JOB NAMECleator Moor Activity CentreJOB No.L2763DATEJuly '23

DRAINAGE STRATEGY

London Bradford 20 Britton Street, London, EC1M 5TX The Paper Hall, Anne Gate, Bradford BD1 4EQ

CONTENTS

1	INTRODUCTION	.1
2	EXISTING SITE DETAILS & PROPOSED DEVELOPMENT	.1
3	FLOOD RISK STATEMENT	.2
4	SURFACE WATER DRAINAGE	. 3
5	FOUL WATER DRAINAGE	. 5

SCHEDULE OF APPENDICES

- APPENDIX A ARCHITECTURAL INFORMATION
- APPENDIX B DRAINAGE DRAWINGS
- APPENDIX C LOCAL WATER AUTHORITY CONSULTATION & DOCUMENTS
- APPENDIX D GROUND INVESTIGATION EXTRACT / SOAKAWAY TEST RESULTS
- APPENDIX E HYDRAULIC SURFACE WATER CALCULATIONS
- APPENDIX F SuDS MAINTENANCE SCHEDULE

This report has been prepared for the sole benefit, use and information of Copeland Borough Council, for the purposes described and the liability of Furness Partnership Ltd. in respect of the information contained within the report will not extend to any third party.

REVISION	DATE	ISSUE STATUS	PREPARED BY	CHECKED BY
P1	26.07.23	FOR REVIEW	M.H	C.J.H

1 INTRODUCTION

- 1.1 This document has been prepared by Furness Partnership and sets out the proposed drainage strategy for the redevelopment of Cleator Moor Activity Centre. This strategy should be read in conjunction with the following appended documentation:
 - Existing Site Plan: 10319-RL-XX-ZZ-DR-A-P0002_A3
 - Existing Topographical Survey: 5441_CTS 240522 214FD
 - Proposed Site Plan: 10319-RL-XX-ZZ-DR-A-P2002_DRAFT
 - Furness Partnership Existing / Proposed Impermeable Areas:
 - L2763-FUR-XX-XX-DR-D-0901 (P1)
 - L2763-FUR-XX-XX-DR-D-0902 (P2)
 - Furness Partnership Drainage Drawings:
 - L2763-FUR-XX-XX-DR-D-0911 (P2)
 - o L2763-FUR-XX-XX-DR-D-0921 (P2)
 - o L2763-FUR-XX-XX-DR-D-0931 (P1)
 - L2763-FUR-XX-XX-DR-D-0932 (P2)
 - United Utilities Pre-Planning Enquiry Response & Sewer Map Records
 - GEOL Ground Investigation / Falling Head Test Extract
 - Furness Partnership MicroDrainage Surface Water Hydraulic Calculations
 - Furness Partnership SuDS Maintenance Schedule

2 EXISTING SITE DETAILS & PROPOSED DEVELOPMENT

- 2.1 The existing site extends over an area of brownfield land off Backwyndham Street, Cleator Moor. The site currently comprises Cleator Moor Activity Centre with associated car parking and an all-weather pitch.
- 2.2 The total development area is approx. 0.75ha

Fig 2.1 – Site map showing approximate development boundary

2.3 Levels within the site fall gradually from east to west. Levels to the east of the activity centre are circa 86 m falling to circa 80m adjacent to the all-weather pitch to the west of the site.

2.4 The proposed development involves resurfacing the existing hardstanding/car parking areas and constructing a single storey extension to the existing activity centre to house a new fitness gym, multipurpose studio, and changing facilities. The all-weather pitch is to be retained and is not part of the proposed development.

3 FLOOD RISK STATEMENT

3.1 A Flood Risk Assessment has been carried out by GEOL Consultants, dated April 2023, and the reader is referred to this report for further details regarding the risk of flooding to the site. Conclusions from the report state that the site is not considered to be at significant risk from fluvial flooding as it lies wholly within a Zone 1 flood risk area. The site is also not considered to be at risk from tidal flooding, pluvial flooding, flooding from artificial sources of water (reservoirs, canals, etc.), groundwater flooding, or flooding from public sewers; and there are no records of any historical flooding. Provided a suitable drainage strategy is implemented to accommodate the increase in post-development impermeable area, the development will not have an adverse impact on any nearby watercourses, floodplains, and areas of flood storage capacity, nor will the development result in flooding of adjacent sites.

4 SURFACE WATER DRAINAGE

EXISTING

- 4.1 The existing site comprises a mixture of greenfield (parkland) and brownfield (buildings / car parking / hardstanding) land.
- 4.2 United Utilities asset plans show that there are several combined sewers within and adjacent to the site boundary. There is a 225mm United Utilities combined sewer in the site access road and a 375mm United Utilities combined sewer adjacent to the existing leisure centre. These two sewers connect at the site entrance and discharge into the 375mm diameter combined public sewer in Quarry Road.
- 4.3 A drainage survey has been carried out to confirm where the existing surface water from the site discharges to. The drainage survey shows that the existing site surface water drainage discharges into the 225mm United Utilities combined sewer within the site boundary.
- 4.4 The nearest watercourse is Nor Brook, 460 m to the north of the site boundary.
- 4.5 The existing impermeable area within the site boundary is approx. 2425 m².
- 4.6 The existing surface water discharge rate for a 1 in 1 year event (60minute event) has been calculated as 19.9 l/s for the 1 in 1-year return period (60minute event) acting over the existing impermeable area.

PROPOSED

- 4.7 The surface water discharge from the proposed development will be made up from the following elements:
 - Building Roof Area
 Paved A
 - Access Roads
- Paved Areas around new development
- Car Parking Bays
- 4.8 The total proposed impermeable area within the site boundary is approx. 5030 m².

Surface Water Discharge Hierarchy

- 4.9 The recommended surface water discharge hierarchy set out in the CIRIA SuDS Manual is to utilise soakaways, or infiltration as the preferred option, followed by discharging to an appropriate watercourse. If these options are not feasible then the final option is to discharge to an existing surface water sewer, followed by discharge into a combined public sewer.
- 4.10 In accordance with the surface water discharge hierarchy, soakaways were initially considered for the discharge of surface water from the new development. Falling head tests have been carried out across the site however they failed due to high groundwater levels. The groundwater on site has been measured at up to 0.12 m below ground level. This is not sufficient to provide at least 1m freeboard between the worst-case groundwater level and the underside of any soakaway structure. Soakaways are not therefore proposed for the discharge of surface water from the site.
- 4.11 If soakaways are not suitable the next step in the discharge hierarchy is to consider discharge into a watercourse. The closest watercourse is Nor Brook, 460 m to the north of the site boundary. Discharging directly into this watercourse is not economical or practical as it would require crossing significant portions of built-up, third-party land. Discharge into Nor Brook is not therefore proposed for the discharge of surface water from the site.
- 4.12 The next step in the discharge hierarchy is to discharge into a public surface water sewer, followed by discharge to a public combined sewer. A pre-development enquiry has been submitted to United Utilities to confirm whether they have any assets adjacent to the site boundary. Their response and asset maps are appended to this report. United Utilities have confirmed that the 225mm public combined sewer within the site is suitable to connect into provided the discharge rate is limited to a rate agreed with the Lead Local Flood Authority (LLFA) although not exceeding 34.1 l/s. Formal approval to connect into the public drainage network will be agreed with United Utilities through the submission of an S106 application.

SuDS Considerations

- 4.13 SuDS have been considered when producing this drainage strategy to provide effective surface water treatment and slow down the rate of surface water runoff in accordance with National Planning Policy recommendations and the North West SuDS Pro-Forma guidance. The following sustainable drainage systems have been considered:
 - Porous Pavement: Porous/permeable surfaces are proposed for the car park construction as they can provide an
 effective way to reduce the flow rate of surface water runoff and give the necessary 2-stage treatment required to
 remove hydrocarbons prior to discharge into the receiving water body.

• Detention Basin: A detention basin is proposed as there are sufficient landscaped areas within the site boundary, and they provide additional amenity benefits compared to underground storage tanks.

Simple Index Approach & Maintenance Schedule

- 4.14 In accordance with the CIRIA SuDS Manual, to deliver adequate treatment using SuDS, the selected SuDS components should have a total pollution mitigation index (for each contaminant type) that equals or exceeds the pollution hazard index (for each contaminant type).
- 4.15 The land usage and pollution hazard levels for the site are shown in Table 4.1.

Table 4.1 Pollution hazard indices for different land use classifications (CIRIA SuDS Manual)

Land Use	Pollution Hazard Level	Total Suspended Solids (TSS)	Metals	Hydrocarbons
Activity Centre Roof	Low	0.3	0.2	0.05
Car Parking Areas & Access Roads	Medium	0.7	0.6	0.7

4.16 The SuDS components used for treatment on the site and their mitigation indices are shown in Table 4.2.

Table 4.2 Indicative SuDS mitigation indices for discharges to surface waters (CIRIA SuDS Manual)

	Mitigation indices					
Land use to be treated	Type of SuDS treatment component	TSS	Metals	Hydrocarbons		
Activity Centre Roof	Detention Basin	0.5	0.5	0.6		
	Total	0.5	0.5	0.6		
Car Parking Areas & Access Roads	Permeable pavement	0.7	0.6	0.7		
	Detention Basin*	0.25	0.25	0.3		
	Total	0.95	0.85	1.0		
Car Parking Areas & Access Roads where permeable paving in not possible Proprietary Oil Separator - Designed & tested to BS EN858 to address eac contaminant types to acceptable levels for frequent events up to the 1 in return period, for inflow concentrations relevant to the contributing drainage						
	Detention Basin*	0.25	0.25	0.3		
	Total	>0.7	>0.6	>0.7		

* mitigation index reduced by 50% where it is combined in series with other components

- 4.17 As the total SuDS mitigation index ≥ pollution hazard index for each proposed land use within the site, the proposed treatment is sufficient.
- 4.18 Surface water runoff from external paved vehicular areas will be collected in trapped gullies/sumps and pass through a class 1 bypass separator to remove oils and silts in accordance with guidance set out in the CIRIA SuDS Manual.
- 4.19 A suitable maintenance plan for all SuDS features can be found in the Appendix and should be developed and implemented by the operator once the drainage proposals have been installed to ensure sufficient operation and treatment is maintained throughout the design life of the development.

Design Criteria

- 4.20 The surface water from the proposed development will discharge into the 225mm combined United Utilities combined sewer within the site boundary.
- 4.21 It is proposed that the development surface water discharge rate is limited to 4.6l/s (Qbar) for all rainfall events up to and including the 1 in 100-year return period in accordance with LLFA guidance.
- 4.22 A detention basin is proposed to accommodate all surface water discharge from the site and will have sufficient capacity to attenuate flows up to and including the 1 in 100-year return period plus a 40% allowance for climate change.
- 4.23 All private surface water drains will be designed and constructed in accordance with BS EN 752:2017 and Building Regulations Approved Document H.
- 4.24 A 10% increase in impermeable area has not been included to account for urban creep (i.e., future extensions & increased hardstanding areas). This is because the site is a commercial development, and any future expansion will be subject to additional planning approval which will ensure adequate drainage is provided.

5 FOUL WATER DRAINAGE

EXISTING

- 5.1 The existing site foul drainage infrastructure comprises sewage from the existing activity centre.
- 5.2 United Utilities asset plans show that there are several combined sewers within and adjacent to the site boundary. There is a 225mm United Utilities combined sewer in the site access road and a 375mm United Utilities combined sewer adjacent to the existing leisure centre. These two sewers connect at the site entrance and discharge into the 375mm diameter combined public sewer in Quarry Road.
- 5.3 A drainage survey has been carried out to confirm where the existing foul water from the site discharges to. The drainage survey shows that the existing site foul water drainage discharges into the 375mm United Utilities combined sewer within the site boundary.

PROPOSED

Discharge Method

5.4 A pre-development enquiry has been submitted to United Utilities to confirm whether they have any assets adjacent to the site boundary. Their response and asset maps are appended to this report. United Utilities have confirmed that the 225mm public combined sewer within the site is suitable to connect into and has sufficient capacity for the proposed development however it is proposed to keep the existing foul drainage connection point into the 375mm sewer instead. United Utilities have been contacted to confirm that this approach is acceptable. Formal approval to connect into the public drainage network will be agreed with United Utilities through the submission of an S106 application.

Design Criteria

- 5.5 The foul water from the proposed development will discharge into the 375mm combined public sewer within the site boundary (subject to United Utilities approval). If this is not acceptable then the existing site foul drainage will continue to discharge into the 375mm combined sewer and any new foul drainage will discharge into the 225mm diameter combined sewer within the site boundary.
- 5.6 New foul drains will be provided to serve all foul producing appliances within the proposed development. All drains will be designed in accordance with BS EN 752:2017 and Building Regulations Approved Document H.

APPENDIX A – ARCHITECTURAL INFORMATION

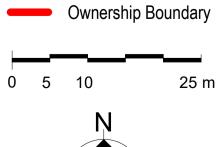
This line should measure 70mm when printed correctlyThis drawing is the copyright of Roberts Limbrick Ltd and
should not be reproduced in whole or in part or used in any
manner whatsoever without their written permission.Responsibility is not accepted for errors made by others in
scaling from this drawing. Use only figured dimensions and
report any discrepancies or omissions to the Architect
immediately.Rev DateBy Chk Description

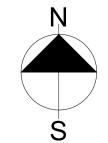
DRAFT

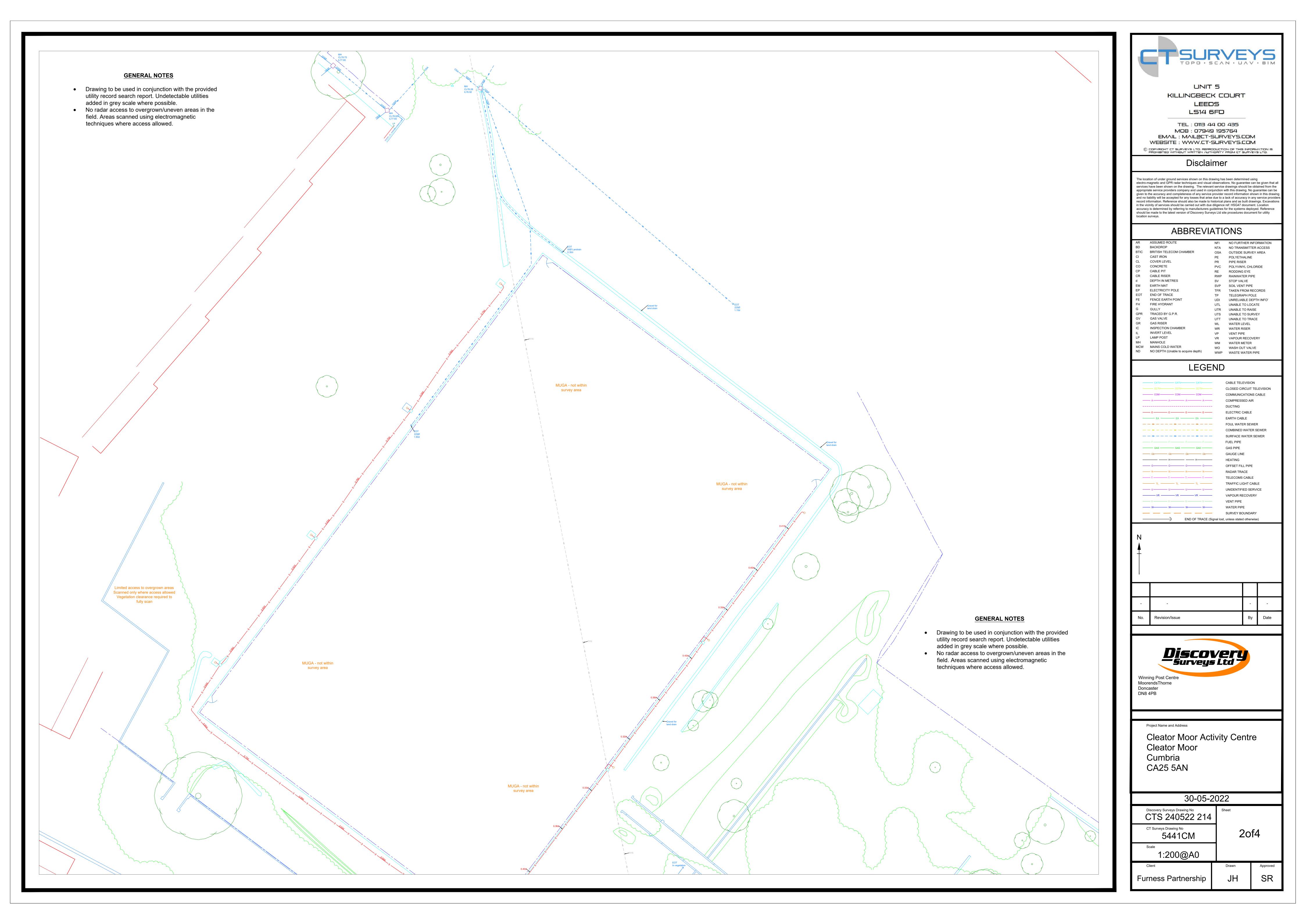
Roberts Limbrick

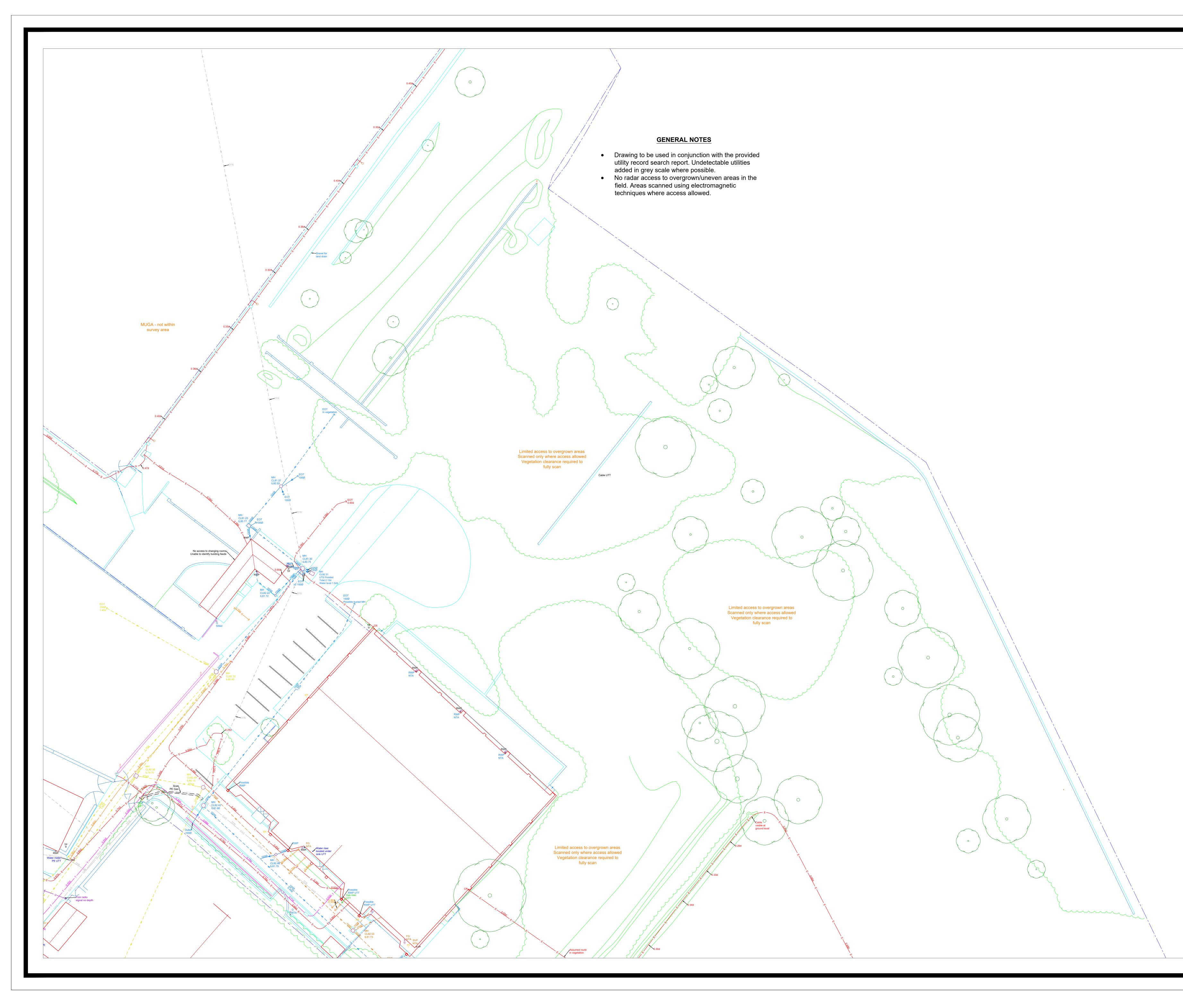
03333 405 500 mail@robertslimbrick.com robertslimbrick.com Registered Office: England No. 06658029

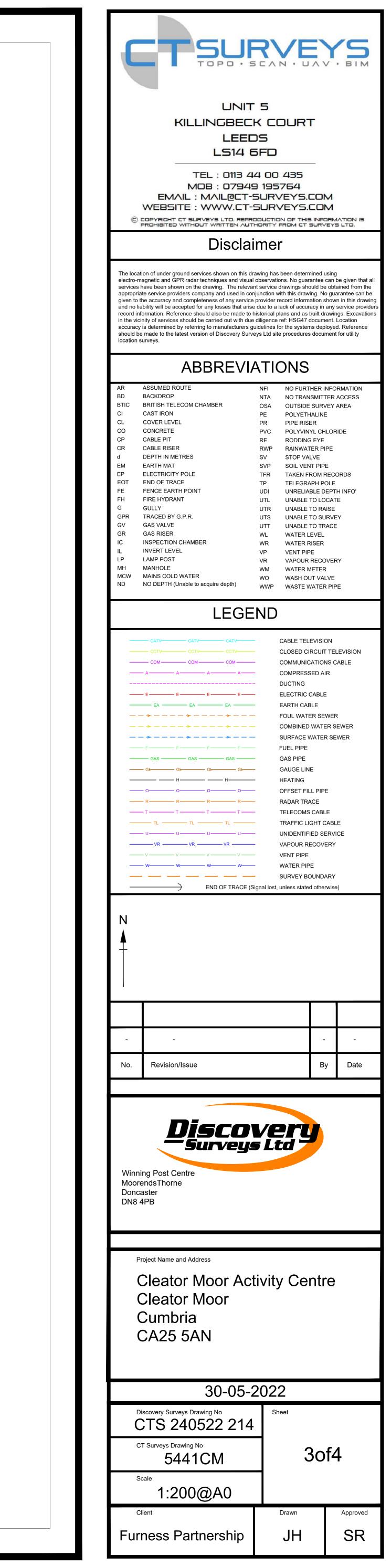
Project Name Cleator Moor Activity Centre

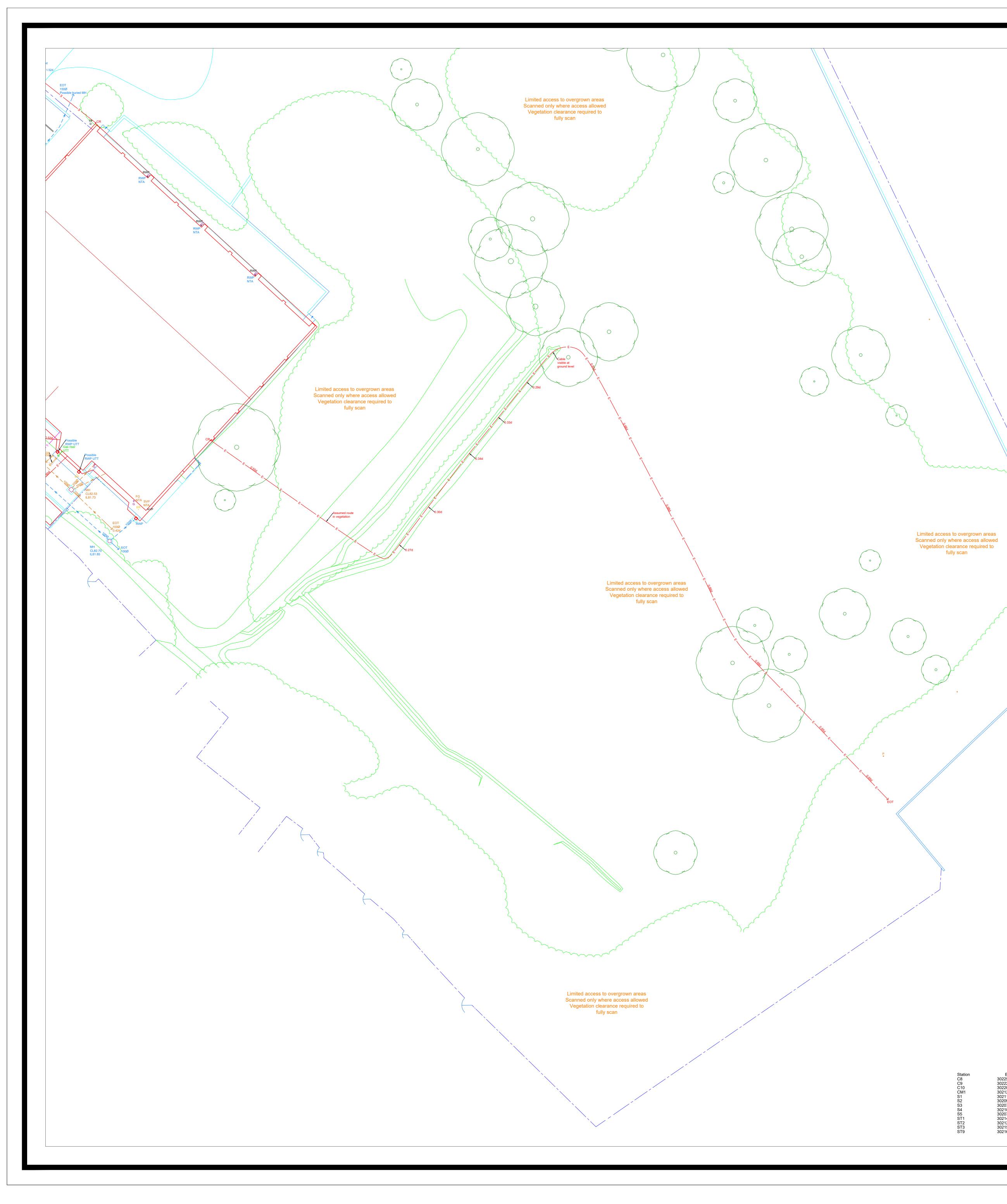

Client Name

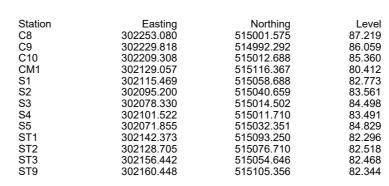

Towns Fund Copeland Borough Council

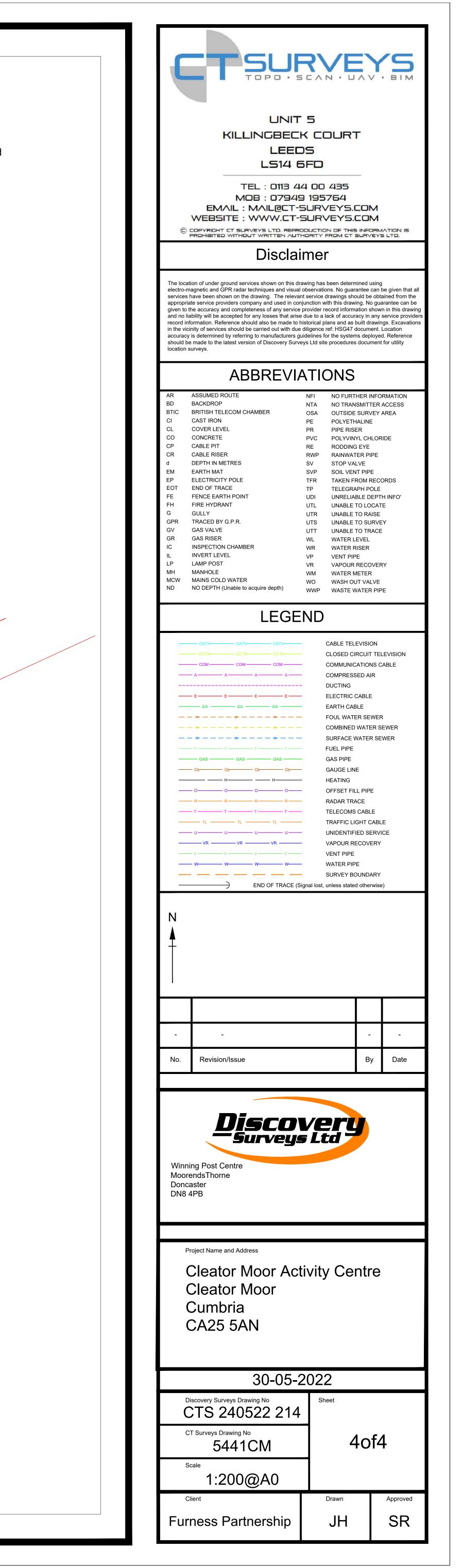

Drawing Title Existing Site Plan

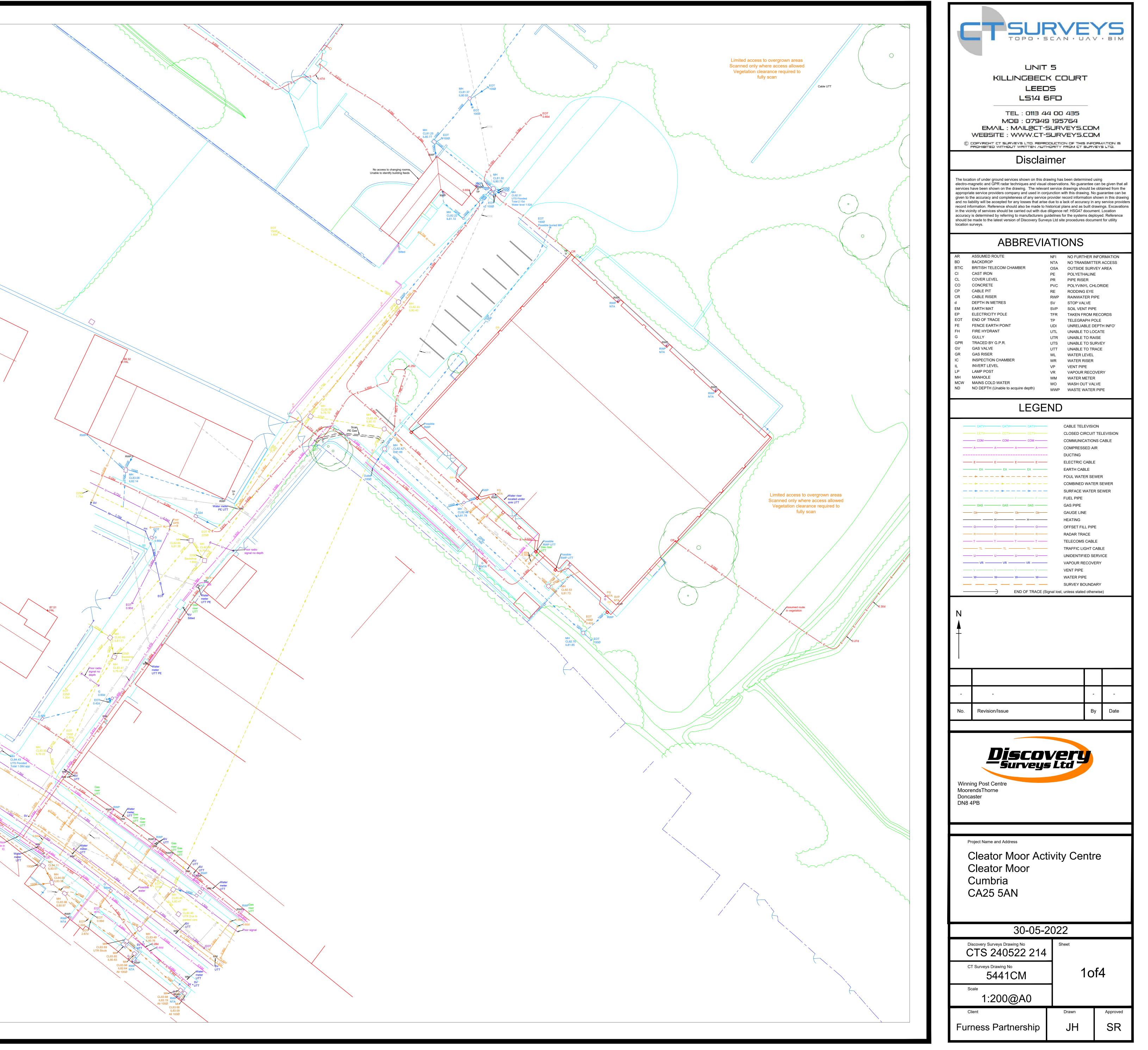

1 : 500 • A1	10319
	10319
Status	Purpose Of Issue
A3	Issued for Planning
Project Org	Vol Level Form Role
10319 • RL •	$XX \cdot ZZ \cdot DR \cdot A$










GENERAL NOTES

- Drawing to be used in conjunction with the provided utility record search report. Undetectable utilities added in grey scale where possible.
- No radar access to overgrown/uneven areas in the field. Areas scanned using electromagnetic techniques where access allowed.

GENERAL NOTES Drawing to be used in conjunction with the provided utility record search report. Undetectable utilities added in grey scale where possible. • No radar access to overgrown/uneven areas in the field. Areas scanned using electromagnetic techniques where access allowed.

This line should measure 70mm when printed correctlyThis drawing is the copyright of Roberts Limbrick Ltd and
should not be reproduced in whole or in part or used in any
manner whatsoever without their written permission.Responsibility is not accepted for errors made by others in
scaling from this drawing. Use only figured dimensions and
report any discrepancies or omissions to the Architect
immediately.Rev DateBy Chk Description

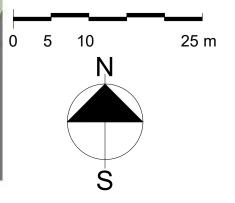
DRAFT

Roberts Limbrick

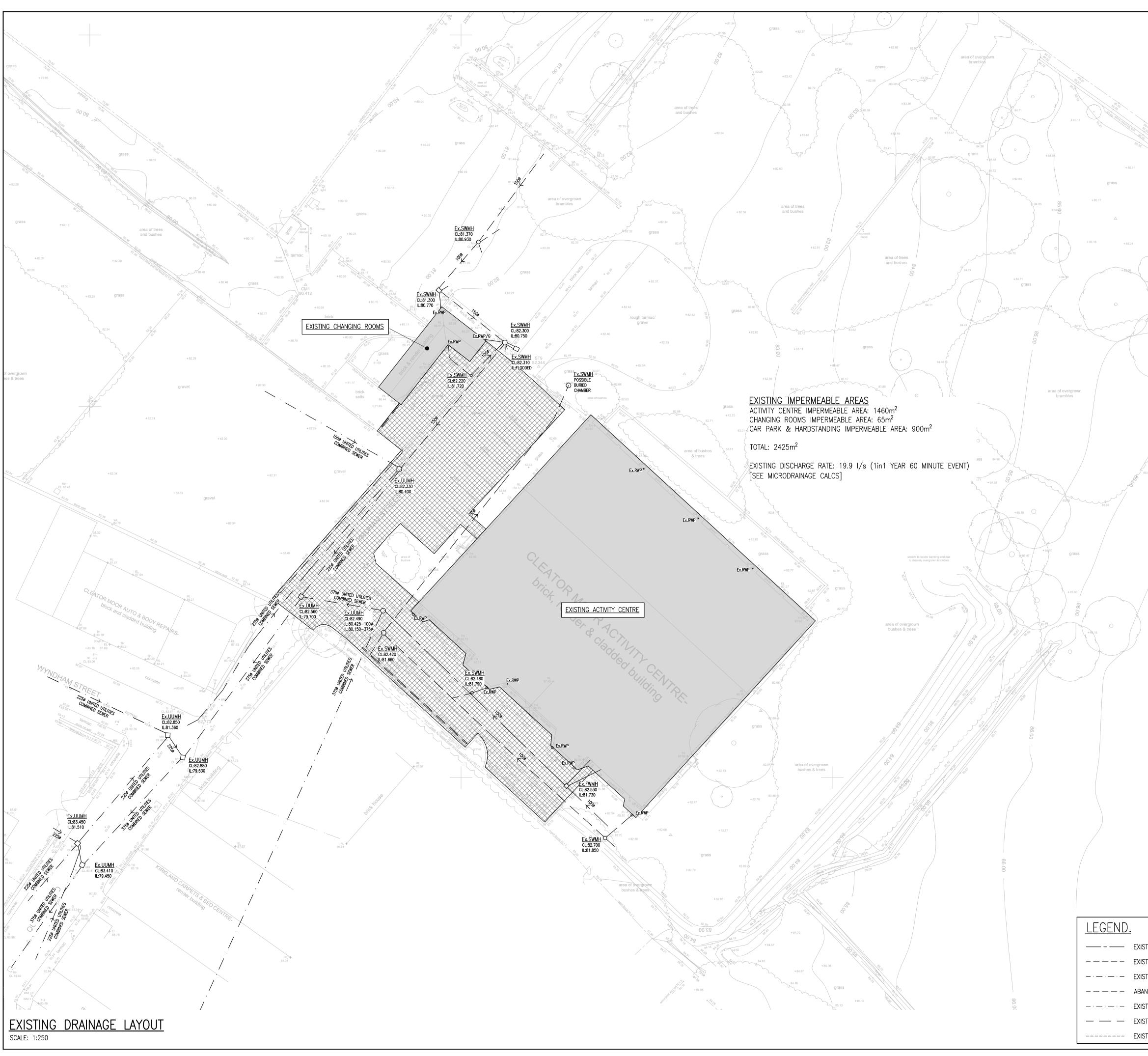
03333 405 500 mail@robertslimbrick.com robertslimbrick.com Registered Office: England No. 06658029

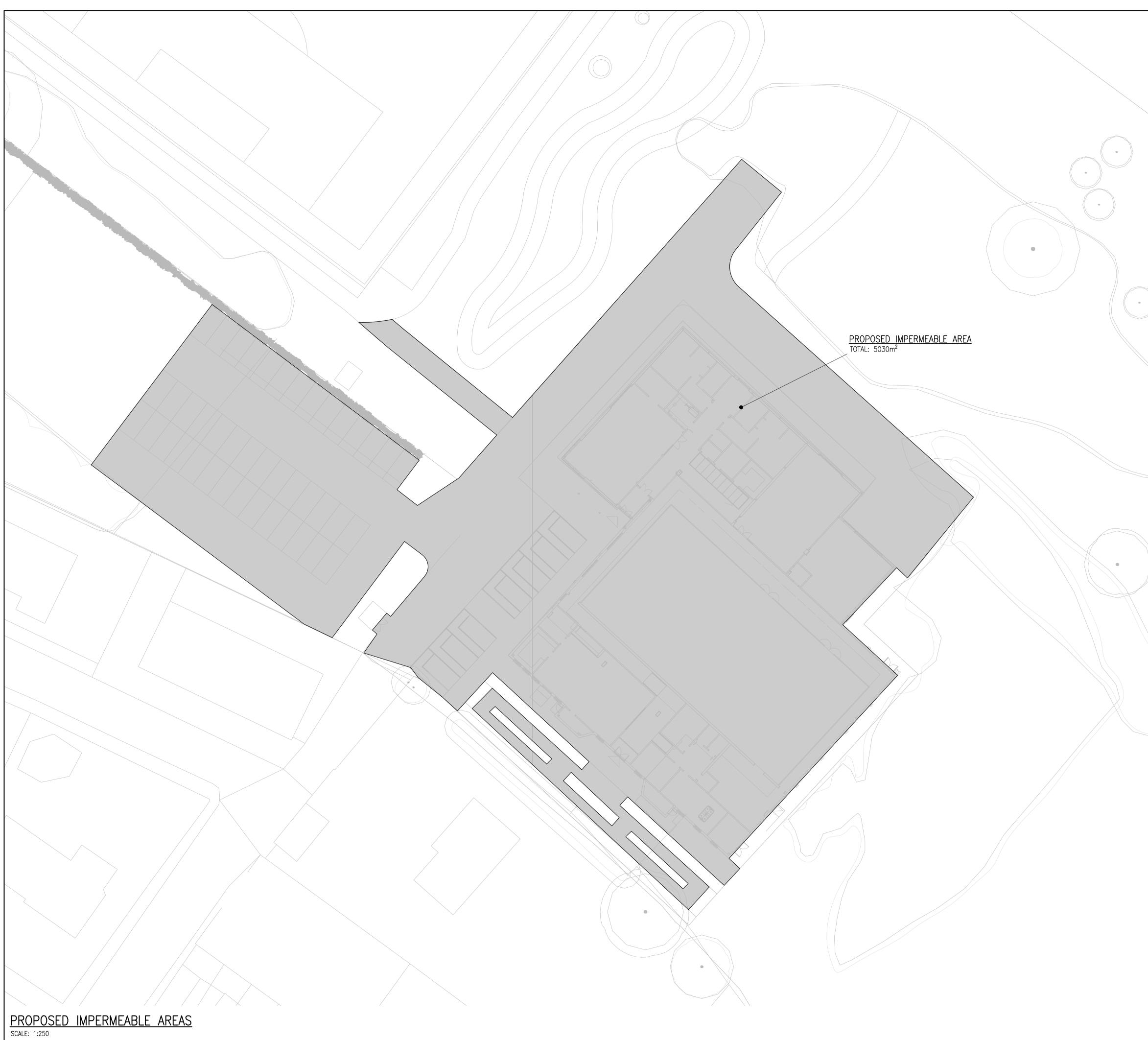
Project Name Cleator Moor Activity Centre

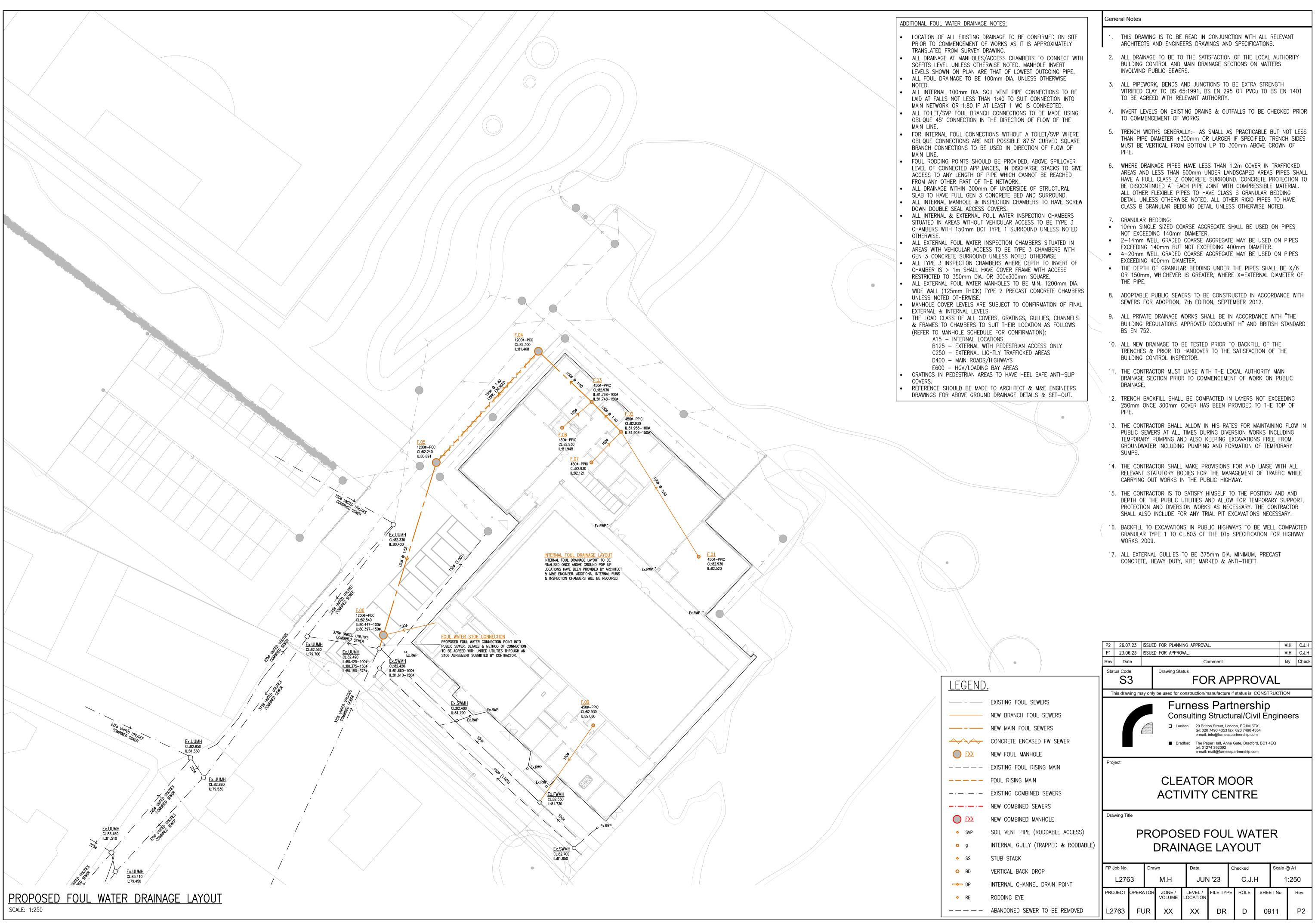
Client Name

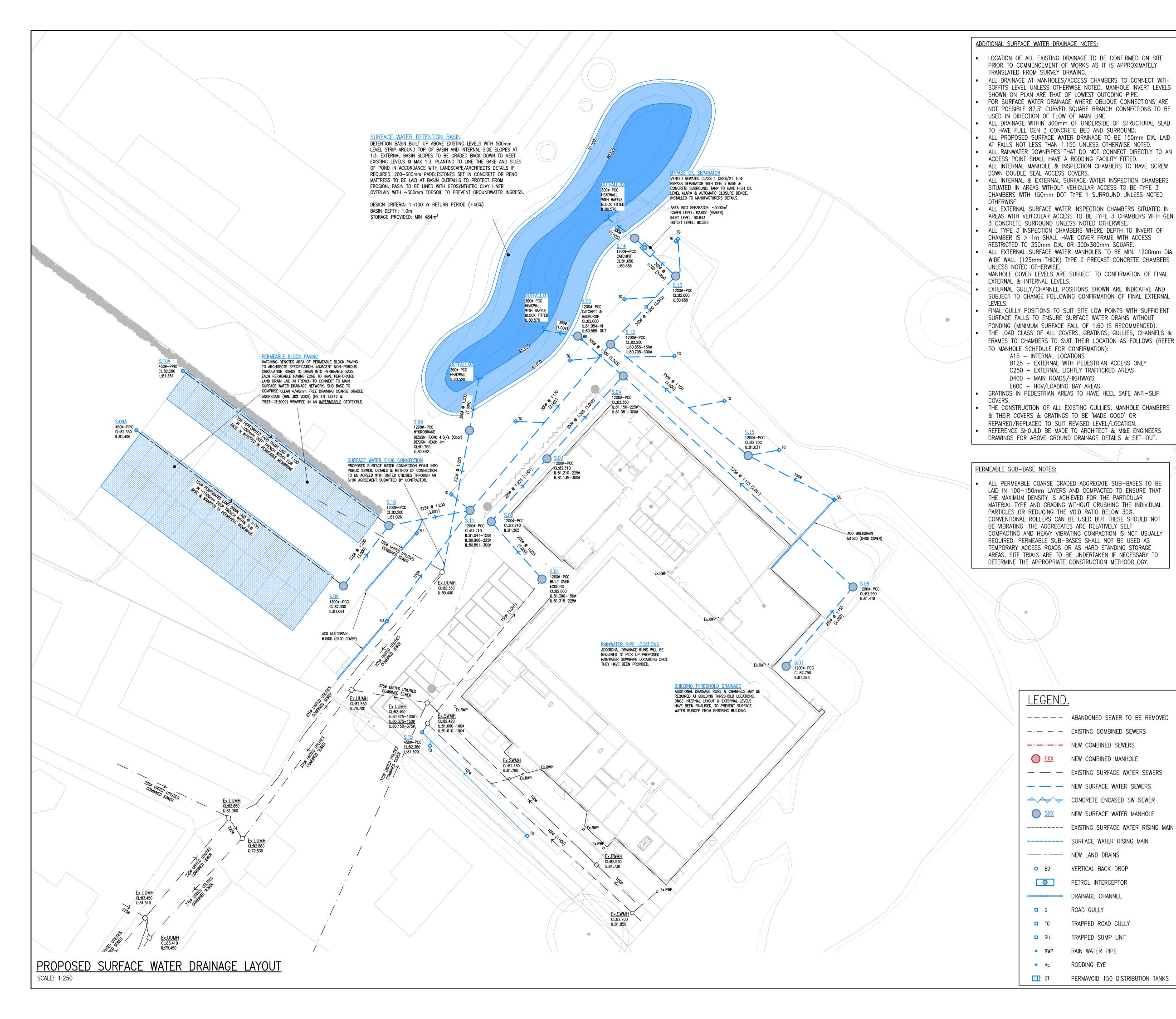

Towns Fund Copeland Borough Council

Drawing Title Proposed Site Plan

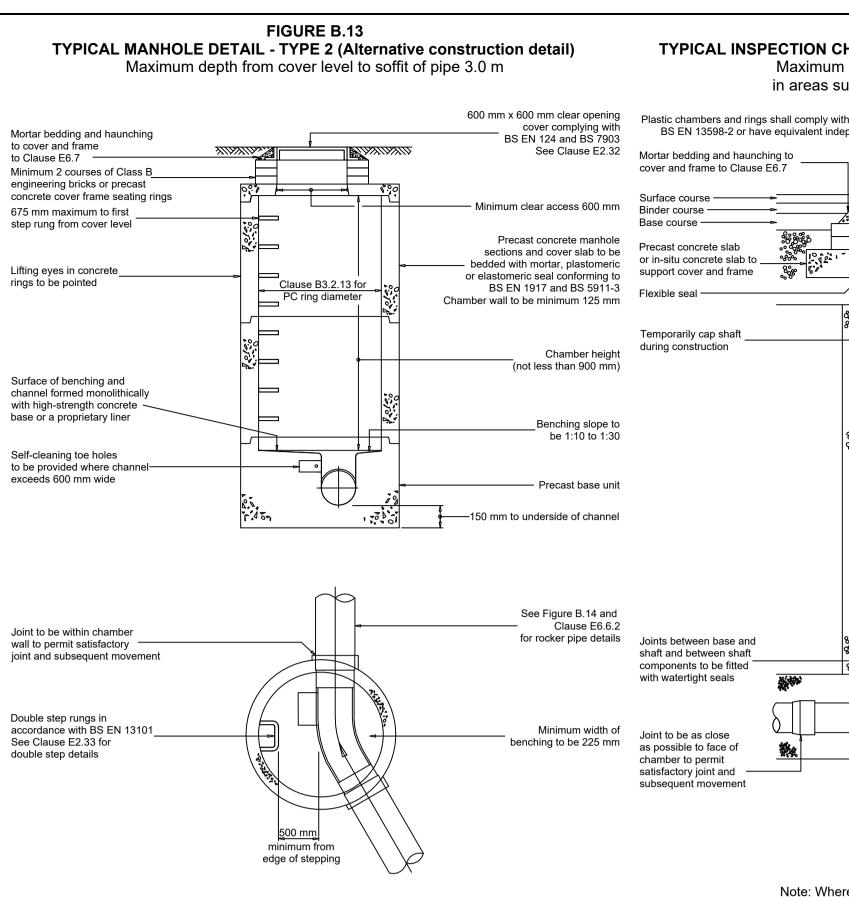

Scale	Project No.
1 : 500 • A1	10319
Status	Purpose Of Issue
A3	Issued for Planning
Project Org	Vol Level Form Role
10319 • RL •	$XX \cdot ZZ \cdot DR \cdot A$


Ownership Boundary


APPENDIX B – DRAINAGE DRAWINGS



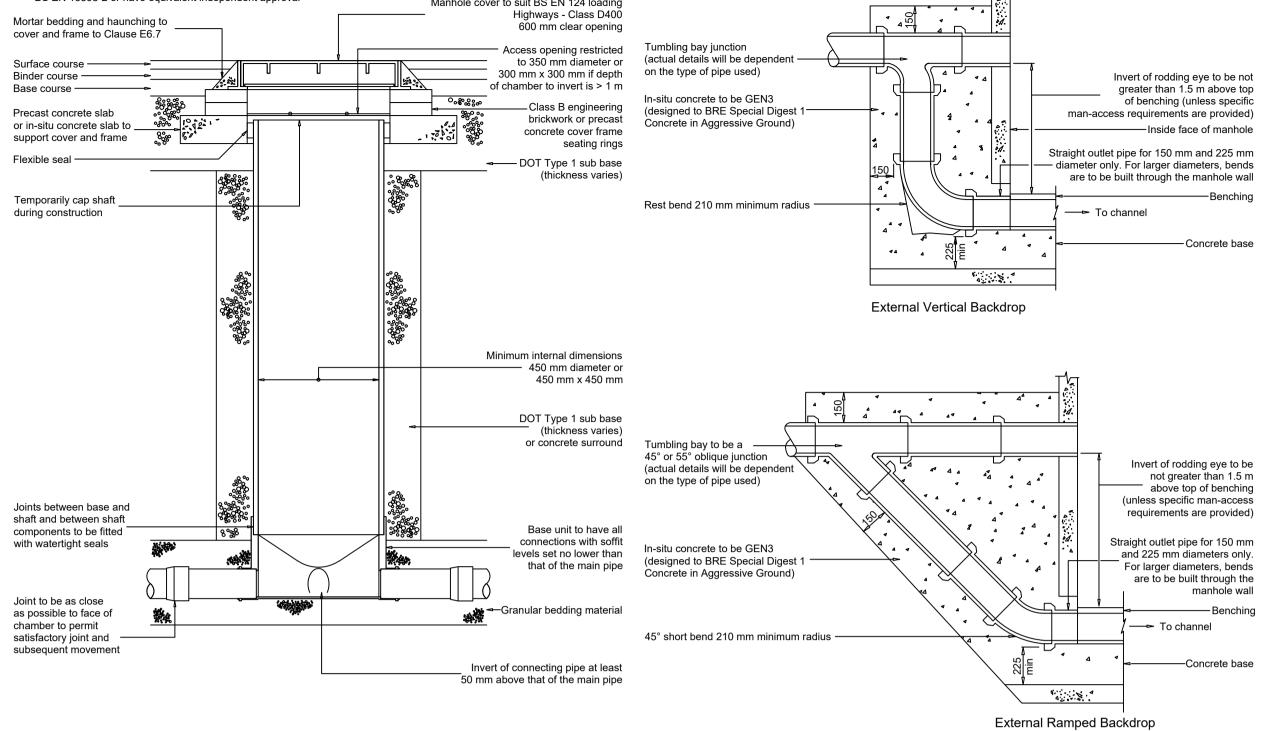
	General I	Notes						
	I							
15 40 - 15 00 - 10 - 10 - 10 - 10 - 10 - 10								
+ 85.53 + 85.53	N X X							
85.45								
area of overgrown brambles & trees	/							
85.507	/							
0 +85.31								
85.45								
+85.52								
grass 86.25 +								
+ 85.83 + 85.83								
O 86.4:	2 /							
+86.22	1							
+86.18								
+86.60								
grass	~							
+ 86.95	~							
+87								
0 8 9 9	/							
87.00	P1 23.0	6.23 ISSUEI) FOR APPRO	VAL				M.H C.J.H
	Rev Da	ite	Drawing Sta	Co	omment			By Check
	Status Cot		Drawing Sta		R AP	PRC	DVAL	
	This drav	wing may only					construction hip	
					Structu		hip vil Engine	eers
				tel: 020 e-mail: dford The Pa) 7490 4353 fax info@furnessp per Hall, Anne	:: 020 7490 4 artnership.co	354 m	
	Project			tel: 012 e-mail:	274 392092 mail@furnessp	oartnership.co	om	
87.00			CLE	ΑΤΟ	R MC	OR		
			ACTI				Ξ	
	Drawing Ti	tle						
STING FOUL SEWERS	6	EXIST	ING	DRAI	NAG	ELA	YOU ⁻	г
STING FOUL RISING MAIN			MPE					
STING COMBINED SEWERS	FP Job No.	Drav	wn	Date	C	Checked	Scale	@ A1
STING COMBINED SEWERS	L27		M.H		I '23 FILE TYPE	C.J.		1:250
STING SURFACE WATER SEWERS STING SURFACE WATER RISING MAIN			ZONE / VOLUME	LEVEL / LOCATION			SHEET No.	Rev.
	L2763	FUR	XX	XX	DR	D	0901	P1


	General Notes				
	×				
	n 0				
/	/				
•					
		D FOR PLANNING D FOR APPROVAL			M.H C.J.H M.H C.J.H By Check
	Status Code	Drawing Status		PPROV	
	This drawing may only	Furr	ness Par	rtnership)
		Londor	20 Britton Street, Lo tel: 020 7490 4353 e-mail: info@furnes	fax: 020 7490 4354 sspartnership.com	
	Project	Bradfor	d The Paper Hall, An tel: 01274 392092 e-mail: mail@furne:	ne Gate, Bradford, BD1	4EQ
			TOR M		
	Drawing Title				
	PROPOS	SED IN	1PERME	EABLE A	REAS
	FP Job No. Drav		Date	Checked	Scale @ A1
	L2763 PROJECT OPERATOR	M.H ZONE / L VOLUME LC	JUN '23 EVEL / FILE TYP	C.J.H	1:250 ET No. Rev.
	L2763 FUR	ХХ	XX DR	D 09	902 P2


- General Notes
- THIS DRAWING IS TO BE READ IN CONJUNCTION WITH ALL RELEVANT ARCHITECTS AND ENGINEERS DRAWINGS AND SPECIFICATIONS.
- ALL DRAINAGE TO BE TO THE SATISFACTION OF THE LOCAL AUTHORITY 2. BUILDING CONTROL AND MAIN DRAINAGE SECTIONS ON MATTERS INVOLVING PUBLIC SEWERS.
- ALL PIPEWORK, BENDS AND JUNCTIONS TO BE EXTRA STRENGTH 3. VITRIFIED CLAY TO BS 65:1991, BS EN 295 OR PVCu TO BS EN 1401 TO BE AGREED WITH RELEVANT AUTHORITY.
- 4. INVERT LEVELS ON EXISTING DRAINS & OUTFALLS TO BE CHECKED PRIOR TO COMMENCEMENT OF WORKS.
- TRENCH WIDTHS GENERALLY:- AS SMALL AS PRACTICABLE BUT NOT LESS 5 THAN PIPE DIAMETER +300mm OR LARGER IF SPECIFIED. TRENCH SIDES MUST BE VERTICAL FROM BOTTOM UP TO 300mm ABOVE CROWN OF PIPE.
- WHERE DRAINAGE PIPES HAVE LESS THAN 1.2m COVER IN TRAFFICKED 6. AREAS AND LESS THAN 600mm UNDER LANDSCAPED AREAS PIPES SHALL HAVE A FULL CLASS Z CONCRETE SURROUND. CONCRETE PROTECTION TO BE DISCONTINUED AT EACH PIPE JOINT WITH COMPRESSIBLE MATERIAL. ALL OTHER FLEXIBLE PIPES TO HAVE CLASS S GRANULAR BEDDING DETAIL UNLESS OTHERWISE NOTED. ALL OTHER RIGID PIPES TO HAVE CLASS B GRANULAR BEDDING DETAIL UNLESS OTHERWISE NOTED.
- GRANULAR BEDDING: 10mm SINGLE SIZED COARSE AGGREGATE SHALL BE USED ON PIPES • NOT EXCEEDING 140mm DIAMETER.
- 2-14mm WELL GRADED COARSE AGGREGATE MAY BE USED ON PIPES EXCEEDING 140mm BUT NOT EXCEEDING 400mm DIAMETER. • 4–20mm WELL GRADED COARSE AGGREGATE MAY BE USED ON PIPES
- EXCEEDING 400mm DIAMETER. • THE DEPTH OF GRANULAR BEDDING UNDER THE PIPES SHALL BE X/6 OR 150mm, WHICHEVER IS GREATER, WHERE X=EXTERNAL DIAMETER OF THE PIPE.
- ADOPTABLE PUBLIC SEWERS TO BE CONSTRUCTED IN ACCORDANCE WITH SEWERS FOR ADOPTION, 7th EDITION, SEPTEMBER 2012.
- 9. ALL PRIVATE DRAINAGE WORKS SHALL BE IN ACCORDANCE WITH "THE BUILDING REGULATIONS APPROVED DOCUMENT H" AND BRITISH STANDARD BS EN 752.
- 10. ALL NEW DRAINAGE TO BE TESTED PRIOR TO BACKFILL OF THE TRENCHES & PRIOR TO HANDOVER TO THE SATISFACTION OF THE BUILDING CONTROL INSPECTOR.
- 11. THE CONTRACTOR MUST LIAISE WITH THE LOCAL AUTHORITY MAIN DRAINAGE SECTION PRIOR TO COMMENCEMENT OF WORK ON PUBLIC DRAINAGE.
- 12. TRENCH BACKFILL SHALL BE COMPACTED IN LAYERS NOT EXCEEDING 250mm ONCE 300mm COVER HAS BEEN PROVIDED TO THE TOP OF PIPE.
- 13. THE CONTRACTOR SHALL ALLOW IN HIS RATES FOR MAINTAINING FLOW IN PUBLIC SEWERS AT ALL TIMES DURING DIVERSION WORKS INCLUDING TEMPORARY PUMPING AND ALSO KEEPING EXCAVATIONS FREE FROM GROUNDWATER INCLUDING PUMPING AND FORMATION OF TEMPORARY SUMPS.
- 14. THE CONTRACTOR SHALL MAKE PROVISIONS FOR AND LIAISE WITH ALL RELEVANT STATUTORY BODIES FOR THE MANAGEMENT OF TRAFFIC WHILE CARRYING OUT WORKS IN THE PUBLIC HIGHWAY.
- 15. THE CONTRACTOR IS TO SATISFY HIMSELF TO THE POSITION AND AND DEPTH OF THE PUBLIC UTILITIES AND ALLOW FOR TEMPORARY SUPPORT PROTECTION AND DIVERSION WORKS AS NECESSARY. THE CONTRACTOR SHALL ALSO INCLUDE FOR ANY TRIAL PIT EXCAVATIONS NECESSARY.
- 16. BACKFILL TO EXCAVATIONS IN PUBLIC HIGHWAYS TO BE WELL COMPACTED GRANULAR TYPE 1 TO CL.803 OF THE DTp SPECIFICATION FOR HIGHWAY WORKS 2009.
- 17. ALL EXTERNAL GULLIES TO BE 375mm DIA. MINIMUM, PRECAST CONCRETE, HEAVY DUTY, KITE MARKED & ANTI-THEFT.

									M.H	
ONED SEWER TO BE REMOVED	Rev	Date	JULL			omment			By	
G COMBINED SEWERS	Status Code Drawing Status S3 FOR APPROVAL									
OMBINED SEWERS	This	drawing ma	y only	be used for c	onstruction/m	nanufacture	e if status is(CONSTR	RUCTION	
OMBINED MANHOLE				Fu	ness	Par	tners	hip	_	
G SURFACE WATER SEWERS							ural/Civ		ginee	ers
URFACE WATER SEWERS				Lon	tel: 020	7490 4353	ondon, EC1M 57 fax: 020 7490 4 spartnership.co	354		
ETE ENCASED SW SEWER				Brad	lford The Pa	per Hall, Anr	ne Gate, Bradfo		EQ	
URFACE WATER MANHOLE						74 392092 mail@furnes	sspartnership.cc	om		
G SURFACE WATER RISING MAIN	Project									
CE WATER RISING MAIN				CLE	ATO	R M	OOR			
AND DRAINS				ACTI	VITY	CE	NTRE	=		
AL BACK DROP										
INTERCEPTOR	Drawing	g Title								
GE CHANNEL		PR	ϽP	OSEI	D SU	RFA	CE V	VAT	ER	
GULLY				DRAI						
ED ROAD GULLY				- 1 V 11		/ \		•		
ED SUMP UNIT	FP Job	No.	Drav	wn	Date		Checked		Scale @	A1
ATER PIPE	L2	2763		M.H	JUN	1'23	C.J.I	Η	1:	250
IG EYE	PROJE	CT OPERA	ATOR	ZONE / VOLUME	LEVEL / LOCATION	FILE TYP	PE ROLE	SHEE	T No.	Rev.
	I									

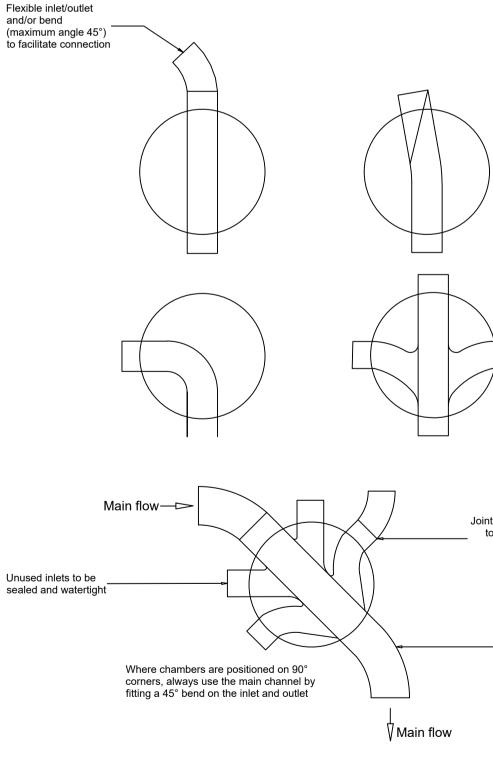
Not to scale



Rigid pipes built into manhole should have a flexible joint as close as feasible to the external face of the structure and the length of the next rocker pipe should be as shown.

Nominal diameter (mm)	Maximum effective length (m)
150 - 600	0.6
601 - 750	1.00
over 750	1.25

All pipes entering the bottom of the manhole to have soffits level.


FIGURE B.16 **TYPICAL INSPECTION CHAMBER DETAIL - TYPE 3 (Flexible material detail)** Maximum depth from cover level to soffit of pipe in areas subject to vehicle loading 3 m, non-entry Plastic chambers and rings shall comply with BS EN 13598-1 and BS EN 13598-2 or have equivalent independent approval <u>್</u>ಯಾಜಿಯಿ 1010

Note: Where the access chamber is in the highway the Highway Authority can have specific requirements

Not to scale

FIGURE B.20 **ALTERNATIVE BASE LAYOUTS FOR TYPE 3 CHAMBERS**

Note: Where a bend is used immediately outside the manhole, this may be used as the rocker pipe

Not to scale

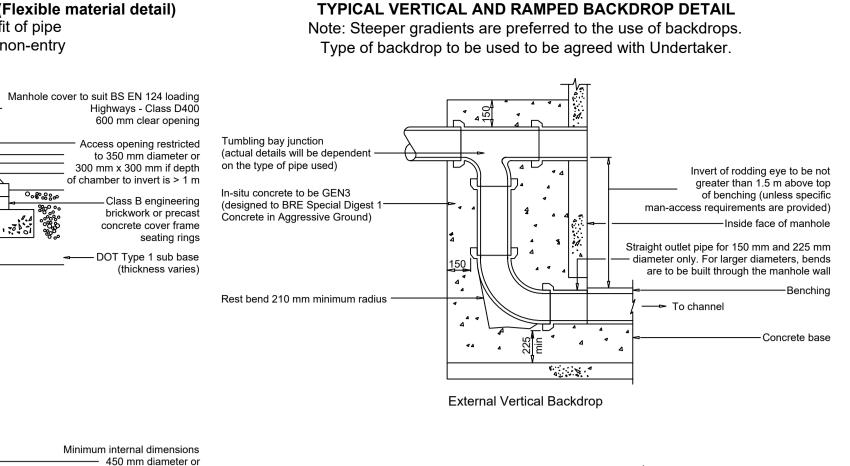
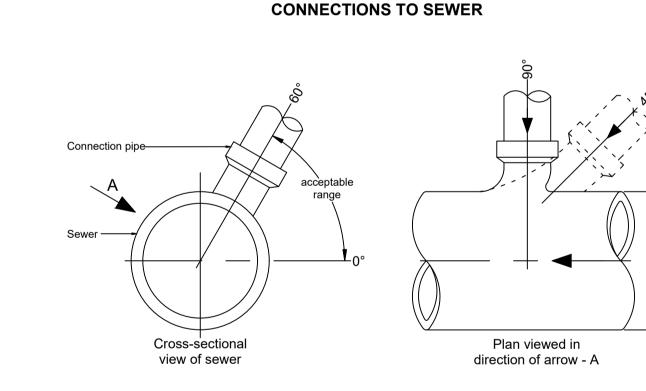
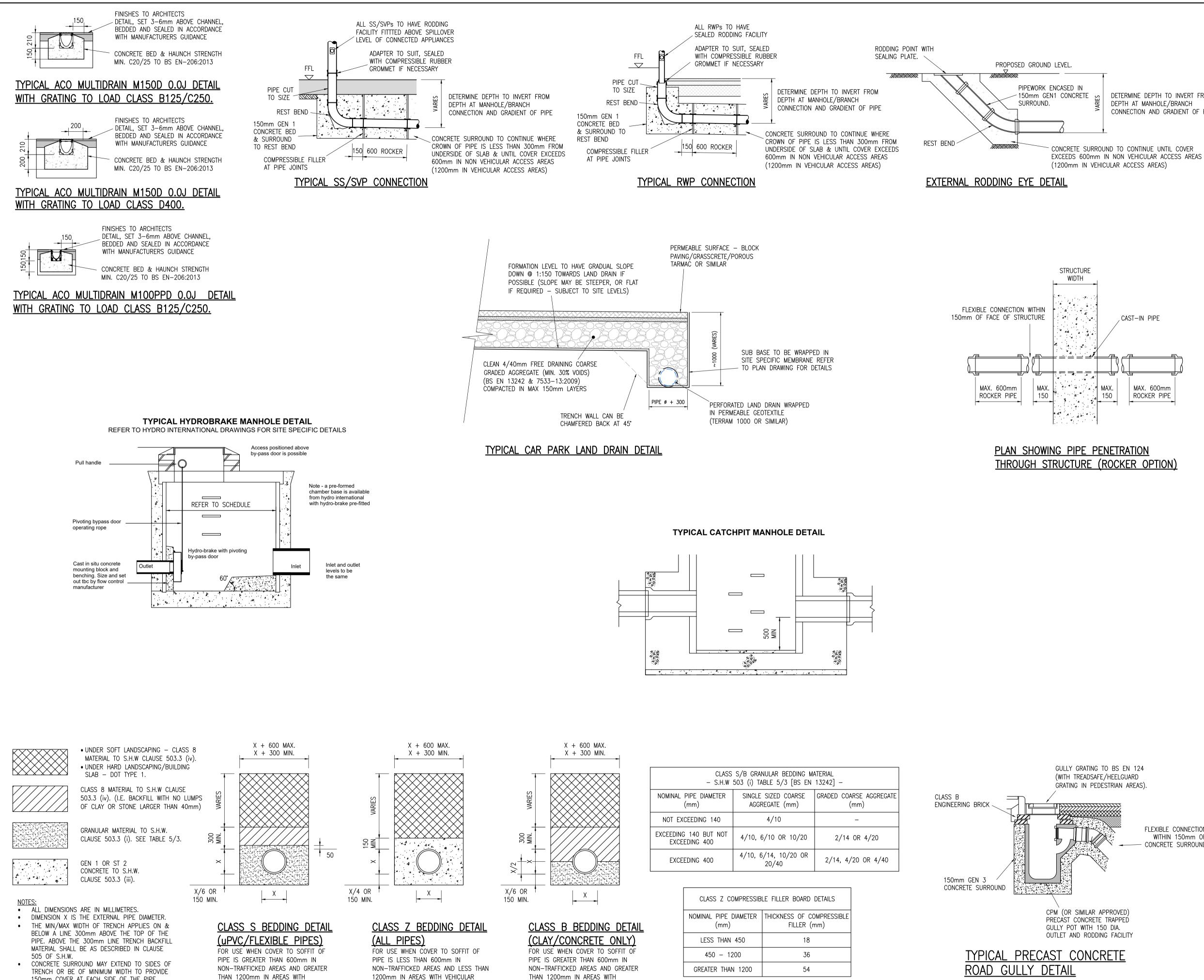



FIGURE B.15

Not to scale, dimensions in millimetres

FIGURE B.24



Joint to be as close as possible to face of chamber to permit satisfactory joint and

subsequent movement

Flexible inlet/outlet and/or bend (maximum angle 45°)

P1	23.0	5.23 I	SSUE	FOR APPRO	VAL.				м	.н	C.J.H
Rev	Da	te			Co	omment			В	By	Check
Stat	Status Code Drawing Status FOR APPROVAL										
Th	nis drav	ving ma	y only	be used for c		_				N	
					rness sulting					er	S
				🗌 Lor	tel: 020	7490 4353 1	ondon, EC1M 5 fax: 020 7490 4 spartnership.co	354			
				∎ Bra	tel: 012	74 392092	ne Gate, Bradfo sspartnership.co		EQ		
Proj	ect										
					ATO VITY			Ξ			
Drav	Drawing Title PROPOSED SURFACE WATER DRAINAGE DETAILS SHEET 1 OF 2										
FP J	ob No.		Drav	wn	Date		Checked		Scale @	D A1	
	L276	63		M.H	JUN	l '23	C.J.	Н		N/A	A
PRO	JECT	OPER/	TOR	ZONE / VOLUME	LEVEL / LOCATION	FILE TYP	E ROLE	SHEE	ET No.		Rev.
L27	763	FL	JR	xx	xx	DR	D	09	931		P1

150mm COVER AT EACH SIDE OF THE PIPE. • UNTIL THERE IS 300mm COVER OVER CROWN OF PIPE, COMPACT GRANULAR & BACKFILL MATERIAL

BY HAND IN 100mm THICK LAYERS.

THAN 1200mm IN AREAS WITH VEHICULAR ACCESS.

THAN 1200mm IN AREAS WITH VEHICULAR ACCESS.

ACCESS. MIN. 18mm COMPRESSIBLE

BOARD AT ALL PIPE JOINTS

CLASS S/B GRANULAR BEDDING MATERIAL – S.H.W 503 (i) TABLE 5/3 [BS EN 13242] –								
NOMINAL PIPE DIAMETER (mm)	SINGLE SIZED COARSE AGGREGATE (mm)	GRADED COARSE AGGREGATE (mm)						
NOT EXCEEDING 140	4/10	-						
EXCEEDING 140 BUT NOT EXCEEDING 400	4/10, 6/10 OR 10/20	2/14 OR 4/20						
EXCEEDING 400	4/10, 6/14, 10/20 OR 20/40	2/14, 4/20 OR 4/40						

CLASS Z COMPRESSIBLE FILLER BOARD DETAILS												
NOMINAL PIPE DIAMETER (mm)	THICKNESS OF COMPRESSIBLE FILLER (mm)											
LESS THAN 450	18											
450 - 1200	36											
GREATER THAN 1200	54											

ROAD GULLY DETAIL

General Notes

DETERMINE DEPTH TO INVERT FROM CONNECTION AND GRADIENT OF PIPE

P2	26.07	7.23	ISSUEE) FOR PLANN	ING APPROVA	L.		м	I.H	C.J.H								
P1	23.06	5.23	ISSUEE) FOR APPRC	VAL.				м	.н	C.J.H							
Rev	Dat	е			C	omment			B	By	Check							
Stat	us Code			Drawing Sta		FOR APPROVAL												
۲ł	nis draw	ring ma	y only	be used for o	construction/n	nanufactur	e if status is	CONST	RUCTIO	N								
 Furness Partnership Consulting Structural/Civil Engineers London 20 Britton Street, London, EC1M 5TX tel: 020 7490 4353 fax: 020 7490 4354 e-mail: info@furnesspartnership.com Bradford The Paper Hall, Anne Gate, Bradford, BD1 4EQ tel: 01274 392092 e-mail: mail@furnesspartnership.com 																		
	CLEATOR MOOR ACTIVITY CENTRE																	
Drav	wing Titl			OSE DRAII SH		E DE	TAIL		ΓEF	R								
FP J	ob No.		Drav	wn	Date		Checked		Scale (2) A1								
	L276	3		M.H	JUI	l '23	C.J.	н		N/A								
PRO	JECT	OPERA	ATOR	ZONE / VOLUME	LEVEL / LOCATION	FILE TYF	PE ROLE	SHEE	ET No.	F	Rev.							
L2763 FUR				ХХ	хх	DR	D	0932			P2							

FLEXIBLE CONNECTION WITHIN 150mm OF CONCRETE SURROUND

APPENDIX C – LOCAL WATER AUTHORITY CONSULTATION & DOCUMENTS

Michael Herbert

From:	seweradoptions@uuplc.co.uk
Sent:	15 June 2023 11:06
То:	Michael Herbert
Subject:	Pre Development Enquiry for: Cleator Moor Activity Centre, Cumbria CA25 5AN UU Reference Number : 04132027
Follow Up Flag:	Follow up
Flag Status:	Flagged

Good morning Michael,

Pre Development Enquiry for: Cleator Moor Activity Centre, Cumbria CA25 5AN UU Reference Number : 04132027

We have carried out an assessment of your application which is based on the information provided. This predevelopment advice on your drainage strategy will be valid for 12 months. Your drainage strategy will need to be reviewed by other competent authorities as part of the planning process, and we advise that you carry out the necessary site investigations to confirm the viability of your proposals.

If your investigations require access to our public sewer network, we ask that you contact our network engineers with a request for an access certificate via our main contact telephone number 0345 6723 723 or refer to the link below: https://www.unitedutilities.com/builders-developers/working-near-our-assets/

Foul Water

Foul flow from this site will be allowed to drain into the public foul water/combined sewer system. Our preferred point of discharge would be to the 225mm diameter public combined sewer within Quarry Road located to South of your proposed development at a an unrestricted rate.

If you are able to identify an alternative, more suitable point of discharge, we request that you contact us at your earliest convenience so that we can assess suitability.

In accordance with our infrastructure plans we may ask you to change your point of connection. Therefore please contact us when you are ready to formalise your drainage proposals, we would suggest before you submit for Full Planning.

Surface Water

All surface water flow from the proposed development should drain in-line with the drainage hierarchy, as outlined in Paragraph 80, (Reference ID: 7-080-20150323), of the National Planning Practice Guidance. We also recommend you prioritise the use of multi-functional sustainable drainage systems for the management of surface water in accordance with national planning policy.

Generally, the aim should be to discharge surface run off as high up the following hierarchy of drainage options as reasonably practicable.

This is outlined as follows, in order of priority:

- 1. into the ground (infiltration);
- 2. to a surface waterbody;
- 3. to a surface water sewer or highway drain;
- 4. to a combined sewer.

For guidance, The **North West SuDS Pro-Forma** provides information on the appropriate evidence required at each stage of the hierarchy, to demonstrate how each level has been discounted.

The Lead Local Flood Authority has responsibility for all surface water drainage concerns and their input to your proposal is critical. You should also consider whether it is necessary to discuss your proposal with the Environment Agency, or Internal Drainage Board (if operating in your area).

The Local Planning Authority are the determining authority for any application for planning permission and the appropriate authority for determining cost viability of a proposed drainage scheme, such assessments are outside of the jurisdiction of United Utilities.

Infiltration

Surface water runoff generated from this development should discharge to the ground via infiltration system where feasible.

A detailed evidence based feasibility assessment must be carried out in line with Chapter 25 of the CIRIA SuDS Manual 2015 to determine whether infiltration is a suitable method of surface water disposal.

Particular attention must be paid to Ground Water Source Protection Zones to ensure that the risk of pollution to these valuable resources is not compromised. Details can be obtained from the government website:

https://www.gov.uk/guidance/groundwater-source-protection-zones-spzs#find-groundwater-spzs

If your site is in a Groundwater Source Protection Zone, you should have regard to the Environment Agency's approach to Groundwater Protection. Information on this is available via the link below:

https://www.gov.uk/government/publications/groundwater-protection-position-statements

Please note that such a location could have implications for the principle of your development and the need for additional mitigating measures to protect the groundwater environment and public water supply in the detailed design of your site.

Highway Drainage

If an evidence based assessment has been carried out and confirms that infiltration is not feasible, we recommend that you investigate the possibility of draining surface water to the highway drain where this ultimately discharges to a watercourse, by contacting the relevant Highway Authority.

Public Sewer

In accordance with the hierarchy of drainage options within the National Planning Practice Guidance, both discharge to ground via infiltration and discharge to a waterbody should be discounted prior to consideration of discharging surface water to the public sewer system. Evidence should be provided to demonstrate how these have been discounted, as outlined in the North West SuDS pro-forma.

Once evidence is provided as outlined above, United Utilities will consider a connection to the 225mm diameter public combined sewer within Quarry Road at a pass forward flow to be agreed by the Lead Local Flood Authority. United Utilities request that any agreed rate does not exceed 34.1 l/s.

Please note the given discharge rate is based on the full site area as the specifics of the area being developed are not yet clear. If there are significant areas of the site that will not be developed, the discharge rate should be reduced accordingly. (Delete as appropriate)

As a Water Company, we have no obligation to accept highway drainage into our public sewer network. However, should your proposals include runoff from highways, we would request that consideration is given to SuDS components that deliver source control are incorporated within the design of the scheme to reduce the volume and frequency of discharges of these flows to the public sewer.

Levels

For low-lying sites, (where the ground level of the site or the level of a basement is below the ground level at the point where the drainage connects to the public sewer), care should be taken to ensure that the property is not at increased risk of flooding. If these circumstances exist, we recommend that you contact us to discuss further. It could affect the detailed design of your site and result in the need to incorporate appropriate mitigating measures in your drainage scheme.

Land drainage / Overland flows / track drainage

United Utilities have no obligation, and furthermore we do not accept land drainage, overland flows or track drainage into the pubic sewerage network <u>under any circumstances</u>

Existing Wastewater Assets Crossing the Site

According to our public sewer records there is abandoned public sewer located within your site boundary. We would advise extra precaution is in place when working near this abandoned asset.

According to our public sewer records there are public sewers located within your site boundary. We will require unrestricted access to the sewer for maintenance purposes, we would ask that you maintain a minimum clearance of 6m which is measured 3m from the centre line of the pipe unless there happens to be a formal easement agreement in place, in which case the specified easement width would apply. If you cannot achieve this then you may wish to consider diverting and or abandoning the public sewer.

Please be aware that any proposed diversion may require modelling. This process may take up to 6 months in order to reach an acceptable design.

Please refer to the link below to obtain full details of the processes involved with sewer diversions: https://www.unitedutilities.com/builders-developers/larger-developments/wastewater/sewer-diversions/

Existing Water Assets Crossing the Site

It is the developer responsibility to identify utilities on-site. Where clean water assets are shown on our records, we recommend that you contact our Water Pre-Development Team, via the following email address: <u>DeveloperServicesWater@uuplc.co.uk</u>. Further information for this service can be found on our website via the link below:

https://www.unitedutilities.com/builders-developers/larger-developments/pre-development/water-pre-dev/

Connection Application

Although we may discuss and agree discharge points and rates in principle, please be aware that you will have to apply for a formal sewer connection. This is so that we can assess the method of construction, Health & Safety requirements and to ultimately inspect the connection when it is made. Details of the application process and the form itself can be obtained from our website by following the link below:

https://www.unitedutilities.com/builders-developers/wastewater-services/sewer-connections/sewer-connection/ We recommend that the detailed design should confirm the locations of all utilities in the area and ensure that any proposed drainage solution considers routing and clash checks where required. If we can be of any further assistance please don't hesitate to contact us further.

Kind regards,

Eireann Thompson Assistant Developer Engineer Developer Services & Metering Customer Services Mobex: 07553074138 unitedutilities.com

Did you know we now have a live chat facility available to you Mon to Friday 8 -5pm. You just click on the orange live chat box on our webpage and one of our advisors will be ready to chat to you and help you with your enquiry <u>https://www.unitedutilities.com/builders-developers/</u> or you can email us at

developerserviceswater@uuplc.co.uk

If you have received a great service today why not tell us? Visit: <u>unitedutilities.com/wow</u>

------ Original Message ------From: seweradoptions@uuplc.co.uk [seweradoptions@uuplc.co.uk] Sent: 05/06/2023 09:48 To: m.herbert@furnesspartnership.com Subject: 04132027 Cleator Moor Activity Centre Off Wyndham Street, Cleator Moor, Whitehaven, Cumb

Dear Michael

PRE DEVELOPMENT APPLICATION AT: - UU Ref 04132027

Please accept this email as receipt of your application received on 2/6/2023 for the above development. This has now been logged on our system and the job reference is 04132027 we would ask that you quote this reference in all future correspondence.

I have reviewed your application (and attachments) and can confirm this is suitable to be passed to Ashleigh Bellerby for technical assessment. You will receive their response within 8 working days.

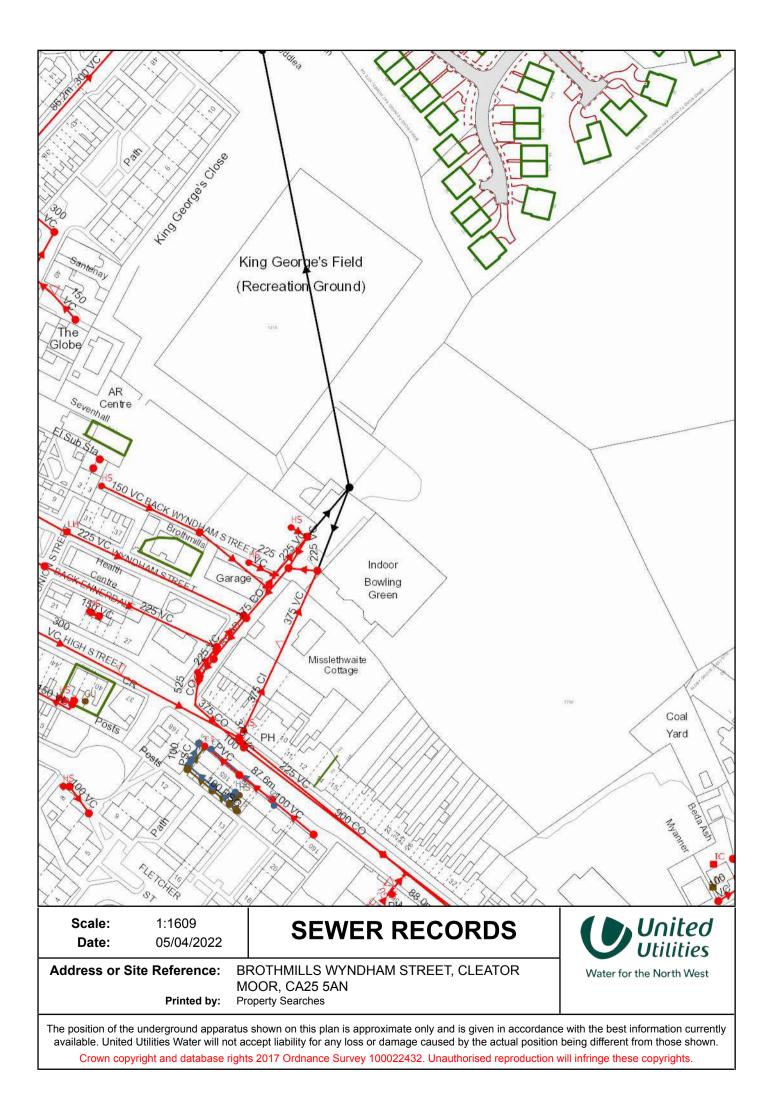
Kind regards

Kind regards Jill

Jill Ellis Customer Advisor Advanced Developer Services & Metering Customer Services Direct Tel: 01925 233 064 Tel: 0345 072 6067 unitedutilities.com

If you have received a great service today why not tell us? Visit: <u>unitedutilities.com/wow</u>

Did you know we now have a live chat facility available to you Mon to Friday 8 -5pm. You just click on the orange live chat box on our webpage and one of our advisors will be ready to chat to you and help you with your enquiry <u>https://www.unitedutilities.com/builders-developers/</u> or you can email us at <u>WastewaterDeveloperServices@uuplc.co.uk</u>


The information contained in this e-mail is intended only for the individual to whom it is addressed. It may contain legally privileged or confidential information or otherwise

Wastewater Symbology

Abandoned	Foul	Surface Water	Combined	Public Sewer
				Private Sewer
++++++	++++++	+++++++++++++++++++++++++++++++++++++++	+++++	Section 104 Rising Main
<u> </u>	<u> </u>			Sludge Main Overflow
				Water Course
				Highway Drain

All point assets follow the standard colour conv	ention:	red – combined blue – surface water	brown - foul purple - overflow
Manhole		Side Entry Manhole	
Head of System	C	Outfall	
Extent of Survey		Screen Chamber	
Rodding Eye	10	Inspection Chamber	ŀ.
🚽 Inlet	0	Bifurcation Chamber	r
Discharge Point	LH4	Lamp Hole	
Vortex	-	T Junction / Saddle	
Penstock	0	Catchpit	
💞 Washout Chamber	\odot	Valve Chamber	
🎽 Valve	-	Vent Column	
🎳 Air Valve	C	Vortex Chamber	
💕 Non Return Valve	0	Penstock Chamber	
🎳 Soakaway		Network Storage Tar	nk
Gully	Ď	Sewer Overflow	
💕 Cascade	100 m	Ww Treatment Work	s
Flow Meter		Ww Pumping Station	1
HA Hatch Box		Septic Tank	
Oil Interceptor	100	Control Kiosk	
Summit			
^{DS} Drop Shaft	∇	Change of Characte	ristic
Orifice Plate			

APPENDIX D – GROUND INVESTIGATION EXTRACT / SOAKAWAY TEST RESULTS

PHASE II GROUND INVESTIGATION REPORT

CLEATOR MOOR ACTIVITY CENTRE, CLEATOR MOOR, CUMBRIA, CA25 5AN PREPARED FOR ALLIANCE LEISURE SERVICES LIMITED

Ground Conditions (Cont'd) 4.0

4.2 Foundation Details (Cont'd)

Trial pit location	Foundation details
TP01	The existing building wall extended to a depth of 0.70m below current ground levels, where a concrete footing was encountered. The concrete was noted to project out from the existing building wall by 0.20m and was noted to be 0.30m in thickness and based within the natural stiff clay deposits
TP02	The existing building wall extended to a depth of 0.80m below current ground levels, where a concrete footing was encountered. The concrete footing was noted to project out from the existing building wall 1.60m and was noted to be 0.30m in thickness and based within the natural stiff clay deposits

4.3 Groundwater

During the investigation works BH01, BH02 and BH03 remained dry, whereas BH04, BH05, BH06 and BH07 noted water at depths ranging between 0.60m and 3.00m below ground level. Post fieldwork monitoring encountered water levels in BH01, BH03 and BH07 to range between 0.12m and 1.94m below ground levels.

Therefore, water ingresses may occur within construction related excavations, and it would be prudent to allow for the introduction of temporary groundwater control techniques (i.e. sump pumping) to take care of any localised ingresses of groundwater during the construction period, especially during the wetter periods of the year. It should also be noted that instability within such excavations is also likely to occur because of water inflow.

Adequate lateral trench support may also be required for excavations, to prevent trench wall collapse or over excavation, as well as to create a safe working environment, and any excavations on this site should remain open for as short a period as possible, since the initial made ground and superficial deposits could be susceptible to deterioration, if left open to the natural elements for any significant period of time.

5.0 Insitu Geotechnical Testing (Cont'd)

5.2 Insitu TRL Dynamic Cone Penetrometer Tests (Cont'd)

The results have identified, where new hardstanding surfacing is to be constructed and where the initial ground deposits are used as an undisturbed subgrade (in their present condition) a typical equivalent CBR design value of 5% can be adopted for design purposes for the deposits present below 0.45m, although loose spots may be present due to the nature of the soil ground. The achievable CBR values for the area investigated should improve under compaction and therefore higher CBR values may be attainable.

It is advised that any topsoil deposits are removed prior to construction.

5.3 Insitu Variable (Falling) Head Permeability Tests

Insitu variable (falling) head permeability tests were completed at the locations of BH01, BH03 and BH07, to assess the permeability characteristics of the underlying natural deposits for determining the suitability of using conventional soakaways / SuDS as part of the drainage design scheme for the site.

Due to the impermeable nature of the natural deposits (cohesive strata) there was no discharge of water during the monitoring test period, therefore a permeability value (k) could not be calculated, due to the test 'failing'. Therefore, the tests indicate the natural deposits have a practically impermeable soil permeability classification and practically impervious drainage characteristic.

6.0 Laboratory Testing

6.1 Determination of Chemical Attack on Buried Concrete

Ten representative samples of the soil deposits encountered at the windowless sampling borehole and trial pit locations were tested by Derwentside Environmental Testing Services Limited (DETS) to determine their pH value and soluble sulphate levels, so these materials can be classified in accordance with the guidance BRE Special Digest 1:2005, Concrete in Aggressive Ground. The results of the tests are contained in the DETS Certificate of Analysis Report (reference 22-21498), a copy of which can be seen in Appendix III.

APPENDIX II

Investigation Location Plan Borehole Record Sheets DCP Record Sheets & **Foundation Detail Sheets**

Tectonic House, Unit 11 Queens Court North Third Avenue, Team Valley Trading Estate Tyne & Wear **NE11 0BU** Tel: 0191 477 2020 Email: enquiries@geolconsultants.co.uk BH06 DCP05 DCP04 DCP03 X X DCP02 **BH04** X BH05 DCP01 • X **BH07 BH03** BH02 **TP01** BH01 **TP02** Key: BH01 – Windowless Sampling Borehole 🗣 TP01 – Manually Excavated Foundation Trial Pit DCP01 – Dynamic Cone Penetrometer Test X INVESTIGATION LOCATION PLAN

Report Type: Phase II Ground Investigation Report Site Address: Cleator Moor Activity Centre, Cleator Moor, Cumbria, CA25 5AN Project No.: GEOL22-8472

APPENDIX IV

Ground Gas Monitoring Record Sheet

Phase II Ground Investigation Report Cleator Moor Activity Centre, Cleator Moor, Cumbria, CA25 5AN Project No.: GEOL22-8472

Ground Gas Monitoring Record Sheet

		_			Site		Borehole	Gas	Atmospheric	Atmospheric	Methan	e (% v/v)	Methane (% LEL)		Carbon Dioxide (% v/v)		Oxygen (% v/v)		Hydrocarbons (GFM 435 only)		Other Gases (PPM)			Depth to	Depth to
Visit	Date	Time	Equipment	Weather	Engineer	Comments	Position	Flow (l/hr)	Pressure (mbar)	Pressure Trend	Initial	Steady	Initial	Steady	Initial	Steady	Initial	Steady	Hex %	PID Cf	PID (Isobutylene)	H₂S	со	Water (m bgl)	Base (m bgl)
						Bailed out BH1 & 7 after monitoring. *Bung valves left	1	<0.1	1002			0.0		0.0		0.8		18.8	0.003	1.0		0	0	0.71	3.88
1		Overcast, wet & windy	IH	open BH3 & 7. Closed, waited for	3	<0.1	1002	Rising 997 - 1003		0.0		0.0		0.0		20.4	0.000	1.0		0	0	1.75	4.86		
						30 mins before monitoring*	7	<0.1	1002			0.0		0.0		0.0		20.6	0.000	1.0		0	0	0.27	3.46
				Overcast, wet &		Bailed out BH1 & 7	1	<0.1	996			0.0		0.0		1.0		17.5	0.002	1.0		0	11	0.68	3.88
2	10/11/2022	13:55	GFM436	windy	IH	after monitoring	3	<0.1	996	Rising 987 - 1009		0.0		0.0		1.2		12.5	0.003	1.0		30	45	1.58	4.86
							7	<0.1	996			0.0		0.0		4.0		13.1	0.002	1.0		230	961	0.19	3.46
3	3 14/12/2022 13:10 GFN	GFM436	Sunny, Cold	ІН	Bailed out BH1 & 7 after monitoring	1	<0.1	996	Rising 1009 - 1012		0.0		0.0		0.6		19.6	0.029	1.0		0	10	1.31	3.88	
Ū						aner monitoring	3	<0.1 <0.1	996 998			0.0		0.0		1.9 4.2		5.2 13.2	0.029	1.0		0 70	27 887	0.49	4.86 3.46
							1	<0.1	985			0.0		0.0		0.7		19.5	0.024	1.0		0	0	0.78	3.88
4	22/12/2022	13:30	GFM436	Overcast, wet	IH	Bailed out all BH's after monitoring	3	<0.1		Rising 995 - 1001		0.0		0.0		0.0		7.6	0.024	1.0		0	106	0.57	4.86
							7	<0.1		986		0.0		0.0		4.9		15.5	0.021	1.0		0	11	0.39	3.46
				Deining winds (see			1	<0.1	981			0.0		0.0		0.9		17.3	0.023	1.0		0	0	1.22	3.88
5	10/01/2023	10:15	GFM436	Raining, windy (very wet ground)	IH		3	<0.1	981	Rising 983 - 997		0.0		0.0		2.2		1.9	0.022	1.0		0	0	1.22	4.86
							7	<0.1	981			0.0		0.0		5.1		10.6	0.002	1.0		0	0	0.12	3.46
6																									

APPENDIX E – HYDRAULIC SURFACE WATER CALCULATIONS

GREENFIELD RUNOFF RATE CALCUATION (Qbar)

Furness Partnership		Page 1
20 Britton Street	GREENFIELD RUNOFF RATE	
London	CLEATOR MOOR ACTIVITY CENTRE	The second second
EC1M 5TX	CLEATOR MOOR	Mirro
Date 26/07/2023	Designed by MH	Drainage
File 1IN100 YR @ 3.9L.S (+40%	Checked by CJH	Diamage
Micro Drainage	Source Control 2020.1.3	•

ICP SUDS Mean Annual Flood

Input

Return Period (years) 1 Soil 0.450 Area (ha) 0.503 Urban 0.000 SAAR (mm) 1320 Region Number Region 10

Results 1/s

QBAR Rural 4.6 QBAR Urban 4.6 Q1 year 4.0 Q1 year 4.0

Q30 years 7.9 Q100 years 9.7

©1982-2020 Innovyze

EXISITING 1 IN 1 YEAR DISCHARGE RATE CALCUATION

Furness Partnership		Page 1
20 Britton Street	EXISTING SITE DISCHARGE RATE	
London	CLEATOR MOOR ACTIVITY CENTRE	
EC1M 5TX	CLEATOR MOOR	Micro
Date 26/07/2023	Designed by MH	Drainage
File 1IN1 YEAR EXISTING DISCH	Checked by CJH	Diamage
Micro Drainage	Source Control 2020.1.3	

Summary of Results for 1 year Return Period Storm Max Max Max Status Max Event Level Depth Control Volume (m) (m) (1/s) (m³) 15 min Summer 80.977 0.227 18.3 0.4 ΟK 30 min Summer 81.010 0.260 20.2 0.4 ОК 60 min Summer 81.005 0.255 19.9 0.4 ОК 120 min Summer 80.955 0.205 16.5 0.3 ОК 180 min Summer 80.933 0.183 14.0 0.3 ОК 240 min Summer 80.918 0.168 12.3 0.3 ΟK 360 min Summer 80.897 0.147 10.0 0.2 ΟK 480 min Summer 80.884 0.134 8.6 0.2 ΟΚ 0.2 600 min Summer 80.875 0.125 7.6 ОК 720 min Summer 80.867 0.117 6.8 0.2 ΟК 960 min Summer 80.853 0.103 5.8 0.1 ΟК 1440 min Summer 80.838 0.088 4.5 0.1 ΟК 2160 min Summer 80.829 0.079 3.6 0.1 ОК 2880 min Summer 80.823 0.073 3.0 0.1 ОК 4320 min Summer 80.815 0.065 2.4 0.1 ОК 5760 min Summer 80.809 0.059 2.0 0.1 ОК 7200 min Summer 80.805 0.055 1.7 0.1 ОК 8640 min Summer 80.802 0.052 1.6 0.1 ΟК 10080 min Summer 80.799 0.049 1.4 0.1 ΟK

	Storn Event		Rain (mm/hr)	Flooded Volume (m³)	Discharge Volume (m³)	Time-Peak (mins)	
15	min	Summer	23.411	0.0	14.2	14	
30	min	Summer	16.224	0.0	19.6	21	
60	min	Summer	11.025	0.0	26.7	36	
120	min	Summer	7.438	0.0	36.0	66	
180	min	Summer	5.896	0.0	42.8	96	
240	min	Summer	5.002	0.0	48.4	126	
360	min	Summer	3.922	0.0	57.0	186	
480	min	Summer	3.299	0.0	63.9	246	
600	min	Summer	2.885	0.0	69.8	308	
720	min	Summer	2.587	0.0	75.1	368	
960	min	Summer	2.180	0.0	84.4	488	
1440	min	Summer	1.709	0.0	99.2	716	
2160	min	Summer	1.341	0.0	116.8	1072	
2880	min	Summer	1.131	0.0	131.4	1448	
4320	min	Summer	0.884	0.0	154.0	2160	
		Summer	0.741	0.0	172.2	2880	
7200	min	Summer	0.647	0.0	187.8	3544	
		Summer		0.0	200.5	4384	
10080	min	Summer	0.521	0.0	211.7	5096	
		©1	982-202	20 Inno	vyze		

Furness Partnership		Page 2
20 Britton Street	EXISTING SITE DISCHARGE RATE	
London	CLEATOR MOOR ACTIVITY CENTRE	
EC1M 5TX	CLEATOR MOOR	Mirro
Date 26/07/2023	Designed by MH	Drainage
File 1IN1 YEAR EXISTING DISCH	Checked by CJH	Diamage
Micro Drainage	Source Control 2020.1.3	

	Stor	m	Max	Max	Max	Max	Status
	Even	t	Level	Depth	Control	Volume	
			(m)	(m)	(1/s)	(m³)	
15	min	Winter	80.980	0.230	18.5	0.4	ОК
30	min	Winter	80.999	0.249	19.6	0.4	ΟK
60	min	Winter	80.957	0.207	16.7	0.3	ΟK
120	min	Winter	80.917	0.167	12.2	0.3	ΟK
180	min	Winter	80.896	0.146	9.9	0.2	ΟK
240	min	Winter	80.882	0.132	8.4	0.2	ΟK
360	min	Winter	80.865	0.115	6.7	0.2	ΟK
480	min	Winter	80.852	0.102	5.6	0.1	ΟK
600	min	Winter	80.843	0.093	4.9	0.1	ΟK
720	min	Winter	80.837	0.087	4.4	0.1	ΟK
960	min	Winter	80.830	0.080	3.8	0.1	ΟK
1440	min	Winter	80.822	0.072	2.9	0.1	ΟK
2160	min	Winter	80.814	0.064	2.3	0.1	ΟK
2880	min	Winter	80.808	0.058	1.9	0.1	ΟK
4320	min	Winter	80.802	0.052	1.6	0.1	ΟK
5760	min	Winter	80.798	0.048	1.3	0.1	ΟK
7200	min	Winter	80.794	0.044	1.1	0.1	ΟK
8640	min	Winter	80.791	0.041	1.0	0.0	ΟK
10080	min	Winter	80.790	0.040	0.9	0.0	ΟK

	Storm Event	Rain (mm/hr)		Discharge Volume (m³)	Time-Peak (mins)	
15	min Winter	23.411	0.0	14.2	14	
30	min Winter	16.224	0.0	19.6	21	
60	min Winter	11.025	0.0	26.7	36	
120	min Winter	7.438	0.0	36.0	66	
180	min Winter	5.896	0.0	42.8	94	
240	min Winter	5.002	0.0	48.4	128	
360	min Winter	3.922	0.0	57.0	184	
480	min Winter	3.299	0.0	63.9	244	
600	min Winter	2.885	0.0	69.8	308	
720	min Winter	2.587	0.0	75.1	362	
960	min Winter	2.180	0.0	84.4	478	
1440	min Winter	1.709	0.0	99.2	718	
2160	min Winter	1.341	0.0	116.8	1084	
2880	min Winter	1.131	0.0	131.4	1436	
4320	min Winter	0.884	0.0	154.0	2204	
5760	min Winter	0.741	0.0	172.2	2784	
7200	min Winter	0.647	0.0	187.8	3656	
8640	min Winter	0.575	0.0	200.5	4160	
10080	min Winter	0.521	0.0	211.7	4992	
	©	1982-20	20 Inno	vyze		

Furness Partnership		Page 3
20 Britton Street	EXISTING SITE DISCHARGE RATE	
London	CLEATOR MOOR ACTIVITY CENTRE	
EC1M 5TX	CLEATOR MOOR	Micco
Date 26/07/2023	Designed by MH	Micro
File 1IN1 YEAR EXISTING DISCH	Checked by CJH	Drainage
Micro Drainage	Source Control 2020.1.3	
	504100 2020.1.5	
Ra	infall Details	
Rainfall Model	FSR Winter Storms Yes	3
Return Period (years)	1 Cv (Summer) 1.000	
Region Engl	and and Wales Cv (Winter) 1.000	
M5-60 (mm) Ratio R	17.500 Shortest Storm (mins) 15 0.258 Longest Storm (mins) 10080	
Summer Storms	Yes Climate Change % +(
	ne Area Diagram	
	al Area (ha) 0.242 ime (mins) Area Time (mins) Area	
	rom: To: (ha) From: To: (ha)	
0 4 0.081	4 8 0.081 8 12 0.080	
©19	82-2020 Innovyze	

Furness Partnership		Page 4
20 Britton Street	EXISTING SITE DISCHARGE RATE	
London	CLEATOR MOOR ACTIVITY CENTRE	
EC1M 5TX	CLEATOR MOOR	Micro
Date 26/07/2023	Designed by MH	Drainage
File 1IN1 YEAR EXISTING DISCH	Checked by CJH	Diamage
Micro Drainage	Source Control 2020.1.3	

Model Details

Storage is Online Cover Level (m) 82.300

Pipe Structure

Diameter (m) 0.150 Length (m) 10.000 Slope (1:X) 60.000 Invert Level (m) 80.750

Pipe Outflow Control

Diameter (m) 0.150 Entry Loss Coefficient 0.500 Slope (1:X) 61.4 Coefficient of Contraction 0.600 Length (m) 21.500 Upstream Invert Level (m) 80.750 Roughness k (mm) 0.600

©1982-2020 Innovyze

PROPOSED NETWORK HYDRAULIC CALCUATIONS

Furness Partnership	Page 1
20 Britton Street	SURFACE WATER NETWORK
London	CLEATOR MOOR ACTIVITY CENTRE
EC1M 5TX	CLEATOR MOOR
Date 26/07/2023	Designed by MH
File 1in100 +40% @ 4.61.s [0	Checked by CJH UIdIIIdGP
Micro Drainage	Network 2020.1.3
STORM SEWER DESIGN Design Pipe Sizes STA FSR Rainfall Return Period (years) M5-60 (mm) Ratio R Maximum Rainfall (mm/hr) Maximum Time of Concentration (mins) Foul Sewage (1/s/ha) Volumetric Runoff Coeff. Design Time Are (mins)	by the Modified Rational Method Criteria for Storm NDARD Manhole Sizes STANDARD Model - England and Wales 1 PIMP (%) 100 17.300 Add Flow / Climate Change (%) 0 0.255 Minimum Backdrop Height (m) 0.200 50 Maximum Backdrop Height (m) 1.500 30 Min Design Depth for Optimisation (m) 1.200 0.000 Min Vel for Auto Design only (m/s) 1.00
	Contributing (ha) = 0.503 pe Volume (m ³) = 13.694
Network D	esign Table for Storm
« - Indica	tes pipe capacity < flow
PN Length Fall Slope I.Area T. (m) (m) (1:X) (ha) (min	E. Base k HYD DIA Section Type Auto ns) Flow (l/s) (mm) SECT (mm) Design
	.00 0.0 0.600 o 225 Pipe/Conduit 🥚
	.00 0.0 0.600 o 225 Pipe/Conduit 🔒
1.002 16.400 0.054 303.7 0.022 0	.00 0.0 0.600 o 300 Pipe/Conduit 🔒
Netwo	ork Results Table
PN Rain T.C. US/IL Σ I.A (mm/hr) (mins) (m) (ha	· · · · · · · · · · · · · · · · · · ·
1.000 37.24 5.21 81.315 0.	110 0.0 0.0 0.0 0.87 34.7 14.8
	110 0.0 0.0 0.0 0.0 0.87 34.7 14.8
	132 0.0 0.0 0.0 0.90 63.4 17.1
e100	32-2020 Innovyze
	22 2020 INNOVY26

Furness Par		p							Pa	age 2
20 Britton :	Street			SU	RFACE WAT	ER NEI	IWORK			
London				CL	EATOR MOOD	R ACTI	IVITY CEN	ITRE		Long too
EC1M 5TX				CL	EATOR MOOD	R			N	Nicro
Date 26/07/2	2023			De	signed by	MH				and the second
File lin100	+40% @	4.61	.s [0	Ch	ecked by (СЈН				Drainagi
Aicro Draina	age			Ne	twork 202	0.1.3				
			Networ	k Desi	.gn Table	for S	torm			
PN Lenc	gth Fall	Slope		T.E.	Base	k		Secti	on Typ	e Auto
(m		(1:X)			Flow (1/s)	(mm)	SECT (mm)	50001	011 192	Design
2.000 15.1	.00 0.10(0 151.0	0.103	5.00	0.0	0.600	o 225	Pipe/	Condui	t 🔒
2.001 45.4	00 0.262	2 173.3	0.000	0.00	0.0	0.600	o 225	Pipe/	Condui	t 🔒
1.003 8.8	300 0.02	7 325.9	0.000	0.00	0.0	0.600	o <u>300</u>	Pipe/	Condui	t 🔒
1.004 10.5				0.00		0.600		Pipe/		
3.000 11.0	00 0.05	5 200.0	0.072	5.00	0.0	0.600	o 225	Pipe/	Condui	t 🔒
3.001 12.0				0.00		0.600	o 225	Pipe/	Condui	t 🧿
3.002 31.7	00 0.186	5 170.4	0.060	0.00	0.0	0.600	o 300	Pipe/	Condui	t
4.000 25.8	300 0.176	5 146.6	0.046	5.00	0.0	0.600	o 150	Pipe/	Condui	t 🤒
3.003 13.7	00 0.046	5 297.8	0.019	0.00	0.0	0.600	o 300	Pipe/	Condui	t 🤒
3.004 8.1				0.00		0.600		Pipe/		t 🦰
3.005 24.1	.00 0.066	5 365.2	2 0.000	0.00	0.0	0.600	o 300	Pipe/	Condui	t 🤒
1.005 13.9	00 0.028	3 496.4	0.000	0.00	0.0	0.600	o 300	Pipe/	Condui	t 🤒
			Ne	etwork	Results '	Table				
PN	Rain	T.C.	US/IL Σ	I.Area	Σ Base	Foul	Add Flow	Vel	Cap	Flow
(:	mm/hr) (mins)	(m)	(ha)	Flow (l/s)	(l/s)	(1/s)	(m/s)	(l/s)	(l/s)
2.000	37.17	5.24	81.518	0.103	0.0	0.0	0.0	1.06	42.2	13.8
2.001	35.26		81.418	0.103				0.99	39.4	13.8
1.003	34.88	6 17	01 001	0.235	0.0	0.0	0 0	0 07	61 2	20 6
1.003	34.88 34.56		81.081 80.586	0.235				0.87 1.24	61.2 87.9	29.6 29.6
3.000	37.27		81.081	0.072				0.92	36.6	9.7
3.001 3.002	36.70 35.61	5.42	81.026 80.891	0.143 0.203				0.92 1.20	36.6 84.9	19.0 26.1
4.000	36.44	5.52	81.031	0.046	0.0	0.0	0.0	0.83	14.6	6.1
3.003	35.02		80.705	0.268				0.91		33.9
3.004 3.005	34.81 33.74		80.659 80.586	0.268 0.268					105.5 57.7	33.9 33.9
1.005	33.07	7.02	80.520	0.503	0.0	0.0	0.0	0.70	49.4«	60.1

Furness Partnership		Page 3
20 Britton Street	SURFACE WATER NETWORK	
London	CLEATOR MOOR ACTIVITY CENTRE	And the second second
EC1M 5TX	CLEATOR MOOR	Micco
Date 26/07/2023	Designed by MH	
File 1in100 +40% @ 4.61.s [0	Checked by CJH	Drainage
Micro Drainage	Network 2020.1.3	
Free Flowing	Outfall Details for Storm	
Outfall Outfall C Pipe Number Name	. Level I. Level Min D,L W (m) (m) I. Level (mm) (mm)	
1.005	81.750 80.492 80.492 0 0	
Simulatio	on Criteria for Storm	
	on officiate for bootm	
	1.000 Additional Flow - % of Total Flow	
Areal Reduction Factor		
Hot Start (mins) Hot Start Level (mm)	0 Inlet Coeffiecient 0 Flow per Person per Day (l/per/day)	0.000
Manhole Headloss Coeff (Global)		
Foul Sewage per hectare (l/s)	0.000 Output Interval (mins)	1
Number of Input Hydrographs () Number	of Offline Controls 0 Number of Time/Are	ea Diagrams O
	f Storage Structures 3 Number of Real Time	
Synthet	ic Rainfall Details	
Rainfall Model	FSR Profile Type Summe	.r.
Return Period (years)	1 Cv (Summer) 1.00	
Region Engla	and and Wales Cv (Winter) 0.84	0
M5-60 (mm)	17.300 Storm Duration (mins) 3	0
Ratio R	0.255	
©198	82-2020 Innovyze	

	ship										Pa	ge 4	
20 Britton Stre	et		S	SURFA	CE WAT	rer	NETW	ORK			5		
ondon			0	CLEAT	OR MOO	DR A	CTIV	ITY C	ENTRE			La y	
CC1M 5TX				CLEAT	OR MOO	DR					N	licro	
Date 26/07/2023			I	Desig	ned by	y MH	[raina	
Tile 1in100 +40	804.	61.s [0.		Checke	ed by	СЈН						ווום ו	ay
licro Drainage			N	letwo	rk 202	20.1	.3						
		On	line (Contro	ols fo	or S	torm						
Hydro-Bra	ke® Opt	timum Mar	nhole:	BASI	IN, DS	G/PN	: 1.	005,	Volume	(m	3):	3.4	
			Unit 1 Design			-SHE	-0101	-4600-	1000-46				
			sign F							.6			
			F.	lush-F	lo™				alculat				
				2		linim	ise u	pstrea	m stora Surfa	2			
				plicat Availa						ice Ies			
			1	eter (.01			
			nvert :		· · /				80.5				
M		Dutlet Pip ted Manhol								.50 200			
Control Poir		Head (m)				Cont	rol P	oints			(m) 1	Flow (1/6
Design Point (Cal				4.6		cont			-Flo®		633	ETOM (3.
-	ush-Flo				Mean 1	Flow	over		Range		-		4.
The hydrologian	1 1 1		to hoon	10000		- TT -				- i ond	ahin	for +1	he
The hydrological Hydro-Brake® Opt Hydro-Brake Opt: Depth (m) Flo	timum as imum® be	specified utilised	l. Sho then t	uld ar hese s	nother storage	type rou	e of c iting	ontrol calcul	device ations	e oth will	ner t l be	han a invali	idat
Hydro-Brake® Opt	timum as imum® be	specified utilised Depth (m)	d. Sho then t Flow	uld ar hese s	nother storage Depth	type rou	e of c iting	ontrol calcul	device ations	e oth will	ner t l be	han a invali	Ldat
Hydro-Brake® Opt Hydro-Brake Opt Depth (m) Flo 0.100 0.200	timum as imum® be ww (l/s) 3.4 4.5	specified utilised Depth (m) 1.200 1.400	d. Sho then t Flow	uld ar hese s (1/s) 5.0 5.4	Depth 3 3	type rou (m) .000 .500	e of c uting Flow	ontrol calcul (1/s) 7.7 8.3	Depth	e oth will (m) 000 500	ner t l be	han a inval: (1/s) 11.5 11.5	idat
Hydro-Brake® Opt Hydro-Brake Opt Depth (m) Flo 0.100 0.200 0.300	timum as imum® be ww (l/s) 3.4 4.5 4.6	specified utilised Depth (m) 1.200 1.400 1.600	d. Sho then t Flow	uld ar hese s (1/s) 5.0 5.4 5.7	Depth 3 3 4	type e rou (m) .000 .500 .000	e of c uting Flow	ontrol calcul (1/s) 7.7 8.3 8.8	Depth 7. 8.	e oth will (m) 000 500 000	ner t l be	han a invali (1/s) 11.5 11.9 12.2	idat
Hydro-Brake® Opt Hydro-Brake Opt Depth (m) Flo 0.100 0.200 0.300 0.400	timum as imum® be w (1/s) 3.4 4.5 4.6 4.5	specified utilised Depth (m) 1.200 1.400 1.600 1.800	d. Sho then t Flow	uld ar hese s (1/s) 5.0 5.4 5.7 6.0	Depth 3 3 4 4	type e rou (m) .000 .500 .000 .500	e of c uting Flow	ontrol calcul (1/s) 7.7 8.3 8.8 9.3	Depth 7. 7. 8. 8.	e oth will (m) 000 500 000 500	ner t l be	han a invali (1/s) 11.5 11.9 12.2 12.6	idat
Hydro-Brake® Opt Hydro-Brake Opt Depth (m) Flo 0.100 0.200 0.300	timum as imum® be ww (l/s) 3.4 4.5 4.6	specified utilised Depth (m) 1.200 1.400 1.600	A. Sho then t Flow	uld ar hese s (1/s) 5.0 5.4 5.7	Depth 3 3 4 4 5	type e rou (m) .000 .500 .000	e of c uting Flow	ontrol calcul (1/s) 7.7 8.3 8.8	device ations Depth 7. 7. 8. 8. 9.	e oth will (m) 000 500 000	ner t l be	han a invali (1/s) 11.5 11.9 12.2	idat
Hydro-Brake® Opt Hydro-Brake Opt Depth (m) Flo 0.100 0.200 0.300 0.400 0.500 0.600 0.800	timum as imum® be w (1/s) 3.4 4.5 4.6 4.5 4.4 4.0 4.1	specified utilised Depth (m) 1.200 1.400 1.600 1.800 2.000 2.200 2.400	d. Sho then t Flow	uld ar hese s (1/s) 5.0 5.4 5.7 6.0 6.3 6.6 6.9	Depth 3 3 4 4 5 5 6	type (m) .000 .500 .000 .500 .000 .500	e of c uting Flow	ontrol calcul (1/s) 7.7 8.3 8.8 9.3 9.8 10.2 10.7	device ations Depth 7. 7. 8. 8. 9. 9.	e oth will (m) 000 500 000 500 000	ner t l be	han a inval: (1/s) 11.5 11.9 12.2 12.6 12.9	idat
Hydro-Brake® Opt Hydro-Brake Opt Depth (m) Flo 0.100 0.200 0.300 0.400 0.500 0.600	timum as imum® be w (1/s) 3.4 4.5 4.6 4.5 4.4 4.0	specified utilised Depth (m) 1.200 1.400 1.600 1.800 2.000 2.200 2.400	d. Sho then t Flow	uld ar hese s (1/s) 5.0 5.4 5.7 6.0 6.3 6.6	Depth 3 3 4 4 5 5 6	type (m) .000 .500 .000 .500 .000 .500	e of c uting Flow	ontrol calcul (1/s) 7.7 8.3 8.8 9.3 9.8 10.2	device ations Depth 7. 7. 8. 8. 9. 9.	e oth will (m) 000 500 000 500 000	ner t l be	han a inval: (1/s) 11.5 11.9 12.2 12.6 12.9	idat
Hydro-Brake® Opt Hydro-Brake Opt Depth (m) Flo 0.100 0.200 0.300 0.400 0.500 0.600 0.800	timum as imum® be w (1/s) 3.4 4.5 4.6 4.5 4.4 4.0 4.1	specified utilised Depth (m) 1.200 1.400 1.600 1.800 2.000 2.200 2.400	d. Sho then t Flow	uld ar hese s (1/s) 5.0 5.4 5.7 6.0 6.3 6.6 6.9	Depth 3 3 4 4 5 5 6	type (m) .000 .500 .000 .500 .000 .500	e of c uting Flow	ontrol calcul (1/s) 7.7 8.3 8.8 9.3 9.8 10.2 10.7	device ations Depth 7. 7. 8. 8. 9. 9.	e oth will (m) 000 500 000 500 000	ner t l be	han a inval: (1/s) 11.5 11.9 12.2 12.6 12.9	idat
Hydro-Brake® Opt Hydro-Brake Opt Depth (m) Flo 0.100 0.200 0.300 0.400 0.500 0.600 0.800	timum as imum® be w (1/s) 3.4 4.5 4.6 4.5 4.4 4.0 4.1	specified utilised Depth (m) 1.200 1.400 1.600 1.800 2.000 2.200 2.400	d. Sho then t Flow	uld ar hese s (1/s) 5.0 5.4 5.7 6.0 6.3 6.6 6.9	Depth 3 3 4 4 5 5 6	type (m) .000 .500 .000 .500 .000 .500	e of c uting Flow	ontrol calcul (1/s) 7.7 8.3 8.8 9.3 9.8 10.2 10.7	device ations Depth 7. 7. 8. 8. 9. 9.	e oth will (m) 000 500 000 500 000	ner t l be	han a inval: (1/s) 11.5 11.9 12.2 12.6 12.9	idat
Hydro-Brake® Opt Hydro-Brake Opt Depth (m) Flo 0.100 0.200 0.300 0.400 0.500 0.600 0.800	timum as imum® be w (1/s) 3.4 4.5 4.6 4.5 4.4 4.0 4.1	specified utilised Depth (m) 1.200 1.400 1.600 1.800 2.000 2.200 2.400	d. Sho then t Flow	uld ar hese s (1/s) 5.0 5.4 5.7 6.0 6.3 6.6 6.9	Depth 3 3 4 4 5 5 6	type (m) .000 .500 .000 .500 .000 .500	e of c uting Flow	ontrol calcul (1/s) 7.7 8.3 8.8 9.3 9.8 10.2 10.7	device ations Depth 7. 7. 8. 8. 9. 9.	e oth will (m) 000 500 000 500 000	ner t l be	han a inval: (1/s) 11.5 11.9 12.2 12.6 12.9	idat
Hydro-Brake® Opt Hydro-Brake Opt Depth (m) Flo 0.100 0.200 0.300 0.400 0.500 0.600 0.800	timum as imum® be w (1/s) 3.4 4.5 4.6 4.5 4.4 4.0 4.1	specified utilised Depth (m) 1.200 1.400 1.600 1.800 2.000 2.200 2.400	d. Sho then t Flow	uld ar hese s (1/s) 5.0 5.4 5.7 6.0 6.3 6.6 6.9	Depth 3 3 4 4 5 5 6	type (m) .000 .500 .000 .500 .000 .500	e of c uting Flow	ontrol calcul (1/s) 7.7 8.3 8.8 9.3 9.8 10.2 10.7	device ations Depth 7. 7. 8. 8. 9. 9.	e oth will (m) 000 500 000 500 000	ner t l be	han a inval: (1/s) 11.5 11.9 12.2 12.6 12.9	idat

Furness Partnership		Page 5
20 Britton Street	SURFACE WATER NETWORK	
London	CLEATOR MOOR ACTIVITY CENTRE	- Construction
EC1M 5TX	CLEATOR MOOR	Micro
Date 26/07/2023	Designed by MH	Desinado
File 1in100 +40% @ 4.61.s [0	Checked by CJH	Diamaye
Micro Drainage	Network 2020.1.3	ł
Storage	Structures for Storm	
Porous Car Park	Manhole: S.09, DS/PN: 3.000	
Infiltration Coefficient Base	(m/hr) 0.00000 Width (m)	10.0
Membrane Percolation	(mm/hr) 1000 Length (m)	
	n (l/s) 97.2 Slope (1:X)	
Safety	Factor 2.0 Depression Storage (mm)	5 3
Po Invert Lei	orosity 0.30 Evaporation (mm/day) vel (m) 81.870 Cap Volume Depth (m)	ی 0.350
		0.000
Porous Car Park	Manhole: S.10, DS/PN: 3.001	
Infiltration Coefficient Base	(m/hr) 0.00000 Width (m)	5.0
Membrane Percolation	(mm/hr) 1000 Length (m)	
	n (l/s) 48.6 Slope (1:X)	
	Factor 2.0 Depression Storage (mm)	
Po Invert Lo	orosity 0.30 Evaporation (mm/day) vel (m) 81.720 Cap Volume Depth (m)	3
THATC TE	ver (m) 61.720 cap vorume Depen (m)	0.550
Tank or Pond M	lanhole: BASIN, DS/PN: 1.005	
Inve	ert Level (m) 80.520	
Depth (m) Ar	rea (m²) Depth (m) Area (m²)	
0.000	309.0 1.000 685.0	
©19	82-2020 Innovyze	

	tnership						Pag	ge 6
20 Britton	Street		S	URFACE WATE	CR NETWOR	K		
ondon			C	LEATOR MOOP	R ACTIVIT	Y CENTRE		
C1M 5TX			C	LEATOR MOON	ξ		14	icro
ate 26/07/	2023		D	esigned by	MH			icio
	+40% @ 4.6	51 s [0		hecked by (alnag
licro Drain				etwork 2020				1544
	aye		IN	etwork 2020	· · · · J			
1 year Retu	arn Period S	Summary	of Cri	itical Resu <u>Storm</u>	lts by Ma	ximum Le [,]	vel (Ran	k 1) fo
Foul Number of In	Hot Hot Star e Headloss Co Sewage per P put Hydrograp	Start (mi rt Level (beff (Glob hectare (1 bhs 0 Nu	mm) val) 0. /s) 0.	500 Flow per	nal Flow - DD Factor * In Person per trols 0 Nu	10m³/ha S let Coeffi Day (l/pe mber of Ti	torage 1. ecient 0. r/day) 0. me/Area D	000 800 000 iagrams
			-	ic Rainfall D		D 0 055		
	Rain	fall Model	_	FSR and and Wales	Ratio			
		5		17.300				
	Margin for F			-			300.0	
		Anal	-	mestep 2.5 S Status	econd Incre	ement (Exte		
				Status			OFF OFF	
		Т		Status			OFF	
		1	IICICIC	blacab			011	
		Profile(s)			~ ~ ~ ~ ~	Summer an		
		. ,		80, 60, 120, 2		60, 480, 6	00, 720,	
Re	Duration	(s) (mins)		80, 60, 120, 2		60, 480, 6 , 1440, 21	00, 720, 60, 2880	
Re	Duration(turn Period(s	(s) (mins) s) (years)		80, 60, 120, 3		60, 480, 6 , 1440, 21 1,	00, 720,	
Re	Duration(turn Period(s	(s) (mins)		80, 60, 120, i		60, 480, 6 , 1440, 21 1,	00, 720, 60, 2880 30, 100	
Re	Duration(turn Period(s	(s) (mins) s) (years)		30, 60, 120, 3		60, 480, 6 , 1440, 21 1,	00, 720, 60, 2880 30, 100	
	Duration(turn Period(s Climate C	(s) (mins) s) (years) Change (%)	15, 3		960	60, 480, 6 , 1440, 21 1, 40	00, 720, 60, 2880 30, 100 , 40, 40	Water
us/M	Duration(turn Period(s Climate C	(s) (mins) s) (years) Change (%) Return C	15, 3	First (X)	960 First (Y)	60, 480, 6 , 1440, 21 1, 40 First (Z)	00, 720, 60, 2880 30, 100 , 40, 40 Overflow	Level
	Duration(turn Period(s Climate C	(s) (mins) s) (years) Change (%)	15, 3		960	60, 480, 6 , 1440, 21 1, 40	00, 720, 60, 2880 30, 100 , 40, 40	
US/M PN Nama 1.000 S.0	Duration (turn Period (s Climate C H e Storm 1 15 Summer	(s) (mins) s) (years) Change (%) Return C Period C 1	15, 3 limate change +40%	First (X) Surcharge 30/15 Summer	960 First (Y)	60, 480, 6 , 1440, 21 1, 40 First (Z)	00, 720, 60, 2880 30, 100 , 40, 40 Overflow	Level (m) 81.454
US/M PN Nama 1.000 S.0 1.001 S.0	Duration (turn Period (s Climate C H e Storm 1 15 Summer 2 15 Summer	(s) (mins) s) (years) Change (%) Return C Period C 1 1	15, 3 limate Change +40% +40%	First (X) Surcharge 30/15 Summer 30/15 Summer	960 First (Y)	60, 480, 6 , 1440, 21 1, 40 First (Z)	00, 720, 60, 2880 30, 100 , 40, 40 Overflow	Level (m) 81.454 81.403
US/M PN Name 1.000 S.0 1.001 S.0 1.002 S.0	Duration (turn Period (s Climate C H e Storm 1 15 Summer 2 15 Summer 3 15 Summer	(s) (mins) s) (years) Change (%) Return C Period C 1 1 1	15, 3 limate Change +40% +40% +40%	First (X) Surcharge 30/15 Summer 30/15 Summer 30/15 Summer	960 First (Y)	60, 480, 6 , 1440, 21 1, 40 First (Z)	00, 720, 60, 2880 30, 100 , 40, 40 Overflow	Level (m) 81.454 81.403 81.327
US/M PN Name 1.000 S.0 1.001 S.0 1.002 S.0 2.000 S.0	Duration (turn Period (s Climate C H e Storm 11 15 Summer 12 15 Summer 13 15 Summer 13 15 Summer	(s) (mins) s) (years) Change (%) Return C Period C 1 1 1 1 1	15, 3 limate Change +40% +40% +40% +40%	First (X) Surcharge 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer	960 First (Y)	60, 480, 6 , 1440, 21 1, 40 First (Z)	00, 720, 60, 2880 30, 100 , 40, 40 Overflow	Level (m) 81.454 81.403 81.327 81.633
US/M PN Name 1.000 S.0 1.001 S.0 1.002 S.0 2.000 S.0 2.001 S.0	Duration (turn Period (s Climate C H e Storm 1 15 Summer 2 15 Summer 3 15 Summer 7 15 Summer 8 15 Summer	<pre>(s) (mins) (s) (years) Change (%) Return C Period C 1 1 1 1 1 1 1</pre>	15, 3 limate change +40% +40% +40% +40% +40%	First (X) Surcharge 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer	960 First (Y)	60, 480, 6 , 1440, 21 1, 40 First (Z)	00, 720, 60, 2880 30, 100 , 40, 40 Overflow	Level (m) 81.454 81.403 81.327 81.633 81.532
US/M PN Name 1.000 S.0 1.001 S.0 1.002 S.0 2.000 S.0 2.001 S.0 1.003 S.0	Duration (turn Period (s Climate C H e Storm 1 15 Summer 2 15 Summer 3 15 Summer 3 15 Summer 17 15 Summer 18 15 Summer	<pre>(s) (mins) (s) (years) Change (%) Return C Period C 1 1 1 1 1 1 1 1 1</pre>	15, 3 limate change +40% +40% +40% +40% +40% +40%	First (X) Surcharge 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer	960 First (Y)	60, 480, 6 , 1440, 21 1, 40 First (Z)	00, 720, 60, 2880 30, 100 , 40, 40 Overflow	Level (m) 81.454 81.403 81.327 81.633 81.532 81.305
US/M PN Name 1.000 S.0 1.001 S.0 1.002 S.0 2.000 S.0 2.001 S.0 1.003 S.0 1.004 S.0	Duration (turn Period (s Climate C H S Storm 1 15 Summer 2 15 Summer 3 15 Summer 3 15 Summer 17 15 Summer 18 15 Summer 4 15 Summer 5 960 Summer	<pre>(s) (mins) (s) (years) Change (%) Return C Period C 1 1 1 1 1 1 1 1 1 1 1 1</pre>	15, 3 limate change +40% +40% +40% +40% +40% +40% +40%	First (X) Surcharge 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer	960 First (Y)	60, 480, 6 , 1440, 21 1, 40 First (Z)	00, 720, 60, 2880 30, 100 , 40, 40 Overflow	Level (m) 81.454 81.403 81.327 81.633 81.532 81.305 80.835
US/M PN Name 1.000 S.0 1.001 S.0 1.002 S.0 2.000 S.0 2.001 S.0 1.003 S.0 1.004 S.0 3.000 S.0	Duration (turn Period (s Climate C H S Storm 1 15 Summer 2 15 Summer 3 15 Summer 3 15 Summer 17 15 Summer 18 15 Summer 14 15 Summer 15 960 Summer 19 15 Summer	<pre>(s) (mins) (s) (years) Change (%) Return C Period C 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</pre>	15, 3 limate change +40% +40% +40% +40% +40% +40% +40% +40%	First (X) Surcharge 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer	960 First (Y)	60, 480, 6 , 1440, 21 1, 40 First (Z)	00, 720, 60, 2880 30, 100 , 40, 40 Overflow	Level (m) 81.454 81.403 81.327 81.633 81.532 81.305 80.835 81.200
US/M PN Name 1.000 S.0 1.001 S.0 1.002 S.0 2.000 S.0 2.001 S.0 1.003 S.0 1.004 S.0 3.000 S.0 3.001 S.1	Duration (turn Period (s Climate C H e Storm 1 15 Summer 2 15 Summer 3 15 Summer 3 15 Summer 13 15 Summer 14 15 Summer 15 960 Summer 19 15 Summer 0 15 Summer	(s) (mins) (s) (years) Change (%) Return C Period C 1 1 1 1 1 1 1 1 1 1 1 1 1	15, 3 limate change +40% +40% +40% +40% +40% +40% +40% +40%	First (X) Surcharge 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer	960 First (Y)	60, 480, 6 , 1440, 21 1, 40 First (Z)	00, 720, 60, 2880 30, 100 , 40, 40 Overflow	Level (m) 81.454 81.403 81.327 81.633 81.532 81.305 80.835 81.200 81.177
US/M PN Name 1.000 S.0 1.001 S.0 1.002 S.0 2.000 S.0 2.001 S.0 1.003 S.0 1.004 S.0 3.000 S.0 3.001 S.1 3.002 S.1	Duration (turn Period (s Climate C H e Storm 1 15 Summer 2 15 Summer 3 15 Summer 3 15 Summer 13 15 Summer 14 15 Summer 15 960 Summer 19 15 Summer 0 15 Summer 1 15 Summer	(s) (mins) (s) (years) Change (%) Return C Period C 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	15, 3 limate change +40% +40% +40% +40% +40% +40% +40% +40%	First (X) Surcharge 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer	960 First (Y)	60, 480, 6 , 1440, 21 1, 40 First (Z)	00, 720, 60, 2880 30, 100 , 40, 40 Overflow	Level (m) 81.454 81.403 81.327 81.633 81.532 81.305 80.835 81.200 81.177 81.029
US/M PN Name 1.000 S.0 1.001 S.0 1.002 S.0 2.000 S.0 2.001 S.0 1.003 S.0 1.004 S.0 3.000 S.0 3.001 S.1 3.002 S.1 4.000 S.1	Duration (turn Period (s Climate C H Souther Storm 1 15 Summer 2 15 Summer 3 15 Summer 3 15 Summer 3 15 Summer 4 15 Summer 9 15 Summer 9 15 Summer 1 15 Summer 1 15 Summer 1 15 Summer 1 15 Summer	<pre>(s) (mins) (s) (years) Change (%) Return C Period C 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</pre>	15, 3 limate change +40% +40% +40% +40% +40% +40% +40% +40%	First (X) Surcharge 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer	960 First (Y)	60, 480, 6 , 1440, 21 1, 40 First (Z)	00, 720, 60, 2880 30, 100 , 40, 40 Overflow	Level (m) 81.454 81.403 81.327 81.633 81.532 81.305 80.835 81.200 81.177 81.029 81.116
US/M PN Name 1.000 S.0 1.001 S.0 1.002 S.0 2.000 S.0 2.001 S.0 1.003 S.0 1.004 S.0 3.000 S.0 3.001 S.1 3.002 S.1 4.000 S.1 3.003 S.1	Duration (turn Period (s Climate C H e Storm 1 15 Summer 2 15 Summer 3 15 Summer 3 15 Summer 3 15 Summer 4 15 Summer 5 960 Summer 9 15 Summer 1 15 Summer 1 15 Summer 2 15 Summer 2 15 Summer 2 15 Summer	(s) (mins) (s) (years) Change (%) Return C Period C 1 1 1 1 1 1 1 1 1 1 1 1 1	15, 3 limate change +40% +40% +40% +40% +40% +40% +40% +40%	First (X) Surcharge 30/15 Summer 30/15 Summer	960 First (Y)	60, 480, 6 , 1440, 21 1, 40 First (Z)	00, 720, 60, 2880 30, 100 , 40, 40 Overflow	Level (m) 81.454 81.403 81.327 81.633 81.532 81.305 80.835 81.200 81.177 81.029 81.116 80.912
US/M PN Name 1.000 S.0 1.001 S.0 1.002 S.0 2.000 S.0 2.001 S.0 1.003 S.0 1.004 S.0 3.000 S.0 3.001 S.1 3.002 S.1 4.000 S.1 3.003 S.1 3.004 S.1	Duration (turn Period (s Climate C H Souther Storm 1 15 Summer 2 15 Summer 3 15 Summer 3 15 Summer 3 15 Summer 4 15 Summer 9 15 Summer 9 15 Summer 1 15 Summer 1 15 Summer 1 15 Summer 1 15 Summer	<pre>(s) (mins) (s) (years) Change (%) Return C Period C 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</pre>	15, 3 limate :hange +40% +40% +40% +40% +40% +40% +40% +40% +40% +40% +40% +40% +40% +40% +40% +40% +40%	First (X) Surcharge 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer	960 First (Y)	60, 480, 6 , 1440, 21 1, 40 First (Z)	00, 720, 60, 2880 30, 100 , 40, 40 Overflow	Level (m) 81.454 81.403 81.327 81.633 81.532 81.305 80.835 81.200 81.177 81.029 81.116

Furness Partnership		Page 7
20 Britton Street	SURFACE WATER NETWORK	
London	CLEATOR MOOR ACTIVITY CENTRE	New York
EC1M 5TX	CLEATOR MOOR	Mirro
Date 26/07/2023	Designed by MH	Dcainago
File 1in100 +40% @ 4.61.s [0	Checked by CJH	Diamage
Micro Drainage	Network 2020.1.3	

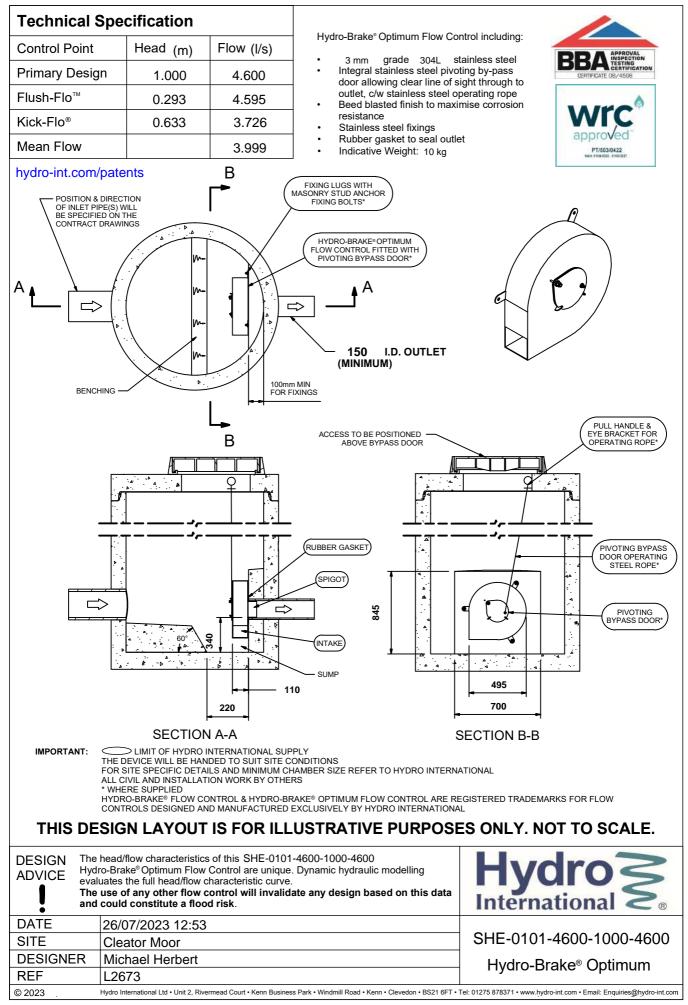
<u>1 year Return Period Summary of Critical Results by Maximum Level (Rank 1) for</u> Storm

PN	US/MH Name	Surcharged Depth (m)			Overflow (1/s)		Flow		Level Exceeded
1.000	s.01	-0.086	0.000	0.69			20.2	OK	
1.001	S.02	-0.087	0.000	0.68			20.2	OK	
1.002	S.03	-0.108	0.000	0.42			22.8	OK	
2.000	S.07	-0.110	0.000	0.51			19.0	OK	
2.001	S.08	-0.111	0.000	0.49			18.4	OK	
1.003	S.04	-0.076	0.000	0.91			40.7	OK	
1.004	S.05	-0.051	0.000	0.12			7.7	OK	
3.000	S.09	-0.106	0.000	0.42		5	13.0	OK	
3.001	S.10	-0.074	0.000	0.77		6	24.1	OK	
3.002	S.11	-0.162	0.000	0.42			32.6	OK	
4.000	s.15	-0.065	0.000	0.60			8.4	OK	
3.003	S.12	-0.093	0.000	0.81			42.9	OK	
3.004	s.13	-0.121	0.000	0.13			8.8	OK	
3.005	S.14	-0.050	0.000	0.17			8.7	OK	

©1982-2020 Innovyze

Turness	Partne	ership							Page 8
20 Britt	con Str	reet		SU	RFACE WA	TER NETWOR	RK		
London						OR ACTIVI	FY CEN	TRE	
EC1M 5TX					EATOR MO				Micro
Date 26/					signed by	_			Drainag
		10% @ 4.6	l.s [0		ecked by				Dramag
licro Dr	rainage	2		Ne	twork 20	20.1.3			
l year H	Return	Period S	ummary (of Crit	cical Res	ults by M	aximur	n Level	(Rank 1) fo
					Storm				
PN	US/MH Name				First (X) Surcharge				Water rflow Level ct. (m)
1.005	BASIN 9	060 Summer	1	+40% 1	/600 Summe	er			80.834
PN	US/MH Name	Surcharged Depth (m)		Flow /	Overflow (1/s)	Half Drain Time (mins)	Flow	Status	Level Exceeded
1.00	5 BASIN	0.014	4 0.000	0.14			4.6	SURCHARGE	D

	nership						Pag	ge 9
20 Britton S	treet		SURFAC	E WATE	R NETWORI	ζ		
London			CLEATO	R MOOR	ACTIVITY	Y CENTRE		
EC1M 5TX			CLEATO	R MOOR			M	icro
Date 26/07/2	023		Design	ed by 1	MH			icro
File 1in100 ·	+40% @ 4.6	51.s [0	_	-				ainagi
Micro Draina			Networ	_				(See 1
	-	d Cummonu				Moutinum	Lourol (I	2 - n + 1
<u>30 year Ret</u>	Luin Perio	a Summary	for S		SUICS DY	Maximum	Tever (1	Malik I)
			Simulation					
		ction Facto						
		Start (mins t Level (mm		MADI		lUm³/ha S let Coeffi		
Manhole	Headloss Co		,	ow per 1				
	Sewage per h			-	-		-	
Marsha C. T	- t- TT- 1	h = 0						
Number of Inpu Number of Or								-
		Syn	thetic Rair	fall De	tails			
	Rain	fall Model	_		Ratio			
			England and					
		M5-60 (mm)		11.300	Cv (Winter	, I.UUU		
ľ	Margin for F	lood Risk Wa	arning (mm)				300.0	
		Analys	is Timestep		cond Incre	ment (Exte	ended)	
			DTS Status				OFF	
		The	DVD Status rtia Status				OFF OFF	
		THE	LLIA SLALUS				Off	
		Profile(s) (s) (mins) (L5, 30, 60,	120, 1		Summer an 60, 480, 6 , 1440, 21	00, 720,	
Reti	urn Period(s	(vears)			960		30, 100	
1000		Change (%)				-	, 40, 40	
		5						
ла лик		Return Cli	nato Firs	+ (X)	First (V)	First (Z)	Overflow	Water
US/MH PN Name	Storm	Return Clin Period Cha		t (X) harge	First (Y) Flood	First (Z) Overflow	Overflow Act.	Level
PN Name	Storm	Period Cha	nge Surc	harge				Level (m)
PN Name 1.000 S.01	Storm 15 Summer	Period Cha	nge Surc	harge Summer				Level (m) 81.801
PN Name 1.000 S.01 1.001 S.02	Storm 15 Summer 15 Summer	Period Change 30	nge Surc +40% 30/15 +40% 30/15	harge Summer Summer				Level (m) 81.801 81.674
PN Name 1.000 S.01 1.001 S.02 1.002 S.03	Storm 15 Summer 15 Summer 15 Summer	Period Char 30 - 30 - 30 -	nge Surc +40% 30/15 +40% 30/15 +40% 30/15	harge Summer Summer Summer				Level (m) 81.801 81.674 81.540
PN Name 1.000 S.01 1.001 S.02 1.002 S.03 2.000 S.07	Storm 15 Summer 15 Summer 15 Summer 15 Summer	Period Char 30 - 30 - 30 - 30 - 30 - 30 -	nge Surc +40% 30/15 +40% 30/15 +40% 30/15 +40% 30/15	harge Summer Summer Summer Summer				Level (m) 81.801 81.674 81.540 81.952
PN Name 1.000 S.01 1.001 S.02 1.002 S.03	Storm 15 Summer 15 Summer 15 Summer 15 Summer 15 Summer	Period Char 30 - 30 - 30 - 30 - 30 - 30 - 30 - 30 -	nge Surc +40% 30/15 +40% 30/15 +40% 30/15	harge Summer Summer Summer Summer				Level (m) 81.801 81.674 81.540
PN Name 1.000 S.01 1.001 S.02 1.002 S.03 2.000 S.07 2.001 S.08	Storm 15 Summer 15 Summer 15 Summer 15 Summer 15 Summer 15 Summer	Period Char 30 - 30 - 30 - 30 - 30 - 30 - 30 - 30 - 30 - 30 - 30 -	nge Surc +40% 30/15 +40% 30/15 +40% 30/15 +40% 30/15 +40% 30/15 +40% 30/15	harge Summer Summer Summer Summer Summer				Level (m) 81.801 81.674 81.540 81.952 81.817
PN Name 1.000 S.01 1.001 S.02 1.002 S.03 2.000 S.07 2.001 S.08 1.003 S.04	Storm 15 Summer 15 Summer 15 Summer 15 Summer 15 Summer 15 Summer	Period Char 30 - 30 - 30 - 30 - 30 - 30 - 30 - 30 - 30 - 30 - 30 - 30 -	nge Surc +40% 30/15 +40% 30/15 +40% 30/15 +40% 30/15 +40% 30/15 +40% 30/15 +40% 30/15	harge Summer Summer Summer Summer Summer Summer				Level (m) 81.801 81.674 81.540 81.952 81.817 81.483
PN Name 1.000 S.01 1.001 S.02 1.002 S.03 2.000 S.07 2.001 S.08 1.003 S.04 1.004 S.05	Storm 15 Summer 15 Summer 15 Summer 15 Summer 15 Summer 960 Summer 15 Summer	Period Char 30 - 30 - 30 - 30 - 30 - 30 - 30 - 30 - 30 - 30 - 30 - 30 - 30 - 30 - 30 -	nge Surc +40% 30/15 +40% 30/15 +40% 30/15 +40% 30/15 +40% 30/15 +40% 30/15 +40% 30/15 +40% 30/15	harge Summer Summer Summer Summer Summer Summer Summer				Level (m) 81.801 81.674 81.540 81.952 81.817 81.483 81.216
PN Name 1.000 S.01 1.001 S.02 1.002 S.03 2.000 S.07 2.001 S.08 1.003 S.04 1.004 S.05 3.000 S.09	Storm 15 Summer 15 Summer 15 Summer 15 Summer 15 Summer 960 Summer 15 Summer 15 Summer	Period Char 30 - 30 - 30 - 30 - 30 - 30 - 30 - 30 - 30 - 30 - 30 - 30 - 30 - 30 - 30 -	Ange Surce +40% 30/15 +40% 30/15 +40% 30/15 +40% 30/15 +40% 30/15 +40% 30/15 +40% 30/15 +40% 30/15 +40% 30/15 +40% 30/15	harge Summer Summer Summer Summer Summer Summer Summer Summer				Level (m) 81.801 81.674 81.540 81.952 81.817 81.483 81.216 81.780
PN Name 1.000 S.01 1.001 S.02 1.002 S.03 2.000 S.07 2.001 S.08 1.003 S.04 1.004 S.05 3.000 S.09 3.001 S.10	Storm 15 Summer 15 Summer 15 Summer 15 Summer 15 Summer 15 Summer 15 Summer 15 Summer 15 Summer 15 Summer	Period Char 30 - 30 - 30 - 30 - 30 - 30 - 30 - 30 - 30 - 30 - 30 - 30 - 30 - 30 - 30 - 30 -	Ange Surce +40% 30/15 +40% 30/15 +40% 30/15 +40% 30/15 +40% 30/15 +40% 30/15 +40% 30/15 +40% 30/15 +40% 30/15 +40% 30/15 +40% 30/15	harge Summer Summer Summer Summer Summer Summer Summer Summer				Level (m) 81.801 81.674 81.540 81.952 81.817 81.483 81.216 81.780 81.726
PN Name 1.000 S.01 1.001 S.02 1.002 S.03 2.000 S.07 2.001 S.08 1.003 S.04 1.004 S.05 3.000 S.09 3.001 S.10 3.002 S.11	Storm 15 Summer 15 Summer	Period Char 30 - 30 - 30 - 30 - 30 - 30 - 30 - 30 - 30 - 30 - 30 - 30 - 30 - 30 - 30 - 30 - 30 -	Ange Surce +40% 30/15 +40% 30/15 +40% 30/15 +40% 30/15 +40% 30/15 +40% 30/15 +40% 30/15 +40% 30/15 +40% 30/15 +40% 30/15 +40% 30/15 +40% 30/15	harge Summer Summer Summer Summer Summer Summer Summer Summer Summer				Level (m) 81.801 81.674 81.540 81.952 81.817 81.483 81.216 81.780 81.726 81.565
PN Name 1.000 S.01 1.001 S.02 1.002 S.03 2.000 S.07 2.001 S.08 1.003 S.04 1.004 S.05 3.000 S.09 3.001 S.10 3.002 S.11 4.000 S.15 3.003 S.12	Storm 15 Summer 15 Summer	Period Char 30 - 30 - 30 - 30 - 30 - 30 - 30 - 30 - 30 - 30 - 30 - 30 - 30 - 30 - 30 - 30 - 30 - 30 - 30 -	Ange Surce +40% 30/15 +40% 30/15 +40% 30/15 +40% 30/15 +40% 30/15 +40% 30/15 +40% 30/15 +40% 30/15 +40% 30/15 +40% 30/15 +40% 30/15 +40% 30/15 +40% 30/15 +40% 30/15	harge Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer				Level (m) 81.801 81.674 81.540 81.952 81.817 81.483 81.216 81.780 81.726 81.565 81.675


urne	ess P	artner	ship							Page 10
0 Br	ritto	n Stre	et		SU	JRFACE WA	ATER NETWO	RK		
ondc	on				CI	LEATOR MO	OOR ACTIVI	TY CE	NTRE	and the second second
C1M	5TX				CI	LEATOR MO	OOR			Micro
ate	26/0	7/2023			De	esigned b	by MH			and a second
ile	lin1	00 +40	% @ 4.61	.s [0	Ch	ecked by	/ CJH			Drainago
		inage				etwork 20				
30	year	Retur	n Period	Summary				y Max	imum Leve	l (Rank 1)
					<u>1</u>	for Storn	<u>n</u>			
			urcharged			0	Half Drain	-		T
	PN	US/MH Name	Depth (m)	(m ³)	Cap.	Overflow (1/s)	Time (mins)	Flow (1/s)	Status	Level Exceeded
		Italic	(,	()	oup.	(1) 5)	((1,0)	blacub	Inceeded
	.000	S.01	0.261	0.000	1.60				SURCHARGED	
	.001	S.02	0.184		1.56				SURCHARGED	
	2.002	S.03 S.07	0.105 0.209		1.02				SURCHARGED SURCHARGED	
	2.000	S.07 S.08	0.209		1.15				SURCHARGED	
	.003	s.04	0.102		2.12				SURCHARGED	
1	.004	s.05	0.330		0.24				SURCHARGED	
3	3.000	S.09	0.474	0.000	0.95		4	29.3	SURCHARGED	
	8.001		0.475	0.000	1.75		4		SURCHARGED	
	3.002		0.374		1.01				SURCHARGED	
		S.15	0.494		1.25				SURCHARGED	
		<mark>S.12</mark> S.13	0.380 0.259		1.88 0.25				SURCHARGED SURCHARGED	
		s.14	0.331	0.000	0.23				SURCHARGED	
-										
				(D1982-	-2020 Inr	novyze			

		ership							Page 11
) Britt	on Str	eet			IRFACE WAT				
ondon					EATOR MOC		Y CEN	TRE	
C1M 5TX					EATOR MOC				Micro
ate 26/					signed by				Drainac
		10% @ 4.61	L.s [0		ecked by				
lcro Dr	ainage			Ne	twork 202	20.1.3			
30 yea:	r Retu	rn Period	l Summar	y of C	ritical F	esults by	/ Maxi	mum Leve	el (Rank 1)
					or Storm				
	US/MH	,	Poturn Cl	imato	First (V)	First (V)	First	(7) (7)	Water rflow Level
	Name				Surcharge				ct. (m)
1.005	BASIN 9	060 Summer	30	+40% 1	L/600 Summe	r			81.214
		Surcharged	Flooded		1	Half Drain	Pipe		
	US/MH				Overflow	Time	Flow		Level
PN	Name	(m)	(m³)	Cap.	(1/s)	(mins)	(l/s)	Status	Exceeded
1.005	BASIN	0.394	0.000	0.14			4.6	SURCHARGE	D

Furness	Partr	nership						Pac	ge 12
20 Britt	ton St	creet		S	URFACE WAT	ER NETWOR	K		
London				С	LEATOR MOO	R ACTIVIT	Y CENTRE		
EC1M 5TX	X			С	LEATOR MOO	R		N.4	icco
Date 26/	/07/20	023		E	esigned by	MH			icro
		+40% @ 4.	61 5 [0		hecked by				ainagi
licro Di			01.9 [0		letwork 202				
		Je		IN IN	IECWOIK 202	0.1.5			
<u>100 ye</u>	ar Re	<u>turn Peri</u>	od Sumn	-	Critical F for Storm	Results by	Maximum	Level (Rank 1)
Number o	Foul S of Inpu	Hot Hot Sta Headloss C Sewage per	Start (rt Level oeff (Gl hectare phs 0	actor 1. mins) (mm) obal) 0. (1/s) 0. Number o	500 Flow per	onal Flow - DD Factor * In Person per ntrols 0 Nu	10m ³ /ha S let Coeffi Day (1/pe mber of Ti	torage 1. ecient 0. r/day) 0. me/Area D	000 800 000 iagrams (
Nullber	OI OI	TTHE COULT	013 1 110	IIIDEI OI	Storage Stru	ccures 5 Nu	NUDEL OI NE	ar rime o	011013
					ic Rainfall I				
		Rair	nfall Mod			R Ratio			
					and and Wales 17.300				
			10 00 (1	,	1,.500	, 0, (MTHCC)	., 1.000		
	М	argin for 1			-			300.0	
			Ana	-	imestep 2.5 S	Second Incre	ement (Exte		
					Status			OFF	
				DVD Inertia	Status			OFF OFF	
				INCLUA	Status			OFF	
			Profile(- /			Summer an		
		Duration	(s) (min	s) 15, 3	80, 60, 120,		60, 480, 6 , 1440, 21		
	Retu	urn Period(s) (vear	s)		500		30, 100	
		Climate	-					, 40, 40	
	US/MH		Return	Climate	First (X)	First (Y)	First (Z)	Overflow	Water Level
PN	Name	Storm		Change	Surcharge	Flood	Overflow	Act.	(m)
				-	-				
1.000	S.01	15 Summer			30/15 Summer				82.080
1.001	S.02	15 Summer			30/15 Summer				81.874
1.002 2.000	S.03 S.07	15 Summer 15 Summer			30/15 Summer 30/15 Summer				81.658 82.308
2.000	S.07 S.08	15 Summer 15 Summer			30/15 Summer				82.092
	s.04	30 Summer			30/15 Summer				81.571
1.003	s.05				30/15 Summer				81.390
1.003 1.004	s.09	30 Summer	: 100	+40%	30/15 Summer	£			81.873
	0.00		: 100	+40%	30/15 Summer	c			81.821
1.004	s.10	30 Summer			30/15 Summer	~			81.679
1.004 3.000 3.001 3.002	S.10 S.11	15 Summer							
1.004 3.000 3.001 3.002 4.000	s.10 s.11 s.15	15 Summer 15 Summer	100	+40%	30/15 Summer	c			82.010
1.004 3.000 3.001 3.002 4.000 3.003	S.10 S.11 S.15 S.12	15 Summer 15 Summer 15 Summer	100 100 100	+40% +40%	30/15 Summer 30/15 Summer	c c			81.495
1.004 3.000 3.001 3.002 4.000	s.10 s.11 s.15 s.12 s.13	15 Summer 15 Summer	100 100 100 100	+40% +40% +40%	30/15 Summer				

ırness P	artnei	rship							Page 13
) Britto	n Stre	eet		SU	RFACE WA	TER NETWO	DRK		
ondon				CL	EATOR MC	OR ACTIVI	TY CE	NTRE	
C1M 5TX				CL	EATOR MC	OR			Micro
ate 26/0	7/2023	3		De	signed b	V MH			Micro
	-)% @ 4.61	s [0		ecked by	-			Drainag
lcro Dra		5% 6 4.01	.5 [0		twork 20				
100 year	r Retu	rn Period	Summar		Critical or Storm		by Max	imum Leve	el (Rank 1)
	US/MH	Surcharged			Overflow	Half Drain	Flow		T
PN	Name	Depth (m)	(m ³)	Flow / Cap.	(1/s)	Time (mins)		Status	Level Exceeded
1.000	s.01	0.540	0.000	2.02			594	SURCHARGED	1
1.000		0.384		1.96				SURCHARGED	
1.001		0.223		1.28				SURCHARGED	
2.000	S.07	0.565	0.000	1.44				SURCHARGED	
2.001		0.449		1.37			51.6	SURCHARGED)
1.003	S.04	0.190	0.000	2.67			119.6	SURCHARGED)
1.004	S.05	0.504	0.000	0.20			12.7	SURCHARGED)
	S.09	0.567		1.26		6	38.9	SURCHARGED)
3.001	s.10	0.570		2.05		4		SURCHARGED	
3.002	S.11	0.488		1.07				SURCHARGED	
	S.15	0.829	0.000	1.68				SURCHARGED	
3.003		0.490	0.000	2.06				SURCHARGED	
3.004 3.005	S.13 S.14	0.434 0.505	0.000 0.000	0.20 0.27				SURCHARGED FLOOD RISK	
3.005	5.14	0.505	0.000	0.27			13.0	FLOOD RISK	
-			(<u>01982–</u>	2020 Inr				

urne	SS	Partne	ership							I	Page 14
0 Br	itt	on Str	reet		S	URFACE WA	TER NETWOR	RK			5
ondo							OR ACTIVIT	CEN CEN	ITRE		They are
C1M						LEATOR MC					Micro
		07/202				esigned k	-				Drainan
			0% @ 4.6	l.s [0.		hecked by					Brannacy
llcro	Dr	ainage	2		N	etwork 20	20.1.3				
100	vea	ar Reti	ırn Perio	d Summa	arv of	Critical	Results b	v Max	imum	Level	(Rank 1
	4					for Storm		1			
											Water
		US/MH					First (Y)				
Pì	N	Name	Storm	Period	Change	Surcharge	e Flood	Over	flow	Act.	(m)
1.0	05	BASIN 9	60 Winter	100	+40%	1/600 Summ	er				81.389
			Surcharge				Half Drain				
		US/MH	-			/ Overflow		Flow	0 b - b		Level
	PN	Name	(m)	(m³)	Cap.	(1/s)	(mins)	(1/S)	Stat	us l	Exceeded
1.	.005	5 BASIN	0.56	9 0.00	0 0.1	4		4.6	FLOOD	RISK	
						-2020 Inr					

APPENDIX F – SuDS MAINTENANCE SCHEDULE

FURNESS PARTNERSHIP

Consulting Structural and Civil Engineers

Project Title:	Cleator Moor Activity Centre		
Furness Ref:	L2763	Date:	July '23

Proposed SuDS Maintenance Schedule

The following maintenance schedule has been produced in line with CIRIA C753 'The SuDS Manual' recommendations for Cleator Moor Activity Centre. Prior to the completion of the development, ownership & maintenance responsibility for the site drainage network should be clearly defined and agreed between the client, operator, & maintenance contractor/local authority.

Party Responsible for Implementing Maintenance Schedule: <u>Copeland Borough Council</u> Refer to following drawings for details: <u>L2763-FUR-XX-XX-DR-D-0921 (P2)</u>, 0931 (P1), 0932 (P2)

Table 1 – Pipe, Manhole & Gully Maintenance Schedule

Maintenance Schedule	Action	Frequency
Regular Maintenance	Cleaning of gutters and filters on downpipes and brushing/sweeping of leaves debris that may cause blockages in gullies.	Annually
	Inspect for sediment and debris in pre-treatment components (i.e., catchpits and gully silt traps), and inside manhole rings.	Annually (or as required)
Occasional Maintenance	Remove sediment/debris from pre-treatment components (i.e., catchpits).	As required, based on regular inspections
Remedial Actions	Trimming of roots that may be causing blockages and patch repair of pipework that has cracked or deformed.	As required
	Repair/rehabilitate manhole and gully inlets & outlets.	As required
Monitoring	Inspect silt traps and note rate of sediment accumulation	Monthly in 1 st year, then annually
	Check to ensure gullies and manholes are emptying fully.	Annually

Table 2 – Permeable Paving Maintenance Schedule – Permeable paving supplier should be contacted once confirmed for product specific maintenance requirements

Maintenance Schedule	Action	Frequency
Regular Maintenance	Brushing and vacuuming (standard cosmetic sweep over whole surface)	Once a year, after autumn leaf fall, or reduced frequency as required, based on site –specific observations of clogging or manufacturer's recommendations – areas where water runs onto pervious surface from adjacent impermeable areas are most at risk.
Occasional Maintenance	Removal of weeds or management using glyphosate applied directly to weeds by applicator rather than spraying.	As required
Remedial Actions	Remediate any landscaping which, through vegetation maintenance or soil slip, has been raised to within 50mm of the level of paving.	As required
	Remedial work to any depressions, rutting and cracked or broken blocks considered detrimental to the structural performance or a hazard to users, and replace lost jointing material	As required
	Rehabilitation of surface and upper substructure by remedial sweeping.	Every 10 to 15 years or as required (if infiltration performance is reduced due to significant clogging)

London Bradford

Maintenance Schedule	Action	Frequency
Routine Maintenance	Remove litter and debris and inspect for sediment, oil and grease accumulation	Six monthly
	Remove sediment, oil, grease and floating debris.	As necessary - indicated by system inspections or immediately following significant spill
Remedial Actions	Replace malfunctioning parts or structures.	As required
Monitoring	Inspect for evidence of poor operation.	Six monthly
	Inspect sediment accumulation rates and establish appropriate removal frequencies	Monthly during first half year of operation, then every six months

 Table 3 – Oil Separator Maintenance Schedule – Oil Separator supplier should be contacted once confirmed for product specific maintenance requirements

Table 8 – Detention Basin Maintenance Schedule

Maintenance Schedule	Action	Frequency
Regular Maintenance	Remove litter, debris and trash	Monthly
	Cut grass - for landscaped areas and access routes	Monthly during growing season) or as required
	Cut grass - meadow grass in and around basin	Half yearly: spring (before nesting season) and autumn
	Manage other vegetation and remove nuisance plants	Monthly at start, then as required
	Inspect inlets, outlets and overflows for blockages, and clear if required.	Monthly
	Inspect banksides, structures, pipework etc. for evidence of physical damage	Monthly
	Inspect inlets and facility surface for silt accumulation. Establish	Monthly (for first year), then
	appropriate silt removal frequencies.	annually or as required
	Check any penstocks and other mechanical devices	Annually
	Tidy all dead growth before start of growing season	Annually
	Remove sediment from inlets, outlet and forebay	Annually (or as required)
	Manage wetland plants in outlet pool – where provided	Annually
	Reseed areas of poor vegetation growth	Annually, or as required
Occasional Maintenance	Prune and trim trees and remove cuttings	Every 2 years, or as required
	Remove sediment from inlets, outlets, forebay and main basin when required	Every 5 years, or as required (likely to be minimal requirements where effective upstream source control is provided)
Remedial Actions	Repair erosion or other damage by reseeding or re-turfing	As required
	Realignment of rip-rap	As required
	Repair/rehabilitation of inlets, outlets and overflows	As required
	Relevel uneven surfaces and reinstate design levels	As required

London Bradford

COMMISSIONING & MAINTENANCE GUIDE

CNSB Bypass Separators

Commissioning & Maintenance Manual

Rewatec CNSB Bypass Separators Class One & Class Two - BS EN 858

Version: Rev 7

Created On: 15 March 2022

To Safeguard Warranty Please Ensure You Are Using The Latest Installation Manual.

PT Water and Environment UK +44 (0) 191 587 8650 sales.ptwe.uk@premiertech.com Premiertechaqua.com/en-gb

Introduction

The primary function of oil/water separators is to separate oil, petrol, diesel and other hydrocarbon contaminants from waste water and retain the separated liquids. These separated liquids must be removed regularly, using a licensed effluent disposal contractor (your contracted service provider), to ensure that the separator operates as efficiently as possible.

All Rewated bypass separators include for silt storage and hydrocarbon seperation within the unit.

The process of hydrocarbon separation is achieved by flow of the contaminated liquid through the coalescing filter, which is housed in the main body of the separator. The passage of hydrocarbons through the coalescing filter causes the formation of large hydrocarbon 'bubbles'. Theses 'bubbles' then 'break away' from the filter and rise to the top of the main chamber. The treated water outlet is from the base of the main chamber, hence causing the separated hydrocarbons to be retained within the unit untill they are removed during maintenance.

REGULAR MAINTENANCE OF SEPARATOR EQUIPMENT WILL ENSURE IT OPERATES AS INTENDED WITH MINIMUM RISK OF POLLUTION TO THE ENVIRONMENT.

Maintenance Inspections

Separators are used in widely varying circumstances where some will require frequent maintenance and others will have substantially longer intervals before any maintenance (emptying) is required. However, for every separator regular maintenance inspections should be carried out to determine whether or not there is a need to remove the accumulated oil, petrol, diesel, etc., or sediment. The owner of the Rewatec bypass separator is responsible for its operation and ensuring that the effluent quality does not breach any Discharge Consent Standards. It is advisable to set up a 'Service Agreement' with an effluent disposal contractor who can provide 'automatic' and regular maintenance and advise you if any problems with the system occur. The owner is reminded that the existence of a 'Service Agreement' does not necessarily transfer responsibility for general maintenance which must be conducted in accordance with this guide.

The *Environment Agency** has determined that separators shall be inspected at least every six months to establish whether or not emptying is necessary, and a log shall be maintained. Additional equipment for separators provided by Premier Tech Aqua Ltd such as an Alarm System which will give warning of the accumulation of oil, petrol, diesel, etc., but should not be used to replace regular inspections.

To keep your Rewatec bypass separator in top condition, we recommend regular servicing by Premier Tech Water and Environment's service partners.

*"Use and Design of Oil Separators in Surface Water Drainage Systems: $\ensuremath{\,\mathsf{PPG3}}\xspace$

1.0 Health and Safety

Section 6(a) of the United Kingdom Health and Safety at Work Act 1974 requires manufacturers to advise their customers on the safety and handling precautions to be observed when installing, operating, maintaining and servicing their products.

The maintenance procedures described here should be read and fully understood by the operator (competant person) before commencing work. Appropriate personal protective equipment should be used (gloves, goggles, waterproof clothing etc.,) particularly when handling filters which have been in contact with oil and oily sediment.

Before any work commences always identify the separator and its associated manhole covers, and cone off or erect barriers around the entire area.

DO NOT ENTER THE TANK

2.0 Commissioning the Separator Following Installation

- 2.1 Sediment and other construction debris can accumulate in the separator during its installation and whilst associated works are in progess. If this has ocurred, isolate the separator from the drainage system remove the sediment as follows.
- 2.2 Slowly lift out the coalescing filter asembly. This should be lifted at a rate of 20mm per second (1.2m per minute), until clear of the water, ensuring that most of the residual water is drained from the coalescing filter. This will reduce the weight of the assembly.

NOTE: This assembly could weigh up to 55kgs and should be handled by two persons unless a mechanical hoist (recommended) is being used.

- 2.3 Remove this coalescing filter pod assembly to a place of safe keeping.
- 2.4 Fill the separator with clean water up to the outlet invert level.
- 2.5 Slowly lower the filter assembly into the separator until it is firmly located inside the tank.

3.0 Maintenance

3.1 If, following maintenance inspections, the separator is found to be storing the maximum volume of oil, petrol, diesel etc., or the maximum volume of sediment, inform your licensed effluent disposal contractor who will arrange emptying. Before making arrangements, check that you are registered with the Environment Agency, as required under the new Hazardous Waste Regulations 2005, where hazardous waste producers must be registeder before any waste can be removed.

The following are guidelines only for determining the maximum storage volumes of oil and sediment.

- a) Multiply the maximum flowrate for which the separator has been designed (I/sec) by
 15. This will be the maximum storage volume of hydrocarbonss in litres e.g. a CNSB15
 separator is designed for a 15 I/sec flowrate, therefore, can store 225 litres.
- b) Where no specific sediment volumes have been determined for the separator, or where no sediment has been expected to accumulate in the system, the maximum stored depth of sediment should not exceed 20% of the depth of the separator barrel e.g. a 1.8m diameter separator should not store more than 360mm depth of sediment.
- **3.2** Apply the Health and Safety requirements detailed in Section 1 before commencing any work.
- **3.3** Isolate the separator from the drainage system either by closing closing pre-installed valves in the upstream and downstream manholes or by securely fitting proprietry pipeline stoppers.
- 3.4 Slowly lift out the coalescing filter pod assembly. This should be lifted at a rate of 20mm per second (1.2m per minute), until clear of the water, ensuring that most of the residual water is drained from the coalescing filter. This will also reduce the combined overall weight of the assembly.
 - NOTE: This assembly could weigh up to 55kgs and should be handled by two persons unless a mechanical hoist (recommended) is being used.
- 3.5 Remove the coalescing Filter Pod assembly to a place of safe keeping.
- **3.6** Using a licensed effluent disposal contractor (your contracted service provider) carry out the following:

Remove the oil, petrol, diesel etc., from the surface of the liquid, leaving as much of the cleaner water as possible in the separator. Remove the sediment from the bottom of the separator taking great care in and around the filter outlet housing on the base to ensure that it does not become damaged, again leaving as much of the cleaner water as possible in the separator

3.7 Move the filter pod assembly to a convenient position *upstream* of the separator so that any polluted water washed from the filter will be directed back to the separator.

Wash the filter using a low pressure hose. If the Coalescing Filter has become 'blinded' with sediment or it is too dirty to clean or has become damaged, replace it by contacting Darcy Spillcare (Services) Ltd. Tel: 0800 0370 899.

- 3.8 Fill the separator with clean water up to the outlet invert level
- **3.9** Slowly lower the filter pod assembly into the separator and push home to ensure it is fully seated and sealed.
- 3.10 Check that the Alarm probe has not been damaged and that the alarm system is working.
- 3.11 Replace the manhole covers and remove the cones and/or barriers from the worksite.

REMEMBER - if the alarm system activates due to the accumulation of oil, petrol, diesel etc., do not delay in contacting your licensed effluent disposal contractor.