNL	DRILLING M BOREHOLE SCREEN TY	PA IETHOD DIAME	GE 1 of 6 <u>S : Core</u> TER : 100mm IAM: HDPE, 5	0mm
COL	TCF	sci	SAN	DEF	ЭŬ	CHECKED BY : JM	OT SIZE	<u>=</u> : 3mm		
	⊢ 98% 100% 95%	0 FI-6.4 RQD-84% FI-18.0 RQD-0% FI-4.24 RQD-89%	<u>الا</u>			 Brown, moderately strong, slightly we medium silty DOLOMITE. Small veins 50mm) make up some 5%. These rainterconnect, and are partially minera calcite. Weak-very weak and friable within 2-and in some cases void density is manear fractures. Fractures sub-horizontal. Pale brown, strong, fresh fine DOLOI 10% made up of 2-12mm voids which interconnect. These contain some 10 mineralisation. Occasional 10-25mm bands of soft re (e.g. at 8.34m and 8.79m) appear to infilling of fractures from above. Fractures sub-horizontal. Some fractures show minor calcite means of the system of the	Altered fine- sathered fine- sand voids (5 rely lised with 4cm of fractuu inkedly increa MITE. Some do not 0% calcite ed clay be a result of ineralisation. th surface. esh fine micrit bands of grey sign of on. MITE. 5-10% eam within 2- n of dissolutio	res, sed	NVO	3 - 6.5 - 6.5 - 7.0 - 7.0 - 7.5 - 8.0 - 8.0 - 9.0 - 9.0 - 9.0 - 9.0 - 10.0 - 10.0 - 11.0 - 11.5 -
				-						
			1:	2.0					NVO	12.0
LO	CATION / I	NOTES:				LEGEND Disturbed Sample	BOREH	OLE	LOG	
NVO - NO VISUAI OF OFFACTORY EVIDENCE OF contamination TCR-Total Core Recovery (%) FI-Fracture index RQD-Rock Quality Determinand (%)						 Undisturbed Sample ★ Headspace Analysis ↓ Down Borehole Analysis ↓ Groundwater Table ↓ Perched Water Table 	haven	opp'd: JM Drawn : SNL Scale: As shi Drg. Size: A2	Date: 11.12.0 Ref: own Job No: 4455 4 BOREHO	1 7-021-787 LE LOG

NO N		0				BOREHOLE NUMBER: BH101		P/	AGE 1 of 6	
CTIC		RQL				DRILLING DATES: 28.11.01-5.12.01	DRILLING	METHO	DS : Core	
RU	(%)	Q	щ	E H	βG	DRILLER : Norwest Holst	BOREHOL	e diame	TER : 100mm	
BOF	R (%	R AI	MPL	ΡŢ	OLO	LOGGED BY : SNL	SCREEN T	TYPE & D	MAM: HDPE, 50)mm
0 C	TC	sc	SA	В	GE	CHECKED BY : JM	SCREEN S	SLOT SIZ	E: 3mm	
	100%	FI-3.2		-		Dark reddish-brown, strong, fresh silt	y DOLOMIT	E	COMMENTS	
		RQD-30%		-		with some 2% voids which only occas	sionally show	N		-
			1	- 12.5 _						12.5
				-		Most fractures sub-horizontal.				
						Very weak and very silty from 12.7m-	13.7m.			
			1	13.0 -						13.0
				-						-
			1	- 13.5 _						
				-		One vertical fracture noted from 13.7	-13.9m.			
				-						-
			1	14.0_					NVO	14.0
				-						-
<u> </u>				-		Becoming vellowish brown from 14.7	n.			14 5
				-		0,1				-
///////////////////////////////////////	100%	EL 4.5		-					T	-
\/////////////////////////////////////	100 /8	RQD-98%	1	15.0 _		Purple/reddish brown, very hard, fres	h BRECCIA		Brockram	15.0
///////////////////////////////////////				-		(20%), pale cream sandstone (40%)	e fine sandsi and purplish	tone		
				- 15 5		brown mudstone (40%). Clasts angu	lar-subround	ded,		15.5
V///////						equant-oblate. Matrix (50%): Purple fine-coarse wel	l-cemented		NVO	-
<i>\///////</i>				-		sandstone.	_			-
V///////	100%		1	_ 16.0		Fractures sub-horizontal, with no sigr mineralisation or dissolution.	i of		-	16.0
	100%	RQD-93%		-		UNCONFORMABLE UPON.		'	Whitehaven	-
V///////				-		Pinkish-purple, very strong, fresh, fin	SANDSTC	DNE.	Sandstone	-
\/////////////////////////////////////				- 10.5		foresets picked out by dark purple lar	ninations.			10.5 _
				-						-
V/////////////////////////////////////			1	- 17.0 _		runcation relationships indicate no li	iversion.			17.0
///////////////////////////////////////				-		Occasional tabular clast of dark purpl	e mudstone			
						No bioturbation.				-
///////////////////////////////////////			1						NVO	17.5_
				-		Fractures sub-nonzontal.				
///////////////////////////////////////			1	- 18.0		9mm layer of firm red-brown silty clay	at 16.91m.			
<u>LO(</u>	CATION / N	NOTES:			•••••	LEGEND	BOREI	HOLE	LOG	
						Disturbed Sample Job Title: Deep	Borehole			
INVO - INO VISUAI OF OFFACTORY EVIDENCE OF						Undisturbed Sample	haven			
contamination TCR-Total Core Recovery (%)						★ Headspace Analysis Client: Rhodia		App'd: IM	Date: 11 12 01	
FI-Fracture index RQD-Rock Quality Determinand (%)						Groundwater Table	DC	Drawn : SN	L Ref:	
	RQD-Rock Quality Determinand (%)					₽ Perched Water Table		Scale: As s	hown Job No: 44557	-021-787
1						-		Drg. Size: A	4 BOREHOL	E LOG

Z						BOREHOLE NUMBER: BH101		PAC	GE 1 of 6	
OLE		gD				DRILLING DATES: 28.11.01-5.12.01	DRILLING ME	THODS	S : Core	
H U N		<u> </u>	щ	E)	βGY	DRILLER : Norwest Holst	BOREHOLE D	IAMET	ER : 100mm	
30F NST	3 (%	A A	ИРL	PTH		LOGGED BY : SNL	SCREEN TYP	E & DIA	AM: HDPE, 50)mm
	TCF	sci	SA	DEI	Э́В	CHECKED BY : JM	SCREEN SLO	T SIZE	: 3mm	
///////////////////////////////////////				_				(COMMENTS	
				-						
				- 18.5 -						
	100%	FI-0.0		_						-
		RQD-100%		-		Purple-brown, very hard fresh CONG	LOMERATE.	/n		-
	100%	FI-4.3		19.0		mudstone, 10-40mm, often imbricated	d, tabulai biov 1.		Ton Coal	19.0
		RQD-86%		-		Matrix (60%): Cream-mottled purple,	medium- coars	ie,	Measures	-
				_ 19.5_		UNCONFORMABLE UPON		<i>i</i>		- 19.5
				_		Pinkish-purple, very strong, fresh, ma	ssive medium			-
				-		SANDSTONE. Foresets picked out b	y thin, dark	_		-
				20.0		No bioturbation.	ate no inversio	n.	NVO	20.0
				-		Occasional 1-4cm bands of pale gree	nish cream			-
				-		Joints mostly sub-horizontal. One su	b-vertical ioint			-
						noted.	,			20.5 _
				-						-
	95%	FI-0 RQD-100%		_ 21.0		Dark reddish-brown, moderately stror	ng, fresh			_ 21.0 _
	98%	FI-8.2		-		CONGLOMERATE.	unded tehuler	I		
		RQD-71%		-		10-15mm.	inded, labular,	/		
				21.5 		Matrix (70%): Purple-mottled cream,	medium-coars	e, /		21.5_
				-		Binkish purple very strong fresh me	dium	_/		-
				- 22.0		SANDSTONE.	ululli		NVO	22.0
				-		Becoming cream from 21.6-22.0m.	m 00 0			
				-		Thin-medium bedded, with bedding d	efined by			-
				22.5_		grainsize variations.				22.5
				-		Joints mostly sub-norizontal, occasion degrees.	hally at 45			-
	80%	EL 4 7		- - 23.0						23.0
///////////////////////////////////////	00 /0	RQD-36%				Red/cream, very strong, fresh CONG	LOMERATE.			-
				-		Clasts (40%): Dark reddish-brown mu	idstone. 2-			-
				_ 23.5_		Matrix (60%): Pale cream, mottled pu	rple medium-			23.5
				-		coarse well cemented sandstone.				
	83%	FI-10.6 BOD-26%								-
///////////////////////////////////////		1100 2070		24.0					NVO	24.0 —
LOC	CATION / I	NOTES:				LEGEND M Disturbed Sample	BOREHC	LE I	LOG	
						Undisturbed Sample	Borehole			
INVO - INO VISUAI OF OITACTORY EVIDENCE OF contamination						★ Headspace Analysis Client: Rhodia	aven			
TCR-Total Core Recovery (%) FI-Fracture index						Down Borehole Analysis	Арр	'd: JM	Date: 11.12.01	
RQD-Rock Quality Determinand (%)						Groundwater Table		wn : SNL	Ref:	
						Perched Water Table	Sca Drg	Size: As show	BOREHOL	-021-787 E LOG

N NO						BOREHOLE NUMBER: BH101		1	PAGE	1 of 6	
CTIG		ZQD				DRILLING DATES: 28.11.01-5.12.01	DRILLING	G METHO	ODS : O	Core	
RU RU	(9	<u> </u>	Щ	Ĩ	∑	DRILLER : Norwest Holst	BOREHO	LE DIAN	/IETER	R : 100mm	
BOF	۲ (%	R AI			OLO	LOGGED BY : SNL	SCREEN	TYPE &	DIAM	: HDPE, 50	mm
00	TCI	sc	SAI	2	В	CHECKED BY : JM	SCREEN	SLOT S	IZE: 3	mm	
						Brownish purple, very hard, fresh M	JDSTONE.		CC	DMMENTS	
						Occasional thin laminations of pale	reen mudst	one.			-
			24.			Becoming moderately hard with a gr 25.2m.	easy texture	e from			24.5
			25.			Becoming fissile, breaking into 10-20 25.7m.)mm slabs fi	rom			 25.0
			25.		Majority of fractures sub-horizontal. One sub-vertical. Occasional fractures 30 degrees from horizontal.						- - 25.5
						No bioturbation.					
			26.						N١	VO	26.0
											-
	99%	FI-14.2 RQD-23%	26.			Pale greenish-grey mottled purple, n fresh thinly laminated MUDSTONE.	noderately w	veak,			26.5
			27.			Very weak from 26.8-27.0m.					 27.0
V///////						Becoming moderately strong from 2	7.0m.				-
			27.			Majority of fractures sub-horizontal. fracture from 27.0-27.4m.	One vertica	I			27.5
	100%	FI-12.5 RQD-46%	28.			No bioturbation.				VO	28.0
						Thinly laminated, with dislocations in sediment deformation.	dicating soft	t			
			28.			No bioturbation.					28.5
			29.			Fractures mostly sub-horizontal. Oc degrees from horizontal.	casionally 3	0			29.0
(//////////////////////////////////////				Ī							
V///////			29.	₅ै							29.5
<i>\///////</i>											
V///////											
<u> </u>			30.						N\	VO	30.0
	LOCATION / NOTES:					LEGEND M Disturbed Sample	BORE	HOLI	E LO) G	
						Undisturbed Sample	o Borehole				
INVO - INO VISUAI OF OITACTORY EVIDENCE OF contamination						Headspace Analysis Client: Rhodia	enaven				
TCR-Total Co	TCR-Total Core Recovery (%) FI-Fracture index					+ Down Borehole Analysis		App'd: JM	N	Date: 11.12.01	
RQD-Rock Qu	RQD-Rock Quality Determinand (%)					Groundwater Table	RS	Drawn : S	SNL	Ref:	
						Perched Water Table		Scale: As Drg. Size	s shown e: A4	Job No: 44557-(BOREHOLE	21-787 LOG

, NO						BC	REHOLE NUMBER: BH1	101		P/	AGE	1 of 6	
CTIG		RQD				DR	ILLING DATES: 28.11.01-5.1	2.01	DRILLING	METHOD	DS : C	Core	
REH	(%	Q	щ	T (J	, DG	DR	ILLER : Norwest Holst		BOREHOL	e diame	METER : 100mm		
BOF NS'	R (%	R A	MPL	ЪТЧ	OLO	LOGGED BY : SNL SCREEN TYPE & D						HDPE, 50r	nm
Ö	TC	sc	SA	DE	В	CH	ECKED BY : JM		SCREEN SLOT SIZ			E: 3mm	
				-							co	MMENTS	-
V///////	1			-		15	mm bank of soft, dark gr	ey clay at 30).29m.				_
				30.5 _		30)mm band of soft, reddish	n brown silty	clay at				30.5
V///////	1			-		30).37m.						-
													-
V///////	1			- 31.0									- 1.0
V///////				-									
V///////	1			- 31.5									
\////////				-									-
V///////	1			-									-
											NV	0	32.0 _
V//////	1			-									-
				- 32.5									_ 32.5_
V///////	1			-									-
				-									-
V///////	1			33.0 									33.0
				-									-
V///////	1			_ 33.5_								0	
				-								0	_
V///////	1			-									-
///////////////////////////////////////				34.0_				Porobolo			-		34.0
				-			End of E	Sorenoie					_
				34 5 _									34 5
				-									_
				-									-
													35.0 _
				-									_
				- 30.0 -									- so.o -
				-									
				_ 36.0 _									36.0 _
LO	LOCATION / NOTES:						LEGEND		BORE	HOLE	LO	G	
						\times	Disturbed Sample	Job Title: Deep Bo	rehole				
INVO - INO VISUAI OF OTACTORY EVIDENCE OF						Undisturbed Sample	Location: Whitehay	/en					
contamination TCR-Total Core Recovery (%)					*	Headspace Analysis	Client: Rhodia		App'd: JM		Date: 11.12.01		
FI-Fracture in RQD-Rock Q	FI-Fracture index RQD-Rock Quality Determinand (%)					Ţ	Groundwater Table	TT	DC	Drawn : SN	L	Ref:	
						Ā	Perched Water Table			Scale: As sh	hown	Job No: 44557-0	21-787