

Flood Risk Assessment & Drainage Strategy

Proposed Residential Development, Griffin Close, Frizington

Thomas Armstrong Construction and Home Group

Ref: K41128.FRA/001

Version	Date	Prepared By	Checked By	Approved By
Original	28 th June 2024	C. Abram	T. Melhuish	T. Melhuish
Α	24 th October 2024	C. Abram	T. Melhuish	T. Melhuish

INDEMNITIES

This report is for the sole use and benefit of Thomas Armstrong Construction and Home Group and their professional advisors. RG Parkins & Partners Ltd will not be held responsible for any actions taken, nor decisions made, by any third party resulting from this report.

RG Parkins & Partners Ltd are not qualified to advise on contamination. Any comments contained within this report with regards to contamination are noted as guidance only and the Client should appoint a suitably qualified professional to provide informed advice. The absence of any comments regarding contamination does not represent any form of neglect, carelessness, or failure to undertake our service.

COPYRIGHT

The copyright of this report remains vested in RG Parkins & Partners Ltd.

All digital mapping reproduced from Ordnance Survey digital map data. ©Crown Copyright. All rights reserved. Licence Number 100038055

CONTENTS

Ind	emniti	es	2
Cop	yright		2
Cor	ntents.		3
Figi	ures		4
Tab	les		4
Glo	ssary c	of Terms	5
1.	Intro	duction	6
1	1	Background	6
1	2	Planning Policy	6
1	3	The Development in the Context of Planning Policy	6
2.	Site (Characterisation	8
2	2.1	Site Location	8
2	2.2	Site Description	8
2	2.3	Geology & Hydrogeology	9
2	2.4	Hydrology	9
2	2.5	Existing Sewers	9
2	2.6	Drainage Survey Investigations	10
2	2.7	Ground Investigation	11
2	2.8	Coal Mining Investigations	12
2	2.9	Percolation Testing	13
3.	Asses	ssment of Flood Risk	14
3	3.1	Background	14
3	3.2	Flood Risk Terminology	14
3	3.3	Data Collection	15
3	3.4	Environment Agency Flood Map for Planning	15
3	3.5	Surface Water Flood Risk	16
3	3.6	Groundwater Flood Risk	18
3	3.7	Flooding From Reservoirs, Canals or Other Artificial Sources	18
3	3.8	Flooding from Sewers	18
4.	Surfa	ce Water Drainage Strategy & Design	19
4	1.1	Introduction	19
4	1.2	Surface Water Disposal	19
4	1.3	Assessment of Site Areas	20
4	1.4	Pre-development Runoff Assessment	21
4	1.5	Runoff Contribution from Permeable Areas	22
4	1.6	Surface Water Drainage Design Parameters	22

4.6.1	Climate Change	22
4.6.2	Urban Creep	23
4.6.3	Percentage Impermeability (PIMP)	23
4.6.4	Volumetric Runoff Coefficient (Cv)	23
4.6.5	Rainfall Model	23
4.7	Surface Water Drainage Design	23
4.8	Other Benefits of Development	24
4.9	Designing for Local Drainage System Failure	25
4.9.1	Blockage & Exceedance	25
4.9.2	Surface Storage & External Levels	25
4.9.3	Building Layout & Detail	25
4.9.4	Drainage Contingency	25
4.10	Surface Water Treatment	26
4.11	Operations & Maintenance Responsibility	26
5. For	ll Water Drainage Strategy	27
6. Co	nclusions and Recommendations	28
7. Ref	erences	29
Figure 2	S 1 Site Location	8
Ü	1 Environment Agency Flood Map for Planning	
	.2 Environment Agency Surface Water Flood Map	
rigure 3	2 Environment Agency Surface Water Flood Wap	1/
TABLES		
Table 1.	1 Vulnerability Classification	7
Table 2.	1 Site Geological Summary	9
Table 3.	1 Flood Return Periods & Exceedance Probabilities	14
Table 4.	1 Land Cover Areas	20
Table 4.	2 Summary of drained and undrained areas into surface water drainage system	21
Table 4.	3 Pre-Development Greenfield Runoff Rates	22
Table 4.	4 South West Lakes Management Catchment Peak Rainfall Allowances (1.0 AEP)	23
Table 4.	5 Pollution Hazard & Mitigation Indices - Roof Areas	26
Table 4.	6 Pollution Hazard & Mitigation Indices - Parking Areas	26
Table 4.	7 Pollution Hazard & Mitigation Indices - Road Areas	26
Table 5.	1 Peak Foul Flow Rates	27

GLOSSARY OF TERMS

AEP	Annual Exceedance Probability
AOD	Above Ordnance Datum
BGL	Below Ground Level
BGS	British Geological Society
CC	Climate Change
DSM	Digital Surface Model
DTM	Digital Terrain Model
EA	Environment Agency
FEH	Flood Estimation Handbook
FFL	Finished Floor Level
FRA	Flood Risk Assessment
GIS	Geographical Information System
LiDAR	Light Detection and Ranging
LLFA	Lead Local Flood Authority
NPPF	National Planning Policy Framework
OS	Ordnance Survey
RGP	RG Parkins & Partners Ltd
SFRA	Strategic Flood Risk Assessment
SuDS	Sustainable Drainage System
UU	United Utilities

1. INTRODUCTION

1.1 BACKGROUND

This report has been prepared by R. G. Parkins & Partners Ltd (RGP) for Thomas Armstrong Construction and Home Group in support of their proposals to construct 17 new dwellings at a residential development located at Griffin Close, Frizington.

RGP has been appointed to undertake a Flood Risk Assessment and Foul and Surface Water Drainage Strategy to support a planning application that fulfils the requirements of the Local Planning Authority, Lead Local Flood Authority, Environment Agency and the Sewerage Undertaker.

The following report demonstrates the proposed development will not adversely affect flood risk elsewhere.

1.2 PLANNING POLICY

The NPPF [1] and its Planning Practice Guidance [2] states "a site-specific flood risk assessment should be provided for all development in Flood Zones 2 and 3. In Flood Zone 1, an assessment should accompany all proposals involving: sites of 1 hectare or more; land which has been identified by the Environment Agency as having critical drainage problems; land identified in a strategic flood risk assessment as being at increased flood risk in the future; or land that may be subject to other sources of flooding, where its development would introduce a more vulnerable use."

1.3 THE DEVELOPMENT IN THE CONTEXT OF PLANNING POLICY

Owing to the size of the development in terms of number of properties (17 no.), it is classed as major development (over 10 dwellings) in accordance with The Town and Country Planning Order 2015 [3].

The area covered by the application is 0.502 ha (hectares) and by reference to the Environment Agency Flood Map, the site lies entirely in Flood Zone 1.

Table 2 of the NPPF's Planning Practice Guidance [2] classifies each development into a vulnerability class, depending on the type of development, as outlined in Table 1.1.

The site is to be developed for a housing development; and is classified as 'More vulnerable'. 'More Vulnerable' development classes are deemed acceptable in terms of flood risk within Flood Zones 1, 2 and 3a but are not generally considered acceptable within Flood Zone 3b.

Table 1.1 Vulnerability Classification

	able 1.1 vulner ability Classification				
Vulnerability Classification	Development				
Essential Infrastructure	Essential transport infrastructure (including mass evacuation routes) which has to cross the area at risk. Essential utility infrastructure, which has to be located in a flood risk area for operational reasons, including electricity generating power stations and grid and primary substations; and water treatment works that need to remain operational in times of flood. Wind turbines.				
Highly Vulnerable	Police and ambulance stations; fire stations and command centres; telecommunications installations required to be operation during flooding. Emergency dispersal points. Basement dwellings. Caravans, mobile homes, and park homes intended for permanent residential use. Installations requiring hazardous substances consent.				
More Vulnerable	Hospitals. Residential institutions such as residential care homes, children's homes, prisons and hostels. Buildings used for dwelling houses, student halls of residence, drinking establishments, nightclubs, and hotels. Non-residential uses for health services, nurseries, and education establishments. Landfill and sites used for waste management facilities for hazardous waste. Sites used for holiday or short let caravans and camping, subject to a specific warning and evacuation plan				
Less Vulnerable	Police, ambulance, and fire stations which are NOT required to be operational during flooding. Buildings used for shops; financial, professional, and other services; restaurants, cafes and hot food takeaways; offices; general industry, storage and distributions; non-residential institutions not included in the 'more vulnerable' class; and assemble and leisure. Land and buildings used for agriculture and forestry. Waste treatment (except landfill & hazardous waste facilities). Minerals working & processing (except for sand & gravel working). Water treatment works which do not need to remain operational during times of flood. Sewage treatment works, if adequate measures to control pollution and manage sewage during flooding events are in place.				
Water- Compatible Development	Flood control infrastructure. Water transmission infrastructure & pumping stations. Sewage transmission infrastructure & pumping stations. Sand & gravel working. Docks, marinas, and wharves. Navigation facilities. Ministry of Defence installations. Ship building, repairing & dismantling, dockside fish processing & refrigeration & compatible activities requiring a waterside location. Water based recreation (excluding sleeping accommodation). Lifeguard and coastguard stations. Amenity open space, nature conservation & biodiversity, outdoor sports and recreation and essential facilities such as changing rooms. Essential ancillary sleeping or residential accommodation for staff required by uses in this category subject to a specific warning & evacuation plan.				

2. SITE CHARACTERISATION

2.1 SITE LOCATION

The site is located to the west of Frizington in Cumbria on a plot of land located to the immediate west of Griffin Close and to the north of Greenvale Court Road. The National Grid Co-Ordinates to the centre of the site are 303350E 5173600N (Figure 2.1).

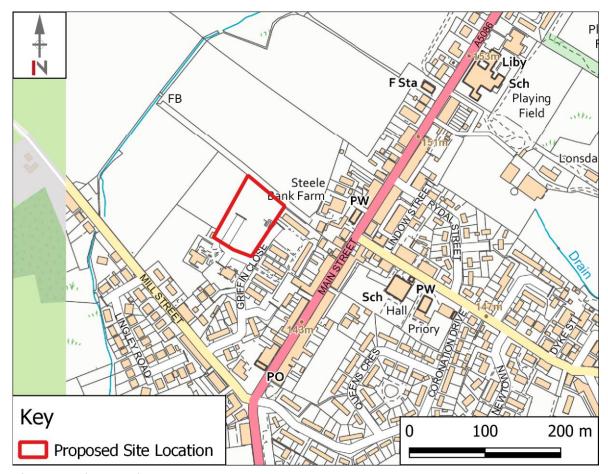


Figure 2.1 Site Location

2.2 SITE DESCRIPTION

The site covers an area of approximately 0.502 ha (5,016.5 m²). The site was formerly the location of the now demolished Greenvale Court sheltered accommodation complex, with some remnants of its former use such as hardstanding car park areas, abandoned drainage inspection chamber covers and retaining walls still visible in some areas. However the majority of the site at present is unused greenspace.

The site is bounded to the south by Greenvale Court Road, with Lindisfarne Residential Home and Griffin Close Medical Centre situated on the opposite side of this road. Griffin Close Road and residential area forms the eastern boundary. Agricultural land forms the neighbouring boundaries to the western and northern perimeters.

Topographically, the site is relatively level with a typical fall from east to west ranging from circa. 139.00 mAOD to 138.25 mAOD. Along the eastern boundary with Griffin Close the levels slope steeply up towards the existing road to an approx. higher level of around 140.5 mAOD.

Access to the site is by road via. Griffin Close with pedestrian access available down a set of steps located off Griffin Close.

2.3 GEOLOGY & HYDROGEOLOGY

British Geological Survey (BGS) ^[4] and Land Information Systems (LandIS) ^[5] mapping indicates the site is underlain by the geological sequences outlined in Table 2.1. The Defra Magic Maps ^[6] indicates the nearest Source Protection Zone is located c. 6.70 km to the south (Zone III Total Catchment).

The site is not located within a drinking water protected area or drinking water safeguard zone for surface water or groundwater.

The development site overlies a secondary aquifer with 'Medium' groundwater vulnerability and falls within an area classified as a 'Soluble Rock Risk'.

Table 2.1 Site Geological Summary

Geological Unit	Classification	Description	Aquifer Classification
Soil	Soilscape 18	Slowly permeable, seasonally wet, slightly acid but base rich loamy and clayey soils.	N/A
Drift	Till, Devensian	Diamicton – clay, silt, sands and gravel	Summary: Secondary (undifferentiated)
Solid	Pennine Middle Coal Measures Formation	Mudstone, siltstone and sandstone	Summary: Secondary A

2.4 HYDROLOGY

Reference to OS Mapping indicates the nearest open watercourse Lingla Beck lies approx. 210 m to the northwest. This watercourse is classified as 'Main River' and is therefore regulated by the Environment Agency.

2.5 EXISTING SEWERS

Reference to the United Utilities sewer records indicates the nearest public sewer to the site location is a foul sewer located in Griffin Close situated at a much higher level to the development that would not allow for a direct gravity connection. The nearest potential public sewer that would allow a connection from the development shown on the records is a combined sewer located towards the rear of 'The Laurels' residences south of the development site. However, the sewer records appear to be incomplete whereby this section of sewer (and others nearby) do not appear to be linked, warranting further investigation of the local sewer network.

Separate existing private foul and surface water drainage runs that serviced the former building are still present on the site with outfall chambers towards the southern boundary near the existing entrance having the potential to be utilised for the new development if suitable. CCTV drainage investigations have been undertaken as discussed below.

The neighbouring Medical Centre and Lindisfarne Residential Home buildings located to the south of the site on the remote side of Greenvale Court Road are known to have functioning drainage systems that appear to be routed in the same direction to the existing site drainage outfall routes.

2.6 DRAINAGE SURVEY INVESTIGATIONS

SK Drainage Solutions have carried out initial CCTV investigations on the existing site drainage in July 2022. This identified that the existing site drainage has separate surface and foul water networks that are routed off site under Greenvale Court Road for ultimate disposal.

The surface water outfall pipe was traced in the direction of the surgery where approximately 36m downstream the pipe was found to be fractured and in very poor condition preventing the passage of the crawler unit, the downstream connection point was not therefore able to be verified. In addition, access issues to potential connecting downstream manholes being located in third party land in an areas of dense vegetation prevented any further investigation.

The foul sewer run was traced all the way through to a manhole in the surgery car park and beyond this appeared to be routed towards the section of combined public sewer as shown on the sewer records towards the rear of 'The Laurels' access issues again prevented further investigation.

Further CCTV drainage investigations were carried out in April 2024 by SK Drainage Solutions of the wider sewer network outside of the site to try and establish the disposal route and connection points of the existing site drainage. Whilst missing sections of the sewer records were established in the Mill Street and Lingley Fields areas further away from the site, the overall disposal route and connection points of the existing site drainage was still not established due to the same access issues to manholes as incurred previously.

Access agreements were eventually secured with the landowner (Cumberland Council) to allow the clearance of obstructing vegetation to gain access to these manholes. This enabled jetting and clearing of both sewers to be undertaken with a final round of CCTV and drainage investigations undertaken by SK Drainage solutions in July 2024.

This verified that the existing 225mm dia. surface water drain from the development site continues in a north westerly direction along the boundary of the adjacent fields and is routed by a series of chambers to a larger 300mm diameter pipe that runs through private fields adjacent to the main road (Mill Road) for direct discharge to Lingla Beck.

The foul drainage run was traced from the development site all the way through to a connection point in Mill Road. This route appears to connect into the small section of public combined sewer indicated on the sewer records near 'The Laurels' residential area and clarifies the missing link

information confirming this is routed all the way thorough to Mill Road where it connects to the wider network for onward disposal.

For further information please refer to SK Drainage Solutions Report Reference SK-S 056-2024 included in Appendix D.

2.7 GROUND INVESTIGATION

A Phase 2 Ground Investigation report has been issued by GEO Environmental Engineering Ltd ^[17] in February 2023 which included intrusive ground investigations undertaken at the site between September and October 2022.

The below information regarding ground conditions are taken from this report.

Ground investigations comprised dynamic windowless sampling boreholes, rotary openholed boreholes, mechanically excavated trial pits and trenches. In situ geotechnical testing and chemical laboratory testing was also conducted.

Made ground was encountered across the site to depths of between c.0.40m and 6.60m bgl.

The made ground was noted as deepest across the northeastern part where it was recorded as topsoil overlying deep clay fill. The reason for such deep made ground is unclear at present and further works are recommended to confirm and delineate the extents of the fill material.

Made ground across the rest of the site, was typically 0.40m to 2.70m deep and comprised topsoil with occasional gravel of clinker, coal, slag and brick, overlying soft and firm sandy clay fill with gravel of clinker, coal, sandstone and brick. Occasional wood fragments, peat, topsoil and black organic silt inclusions were also noted. This was occasionally underlain by gravel of coarse dolomite.

The natural drift deposits typically comprised firm to stiff or stiff light brown and grey, silty sandy gravelly clay. A band of medium dense slightly clayey gravelly sand was also encountered between c.1.90m and c.3.00m bgl (WS01). The clay encountered directly beneath the made ground in borehole WS02 at c.5.50m bgl was noted as a very soft. A comment on the log suggests that this could be possible fill material.

Solid strata/bedrock was encountered in the rotary boreholes at depths of between c.2.90m and 6.60m bgl. The bedrock was described as light grey and reddish brown mudstone with occasional thin, hard siltstone and sandstone bands.

Up to three seams of coal were encountered in the rotary boreholes from depths of between 7.30m and 19.20m bgl. The seams appear to dip to the south west. These varied between 0.20m and 1.40m in thickness. The seams were noted as intact in the boreholes, which could potentially be representative of coal pillars if workings are present.

Three trenches were pulled across the area where a mine shaft is shown on The Coal Authority Plan. The trenches encountered made ground which was typically less than c.1.30m deep, however, a localised pocket of made ground extending to c.2.70m bgl was noted. This comprised

firm grey brown gravelly clay with occasional black organic. No direct evidence of a mine shaft was encountered.

The exploratory holes were typically dry during the intrusive ground investigation works. However, significant groundwater ingress was noted in one trial pit (TP03) at c.1.30m bgl. This was noted as perched water within the made ground and the flow was noted to cease quickly.

The rotary boreholes were drilled with water flush which masked any groundwater ingress. Groundwater monitoring of installations placed in the boreholes has been carried out on six occasions between September and December 2022.

Standing groundwater levels have been recorded between c.0.20m and c.1.00m bgl. Given the ground conditions, it is likely that the water has resulted from surface ingress which has been trapped/perched within the boreholes rather than a continuous groundwater table.

For further details refer to Geo Environmental Engineering Report No. GEO2023-5496.

2.8 COAL MINING INVESTIGATIONS

The initial intrusive ground investigations works did not positively identify any evidence of a mine shaft at the location indicated by Coal Authority records. However, boreholes in the north eastern part of the site encountered anomalies that could be associated with a mine shaft. As such, further works were recommended in this respect.

A Coal Authority License was therefore secured to enable investigation of the shallow mine workings and potential mine shaft identified.

Further intrusive works were undertaken that included a geophysical survey, trial trenching, excavations and supplementary rotary and dynamic super heavy probe boreholes to investigate for potential historic mine shaft and mine workings within the site locality.

This supplementary ground investigation confirmed the presence of coal seams and unrecorded mine workings across the northern part of the site as well as the presence of a column of soft clay extending at least 3.6m deep bgl which has been interpreted as an infilled mine shaft.

This discovery led to recommendations from the Geotechnical engineers to redesign the layout to accommodate the mine shaft by incorporating a 'no-build' exclusion zone 45 degrees from the intersection between the shaft and solid strata, which in this case was recorded as being 5m bgl leading to a minimum 5m exclusion zone from the outside perimeter of the shaft.

Remedial works are therefore recommended to stabilise the shaft and shallow unrecorded mine workings across the site.

For further information refer to Geo Environmental Engineering Report No. GEO2024-6310.

2.9 PERCOLATION TESTING

Percolation testing was undertaken concurrently with the above additional mine and ground investigation works and is included in the above referenced report.

Soil infiltration tests were completed on the 30th July 2024. The works comprised two trial pits (SA01 and SA02) to depths of between 2.00m and c.2.20m bgl. The trial pits encountered made ground to depths of between c.1.00m and c.1.70m bgl respectively. This comprised clayey gravel of dolomite, brick, timber and concrete in SA01 and reworked gravelly clay with brick, concrete and sandstone in SA02.

Both trial pits were partially filled with water from a mobile bowser and the water level was recorded frequently over a duration of c.5 hours. During the tests, the water in both trial pits dropped 4cm and 1cm respectively. The results suggest that the natural soils are practically impermeable (as would be expected given the presence of clay deposits) and the tests are considered as a fail.

Infiltration is therefore not considered a viable option for surface water drainage disposal at this site and a positive drainage solution should be progressed.

3. ASSESSMENT OF FLOOD RISK

3.1 BACKGROUND

The following risk assessment has been carried out in accordance with the National Planning Policy Framework [1] and its Planning Practice Guidance [2] on Flood Risk. The broad aim of the guidance is to reduce the number of people and properties within the natural and built environment at risk of flooding. To achieve this aim, planning authorities are required to ensure that flood risk is properly assessed during the initial planning stages.

Responsibility for this assessment lies with the developers and they must demonstrate:

- Whether the proposed development is likely to be affected by flooding.
- Whether the proposed development will increase flood risk in other parts of the hydrological catchment.
- That the measures proposed to deal with any flood risk are sustainable.

The developer must prove to the Local Planning Authority and the Environment Agency that the existing flood risk or the flood risk associated with the proposed development can be satisfactorily managed.

3.2 FLOOD RISK TERMINOLOGY

Flood risk considers both the probability and consequence of flooding.

Flood events are often described in terms of their probability of recurrence or probability of occurring in any one year. The threshold between a medium flood and a large flood is often regarded as the 1 in 100-year event. This is an event which statistical analysis suggests will occur on average once every hundred years. However, this does not mean that such an event will not occur more than once every hundred years. Table 9.1 shows the event return periods expressed in years and annual exceedance probabilities as a fraction and a percentage. For example, a 1 in 100-year event has a 1% probability of occurring in any one year, i.e. a 1 in 100 probability. A 1000-year event has a 0.1% probability of occurring in any one year, i.e. a 1 in 1000 probability.

Table 3.1 Flood Return Periods & Exceedance Probabilities

Return Period	Annual Exceedance Probability (AEP)		
(years)	Fraction	Percentage	
2	0.5	50%	
10	0.1	10%	
25	0.04	4%	
50	0.02	2%	
100	0.01	1%	
200	0.005	0.5%	
500	0.002	0.2%	
1000	0.001	0.1%	

3.3 DATA COLLECTION

The following information was referred to for the Flood Risk Assessment:

- Environment Agency Flood Map for Planning covering the site and adjacent area.
- Environment Agency Surface Water Flood Risk Map
- Environment Agency Reservoir Flood Risk Map
- Environment Agency Historic Flood Map
- United Utilities sewer records
- British Geological Survey Groundwater Flooding Susceptibility Map
- Development layout plan
- Topographic survey

3.4 ENVIRONMENT AGENCY FLOOD MAP FOR PLANNING

Figure 3.1 is an extract from the EA's Flood Map for Planning^[6].

This has been reviewed to assess the level of flood risk to the area. The flood map shows areas that may be at risk of fluvial flooding in a 1% (1 in 100 year, dark blue) or 0.1% (1 in 1000 year, light blue) Annual Exceedance Probability (AEP) event. Alternatively, if the flood risk is tidal the flood map will show areas predicted to be at risk of flooding from the sea in a 0.5% AEP event (1 in 200 year, dark blue) or a 0.1% AEP event (1 in 1000 year, light blue).

The Flood Map shows the current best information on the extent of the extreme flooding from rivers or the sea that would occur without the presence of flood defences. The potential impact of climate change is not considered by the mapping.

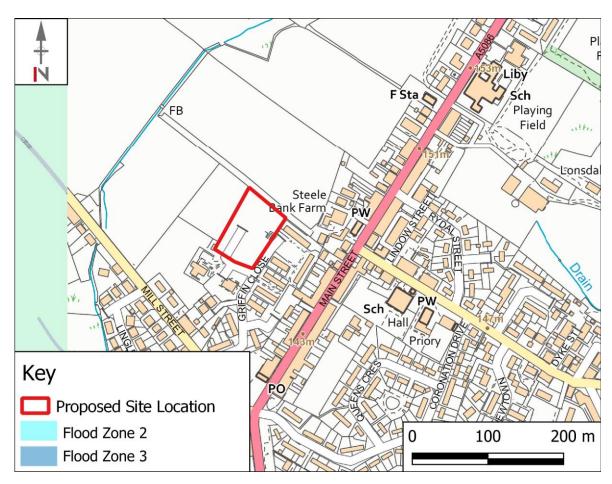


Figure 3.1 Environment Agency Flood Map for Planning

Reference to Figure 3.1 indicates the site lies entirely within Flood Zone 1 "Low Probability", land assessed as having a less than 0.1% annual probability of flooding (i.e. rivers, lake or sea) in any year by reference to the NPPF and is therefore not considered to be at risk of fluvial flooding.

3.5 SURFACE WATER FLOOD RISK

Surface water flooding is that which results from extreme rainfall rather than overflowing rivers. This type of flooding typically occurs when extreme rainfall causes water to run down slopes and collect in depressions in the landscape or where runoff is focussed into an area where drainage is insufficient. It can also cause erosion resulting in the partial or complete blockage of drains or culverts.

Figure 3.2 shows an extract from the EA Surface Water Flood Risk Map^[6]. This has four risk classifications from very low probability (<0.1% AEP) to high probability (>3.3% AEP).

The EA surface water flood map indicates that a small, localised area within the proposed development boundary is shown in dark blue and at 'high' risk of surface water flooding with the risk of flooding being greater than 3.3% AEP.

It is unclear how up to date the surface water flood maps are, but as the surface water flooding area is contained to one localised area within the site it is likely attributable to runoff from hardstanding areas congregating in a localised depression. This does not align with the topographic

survey information obtained for the site which shows levels in this area gently and consistently sloping away towards the western boundary. It is likely this surface water flood mapping predates the demolition of the former assisted living complex and therefore cannot be relied upon for accuracy.

As any new development resulting in an increase in impermeable areas could cause additional runoff if not properly managed. It is therefore proposed to incorporate sufficient drainage features, SuDS measures and attenuation storage to mitigate this as part of the overall Drainage Strategy. This is discussed in further detail in Section 4.

Flooding via this mechanism is therefore not considered to be a risk for the proposed development.

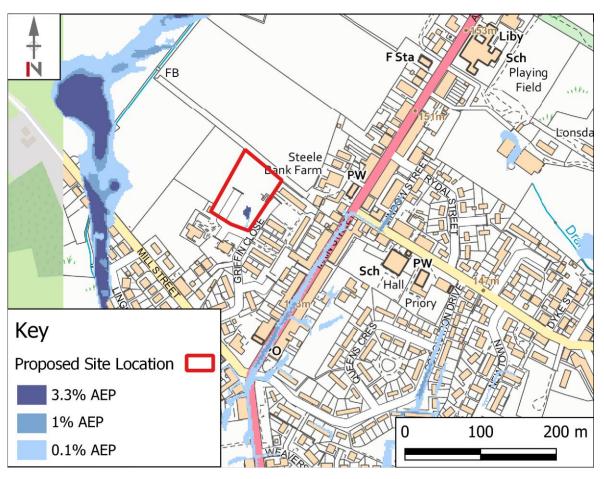


Figure 3.2 Environment Agency Surface Water Flood Map

It should be noted that EA guidance on the use of surface water flood maps states the following: "Information Warnings: Risk of Flooding from Surface Water is not to be used at property level. If the Content is displayed in map form to others we recommend it should not be used with basemapping more detailed than 1:10,000 as the data is open to misinterpretation if used as a more detailed scale. Because of the way they have been produced and the fact that they are indicative, the maps are not appropriate to act as the sole evidence for any specific planning or regulatory decision or assessment of risk in relation to flooding at any scale without further supporting studies or evidence."

3.6 GROUNDWATER FLOOD RISK

Groundwater flooding occurs when water levels in the ground rise above the ground surface. It is most likely to occur in low lying areas underlain by permeable drift and rocks.

As discussed in Section 2.7 the geotechnical testing undertaken at the site location found that there was no significant water ingress noted during the ground investigations other than that considered as trapped/perched water due to surface ingress.

Nevertheless, no below ground development is proposed in any case therefore groundwater would not pose a risk of flooding to the site.

3.7 FLOODING FROM RESERVOIRS, CANALS OR OTHER ARTIFICIAL SOURCES

No reservoirs canals or artificial structures are recorded as being within the vicinity of the site and the site is not considered at risk of flooding by these methods.

Flooding from these methods is usually based on a worst-case scenario of catastrophic failure of a dam or reservoir structure and therefore the likelihood of reservoir flooding etc. is, however considered to be much lower than other forms of flooding. Current reservoir regulation, which has been further enhanced by the Flood and Water Management Act, aims to make sure that all reservoirs are properly maintained and monitored to detect and repair any problem.

The proposed development site is not however shown to be affected in any case.

3.8 FLOODING FROM SEWERS

United Utilities (UU) do not provide information on flood risk from their assets and there have been no reports of flooding from this method. It is therefore concluded the site is not at risk of flooding from these sources as they should be properly maintained by the sewerage undertaker.

4. SURFACE WATER DRAINAGE STRATEGY & DESIGN

4.1 INTRODUCTION

The principal aim of the following drainage strategy is to design the development to avoid, reduce and delay the discharge of rainfall to public sewers and watercourses in order to protect watercourses and reduce the risk of localised flooding, pollution and other environmental damage.

In order to satisfy these criteria this surface water runoff assessment and drainage design has been undertaken in accordance with the following reports and guidance documents:

- SuDS Manual, CIRIA Report C753, 2015 [7]
- Code of Practice for Surface Water Management, BS8582:2013, November 2013^[8]
- Rainfall Runoff Management for Developments, Defra/EA, SC030219, October 2013^[9]
- Designing for Exceedance in Urban Drainage Good Practice, CIRIA Report C635, 2006^[10]
- Flood Estimation Handbook (FEH)^[11]
- Flood Studies Report (FSR), Volume 1, Hydrological Studies, 1993^[12]
- Flood Studies Supplementary Report No 14 (FSSR14), Review of Regional Growth Curves, 1983^[13]
- Flood Estimation for Small Catchments, Marshall & Bayliss, Institute of Hydrology, Report No. 124 (IoH 124), 1994^[14]
- Department for Environment, Food and Rural Affairs, Non-Statutory Technical Standards for Sustainable Drainage Systems, March 2015^[15]

The following drainage strategy is based on the latest site layout plan by Architects Plus (Drawing No. 22031-02). Any alterations to the site plan resulting in changes to impermeable areas will require the drainage strategy to be revisited.

4.2 SURFACE WATER DISPOSAL

Surface water disposal has been considered in line with the hierarchy outlined in the SuDS Manual^[7]. The approach considers infiltration drainage in preference to disposal to watercourse, in preference to discharge to sewer.

Cumberland Council as Lead Local Flood Authority prefer design in accordance with the Cumbria Design Guide which identifies the following hierarchy of techniques to be used:

- **Prevention**: Prevention of runoff by good site design and the reduction of impermeable areas.
- Source Control: Dealing with water where and when it falls (e.g. permeable paving).

- Site Control: Management of water in the local area (e.g. swales, detention basins).
- Regional Control: Management of runoff from sites (e.g. balancing ponds, wetlands).

4.2.1 DISCHARGE TO GROUND

Geotechnical testing undertaken at the site by GEO Environmental Engineering has indicated that the ground is not suitable to facilitate soakaway drainage. For further information refer to Section 2.9. Based on the historic coal mine workings and significant levels and variable depths of made ground encountered across the site, an infiltration drainage strategy is not considered appropriate due to the risk of inundation settlement of the made ground.

In addition, as the existing hardstanding areas of the site and former care home are/were positively drained on separate systems for conveyance for off-site disposal via existing sewers, this also indicates that soakaways are not a viable drainage solution.

4.2.2 DISCHARGE TO WATERCOURSE

Disposal to watercourse (Lingla Beck) has been discounted due to the fact it would require a long complex route through third party owned land and it is unclear as to whether the receiving beck levels are compatible with the development to allow a gravity fed connection. Significant lengths of new pipework would also need to be installed and agreements would have to be sought with potentially multiple third-party landowners to enable a route to be established.

4.2.3 DISCHARGE TO SURFACE WATER SEWER

It is therefore considered most appropriate to replicate the original surface water drainage disposal arrangement utilising the existing surface water drainage pipework for conveyance off site. There is a small section of pipework near the surgery that will need to be repaired/replaced.

4.3 ASSESSMENT OF SITE AREAS

To support the exploration of options for site drainage, the spatial extent of different types of proposed land cover on the site have been measured. Table 4.2 shows the measured proposed land cover areas.

Table 4.1 Land Cover Areas

Land Cover	Area		Percentage of	
	m²	На	total site area	
Total housing roof area	721.4	0.072	14%	
Total parking and paved area	1091.7	0.109	22%	
Total road area	1023.0	0.102	20%	
Contributing garden & landscaped areas	1021.7	0.102	20%	
Remaining garden & landscaped areas not contributing to the drainage network	1158.7	0.116	23%	

To develop the detailed drainage design, only certain surfaces and areas will be positively drained into the surface water network. Positively drained areas include roof areas, car parking, access road

and footways. All other areas (principally gardens and landscaping) will either have a permeable surface or will have no positive drainage.

Having assessed the site proposals the landscaped and garden areas can however be split into two distinct areas, those considered to be disconnected from the development drainage (Plots 12-17 and green space on the western extent of the site falling away from the development) and those which could contribute some level of runoff to the drainage network i.e. garden/green areas that could contribute some level of runoff onto drained hardstanding areas (Plots 1-11 and the greenspace forming the sloping north eastern perimeter).

Table 4.3 summarises this and shows that the total catchment area which could contribute to the drained network as covering 77% of the overall site area with the remaining undrained areas making up the remaining 23%.

A surface water catchment plan is provided in Appendix A for reference.

Table 4.2 Summary of drained and undrained areas into surface water drainage system

Land Cover	Area		Percentage of	
	m²	На	total site area	
Total Contributing Catchment Drainage Area	3857.8	0.386	77%	
Remaining permeable/undrained Area	1158.7	0.116	23%	

Without attenuation-based SuDS, the proposed development would increase the Rate of Runoff from the developed areas of the site.

4.4 PRE-DEVELOPMENT RUNOFF ASSESSMENT

As the site covers an area of less than 200 ha the Greenfield calculations have been undertaken in accordance with methodology described in IoH 124^[14]. For catchments of less than 50 ha the Greenfield runoff rate is scaled according to the size of the catchment in relation to a 50-hectare site. The calculation has been based on the entire site area of 0.52 ha.

Despite there being existing areas of hardstanding present on the site the entire site area has been classified as Greenfield for the purposes of deriving the runoff calculations. This approach is highly conservative as the peak runoff rate from the former care home would have been significantly higher than the greenfield runoff rate calculated.

Full details of the calculations and the methodology for deriving the Peak Rate of Runoff are in included in Appendix B, and a summary included in Table 4.1.

The proposed discharge rate matching the equivalent Greenfield QBAR runoff of 4.0 I/s is also a considerable improvement on the rate of discharge that would previously have occurred when the site was occupied by the assisted living development which was positively drained at an unrestricted brownfield rate. By direct comparison if we assume the former complex had impermeable areas of only 50% of the overall site area, the equivalent brownfield QBAR runoff rate can be calculated as 36.7 I/s demonstrating that a significant level of betterment is proposed.

Table 4.3 Pre-Development Greenfield Runoff Rates

Rate of Runoff (I/s)			
Event	Greenfield		
Q1	3.5		
QBAR	4.0		
Q10	5.6		
Q30	6.8		
Q100	8.4		
Q100 + 50% CC	12.6		

4.5 RUNOFF CONTRIBUTION FROM PERMEABLE AREAS

A 40% contribution from affecting pervious / permeable areas should be allowed for within the calculations.

On this basis, of the 1021.7 m² of potentially contributing garden and landscaped catchment areas identified in Table 4.1, an additional 409 m² (40%) of this catchment has been accounted for as impermeable area in the drainage modelling.

Guidance by HR Wallingford stipulates a 30% contribution is the proposed default factor attributable to greenspace, the (40%) inclusion of this uplift from the potentially contributing greenspace and garden/landscaped areas of plots 1 to 11 at this site will result in highly conservative design.

4.6 SURFACE WATER DRAINAGE DESIGN PARAMETERS

The surface water drainage system has been designed on the following basis using the modified rational method and a generated rainfall profile:

4.6.1 CLIMATE CHANGE

Projections of future climate change indicate that more frequent short-duration, high intensity rainfall and more frequent periods of long-duration rainfall are likely to occur over the next few decades in the UK. These future changes will have implications for river flooding and for local flash flooding. These factors will lead to increased and new risks of flooding within the lifetime of planned developments.

The EA have provided a peak rainfall online map showing the anticipated changes in peak rainfall intensity across the UK. Climate change allowances are now provided on a catchment by catchment basis. The site falls within the South West Lakes catchment. Table 4.4 outlines the EA guidance for this catchment, for the anticipated design life of the proposed development.

In line with current guidance and for conservative design, a 50% allowance shall be used within this assessment.

Table 4.4 South West Lakes Management Catchment Peak Rainfall Allowances (1.0 AEP)

South West Lakes (1.0%AEP)	Central Allowance (%)	Upper End Allowance (%)
2050s	30	45
2070s	35	50

4.6.2 URBAN CREEP

BS 8582:2013^[8] outlines best practice with regard to Urban Creep. Although not a statutory requirement, future increase in impermeable area due to extensions and introduction of impervious positively drained areas has been considered. An uplift of 10% on impermeable areas associated with plots only has been applied to the contributing area used for surface water drainage design.

4.6.3 PERCENTAGE IMPERMEABILITY (PIMP)

The percentage impermeability (PIMP) for all impermeable areas is modelled as 100%. The entirety of the impermeable areas is to be positively drained.

4.6.4 VOLUMETRIC RUNOFF COEFFICIENT (CV)

The volumetric runoff coefficient describes the volume of surface water which runs off an impermeable surface following losses due to infiltration, depression storage, initial wetting and evaporation. The coefficient is dimensionless. Default industry standard volumetric runoff coefficients are 0.75 for summer and 0.84 for winter and are used for design on the basis that a percentage of contributing green areas has been included in the site catchment calculations.

4.6.5 RAINFALL MODEL

The calculations use the REFH2 unit hydrograph methodology in line with best practice as outlined in the SuDS Manual^[7]. The calculations use the most up to date available catchment descriptors (2022) provided by the Centre for Ecology and Hydrology Flood Estimation Handbook web service.

4.7 SURFACE WATER DRAINAGE DESIGN

The proposed surface water drainage network serving the entire developable area of the site has been modelled using Causeway Flow (results are included in Appendix B).

The drainage design has been sized to store a future 1% AEP event of critical duration without any flooding. Future climate change (50%) and urban creep (10% to housing roof areas only) and 40% uplift for contributing green spaces is accounted for within the calculations.

It is proposed that all impermeable site areas i.e. roof, driveway and road areas will ultimately drain via. gravity through a network of pipes and chambers either directly into or 'offline' via the flow control device to a single shared geocellular attenuation crate tank system located in the natural respective low point of the site to facilitate the drainage system.

Roof water, driveway and path runoff will connect directly into the surface water pipe network upstream of the attenuation systems, with inspection chambers utilised to route the new pipework

and allow for future inspection and maintenance. Proposed external levels will fall consistently to enable gravity connections to the drainage system.

Silt traps will be located upstream of the attenuation tank, which will provide surface water treatment and access for maintenance. Silt traps isolate silt and other particles by encouraging settlement into sumps, preventing ingress into the tank.

The attenuation tank will be founded at a suitable level providing a minimum depth of suitable cover whilst allowing for connection to the surface water network. The tank will be wrapped and sealed with an impermeable membrane to provide a water-tight structure.

The geocellular tank will be formed as a permanent feature under a shared private driveway/parking area to facilitate future access and maintenance requirements.

The attenuation tank will provide a minimum storage capacity of 215m³ in order to service the development. A 1.2m deep x 7m wide x 27m long tank has been calculated to provide the required volumetric capacity.

A flow control chamber incorporating a Hydro-brake will be located downstream of the attenuation tank restricting discharge to the equivalent site greenfield runoff rate (QBAR) of 4.0 l/s, prior to discharge via the existing surface water drainage pipe connection and outfall route.

Hydro-brake design information is included in Appendix C for reference.

The access road and car parking areas will be constructed using conventional surfacing in the form of asphalt and block paving. The access road will be drained via. a series of highway gullies and/or channel drains into the proposed surface water drainage network.

Full details of the drainage proposals are shown on RGP drawings K41128-10, 12 & 13, included in Appendix A.

4.8 OTHER BENEFITS OF DEVELOPMENT

The development site in its current form is sparse vegetation, underlain by relatively impermeable soil, which provides little in the way of natural flood defence or attenuation to overland flows and stormwater runoff. The land in its current form also lacks any meaningful biodiversity or amenity value and provides limited benefits to the surrounding community.

The proposed development site will tie into the existing topography via careful design. Slopes, gardens and open space areas will be carefully landscaped using a variety of plants, shrubs and trees, providing a net gain in biodiversity and enhanced storage/protection against overland flows.

As such the existing hydraulic regime of the site will be modified whereby overland and subsurface flows will be intercepted, attenuated, and re-directed by below ground structures, positive drainage and service trenches.

Hydraulic gradients and velocities will be reduced, and the risk of downstream flooding would not be increased.

4.9 DESIGNING FOR LOCAL DRAINAGE SYSTEM FAILURE

In accordance with the general principles discussed in CIRIA Report C635 – Designing for Exceedance in Urban Drainage [10] the proposed surface water drainage, where practical, should be designed to ensure there is no increased risk of flooding to the proposed dwellings on the site or elsewhere as a result of extreme rainfall, lack of maintenance, blockages or other causes. These measures are discussed below.

4.9.1 BLOCKAGE & EXCEEDANCE

The sustainable drainage system has been designed to attenuate a 100-year design storm including a 50% allowance for climate change, with no flooding. The drainage system will also provide capacity for lower probability (greater design storm events) which are not critical duration.

Should flooding occur within any of the flow control devices, manholes or silt traps, exceedance flows would follow the road gradients, re-entering the network via capture from the proposed new road gullies.

In the highly unlikely event that exceedance flows were to bypass any of the proposed development drainage it is proposed to install a new double gully just outside the site boundary which could be formed as part of the new road entrance installation works to provide additional redundancy and ensure the interception and capture of any such flows generated in extreme events.

4.9.2 SURFACE STORAGE & EXTERNAL LEVELS

The site levels have been designed to offer additional surface water storage volume and conveyance of flood water should the SuDS and drainage system fail, flood or exceed capacity. Where appropriate, the kerb lines have been raised to channel surface water runoff back into the drainage system or onto the existing highway.

4.9.3 BUILDING LAYOUT & DETAIL

The finished floor levels to the new dwellings have been designed and situated to ensure that they are not at risk of flooding from overland flow. Finished floor levels will typically be set 150mm above external paved areas (whilst providing level access where needed). External footpaths typically fall away from the thresholds, ensuring that any flood water runs away from, rather than towards the dwellings. Threshold drains could be incorporated at level access points for additional redundancy.

4.9.4 DRAINAGE CONTINGENCY

The proposed surface water system will be designed to provide adequate storage volume against flooding for the Q100 event, including a 50% allowance to account for climate change. The drainage system will also provide capacity for lower probability (greater design storm events) which are not critical duration.

4.10 SURFACE WATER TREATMENT

The treatment of surface water is not a statutory requirement. Water quality remains a material consideration but there are no prescriptive standards to be imposed in terms of treatment train management. In the absence of a design standard, the SuDS manual has been used which outlines best practice.

Pollutants such as suspended solids, heavy metals and organic pollutants may be present in surface water runoff, the quantity and composition of the runoff is highly dependent upon site use. For housing developments, the pollutant load is very low. The SuDS Manual^[7] outlines best practice with regards to treatment of surface water by SuDS components prior to discharge to the environment. SuDS components can be effective in reducing the amount of pollutants within the surface water discharged and therefore environmental impact of the development. SuDS components may be installed in series to form a treatment train to treat the runoff.

For the three categories of runoff areas served by the drainage system, roof areas, residential parking and residential roads, treatment is proposed by directing all surface water runoff via. a hydrodynamic vortex separator before discharge off site. Tables 4.5-4.7 summarise the pollution hazard and mitigation indices for this type of runoff and show that adequate treatment of surface water runoff is provided by the use of a hydrodynamic vortex separator (or similar device) which removes sediments, oils and floatables from the site stormwater runoff.

Table 4.5 Pollution Hazard & Mitigation Indices - Roof Areas

Indices	Suspended Solids	Metals	Hydrocarbons
Pollution Hazard	0.2	0.2	0.05
Pollution Mitigation	0.5	0.4	0.8
Treatment Suitability	Adequate	Adequate	Adequate

Table 4.6 Pollution Hazard & Mitigation Indices - Parking Areas

Indices	Suspended Solids	Metals	Hydrocarbons
Pollution Hazard	0.5	0.4	0.4
Pollution Mitigation	0.5	0.4	0.8
Treatment Suitability	Adequate	Adequate	Adequate

Table 4.7 Pollution Hazard & Mitigation Indices - Road Areas

Indices	Suspended Solids	Metals	Hydrocarbons
Pollution Hazard	0.5	0.4	0.4
Pollution Mitigation	0.5	0.4	0.8
Treatment Suitability	Adequate	Adequate	Adequate

4.11 OPERATIONS & MAINTENANCE RESPONSIBILITY

The drainage systems will be privately maintained by Home Group. A SuDS 'Operations & Maintenance Plan' has been prepared by RGP detailing the requirements for future maintenance of the SuDS components.

5. FOUL WATER DRAINAGE STRATEGY

It is proposed that foul water from the new development shall be drained via gravity within the site for disposal via connection to an existing private foul sewer chamber located on the southern boundary.

This sewer is routed south under Greenvale Court Road and discharges into the public combined sewer to the rear of 'The Laurel' residences.

The new connections will be subject to formal application to UU under S106 agreements. Under Section 106 of The Water Industry Act 1991, 'the owner / occupier of any premises shall be entitled to have his drain or sewer communicate with the public sewer of any sewerage undertaker and thereby to discharge foul water and surface water from those premises or that private sewer.' Unless 'the making of the communication would be prejudicial to the undertaker's sewerage system'.

All private drainage will be constructed in accordance with The Building Regulations Approved Document Part H.

Foul water discharge calculations have been undertaken for the 17 no. dwellings in accordance with the Design and Construction Guidance for Foul and Surface Water Sewers ^[16], as shown in Table 5.1.

Once the existing foul disposal route has been verified a pre-development enquiry will be submitted to UU to determine acceptance in principle.

Table 5.1 Peak Foul Flow Rates

Sewerage Sector Design & Construction Guidance Clause B3.1		
Total Peak Load based on Number of Dwellings, 17 no. units @ 4000 l/day	68,000	
Peak Flow Rate from Site (I/s)	0.78	

The estimated total peak foul flow rate for the development is 0.78 litres/sec.

For further details, refer to the latest revision of the Drainage Layout Plan included in Appendix A (K41128-10).

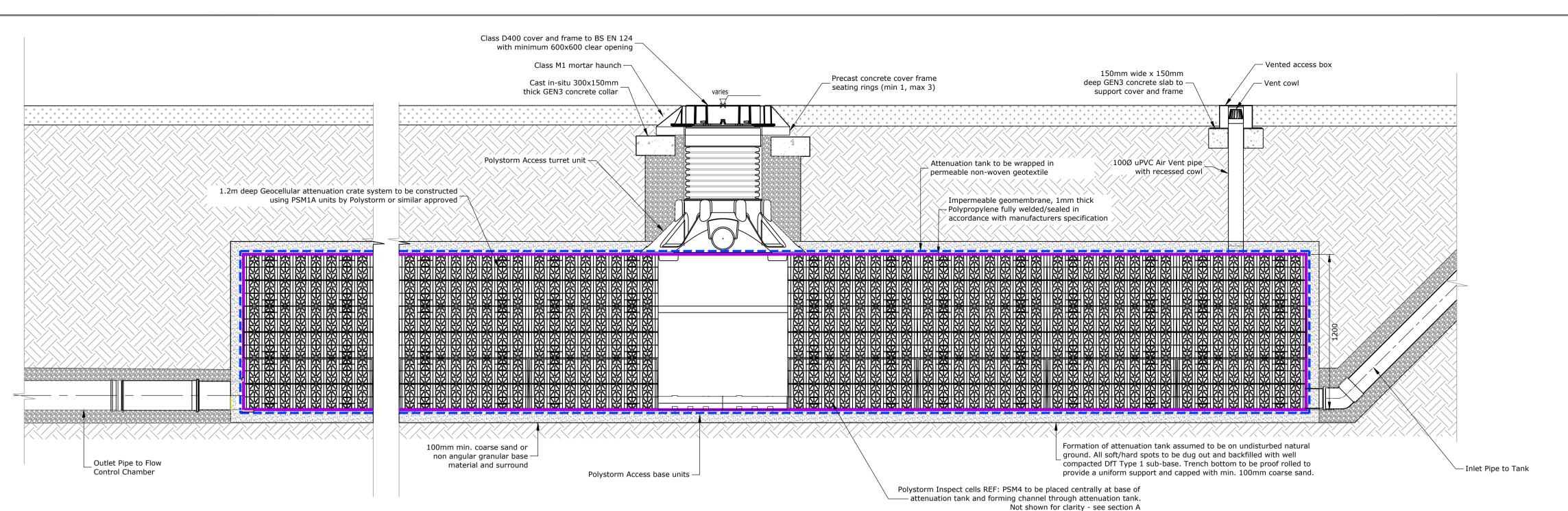
6. CONCLUSIONS AND RECOMMENDATIONS

The proposed Flood Risk Assessment and Drainage Strategy can be summarised as follows:

- The site is located in Flood Zone 1 with a predicted annual probability of flooding from rivers or the sea of less than 0.1% AEP (1 in 1000).
- By reference to the National Planning Policy Framework [1] on Flood Risk, More Vulnerable development is acceptable within this flood zone.
- The site is not considered to be at significant risk of flooding from surface water, groundwater, reservoirs, canals, or any artificial structures.
- Ground investigations have confirmed that the underlying strata is not suitable for infiltration-based SuDS components.
- The watercourse located to the west of the site is not a suitable point of discharge due to third party land ownership and routing complications.
- It is proposed that surface water drainage shall be positively drainage and attenuated, using a geocellular tank system, with a hydro-brake flow control device restricting discharge to match the equivalent pre-development Greenfield QBAR rate of 4.0 l/s.
- Attenuated surface water disposal will be into the existing surface water system that served
 the original care home. A small section of this existing outfall pipework near the surgery will
 need to be repaired / renewed.
- Treatment of surface water runoff will be provided through a Hydrodynamic Vortex Separator if required.
- A SuDS Operations and Maintenance Plan has been prepared detailing future maintenance requirements of all sustainable drainage systems.
- Foul flows from the site shall discharge via gravity to the existing foul water drainage system that served the original care home, which discharges into the existing downstream UU public combined sewer. A pre-development wastewater enquiry will be submitted to UU.

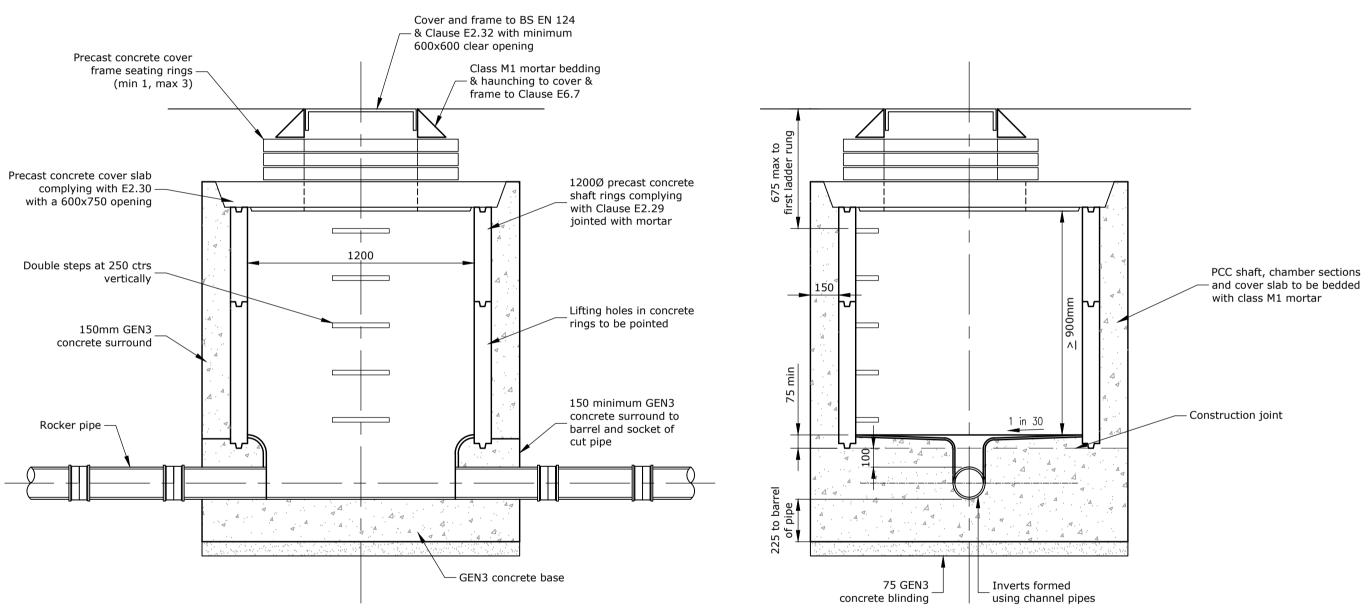
7. REFERENCES

- [1] Ministry of Housing, Communities and Local Government, National Planning Policy Framework, December 2023.
- [2] Ministry of Housing, Communities and Local Government, Planning Practice Guidance to the National Planning Policy Framework, August 2023
- [3] Defra/Environment Agency, The Town and Country Planning Order 2015, 2015 No.595, April 2015
- [4] British Geological Survey, Geoindex: http://mapapps2.bgs.ac.uk/geoindex/home.html
- [5] Land Information System (LANDIS)- Soilscapes viewer, http://www.landis.org.uk/soilscapes
- [6] Defra Magic Maps, 2024 https://magic.defra.gov.uk/MagicMap.aspx .
- [7] CIRIA, The SuDS Manual, Report C753, 2015.
- [8] BS8582:2013, Code of Practice for Surface Water Management, November 2013.
- [9] DEFRA/EA, Rainfall Runoff Management for Developments, SC030219, October 2013.
- [10] CIRIA, Designing for Exceedance in Urban Drainage Good Practice, Report C635, London, 2006.
- [11] Centre for Ecology and Hydrology, Flood Estimation Handbook, Vols. 1 5 & FEH CD-ROM 3, 2009.
- [12] Institute of Hydrology, Flood Studies Report, Volume 1, Hydrological Studies, 1993.
- [13] Institute of Hydrology, Flood Studies Supplementary Report No 14 Review of Regional Growth Curves, August 1983.
- [14] Marshall & Bayliss, 1994. Flood Estimation for Small Catchments, Report No. 124 (IoH 124), Institute of Hydrology.
- [15] Department for Environment, Food and Rural Affairs, Non-Statutory Technical Standards for Sustainable Drainage Systems, March 2015
- [16] Water UK, Design and Construction Guidance for Foul & Surface Water Sewers Offered for Adoption Under the Code for Adoption Agreements for Water and Sewage Companies Operating Wholly or Mainly in England, Approved Version 2.0 March 2020
- [17] GEO Environmental Engineering Ltd, February 2023. Phase II: Ground Investigation Report Proposed Residential Development of Land off Griffin Close, Frizington Cumbria. Report no. 2023-5496

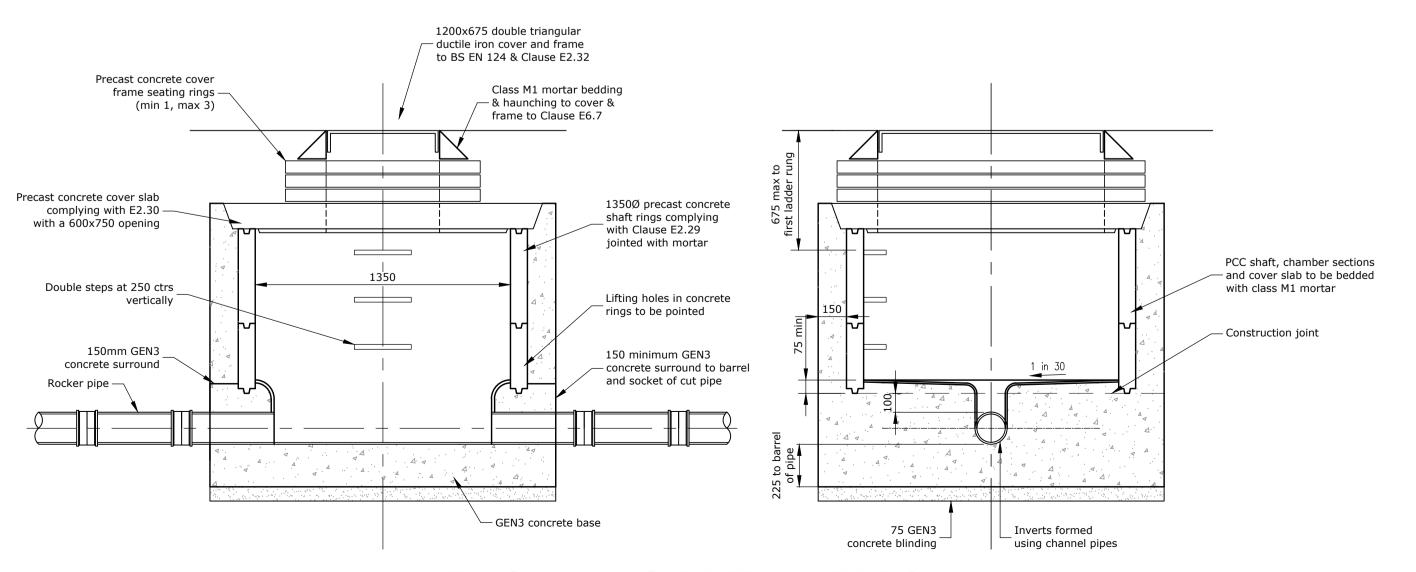


APPENDIX A

DRAWINGS



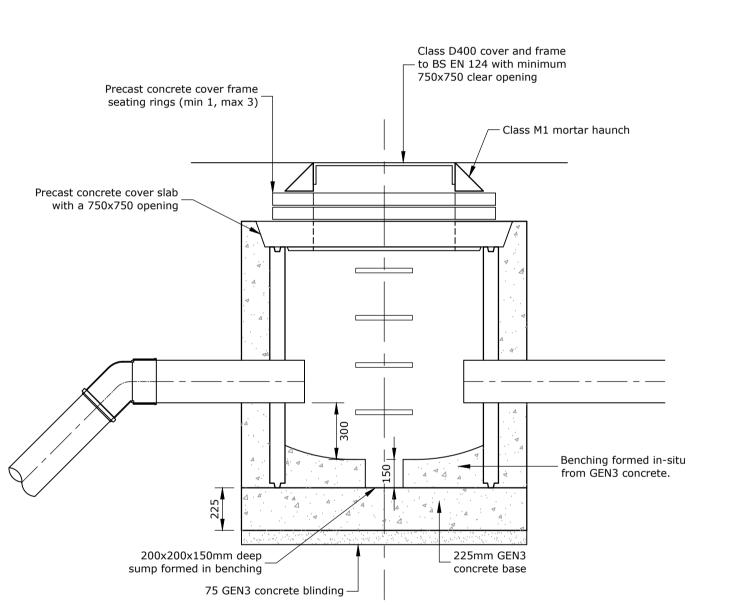
TYPICAL SECTION THROUGH SURFACE WATER DRAINAGE ATTENUATION TANK


Class D400 cover and frame to BS EN 124 with minimum 600x600 clear opening Class M1 mortar haunch Polystorm Access turret unit -1-3 courses of Class B engineering clay brick or precast concrete seating rings 300x150mm thick ST4 in-situ concrete slab to support cover and frame Compressible fill Min 150 thick ST4 concrete surround Single Polystorm unit per layer omitted for access to form inspection void Row of Polystorm Inspect cells to be placed centrally under access shaft -100mm min. coarse sand or non angular at base of attenuation tank granular base material and surround

SECTION A-A
THROUGH ACCESS TURRET

Scale 1:20

TYPICAL MANHOLE DETAIL - TYPE B
DEPTH FROM COVER LEVEL TO SOFFIT OF PIPE 1.5m TO 3m (1200Ø)



TYPICAL MANHOLE DETAIL - TYPE C

DEPTH FROM COVER LEVEL TO SOFFIT OF PIPE LESS THAN 1.5m (1350Ø)

450mm MAX PIPE DIAMETER

Scale 1:20

1. This drawing should not be scaled - use figured

Parkins (refer to RG Parkins drawing register).

4. The Contractor is responsible for verifying all dimensions

2. All dimensions are in millimetres unless stated otherwise.

3. This drawing is to be read in conjunction with all relevant

Any specified proprietary products are to be installed in strict accordance with manufacturers guidelines. No specified product should be substituted without gaining

Architects drawings as well as all other drawings by RG

dimensions only. If in doubt, ask.

on site prior to commencing works.

approval from RG Parkins.

TYPICAL SILT TRAP MANHOLE

A Details updated 24/10/24 CA TM TM

Rev Description Date Revised by Checked by Approved

Issue Purpose:

PLANNING

Do not scale from this drawing

RGPARKIS

Kendal | 01539 729393 Lancaster | 01524 32548

Client: Thomas Armstrong

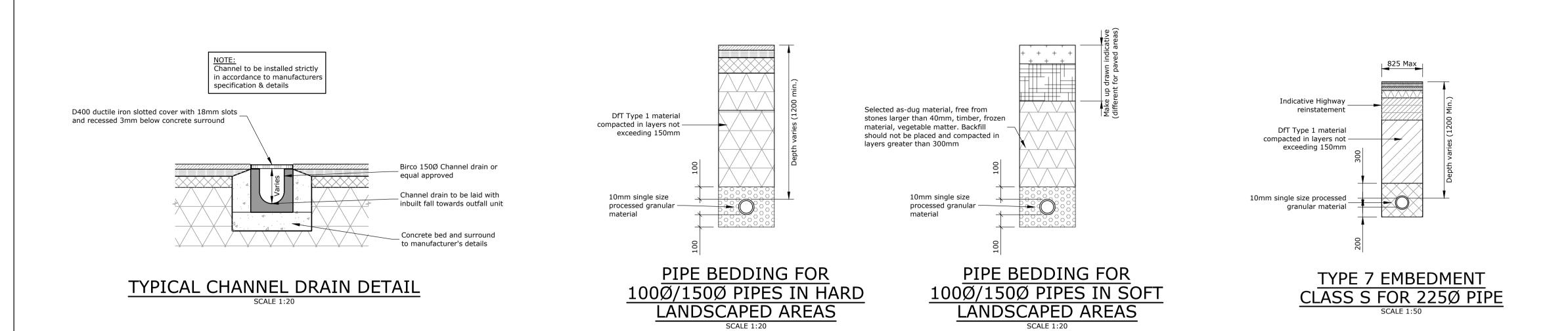
Project No:

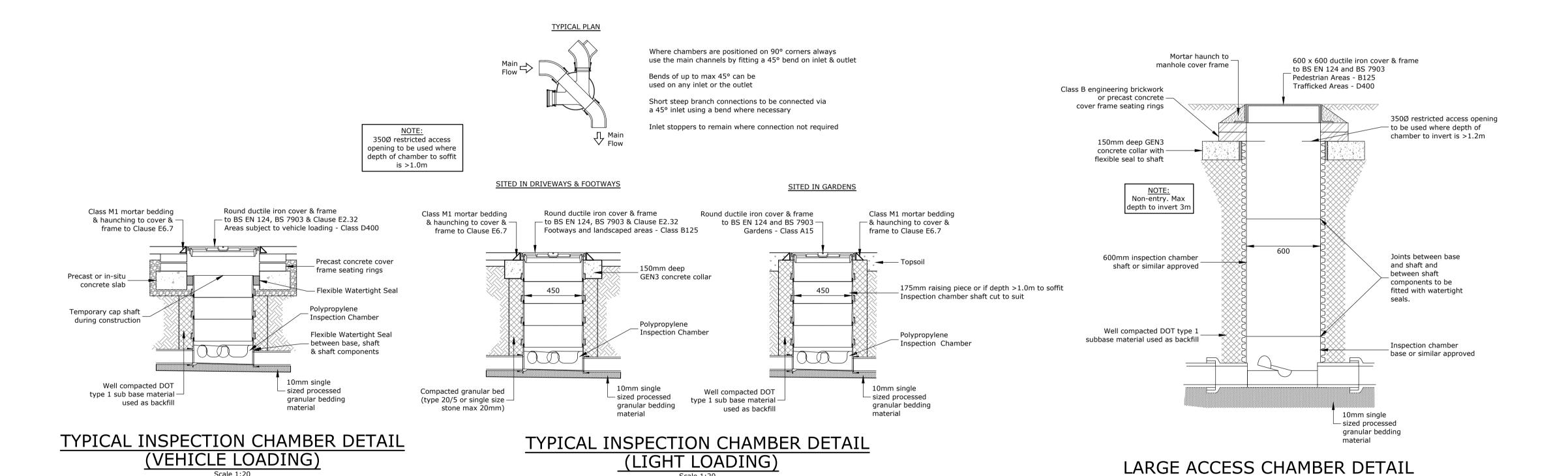
K4117

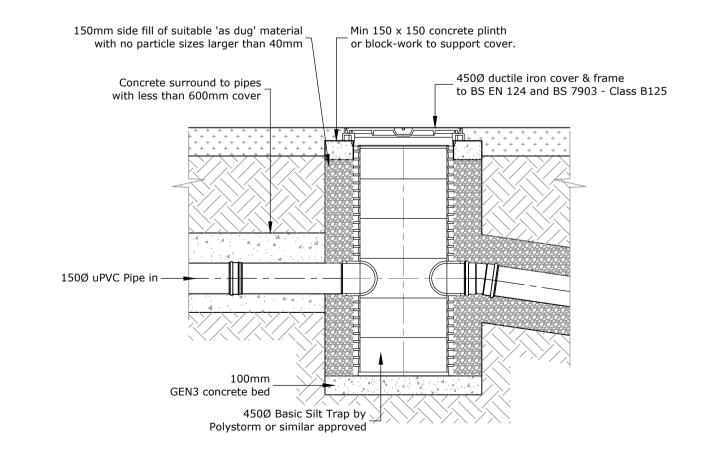
Project: Griffin Close, Frizington

Drawing Title: Typical Drainage Construction Details Sheet 1 of 2

Project: Griffin Close, Frizington


BIM No.


K41128 12
BIM No:


First Issue:

28/06/2024

Office of Origin:

TYPICAL 450Ø SILT TRAP

Issue Purpose: PLANNING						
Rev	Description		Date	Revised by	Checked by	Approved
Α	Details updated		24/10/24	CA	TM	TM

<u>General</u>

1. This drawing should not be scaled - use figured

Parkins (refer to RG Parkins drawing register).

4. The Contractor is responsible for verifying all dimensions

Any specified proprietary products are to be installed in strict accordance with manufacturers guidelines. No

specified product should be substituted without gaining

 All dimensions are in millimetres unless stated otherwise.
 This drawing is to be read in conjunction with all relevant Architects drawings as well as all other drawings by RG

dimensions only. If in doubt, ask.

on site prior to commencing works.

approval from RG Parkins.

Do not so	cale from	this d	rawing

RGPARKINS	Scale @ A1: 1:20	First Issue: 28/06/2024	Office of Origin: Kendal
Kendal 01539 729393	Drawn by: CA	Checked by:	Approved:
Client: Thomas Armstrong	Project No:	Drawing No:	Rev:
^{oject:} Griffin Close, Frizington	K41128	13	Α
rawing Typical Drainage Construction Details	BIM No:		

Sheet 2 of 2

APPENDIX B

CALCULATIONS

Wallingford Runoff	Job Number K41128	Page Number 1 of 4	
Estimation	Calc by CA	Check by TM	
Griffin Close	Date	Revised	
Frizington	15/10/2024	А	

DESIGN BASIS MEMORANDUM - PEAK RATE OF RUN-OFF CALCULATION

Design Brief

The following peak rate of run-off calculations have been undertaken to determine changes in peak flow resulting from the development of a greenfield or brownfield site. These calculations are for the **Peak Rate of Run-Off** requirements only.

Background Information & References

The site area **is less than** 200ha and the Greenfield (pre-development) calculation has been undertaken in accordance with methodology described by Marshall & Bayliss, Institute of Hydrology, Report No. 124, Flood Estimation for Small Catchments, 1994 (IoH 124).

In addition, the following references have been used in the preparation of these calculations:

- Interim Code of Practice for Sustainable Drainage Systems (SUDS), CIRIA, 2004
- CIRIA, The SUDS Manual, Report C753, 2015
- Designing for Exceedance in Urban Drainage good practice, CIRIA Report C635, 2006
- Flood Estimation Handbook (FEH)
- Flood Studies Report (FSR), Volume 1, Hydrological Studies, 1993
- Flood Studies Supplementary Report No 2 (FSSR2), The Estimation of Low Return Period Floods
- Flood Studies Supplementary Report No 14 (FSSR14), Review of Regional Growth Curves, 1983
- Planning Practice guidance of the National Planning Policy Framework, Recommended national precautionary sensitivity ranges for peak rainfall intensities, peak river flows, offshore wind speeds and wave heights.

Results Summary

Rate of Run-Off (I/s)			
Event	Greenfield		
Q1	3.5		
QBAR	4.0		
Q10	5.6		
Q30	6.8		
Q100	8.4		
Q100 + 50% CC	12.6		

Wallingford Runoff	Job Number K41128	Page Number 2 of 4	
Estimation	Calc by CA	Check by TM	
Griffin Close	Date	Revised	
Frizington	15/10/2024	А	

SITE AREAS (LAND COVER AREAS)

Existing Impermeable & Permeable Land Cover

Total Site Area: 0.50165 ha 5016.5 m²

Existing Impermeable & Permeable Land Cover

Land Cover	Are	a	Percentage of total site area	
	m²	ha		
Total impermeable area	0.0	0.000	0%	
Remaining permeable area	5016.5	0.502	100%	

Proposed Land Cover Areas

Land Cover	Are	a	Percentage of total site
Land Cover	m²	ha	area
Total housing roof area	721.4	0.072	14%
Total parking and paved area	1091.7	0.109	22%
Total road area	1023.0	0.102	20%
Contributing Garden & landscaped areas	1021.7	0.102	20%
Disconnected Garden & landscaped areas	1158.7	0.116	23%

Proposed Impermeable & Permeable Land Cover

Land Cover	Are	a	Percentage of total site
Land Cover	m²	ha	area
Total contributing catchment area	3857.8	0.386	77%
Remaining permeable/undrained area	1158.7	0.116	23%

R	GPARKINS
	97 King Street Lancaster LA1 1RH Tel:01524 32548
	Email: office@rgparkinslancaster.co.uk

W III 6 1 B 66		Page Number	
Wallingford Runoff Estimation	K41128 Calc by	3 of 4 Check by	
Littliation	CAIC by	TM	
Griffin Close	Date	Revised	
Frizington	15/10/2024	А	

ESTIMATION OF QBAR (RURAL) (GREENFIELD RUNOFF RATE)

IoH 124 based on research on small catchments < 25 km2

Method is based on regression analysis of response times using catchments from 0.9 to 22.9 km²

QBAR_{rural} is mean annual flood on rural catchment

QBAR_{rural} depends on SOIL, SAAR and AREA most significantly

QBAR_{rural} = $0.00108 \text{ x AREA}^{0.89} \text{ x SAAR}^{1.17} \text{ x SOIL}^{2.17}$

For SOIL refer to FSR Vol 1, Section 4.2.3 and 4.2.6 and IoH 124

Contributing watershed area

Area, A = 500000 m^2 insert 50 ha for EA = 0.500 km^2 small catchment method

= 50.000 ha

SAAR = 1352 mm From FEH Web Service (point data)

Soil index based on soil type, SOIL

 $= \underbrace{(0.1S1+0.3S2+0.37S3+0.47S4+0.53S5)}_{(S1+S2+S3+S4+S5)}$

UK Suds website provides a value of 4 based on the equivalent Host value. This seems reasonable based on ground investigation.

So, SOIL = **0.47**

Note: for very small catchments it is far better to rely on local site investigation information.

QBAR_{rural} = 0.521 m³/s = 521.4 l/s

Small rural catchments less than 50 ha

The Environment Agency recommends that this method should be used for development sizes from 0 to 50 ha and should linearly interpolate the formula to 50 ha.

So, catchment size	=	3858	m ²
	=	0.004	km ²
	=	0.386	ha

Excluding significant open space which would remain disconnected from the positive drainage system during flood events.

QBAR_{rural site} = 0.00402 m³/s = 4.02 l/s

llingford Runoff	Job Number K41128	Page Number 4 of 4	
Estimation	Calc by CA	Check by TM	
0 :0: 0!			
Griffin Close	Date	Revised	
Frizington	15/10/2024	Α	

GREENFIELD RETURN PERIOD ORDINATES

QBAR can be factored by the UK FSR regional growth curves for return periods <2 years and for all other return periods to obtain peak flow estimates for required return periods.

These regional growth curves are constant throughout a region, whatever the catchment type and size.

See Table 2.39 for region curve ordinates
Use FSSR2 Growth Curves to estimate Qbar

Reference- Pg 173-FSR V.1, ch 2.6.2

Region

= 10

Use Figure A1.1 to determine region

GREENFIELD RETURN PERIOD FLOW RATES

Return Period	Ordinate	Q (I/s)
1	0.87	3.50
2	0.93	3.74
5	1.19	4.79
10	1.38	5.55
25	1.64	6.60
30	1.7	6.84
50	1.85	7.44
100	2.08	8.37
200	2.32	9.33
500	2.73	10.98
1000	3.04	12.23

Ordinate from FSSR2

Interpolation taken from Figure 24.2 (pg 515) SuDS Manual

R G Parkins & Partners Ltd

File:

Network: Storm Network 1 Chris Abram 24/10/2024

Page 1 Griffin Close Frizington

Design Settings

Rainfall Methodology FEH-13 Return Period (years) 100 Additional Flow (%) 50

CV 0.840 5.00

Time of Entry (mins) Maximum Time of Concentration (mins) 30.00

Maximum Rainfall (mm/hr) 50.0 Minimum Velocity (m/s) 1.00

Connection Type Level Soffits

Minimum Backdrop Height (m) 0.200 Preferred Cover Depth (m)

1.200

Include Intermediate Ground

Enforce best practice design rules

Nodes

Name	Area (ha)	T of E (mins)	Cover Level (m)	Diameter (mm)	Easting (m)	Northing (m)	Depth (m)
1	0.037	5.00	138.995	1200	303367.718	517389.055	1.395
2	0.050	5.00	138.675	1200	303356.019	517390.255	1.675
3	0.022	5.00	138.470	1200	303336.971	517377.463	1.929
4	0.022	5.00	138.425	1200	303329.763	517362.746	2.075
5			138.400	1200	303326.806	517357.538	2.200
6			138.530	1200	303328.480	517354.826	2.500
7	0.007	5.00	138.750	450	303372.713	517422.109	0.650
8	0.015	5.00	138.800	450	303364.450	517408.782	0.961
9	0.010	5.00	138.800	450	303362.488	517405.618	1.023
10	0.013	5.00	138.750	450	303354.322	517392.448	1.234
11	0.008	5.00	139.100	450	303386.554	517389.885	0.600
12	0.010	5.00	139.100	450	303377.606	517395.266	0.992
13	0.021	5.00	139.060	450	303359.241	517373.966	0.760
14	0.009	5.00	138.600	450	303336.002	517366.022	0.600
15	0.027	5.00	138.600	450	303349.286	517357.780	1.382
16			138.700	450	303347.404	517354.681	2.242
17	0.009	5.00	138.685	450	303367.914	517355.207	0.685
18	0.009	5.00	139.040	450	303363.184	517347.298	1.501
19	0.019	5.00	138.840	450	303359.463	517344.475	1.574
20	0.025		138.800	450	303357.691	517345.641	2.343
21	0.019	5.00	138.530	450	303334.699	517359.814	2.130

Links

Name	US	DS	•	ks (mm) /		DS IL	Fall	Slope		T of C	Rain
	Node	Node	(m)	n	(m)	(m)	(m)	(1:X)	(mm)	(mins)	(mm/hr)
2.002	1	2	11.760	0.600	137.600	137.000	0.600	19.6	225	5.28	50.0
1.004	2	3	22.945	0.600	137.000	136.541	0.459	50.0	225	5.66	50.0
1.005	3	4	16.387	0.600	136.541	136.350	0.191	85.8	225	5.86	50.0
1.006	4	5	5.989	0.600	136.350	136.200	0.150	39.9	150	5.92	50.0
1.007	5	6	3.187	0.600	136.200	136.030	0.170	18.7	150	5.94	50.0
1.000	7	8	15.681	0.600	138.100	137.839	0.261	60.0	150	5.20	50.0

Name	Vel	Cap	Flow	US	DS	Σ Area	Σ Add
	(m/s)	(I/s)	(I/s)	Depth	Depth Depth		Inflow
				(m)	(m)		(I/s)
2.002	2.969	118.0	17.3	1.170	1.450	0.076	0.0
1.004	1.854	73.7	38.9	1.450	1.704	0.171	0.0
1.005	1.412	56.2	43.9	1.704	1.850	0.193	0.0
1.006	1.597	28.2	53.3	1.925	2.050	0.234	0.0
1.007	2.337	41.3	53.3	2.050	2.350	0.234	0.0
1.000	1.301	23.0	1.6	0.500	0.811	0.007	0.0

File:

Network: Storm Network 1 Chris Abram 24/10/2024 Page 2 Griffin Close Frizington

<u>Links</u>

Name	US	DS	Length	ks (mm) /	US IL	DS IL	Fall	Slope	Dia	T of C	Rain
	Node	Node	(m)	n	(m)	(m)	(m)	(1:X)	(mm)	(mins)	(mm/hr)
1.001	8	9	3.723	0.600	137.839	137.777	0.062	60.0	150	5.25	50.0
1.002	9	10	15.496	0.600	137.777	137.516	0.261	59.4	150	5.45	50.0
1.003	10	2	2.773	0.600	137.516	137.075	0.441	6.3	150	5.46	50.0
2.000	11	12	10.441	0.600	138.500	138.239	0.261	40.0	150	5.11	50.0
2.001	12	1	11.677	0.600	138.108	137.675	0.433	27.0	150	5.21	50.0
3.000	13	1	17.307	0.600	138.300	137.675	0.625	27.7	150	5.15	50.0
5.000	14	15	15.633	0.600	138.000	137.218	0.782	20.0	150	5.12	50.0
5.001	15	16	3.626	0.600	137.218	136.855	0.363	10.0	150	5.13	50.0
6.000	17	18	9.215	0.600	138.000	137.539	0.461	20.0	150	5.07	50.0
6.001	18	19	4.671	0.600	137.539	137.305	0.234	20.0	150	5.10	50.0
6.002	19	20	2.121	0.600	137.266	136.500	0.766	2.8	225	5.11	50.0
4.000	21	4	5.741	0.600	136.400	136.350	0.050	114.8	225	5.08	50.0

Name	Vel	Cap	Flow	US	DS	Σ Area	Σ Add
	(m/s)	(I/s)	(I/s)	Depth	Depth	(ha)	Inflow
				(m)	(m)		(I/s)
1.001	1.301	23.0	5.0	0.811	0.873	0.022	0.0
1.002	1.307	23.1	7.3	0.873	1.084	0.032	0.0
1.003	4.044	71.5	10.2	1.084	1.450	0.045	0.0
2.000	1.596	28.2	1.8	0.450	0.711	0.008	0.0
2.001	1.946	34.4	4.1	0.842	1.170	0.018	0.0
3.000	1.920	33.9	4.8	0.610	1.170	0.021	0.0
5.000	2.262	40.0	2.0	0.450	1.232	0.009	0.0
5.001	3.204	56.6	8.2	1.232	1.695	0.036	0.0
6.000	2.262	40.0	2.0	0.535	1.351	0.009	0.0
6.001	2.262	40.0	4.1	1.351	1.385	0.018	0.0
6.002	7.920	314.9	8.4	1.349	2.075	0.037	0.0
4.000	1.219	48.5	4.3	1.905	1.850	0.019	0.0

Pipeline Schedule

Link	Length (m)	Slope (1:X)	Dia (mm)	Link Type	US CL (m)	US IL (m)	US Depth (m)	DS CL (m)	DS IL (m)	DS Depth (m)
2.002	11.760	19.6	225	Circular	138.995	137.600	1.170	138.675	137.000	1.450
1.004	22.945	50.0	225	Circular	138.675	137.000	1.450	138.470	136.541	1.704
1.005	16.387	85.8	225	Circular	138.470	136.541	1.704	138.425	136.350	1.850
1.006	5.989	39.9	150	Circular	138.425	136.350	1.925	138.400	136.200	2.050
1.007	3.187	18.7	150	Circular	138.400	136.200	2.050	138.530	136.030	2.350
1.000	15.681	60.0	150	Circular	138.750	138.100	0.500	138.800	137.839	0.811
1.001	3.723	60.0	150	Circular	138.800	137.839	0.811	138.800	137.777	0.873
1.002	15.496	59.4	150	Circular	138.800	137.777	0.873	138.750	137.516	1.084

Link	US	Dia	Node	MH	DS	Dia	Node	MH
	Node	(mm)	Type	Type	Node	(mm)	Type	Type
2.002	1	1200	Manhole	Adoptable	2	1200	Manhole	Adoptable
1.004	2	1200	Manhole	Adoptable	3	1200	Manhole	Adoptable
1.005	3	1200	Manhole	Adoptable	4	1200	Manhole	Adoptable
1.006	4	1200	Manhole	Adoptable	5	1200	Manhole	Adoptable
1.007	5	1200	Manhole	Adoptable	6	1200	Manhole	Adoptable
1.000	7	450	Manhole	Adoptable	8	450	Manhole	Adoptable
1.001	8	450	Manhole	Adoptable	9	450	Manhole	Adoptable
1.002	9	450	Manhole	Adoptable	10	450	Manhole	Adoptable

File: Network: Storm Network 1 Chris Abram 24/10/2024 Page 3 Griffin Close Frizington

Pipeline Schedule

Link	Length	Slope	Dia	Link	US CL	US IL	US Depth	DS CL	DS IL	DS Depth
	(m)	(1:X)	(mm)	Type	(m)	(m)	(m)	(m)	(m)	(m)
1.003	2.773	6.3	150	Circular	138.750	137.516	1.084	138.675	137.075	1.450
2.000	10.441	40.0	150	Circular	139.100	138.500	0.450	139.100	138.239	0.711
2.001	11.677	27.0	150	Circular	139.100	138.108	0.842	138.995	137.675	1.170
3.000	17.307	27.7	150	Circular	139.060	138.300	0.610	138.995	137.675	1.170
5.000	15.633	20.0	150	Circular	138.600	138.000	0.450	138.600	137.218	1.232
5.001	3.626	10.0	150	Circular	138.600	137.218	1.232	138.700	136.855	1.695
6.000	9.215	20.0	150	Circular	138.685	138.000	0.535	139.040	137.539	1.351
6.001	4.671	20.0	150	Circular	139.040	137.539	1.351	138.840	137.305	1.385
6.002	2.121	2.8	225	Circular	138.840	137.266	1.349	138.800	136.500	2.075
4.000	5.741	114.8	225	Circular	138.530	136.400	1.905	138.425	136.350	1.850

Link	US	Dia	Node	MH	DS	Dia	Node	MH
	Node	(mm)	Type	Type	Node	(mm)	Type	Туре
1.003	10	450	Manhole	Adoptable	2	1200	Manhole	Adoptable
2.000	11	450	Manhole	Adoptable	12	450	Manhole	Adoptable
2.001	12	450	Manhole	Adoptable	1	1200	Manhole	Adoptable
3.000	13	450	Manhole	Adoptable	1	1200	Manhole	Adoptable
5.000	14	450	Junction		15	450	Manhole	Adoptable
5.001	15	450	Manhole	Adoptable	16	450	Junction	
6.000	17	450	Manhole	Adoptable	18	450	Manhole	Adoptable
6.001	18	450	Manhole	Adoptable	19	450	Manhole	Adoptable
6.002	19	450	Manhole	Adoptable	20	450	Junction	
4.000	21	450	Junction		4	1200	Manhole	Adoptable

Manhole Schedule

Node	Easting (m)	Northing (m)	CL (m)	Depth (m)	Dia (mm)	Connections	;	Link	IL (m)	Dia (mm)
1	303367.718	517389.055	138.995	1.395	1200		1	3.000	137.675	150
						0 €	2	2.001	137.675	150
						1	0	2.002	137.600	225
2	303356.019	517390.255	138.675	1.675	1200	2.	1	2.002	137.000	225
						1	2	1.003	137.075	150
						0	0	1.004	137.000	225
3	303336.971	517377.463	138.470	1.929	1200		1	1.004	136.541	225
						0	0	1.005	136.541	225
4	303329.763	517362.746	138.425	2.075	1200	2	1	4.000	136.350	225
							2	1.005	136.350	225
						0 .	0	1.006	136.350	150
5	303326.806	517357.538	138.400	2.200	1200		1	1.006	136.200	150
						30	0	1.007	136.200	150
6	303328.480	517354.826	138.530	2.500	1200	1,	1	1.007	136.030	150

File: Network: Storm Network 1 Chris Abram 24/10/2024 Page 4 Griffin Close Frizington

Manhole Schedule

			·				1		
Node	Easting (m)	Northing (m)	CL (m)	Depth (m)	Dia (mm)	Connections	Link	IL (m)	Dia (mm)
7	303372.713	517422.109	138.750	0.650	450			, ,	
							1 000	120 100	150
8	303364.450	517408.782	138.800	0.961	450	° (138.100 137.839	150 150
Ū	303304.430	317400.702	130.000	0.501	430		1.000	137.033	130
						\mathcal{L}			
						o* C		137.839	150
9	303362.488	517405.618	138.800	1.023	450	, 1	1.001	137.777	150
						\bigcirc			
						0	1.002	137.777	150
10	303354.322	517392.448	138.750	1.234	450	, 1		137.516	150
						$\langle \langle \rangle \rangle$			
11	303386.554	517389.885	139.100	0.600	450	° C	1.003	137.516	150
11	303360.334	31/369.663	139.100	0.600	450	0 ~			
						C	2.000	138.500	150
12	303377.606	517395.266	139.100	0.992	450	1	2.000	138.239	150
						\bigcirc			
						₀ 2 0 \	2.001	138.108	150
13	303359.241	517373.966	139.060	0.760	450	0	2.001	130.100	130
						\mathcal{A}			
	202226 002	F47266 022	420.500	0.600	450	C	3.000	138.300	150
14	303336.002	517366.022	138.600	0.600	450				
						° 74.			
						ů	5.000	138.000	150
15	303349.286	517357.780	138.600	1.382	450	1	5.000	137.218	150
						0	5 001	137.218	150
16	303347.404	517354.681	138.700	2.242	450	1 1			150
						Ü			
47	202267.04.4	F472FF 207	120.005	0.605	450				
17	303367.914	517355.207	138.685	0.685	450				
						(\mathcal{L})			
						٥٧	6.000	138.000	150
18	303363.184	517347.298	139.040	1.501	450	, 1	6.000	137.539	150
						\bigcirc			
						0	6.001	137.539	150
19	303359.463	517344.475	138.840	1.574	450			137.305	150
					-	0 5			
						C	6.002	137.266	225

R G Parkins & Partners Ltd

File:

Network: Storm Network 1

Chris Abram 24/10/2024

Page 5 Griffin Close Frizington

Manhole Schedule

Node	Easting (m)	Northing (m)	CL (m)	Depth (m)	Dia (mm)	Connections	Link	IL (m)	Dia (mm)
20	303357.691	517345.641	138.800	2.343	450	1	6.002	136.500	225
21	303334.699	517359.814	138.530	2.130	450	0 0	4.000	136.400	225

Simulation Settings

Rainfall Methodology Rainfall Events Summer CV Winter CV	FEH-13 Singular 0.840 0.840		Skip S in Down	alysis Speo Steady Sta Time (mir rage (m³/h	te x is) 2	etailed 40 0.0	Check [itarting Lo Discharge Pischarge	` '	x x
Storm Durations										
15 30 60	120	180	240	360	480	600	720	960	1440	

Return Period	Climate Change	Additional Area	Additional Flow
(years)	(CC %)	(A %)	(Q %)
100	50	0	0

Node 4 Online Hydro-Brake® Control

Flap Valve	Х	Objective	(HE) Minimise upstream storage
Replaces Downstream Link	\checkmark	Sump Available	\checkmark
Invert Level (m)	136.350	Product Number	CTL-SHE-0091-4000-1250-4000
Design Depth (m)	1.250	Min Outlet Diameter (m)	0.150
Design Flow (I/s)	4.0	Min Node Diameter (mm)	1200

Node 21 Flow through Pond Storage Structure

Base Inf Coefficient (m/hr)	0.00000	Porosity	0.95	Main Channel Length (m)	23.000
Side Inf Coefficient (m/hr)	0.00000	Invert Level (m)	136.400	Main Channel Slope (1:X)	400.0
Safety Factor	2.0	Time to half empty (mins)		Main Channel n	0.200

Inlets 20 16

- 1		Inf Area (m²)	Depth (m)	_	Inf Area (m²)			Inf Area (m²)
(···)	(/	\ /	\'\\\	\ ,	(/		, ,	(···· /
0.000	189.0	0.0	1.200	189.0	0.0	1.201	0.0	0.0

File:

Network: Storm Network 1 Chris Abram 24/10/2024 Page 6 Griffin Close Frizington

Results for 100 year +50% CC Critical Storm Duration. Lowest mass balance: 98.62%

Node Event	US	Peak	Level	Depth	Inflow	Node	Flood	Status
	Node	(mins)	(m)	(m)	(I/s)	Vol (m³)	(m³)	
30 minute summer	1	20	138.310	0.710	44.5	1.1792	0.0000	SURCHARGED
30 minute summer	2	20	138.235	1.235	78.7	2.1347	0.0000	SURCHARGED
30 minute summer	3	20	137.638	1.097	87.0	1.4909	0.0000	SURCHARGED
480 minute winter	4	456	137.619	1.269	18.2	1.7043	0.0000	SURCHARGED
480 minute winter	5	456	136.235	0.035	4.0	0.0392	0.0000	OK
480 minute winter	6	456	136.062	0.032	4.0	0.0000	0.0000	OK
30 minute summer	7	20	138.417	0.317	4.1	0.1185	0.0000	SURCHARGED
30 minute summer	8	20	138.411	0.572	12.8	0.2696	0.0000	SURCHARGED
30 minute summer	9	20	138.396	0.619	16.5	0.2198	0.0000	SURCHARGED
30 minute summer	10	20	138.296	0.780	23.8	0.2887	0.0000	SURCHARGED
15 minute summer	11	10	138.544	0.043	4.8	0.0185	0.0000	OK
30 minute summer	12	20	138.345	0.237	10.6	0.0855	0.0000	SURCHARGED
30 minute summer	13	19	138.369	0.069	12.4	0.0492	0.0000	OK
15 minute summer	14	10	138.037	0.037	5.4	0.0112	0.0000	OK
480 minute winter	15	456	137.620	0.402	3.1	0.2210	0.0000	SURCHARGED
480 minute winter	16	456	137.619	1.162	3.1	0.0000	0.0000	OK
15 minute summer	17	10	138.037	0.037	5.4	0.0157	0.0000	OK
480 minute winter	18	456	137.620	0.081	1.6	0.0227	0.0000	OK
480 minute winter	19	456	137.620	0.354	3.2	0.1417	0.0000	SURCHARGED
480 minute winter	20	456	137.620	1.162	5.4	0.2476	0.0000	OK
480 minute winter	21	456	137.619	1.219	16.0	0.2170	0.0000	SURCHARGED

Link Event (Upstream Depth)	US Node	Link	DS Node	Outflow (I/s)	Velocity (m/s)	Flow/Cap	Link Vol (m³)	Discharge Vol (m³)
30 minute summer	1	2.002	2	35.8	1.270	0.303	0.4677	` '
30 minute summer	2	1.004	3	75.4	1.897	1.023	0.9125	
30 minute summer	3	1.005	4	85.5	2.149	1.522	0.6517	
480 minute winter	4	Hydro-Brake®	5	4.0				
480 minute winter	5	1.007	6	4.0	1.395	0.098	0.0092	155.0
30 minute summer	7	1.000	8	4.2	0.485	0.184	0.2761	
30 minute summer	8	1.001	9	12.3	0.958	0.536	0.0655	
30 minute summer	9	1.002	10	17.3	1.517	0.750	0.2728	
30 minute summer	10	1.003	2	22.8	2.479	0.319	0.0488	
15 minute summer	11	2.000	12	4.8	1.159	0.169	0.0429	
30 minute summer	12	2.001	1	10.4	1.594	0.304	0.2056	
30 minute summer	13	3.000	1	12.3	1.662	0.363	0.2209	
15 minute summer	14	5.000	15	5.4	0.948	0.135	0.0899	
480 minute winter	15	5.001	16	3.1	1.618	0.055	0.0638	
480 minute winter	16	Flow through pond	21	-3.9	0.010	-0.003	211.9699	
15 minute summer	17	6.000	18	5.4	1.097	0.135	0.0457	
480 minute winter	18	6.001	19	1.6	1.077	0.040	0.0639	
480 minute winter	19	6.002	20	3.2	1.699	0.010	0.0844	
480 minute winter	20	Flow through pond	21	-3.9	0.010	-0.003	211.9699	
480 minute winter	21	4.000	4	-14.4	-0.362	-0.297	0.2283	

CALCULATION		Job No.	K41128	Page	1 of 4
Job	Griffin Close	Drg no.		Date	25/06/2024
	Frizington	Revision		Initial	CA
Title	Sustainable Dr	ainage - T	reatmen	Checked	TM

DESIGN BASIS MEMORANDUM - SUSTAINABLE DRAINAGE TREATMENT OF SURFACE WATER

Design Brief

The following calculations outline the recommended treatment requirements for a sustaionable drainage system as outlined in the SuDS Manual 2015. The method used is the simple index approach outlined in section 26. The requirement for oil interceptors has been assessed in line with the now withdrawn Pollution Prevention Guidance document PPG3, produced by the Environment Agency. An oil interceptor is not required for the proposed development.

Treatment within SuDS components is affected by the flow rate and volume of water which passes through the component. It is not reasonable or practical to treat the entirety of the runoff for infrequent greater intensity design storms. In any case the majority of the pollutants are removed from surfaces by the more frequent rainfall events and in the first flush resulting from the initial runoff from the larger events. and to a certain capacity.

The following references have been used in the preparation of these calculations:

- SUDS Manual, CIRIA Report C753, 2015
- Pollution Mitigation Indicies provided by Hydro International

Results Summary

Roof Area:

Treatment component 1 Hydo International Downstream Defender **Treatment component 2** None

Indices	Suspended Solids	Metals	Hydrocarbons
Pollution Hazard	0.2	0.2	0.05
Pollution Mitigation	0.5	0.4	0.8
Treatment Suitability	Adequate	Adequate	Adequate

Residential Parking:

Treatment component 1 Hydo International Downstream Defender **Treatment component 2** None

Indices	Suspended Solids	Metals	Hydrocarbons
Pollution Hazard	0.5	0.4	0.4
Pollution Mitigation	0.5	0.4	0.8
Treatment Suitability	Adequate	Adequate	Adequate

Residential Roads

Treatment component 1 Hydo International Downstream Defender **Treatment component 2** None

Indices	Suspended Solids	Metals	Hydrocarbons
Pollution Hazard	0.5	0.4	0.4
Pollution Mitigation	0.5	0.4	0.8
Treatment Suitability	Adequate	Adequate	Adequate

CALCULA	ATION	Job No.	K41128	Page	2 of 4
Job	Griffin Close	Drg no.		Date	25/06/2024
	Frizington	Revision		Initial	CA
Title	Sustainable Drainage	- Treatm	ent	Checked	TM

POLLUTION HAZARD INDEX

		Pollution	Hazard II	ndices
Source of Runoff	Pollution Hazard	Suspended Solids	Metals	carbon s
Residential roofing	Very low	0.2	0.2	0.05

POLLUTION MITIGATION INDEX

The receiving water body shall be: Surface Water

Pollution Mitigation				
	Suspended Solids	Metals	Hydro- carbon s	
1	Hydo International Downstream Defender	0.5	0.4	0.8
2	None	0	0	0
3	None	0	0	0
4	None	0	0	0

Total Pollution Mitigation Index 0.5 0.4 0.8

ASSESSMENT OF TREATMENT PROPOSAL

Indices	Suspended Solids	Metals	Hydro-carbons
Pollution Hazard	0.2	0.2	0.05
Pollution Mitigation	0.5	0.4	0.8
	Adequate	Adequate	Adequate

CALCULA	ATION	Job No.	K41128	Page	3 of 4
Job	Griffin Close	Drg no.		Date	25/06/2024
	Frizington	Revision		Initial	CA
Title	Sustainable Drainage	- Treatm	ent	Checked	TM

POLLUTION HAZARD INDEX

		Pollution	Hazard lı	ndices
Source of Runoff	Pollution Hazard	Suspended Solids	Metals	carbon s
Residential parking	Low	0.5	0.4	0.4

POLLUTION MITIGATION INDEX

The receiving water body shall be: Surface Water

		Pollution Mitigation Indices		
	Suds Component	Suspended Solids	Metals	Hydro- carbon s
1	Hydo International Downstream Defender	0.5	0.4	0.8
2	None	0	0	0
3	None	0	0	0
4	None	0	0	0

Total Pollution Mitigation Index 0.5 0.4 0.8

ASSESSMENT OF TREATMENT PROPOSAL

Indices	Suspended Solids	Metals	Hydro-carbons
Pollution Hazard	0.5	0.4	0.4
Pollution Mitigation	0.5	0.4	0.8
	Adequate	Adequate	Adequate

CALCULA	ATION	Job No.	K41128	Page	4 of 4
Job	Griffin Close	Drg no.		Date	25/06/2024
	Frizington	Revision		Initial	CA
Title	Sustainable Drainage - Treatment		Checked	TM	

POLLUTION HAZARD INDEX

		Pollution	Hazard I	ndices
Source of Runoff	Pollution Hazard	Suspended Solids	Metals	carbon s
Low traffic roads (e.g. residential roads and general access roads, < 300 traffic movements/day)	Low	0.5	0.4	0.4

POLLUTION MITIGATION INDEX

The receiving water body shall be: Surface Water

		Pollution Mitigation Indices		
	Suds Component	Suspended Solids	Metals	Hydro- carbon s
1	Hydo International Downstream Defender	0.5	0.4	0.8
2	None	0	0	0
3	None	0	0	0
4	None	0	0	0

Total Pollution Mitigation Index 0.5 0.4 0.8

ASSESSMENT OF TREATMENT PROPOSAL

Indices	Suspended Solids	Metals	Hydro-carbons
Pollution Hazard	0.5	0.4	0.4
Pollution Mitigation	0.5	0.4	0.8
	Adequate	Adequate	Adequate

APPENDIX C

HYDRO-BRAKE DESIGN INFORMATION

Technical Specification Flow (I/s) **Control Point** Head (m) **Primary Design** 1.250 4.000 Flush-Flo™ 0.374 3.996 Kick-Flo® 3.200 0.770 Mean Flow 3.508

Hydro-Brake® Optimum Flow Control including:

- grade 304L stainless steel 3 mm Integral stainless steel pivoting by-pass door allowing clear line of sight through to outlet, c/w stainless steel operating rope
- Beed blasted finish to maximise corrosion resistance
- Stainless steel fixings
- Rubber gasket to seal outlet
- Variable flow rate post installation via adjustable inlet
- Indicative Weight: 20 kg

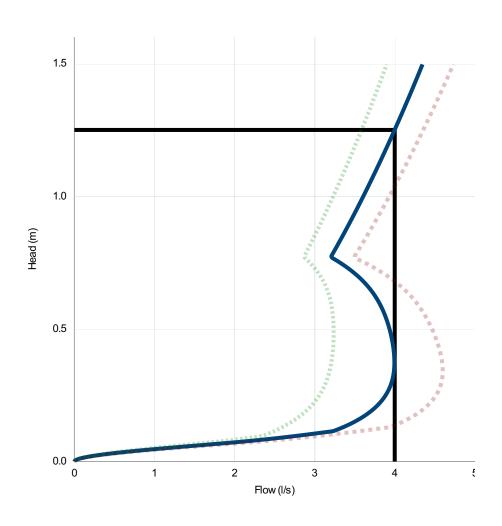
LIMIT OF HYDRO INTERNATIONAL SUPPLY IMPORTANT:

THE DEVICE WILL BE HANDED TO SUIT SITE CONDITIONS
FOR SITE SPECIFIC DETAILS AND MINIMUM CHAMBER SIZE REFER TO HYDRO INTERNATIONAL
ALL CIVIL AND INSTALLATION WORK BY OTHERS

* WHERE SUPPLIED HYDRO-BRAKE® OPTIMUM FLOW CONTROL ARE REGISTERED TRADEMARKS FOR FLOW

CONTROLS DESIGNED AND MANUFACTURED EXCLUSIVELY BY HYDRO INTERNATIONAL

THIS DESIGN LAYOUT IS FOR ILLUSTRATIVE PURPOSES ONLY. NOT TO SCALE.


The head/flow characteristics of this SHE-0091-4000-1250-4000 **DESIGN** Hydro-Brake® Optimum Flow Control are unique. Dynamic hydraulic modelling **ADVICE** evaluates the full head/flow characteristic curve. International The use of any other flow control will invalidate any design based on this data and could constitute a flood risk. A CRH COMPANY DATE 21/10/2024 13:37 SHE-0091-4000-1250-4000 SITE Griffin Close **DESIGNER** Chris Abram Hydro-Brake® Optimum REF K41128 Hydro International Ltd • Unit 2, Rivermead Court • Kenn Business Park • Windmill Road • Kenn • Clevedon • BS21 6FT • Tel: 01275 878371 • www.hydro-int.com • Email: enquiries@hydro-int.com © 2024

Technical Specification						
	Original Setting Minimum Setting Maximum Settin					
Control Point	Head (m)	Flow (I/s)	Head (m)	Flow (I/s)	Head (m)	Flow (I/s)
Primary Design	1.250	4.000	1.250	3.585	1.250	4.356
Flush-Flo™	0.374	3.996	0.485	3.237	0.341	4.599
Kick-Flo®	0.770	3.200	0.770	2.864	0.769	3.488
Mean Flow		3.508		2.981		3.922

hydro-int.com/patents

Head (m)	Flow (I/s)
0.000	0.000
0.043	0.865
0.086	2.466
0.129	3.354
0.172	3.623
0.216	3.797
0.259	3.904
0.302	3.964
0.345	3.991
0.388	3.995
0.431	3.982
0.474	3.956
0.517	3.918
0.560	3.866
0.603	3.797
0.647	3.702
0.690	3.573
0.733	3.399
0.776	3.211
0.819	3.292
0.862	3.370
0.905	3.446
0.948	3.521
0.991	3.593
1.034	3.665
1.078	3.734
1.121	3.802
1.164	3.869
1.207	3.934
1.250	3.999

DESIGN ADVICE	The head/flow characteristics of this SHE-0091-4000-1250-4000 Hydro-Brake® Optimum Flow Control are unique. Dynamic hydraulic modelling evaluates the full head/flow characteristic curve.	Hydro S
!	The use of any other flow control will invalidate any design based on this data and could constitute a flood risk.	International Company
DATE	21/10/2024 13:37	SHE-0091-4000-1250-4000
Site	Griffin Close	3112-0091-4000-1230-4000
DESIGNER	Chris Abram	Hydro-Brake® Optimum
Ref	K41128	Trydro-Brake® Optimum
© 2024 Hydro Inten	national Rivermead Court Kenn Business Park Windmill Road Kenn Clevedon BS21 6FT Tel 01275 878371 Fax 01275 8749	79 Web www.hv.dro.int.com Email designtools@hv.dro.int.com

APPENDIX D

CCTV DRAINAGE INVESTIGATION REPORT

THOMAS ARMSTRONG CONSTRUCTION LTD

WORKINGTON ROAD • FLIMBY • MARYPORT • CA15 8AY

Job Ref. SK - S 056-2024 12/07/2024 MSCC5 Drain and Sewer Codes (SRM5 Scoring)

SK Drainage Solutions Ltd 31 Adams Road, Workington, Cumbria, CA14 3YS Tel: 01900268189 office@skds.ltd

Contents Table

Client - THOMAS ARMSTRONG CONSTRUCTION LTD

Section	Pages
Cover Page	1
Overview	3
Project Information	4
Scoring Summary	5
Site Photos	8
CCTV Inspection - Section No 1 - 2301 to NODE	9
CCTV Inspection - Section No 2 - 2301 to NODE	15
CCTV Inspection - Section No 3 - 2301 to OUTFALL	20
CCTV Inspection - Section No 4 - 2301C to 2301B	29
CCTV Inspection - Section No 5 - 2301B to OUTFALL	37
CCTV Inspection - Section No 6 - F , SURG MH to OUTFALL	43
CCTV Inspection - Section No 7 - MH 56 to OUTFALL	48
CCTV Inspection - Section No 8 - F , SURG MH (EXPOSED) to FIELD MH	54
CCTV Inspection - Section No 9 - FIELD MH to FIELD MH CORNER	61
CCTV Inspection - Section No 10 - S , SURG MH (EXPOSED) to FIELD MH CORNER	66
CCTV Inspection - Section No 11 - FIELD MH CORNER SW to FIELD MH 2	71
CCTV Inspection - Section No 12 - FIELD MH 2 to FIELD MH 3	77
CCTV Inspection - Section No 13 - FIELD MH 3 to OUTFALL	82
CCTV Inspection - Section No 14 - S, SURG MH to S , SURG MH (EXPOSED)	89
CCTV Inspection - Section No 15 - CORNER PREP SITE FW to F , SURG MH (EXPOSED)	95
CCTV Inspection - Section No 16 - CORNER PREP SITE SW to S , SURG MH (EXPOSED)	100
All Sections Summary	106
Damage Overview	112
Inspection Summary	113
Remarks Summary	114

SRM5 - Contents Page Page 2

Report Overview

Client - THOMAS ARMSTRONG CONSTRUCTION LTD

Sewer Network Information		
Number of Sections	16	
Total Length	398.52 m	
Inspected Length	398.38 m	
Not Inspected Length	0.14 m	

Resources Collected
Inspection Photos 89
Inspection Videos 16
Site Drawings 0
Site Photos 2

Defects	Found	
Structural	15	
Service	24	
Abandoned Survey(s)	6	

Work Carr	ed Out	
Pipeline(s) Surveyed	16	
Pipeline(s) Pre Cleaned	0	
Flow Control(s) Used	0	

SRM5 - Report Overview Page 3

SK Drainage Solutions Ltd

31 Adams Road, Workington, Cumbria, CA14 3YS Tel: 01900268189 office@skds.ltd

Project Information

Client - THOMAS ARMSTRONG CONSTRUCTION LTD

Notes/Purpose of Survey

Survey of sections as per Parkins plan.

Client Details

THOMAS ARMSTRONG Location

CONSTRUCTION LTD

Company Address

WORKINGTON ROAD

FLIMBY MARYPORT CA15 8AY

Contact Name

Contact Tel.

Contact Email troy.melhuish@rgparkins.com

Site Details

Company GRIFFIN CLOSE / MILL STREET

Address FRIZINGTON

Site Contact Name

Site Contact Tel.

Contractor Details

Company SK Drainage Solutions Ltd

Office Address 31 Adams Road

Workington

Office Contact Name Steven Oakes

Cumbria

Office Contact Tel. 01900268189

Office Contact Email office@skds.ltd

Surveyor B. Hughes

CA14 3YS

Job Comments

PLEASE REFER TO SURVEYS FOR FURTHER INFORMATION

SRM5 - Project Information Page 4

Scoring Summary

Client - THOMAS ARMSTRONG CONSTRUCTION LTD

Stuctural Defects

Grade 3	Grade 4	Grade 5	Information
Best practice suggests consideration to be given to repair in the medium term.	Best practice suggests consideration to be given to repair to avoid potential collapse.	Best practice suggests this pipe is at risk of collapse at any time; urgent consideration should be given to repair to avoid collapse.	These summaries are based on the SRM grading from the WRC.

Section	PLR	Grade	Fault Description
1	NODE X		Displaced joints
3	2301 X	3	Fractures
4	2301C X		Multiple defects, made up of cracks , displaced joints & fractures
5	2301B X		Displaced joints
8	F , SURG MX		Displaced joints
13	FIELD MH 3X	3	Displaced joints
16	CORNER PREX	4	Multiple defects, made up of fractures & breaks

SRM5 - Scoring Summary Page 5

Scoring Summary

Client - THOMAS ARMSTRONG CONSTRUCTION LTD

Service/Operational Defects

Grade 3	Grade 4	Grade 5	Information
Best practice suggests consideration to be given to maintenance activities in the medium term.	Best practice suggests consideration to be given to maintenance to avoid potential blockage.	Best practice suggests this pipe is at risk of backing up / causing flooding.	These summaries are based on the SRM grading from the WRC.

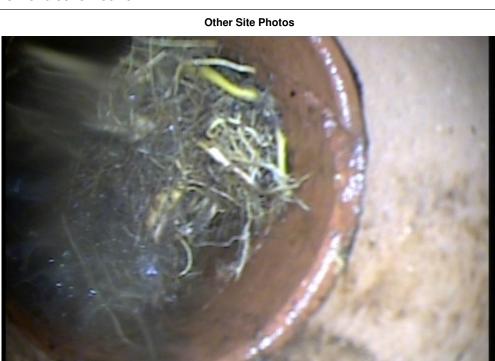
Section	PLR	Grade	Fault Description
1	NODE X	3	Displaced joints
4	2301C X	3	Multiple defects, made up of roots , displaced joints , fractures & cracks
5	2301B X	3	Displaced joints
7	MH 56 X	4	Deposits
8	F, SURG MX	3	Multiple defects, made up of deposits & displaced joints
11	FIELD MH CX	3	Deposits
13	FIELD MH 3X	5	Multiple defects, made up of displaced joints & obstacles
14	S, SURG MHX	4	Deposits

SRM5 - Scoring Summary Page 6

Scoring Summary

Client - THOMAS ARMSTRONG CONSTRUCTION LTD

Abandoned Surveys


Section	PLR	Fault Description
1	NODE X	Survey Abandoned
2	NODE X	Survey Abandoned
7	MH 56 X	Survey Abandoned
13	FIELD MH 3X	Survey Abandoned
14	S, SURG MHX	Survey Abandoned
16	CORNER PREX	Survey Abandoned

SRM5 - Scoring Summary Page 7

Site Photographs

Client - THOMAS ARMSTRONG CONSTRUCTION LTD

sw uncovered mh back up to surgery mh

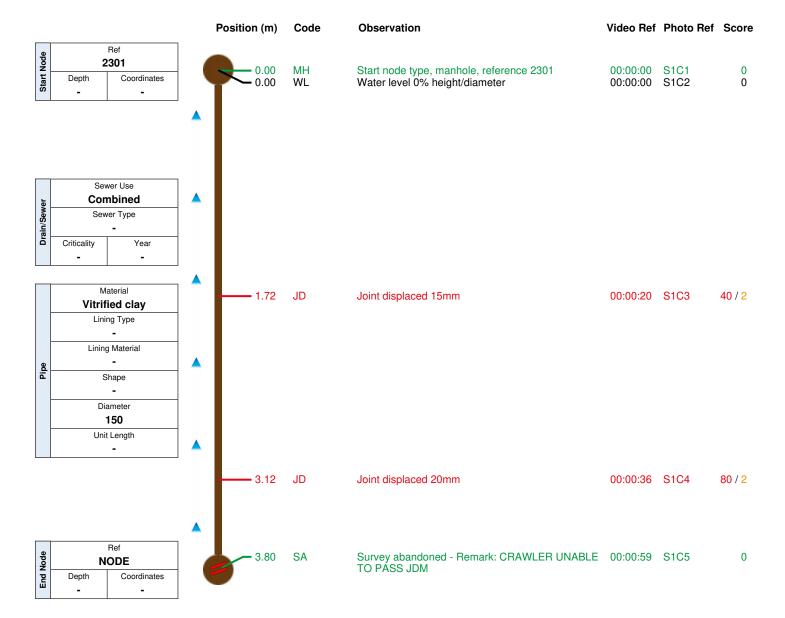
SRM5 - Site Photographs Page 8

31 Adams Road, Workington, Cumbria, CA14 3YS Tel: 01900268189

office@skds.ltd

CCTV Inspection - Section No. 1 - 2301 to NODE

Client - THOMAS ARMSTRONG CONSTRUCTION LTD


Job Info			
Contractor's Job Ref.	SK - S 056-2024		
Pipeline Length Ref.	NODE X		
Drainage Area			
Division/District			

	Location
Street Name	
Town or Village	
Location Type	
Land Ownership	

	Factors	
Date	09/04/2024	
Time	10:45 - 10:48	
Weather	2 - Heavy Rain	
Temp.		

Surveyor Details		
Name of Surveyor	Camera System	
B. Hughes	VJ7B51U7GO	

Survey Details					
Purpose of Inspection	Pre Cleaned	Flow Control	Direction	Expected Length	Inspected Length
-	N	-	Upstream	3.80	3.80

General Remarks

Defect	Quantity	Peak	Mean	Total	Grade	Key	
Structural	2	80	31.58	120	4	Structural Defects	Construction Observations
Operational	2	2	1.05	4	3	Service/Operational Defects	Miscellaneous Observations

office@skds.ltd

Pictures - Section No. 1 - 2301 to NODE

Client - THOMAS ARMSTRONG CONSTRUCTION LTD

00:00:00 - 0.00 m Start node type, manhole, reference 2301

00:00:00 - 0.00 m Water level 0% height/diameter

31 Adams Road, Workington, Cumbria, CA14 3YS Tel: 01900268189

office@skds.ltd

Pictures - Section No. 1 - 2301 to NODE

Client - THOMAS ARMSTRONG CONSTRUCTION LTD

00:00:20 - 1.72 m Joint displaced 15mm

00:00:36 - 3.12 m Joint displaced 20mm

Pictures - Section No. 1 - 2301 to NODE

Client - THOMAS ARMSTRONG CONSTRUCTION LTD

00:00:59 - 3.80 m Survey abandoned - Remark: CRAWLER UNABLE TO PASS JDM

office@skds.ltd

Overview - Section No. 1 - 2301 to NODE

Client - THOMAS ARMSTRONG CONSTRUCTION LTD

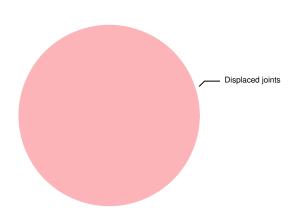
Section Info	rmation
Total Length	3.8 m
Inspected Length	3.8 m
Not Inspected Length	0 m

Resources Collected
Inspection Photos 5
Inspection Videos 1
Manhole Photos 0

Defects Found		
Structural	2	
Service/Operational	2	
Survey Abandoned	Yes	

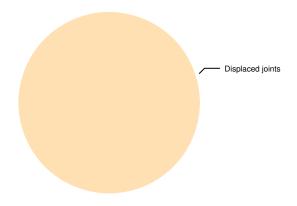
Work Carried Out	
Pipeline Surveyed	Yes
Pipeline Pre Cleaned	No
Flow Control Used	No

Pipeline Length Ref. NODE X	Direction Upstream	Upstream Node Downstream Node 2301 NODE	Pipe Material Vitrified clay	Dia/Height 150 mm
Meas. from MH (m)	Code	Observation		
0	MH	Start node type, manhole, reference 2301		
0	WL	Water level 0% height/diameter		
1.72	JD	Joint displaced 15mm		
3.12	JD	Joint displaced 20mm		
3.8	SA	Survey abandoned - Remark: CRAWLER UNABLE	TO PASS JDM	


office@skds.ltd

Damage Overview - Section No. 1 - 2301 to NODE

Client - THOMAS ARMSTRONG CONSTRUCTION LTD


Structural Defect	Quantity
Displaced joints	2

Structural

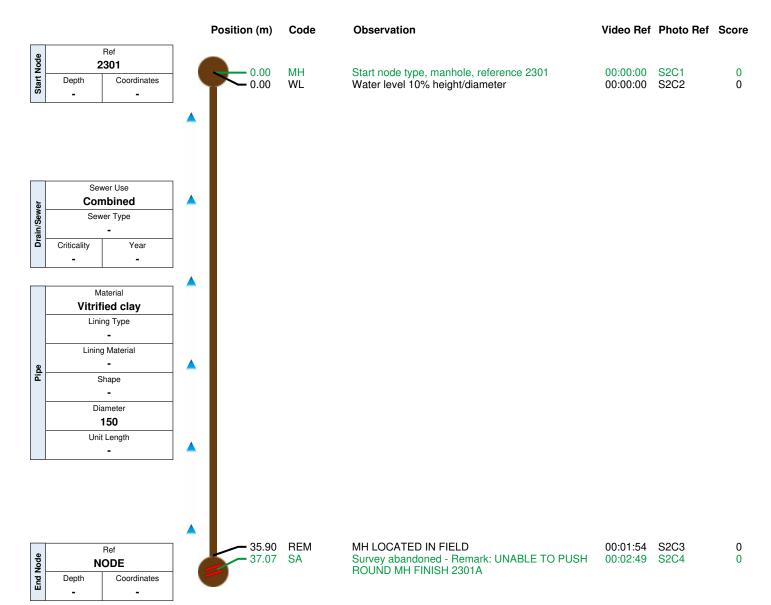
Service/Operational Defects	Quantity
Displaced joints	2

Service/Operational

31 Adams Road, Workington, Cumbria, CA14 3YS Tel: 01900268189 office@skds.ltd

CCTV Inspection - Section No. 2 - 2301 to NODE

Client - THOMAS ARMSTRONG CONSTRUCTION LTD


Job Info		
Contractor's Job Ref.	SK - S 056-2024	
Pipeline Length Ref.	NODE X	
Drainage Area		
Division/District		

	Location
Street Name	
Town or Village	
Location Type	
Land Ownership	

	Factors	
Date	09/04/2024	
Time	10:50 - 11:09	
Weather	2 - Heavy Rain	
Temp.		

Surveyor Details		
Name of Surveyor	Camera System	
B. Hughes	VJ7B51U7GO	

Survey Details					
Purpose of Inspection	Pre Cleaned	Flow Control	Direction	Expected Length	Inspected Length
-	N	-	Upstream	37.07	37.07

General Remarks			

Defect	Quantity	Peak	Mean	Total	Grade	Key	
Structural	0	0	0.00	0	1	Structural Defects	Construction Observations
Operational	0	0	0.00	0	1	Service/Operational Defects	Miscellaneous Observations

office@skds.ltd

Pictures - Section No. 2 - 2301 to NODE

Client - THOMAS ARMSTRONG CONSTRUCTION LTD

00:00:00 - 0.00 m Start node type, manhole, reference 2301

00:00:00 - 0.00 m Water level 10% height/diameter

office@skds.ltd

Pictures - Section No. 2 - 2301 to NODE

Client - THOMAS ARMSTRONG CONSTRUCTION LTD

00:02:49 - 37.07 m Survey abandoned - Remark: UNABLE TO PUSH ROUND MH FINISH 2301A

office@skds.ltd

Overview - Section No. 2 - 2301 to NODE

Client - THOMAS ARMSTRONG CONSTRUCTION LTD

Section I	nformation
Total Length	37.07 m
Inspected Length	37.07 m
Not Inspected Length	0 m

Resources Collected
Inspection Photos 4
Inspection Videos 1
Manhole Photos 0

Defects Found		
Structural	0	
Service/Operational	0	
Survey Abandoned	Yes	

Work Carried Out	
Pipeline Surveyed	Yes
Pipeline Pre Cleaned	No
Flow Control Used	No

Pipeline Length Ref. NODE X	Direction Upstream	Upstream Node Downstream Node 2301 NODE	Pipe Material Vitrified clay	Dia/Height 150 mm
Meas. from MH (m)	Code	Observation		
0	МН	Start node type, manhole, reference 2301		
0	WL	Water level 10% height/diameter		
35.9	REM	MH LOCATED IN FIELD		
37.07	SA	Survey abandoned - Remark: UNABLE TO PUSH RO	UND MH FINISH 2301A	

31 Adams Road, Workington, Cumbria, CA14 3YS Tel: 01900268189

office@skds.ltd

Damage Overview - Section No. 2 - 2301 to NODE

Client - THOMAS ARMSTRONG CONSTRUCTION LTD

Structural Defect	Quantity

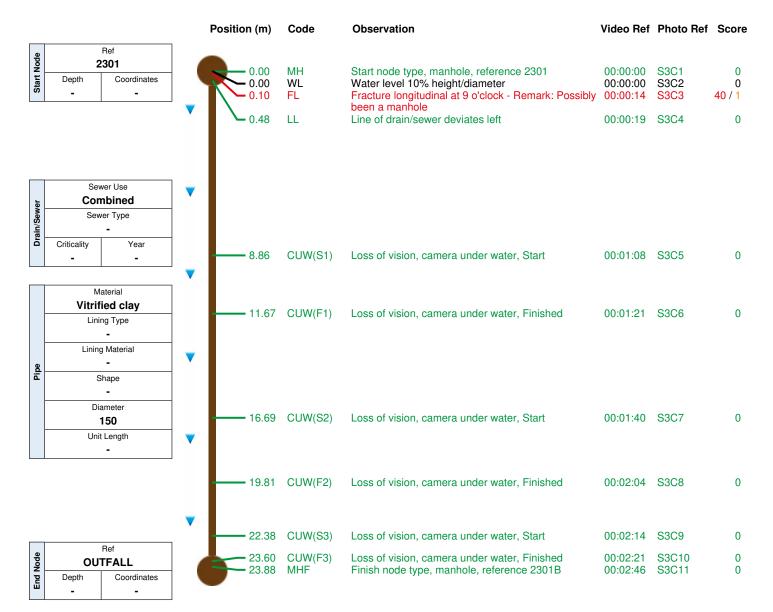
There were no structural defects recorded

Service/Operational Defects	Quantity
Defects	

There were no service/operational defects recorded

31 Adams Road, Workington, Cumbria, CA14 3YS Tel: 01900268189 office@skds.ltd

CCTV Inspection - Section No. 3 - 2301 to OUTFALL


Job Info				
Contractor's Job Ref.	SK - S 056-2024			
Pipeline Length Ref.	2301 X			
Drainage Area				
Division/District				

	Location
Street Name	
Town or Village	
Location Type	
Land Ownership	

	Factors
Date	09/04/2024
Time	11:10 - 11:27
Weather	2 - Heavy Rain
Temp.	

Surveyor Details		
Name of Surveyor	Camera System	
B. Hughes	VJ7B51U7GO	

Survey Details					
Purpose of Inspection	Pre Cleaned	Flow Control	Direction	Expected Length	Inspected Length
-	N	-	Downstream	24.02	23.88

General Remarks			
1			

Defect	Quantity	Peak	Mean	Total	Grade	Key	
Structural	1	40	1.68	40	3	Structural Defects	Construction Observations
Operational	1	1	0.04	1	2	Service/Operational Defects	Miscellaneous Observations

office@skds.ltd

Pictures - Section No. 3 - 2301 to OUTFALL

00:00:00 - 0.00 m Start node type, manhole, reference 2301

00:00:00 - 0.00 m Water level 10% height/diameter

office@skds.ltd

Pictures - Section No. 3 - 2301 to OUTFALL

00:00:14 - 0.10 m
Fracture longitudinal at 9 o'clock - Remark: Possibly been a manhole

office@skds.ltd

Pictures - Section No. 3 - 2301 to OUTFALL

Client - THOMAS ARMSTRONG CONSTRUCTION LTD

00:01:08 - 8.86 m Loss of vision, camera under water, Start

00:01:21 - 11.67 m Loss of vision, camera under water, Finished

office@skds.ltd

Pictures - Section No. 3 - 2301 to OUTFALL

Client - THOMAS ARMSTRONG CONSTRUCTION LTD

Loss of vision, camera under water, Start

00:02:04 - 19.81 m Loss of vision, camera under water, Finished

office@skds.ltd

Pictures - Section No. 3 - 2301 to OUTFALL

00:02:14 - 22.38 m Loss of vision, camera under water, Start

00:02:21 - 23.60 m Loss of vision, camera under water, Finished

office@skds.ltd

Pictures - Section No. 3 - 2301 to OUTFALL

Client - THOMAS ARMSTRONG CONSTRUCTION LTD

S3C11

00:02:46 - 23.88 m Finish node type, manhole, reference 2301B

office@skds.ltd

Overview - Section No. 3 - 2301 to OUTFALL

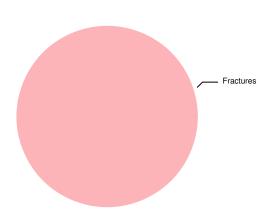
Section I	nformation
Total Length	24.02 m
Inspected Length	23.88 m
Not Inspected Length	0.14 m

Resources Collected
Inspection Photos 11
Inspection Videos 1
Manhole Photos 0

Defects Found			
Structural	1		
Service/Operational	1		
Survey Abandoned	No		

Work Carried Out		
Pipeline Surveyed	Yes	
Pipeline Pre Cleaned	No	
Flow Control Used	No	

Pipeline Length Ref. 2301 X	Direction Downstream	Upstream Node Downstream Node 2301 OUTFALL	Pipe Material Vitrified clay	Dia/Height 150 mm
Meas. from MH (m)	Code	Observation		
0	MH	Start node type, manhole, reference 230)1	
0	WL	Water level 10% height/diameter		
0.1	FL	Fracture longitudinal at 9 o'clock - Rema	ark: Possibly been a manhole	
0.48	LL	Line of drain/sewer deviates left		
8.86	CUW	Loss of vision, camera under water, Sta	rt	
11.67	CUW	Loss of vision, camera under water, Fin	ished	
16.69	CUW	Loss of vision, camera under water, Sta	rt	
19.81	CUW	Loss of vision, camera under water, Fin	ished	
22.38	CUW	Loss of vision, camera under water, Sta	rt	
23.6	CUW	Loss of vision, camera under water, Fin	ished	
23.88	MHF	Finish node type, manhole, reference 20	301B	


SK Drainage Solutions Ltd 31 Adams Road, Workington, Cumbria, CA14 3YS Tel: 01900268189 office@skds.ltd

Damage Overview - Section No. 3 - 2301 to OUTFALL

Client - THOMAS ARMSTRONG CONSTRUCTION LTD

Structural Defect	Quantity
Fractures	1

Structural

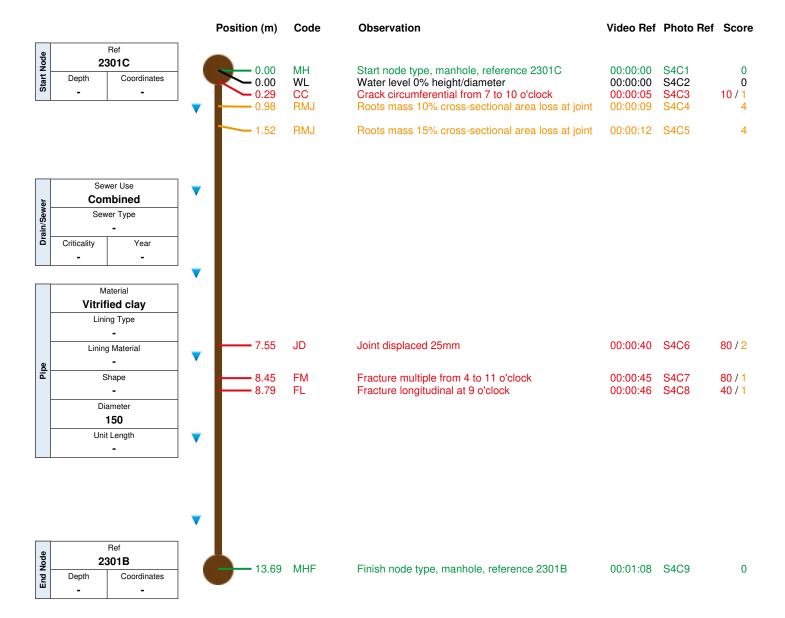
Service/Operational Defects	Quantity
Fractures	1

Service/Operational

31 Adams Road, Workington, Cumbria, CA14 3YS Tel: 01900268189 office@skds.ltd

CCTV Inspection - Section No. 4 - 2301C to 2301B

Client - THOMAS ARMSTRONG CONSTRUCTION LTD


Job Info				
Contractor's Job Ref. SK - S 056-2024				
Pipeline Length Ref.	2301C X			
Drainage Area				
Division/District				

Location			
Street Name			
Town or Village			
Location Type			
Land Ownership			

	Factors	
Date	09/04/2024	
Time	11:52 - 11:53	
Weather	2 - Heavy Rain	
Temp.		

Surveyor Details		
Name of Surveyor	Camera System	
B. Hughes	VJ7B51U7GO	

Survey Details						
Purpose of Inspection Pre Cleaned Flow Control Direction Expected Length Inspected Length						
-	N	-	Downstream	13.69	13.69	

General Remarks

Defect	Quantity	Peak	Mean	Total	Grade	K	еу
Structural	4	80	15.34	210	4	Structural Defects	Construction Observations
Operational	6	4	0.95	13	3	Service/Operational Defects	Miscellaneous Observations

Pictures - Section No. 4 - 2301C to 2301B

00:00:00 - 0.00 m Start node type, manhole, reference 2301C

00:00:00 - 0.00 m Water level 0% height/diameter

office@skds.ltd

Pictures - Section No. 4 - 2301C to 2301B

Client - THOMAS ARMSTRONG CONSTRUCTION LTD

00:00:05 - 0.29 m Crack circumferential from 7 to 10 o'clock

S4C4 0.98 M

00:00:09 - 0.98 m Roots mass 10% cross-sectional area loss at joint

office@skds.ltd

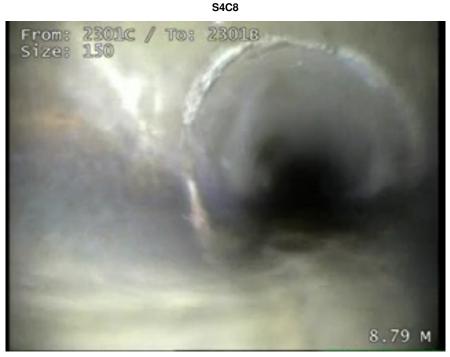
Pictures - Section No. 4 - 2301C to 2301B

Client - THOMAS ARMSTRONG CONSTRUCTION LTD

S4C5

00:00:12 - 1.52 m Roots mass 15% cross-sectional area loss at joint

S4C6


00:00:40 - 7.55 m Joint displaced 25mm

office@skds.ltd

Pictures - Section No. 4 - 2301C to 2301B

Fracture multiple from 4 to 11 o'clock

00:00:46 - 8.79 m Fracture longitudinal at 9 o'clock

SK Drainage Solutions Ltd 31 Adams Road, Workington, Cumbria, CA14 3YS Tel: 01900268189 office@skds.ltd

Pictures - Section No. 4 - 2301C to 2301B

Client - THOMAS ARMSTRONG CONSTRUCTION LTD

S4C9

00:01:08 - 13.69 m Finish node type, manhole, reference 2301B

office@skds.ltd

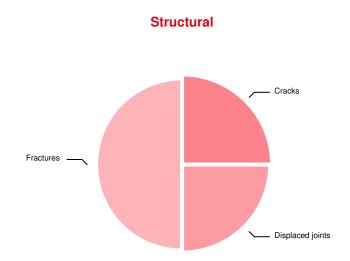
Overview - Section No. 4 - 2301C to 2301B

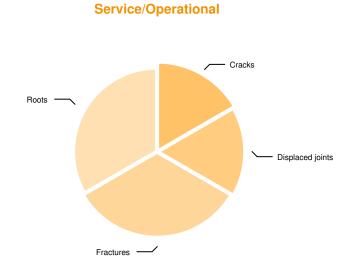
Section I	nformation
Total Length	13.69 m
Inspected Length	13.69 m
Not Inspected Length	0 m

Resources Collected
Inspection Photos 9
Inspection Videos 1
Manhole Photos 0

Defects Found			
Structural 4			
Service/Operational	6		
Survey Abandoned	No		

Work Carried Out			
Pipeline Surveyed Yes			
Pipeline Pre Cleaned	No		
Flow Control Used	No		


Pipeline Length Ref. 2301C X	Direction Downstream	Upstream Node Downstream Node 2301C 2301B	Pipe Material Vitrified clay	Dia/Height 150 mm	
Meas. from MH (m)	Code	Observation			
0	MH	Start node type, manhole, reference 2301C	Start node type, manhole, reference 2301C		
0	WL	Water level 0% height/diameter			
0.29	CC	Crack circumferential from 7 to 10 o'clock			
0.98	RMJ	Roots mass 10% cross-sectional area loss at joint			
1.52	RMJ	Roots mass 15% cross-sectional area loss at joint			
7.55	JD	Joint displaced 25mm			
8.45	FM	Fracture multiple from 4 to 11 o'clock			
8.79	FL	Fracture longitudinal at 9 o'clock			
13.69	MHF	Finish node type, manhole, reference 2301B			


office@skds.ltd

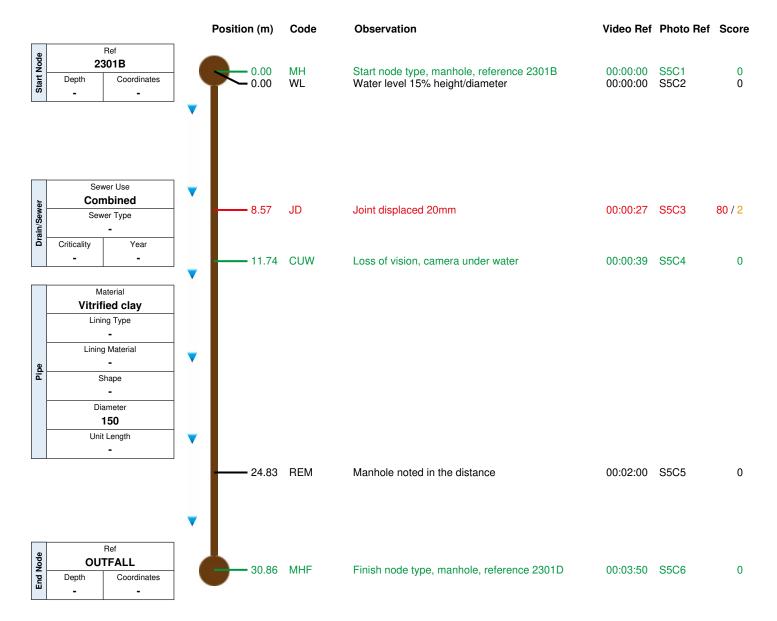
Damage Overview - Section No. 4 - 2301C to 2301B

Structural Defect	Quantity
Fractures	2
Displaced joints	1
Cracks	1

,	Service/Operational Defects	Quantity
	Roots	2
	Fractures	2
	Displaced joints	1
	Cracks	1

31 Adams Road, Workington, Cumbria, CA14 3YS Tel: 01900268189 office@skds.ltd

CCTV Inspection - Section No. 5 - 2301B to OUTFALL


Job	Info
Contractor's Job Ref.	SK - S 056-2024
Pipeline Length Ref.	2301B X
Drainage Area	
Division/District	

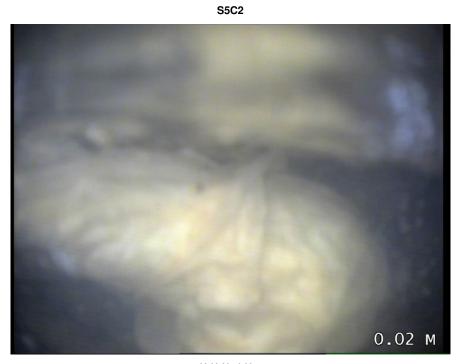
	Location
Street Name	
Town or Village	
Location Type	
Land Ownership	

	Factors
Date	09/04/2024
Time	11:58 - 12:06
Weather	2 - Heavy Rain
Temp.	

Surveyor Details				
Name of Surveyor	Camera System			
B. Hughes	VJ7B51U7GO			

		Survey Deta	ils		
Purpose of Inspection					
-	N		Downstream	30.86	30.86

General Remarks	


Defect	Quantity	Peak	Mean	Total	Grade	Key	
Structural	1	80	2.59	80	4	Structural Defects	Construction Observations
Operational	1	2	0.06	2	3	Service/Operational Defects	Miscellaneous Observations

office@skds.ltd

Pictures - Section No. 5 - 2301B to OUTFALL

00:00:00 - 0.00 m Start node type, manhole, reference 2301B

00:00:00 - 0.00 m Water level 15% height/diameter

office@skds.ltd

Pictures - Section No. 5 - 2301B to OUTFALL

00:00:27 - 8.57 m Joint displaced 20mm

00:00:39 - 11.74 m Loss of vision, camera under water

office@skds.ltd

Pictures - Section No. 5 - 2301B to OUTFALL

Client - THOMAS ARMSTRONG CONSTRUCTION LTD

Finish node type, manhole, reference 2301D

office@skds.ltd

Overview - Section No. 5 - 2301B to OUTFALL

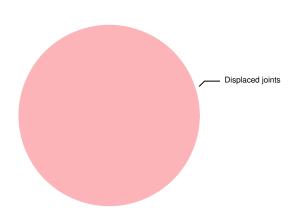
Section I	Information
Total Length	30.86 m
Inspected Length	30.86 m
Not Inspected Length	0 m

Resources Collected
Inspection Photos 6
Inspection Videos 1
Manhole Photos 0

Defects Found				
Structural	1			
Service/Operational	1			
Survey Abandoned	No			

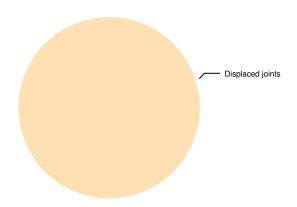
Work Carried Out				
Pipeline Surveyed	Yes			
Pipeline Pre Cleaned	No			
Flow Control Used	No			

Pipeline Length Ref. 2301B X	Direction Downstream	Upstream Node Downs: 2301B OUT	tream Node FALL	Pipe Material Vitrified clay	Dia/Height 150 mm
Meas. from MH (m)	Code	Observation			
0	МН	Start node type, manhole, re	ference 2301B		
0	WL	Water level 15% height/diam	neter		
8.57	JD	Joint displaced 20mm			
11.74	CUW	Loss of vision, camera unde	r water		
24.83	REM	Manhole noted in the distant	ce		
30.86	MHF	Finish node type, manhole, r	reference 2301D		


office@skds.ltd

Damage Overview - Section No. 5 - 2301B to OUTFALL

Client - THOMAS ARMSTRONG CONSTRUCTION LTD


Structural Defect	Quantity
Displaced joints	1

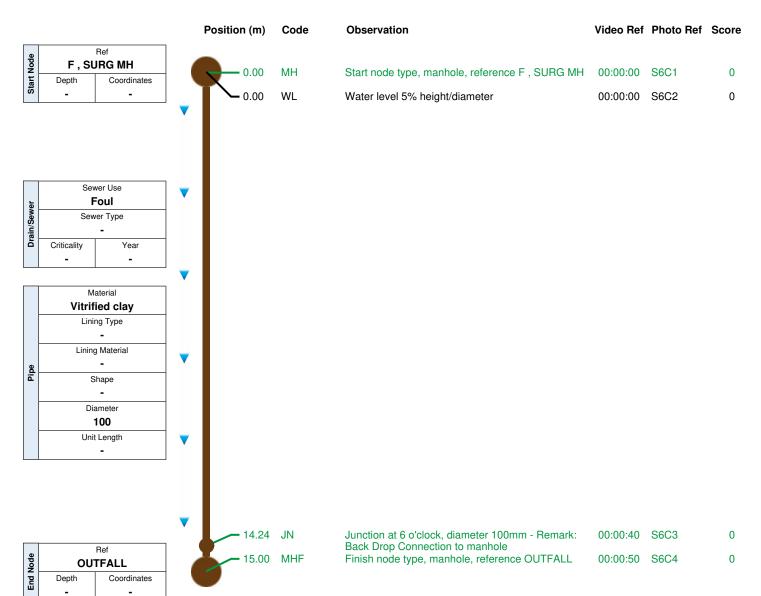
Structural

Service/Operational Defects	Quantity
Displaced joints	1

Service/Operational

31 Adams Road, Workington, Cumbria, CA14 3YS Tel: 01900268189 office@skds.ltd

CCTV Inspection - Section No. 6 - F , SURG MH to OUTFALL


Job Info				
Contractor's Job Ref.	SK - S 056-2024			
Pipeline Length Ref.	F, SURG MX			
Drainage Area				
Division/District				

	Location
Street Name	
Town or Village	
Location Type	
Land Ownership	

	Factors
Date	09/04/2024
Time	12:49 - 13:11
Weather	2 - Heavy Rain
Temp.	

Surveyor Details				
Name of Surveyor Camera System				
B. Hughes	VJ7B51U7GO			

Survey Details						
Purpose of Inspection Pre Cleaned Flow Control Direction Expected Length Inspected Length						
-	N	-	Downstream	15.00	15.00	


General Remarks			

Defect	Quantity	Peak	Mean	Total	Grade	Кеу	
Structural	0	0	0.00	0	1	Structural Defects	Construction Observations
Operational	0	0	0.00	0	1	Service/Operational Defects	Miscellaneous Observations

office@skds.ltd

Pictures - Section No. 6 - F, SURG MH to OUTFALL

00:00:00 - 0.00 m Start node type, manhole, reference F , SURG MH

Water level 5% height/diameter

office@skds.ltd

Pictures - Section No. 6 - F, SURG MH to OUTFALL

00:00:40 - 14.24 m

Junction at 6 o'clock, diameter 100mm - Remark: Back Drop Connection to manhole

00:00:50 - 15.00 m Finish node type, manhole, reference OUTFALL

office@skds.ltd

Overview - Section No. 6 - F , SURG MH to OUTFALL

Section Information			
Total Length	15 m		
Inspected Length	15 m		
Not Inspected Length	0 m		

Resources Collected
Inspection Photos 4
Inspection Videos 1
Manhole Photos 0

Defects Found		
Structural	0	
Service/Operational	0	
Survey Abandoned	No	

Work Carried Out					
Pipeline Surveyed Yes					
Pipeline Pre Cleaned	No				
Flow Control Used	No				

Pipeline Length Ref. F, SURG MX	Direction Downstream	Upstream Node F, SURG MH OUTFALL	Pipe Material Vitrified clay	Dia/Height 100 mm
Meas. from MH (m)	Code	Observation		
0	MH	Start node type, manhole, reference F, SURG	МН	
0	WL	Water level 5% height/diameter		
14.24	JN	Junction at 6 o'clock, diameter 100mm - Rema	rk: Back Drop Connection to ma	anhole
15	MHF	Finish node type, manhole, reference OUTFAL	L	

31 Adams Road, Workington, Cumbria, CA14 3YS Tel: 01900268189 office@skds.ltd

Damage Overview - Section No. 6 - F , SURG MH to OUTFALL

Client - THOMAS ARMSTRONG CONSTRUCTION LTD

Structural Defect	Quantity
-------------------	----------

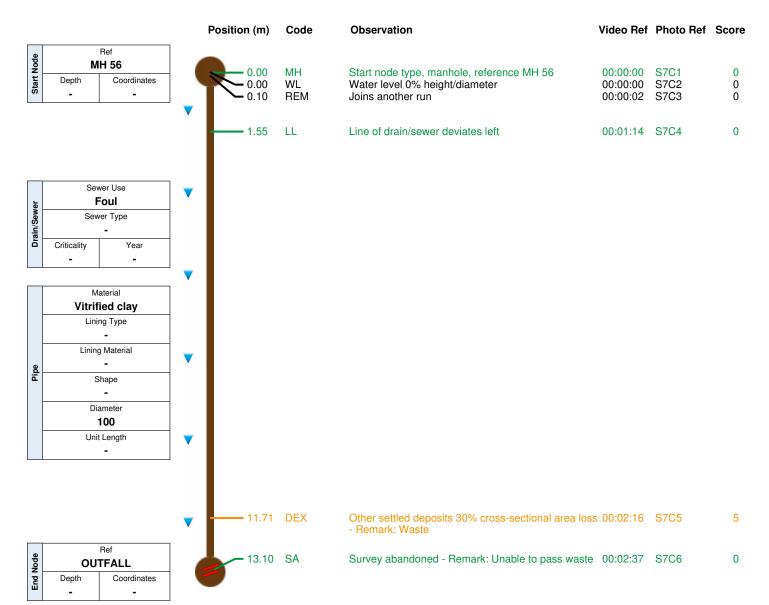
There were no structural defects recorded

Service/Operational Defects	Quantity
Delecto	

There were no service/operational defects recorded

31 Adams Road, Workington, Cumbria, CA14 3YS Tel: 01900268189 office@skds.ltd

CCTV Inspection - Section No. 7 - MH 56 to OUTFALL


Job Info				
Contractor's Job Ref. SK - S 056-2024				
Pipeline Length Ref.	MH 56 X			
Drainage Area				
Division/District				

	Lacation
	Location
Street Name	
Town or Village	
Location Type	
Land Ownership	

	Factors
Date	09/04/2024
Time	13:33 - 13:39
Weather	2 - Heavy Rain
Temp.	

Surveyor Details			
Name of Surveyor Camera System			
B. Hughes VJ7B51U7G0			

Survey Details					
Purpose of Inspection Pre Cleaned Flow Control Direction Expected Length Inspected Length					
-	N	-	Downstream	13.10	13.10



General Remarks			

Defect	Quantity	Peak	Mean	Total	Grade	Key	
Structural	0	0	0.00	0	1	Structural Defects	Construction Observations
Operational	1	5	0.38	5	4	Service/Operational Defects	Miscellaneous Observations

office@skds.ltd

Pictures - Section No. 7 - MH 56 to OUTFALL

00:00:00 - 0.00 m Start node type, manhole, reference MH 56

office@skds.ltd

Pictures - Section No. 7 - MH 56 to OUTFALL

Client - THOMAS ARMSTRONG CONSTRUCTION LTD

00:01:14 - 1.55 m Line of drain/sewer deviates left

S7C5

 $00:\!02:\!16\text{ - }11.71\text{ m}$ Other settled deposits 30% cross-sectional area loss - Remark: Waste

office@skds.ltd

Pictures - Section No. 7 - MH 56 to OUTFALL

Client - THOMAS ARMSTRONG CONSTRUCTION LTD

00:02:37 - 13.10 m Survey abandoned - Remark: Unable to pass waste

office@skds.ltd

Overview - Section No. 7 - MH 56 to OUTFALL

Section Ir	nformation
Total Length	13.1 m
Inspected Length	13.1 m
Not Inspected Length	0 m

Resources Collected
Inspection Photos 6
Inspection Videos 1
Manhole Photos 0

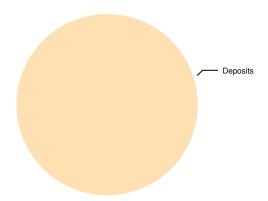
Defects Found		
Structural	0	
Service/Operational	1	
Survey Abandoned	Yes	

Work Carried Out		
Pipeline Surveyed	Yes	
Pipeline Pre Cleaned	No	
Flow Control Used	No	

Pipeline Length Ref. MH 56 X	Direction Downstream	'	Oownstream Node	Pipe Material Vitrified clay	Dia/Height 100 mm
Meas. from MH (m)	Code	Observation			
0	МН	Start node type, manho	le, reference MH 56		
0	WL	Water level 0% height/diameter			
0.1	REM	Joins another run			
1.55	LL	Line of drain/sewer deviates left			
11.71	DEX	Other settled deposits 30% cross-sectional area loss - Remark: Waste			
13.1	SA	Survey abandoned - Remark: Unable to pass waste			

office@skds.ltd

Damage Overview - Section No. 7 - MH 56 to OUTFALL


Client - THOMAS ARMSTRONG CONSTRUCTION LTD

Structural Defect	Quantity
-------------------	----------

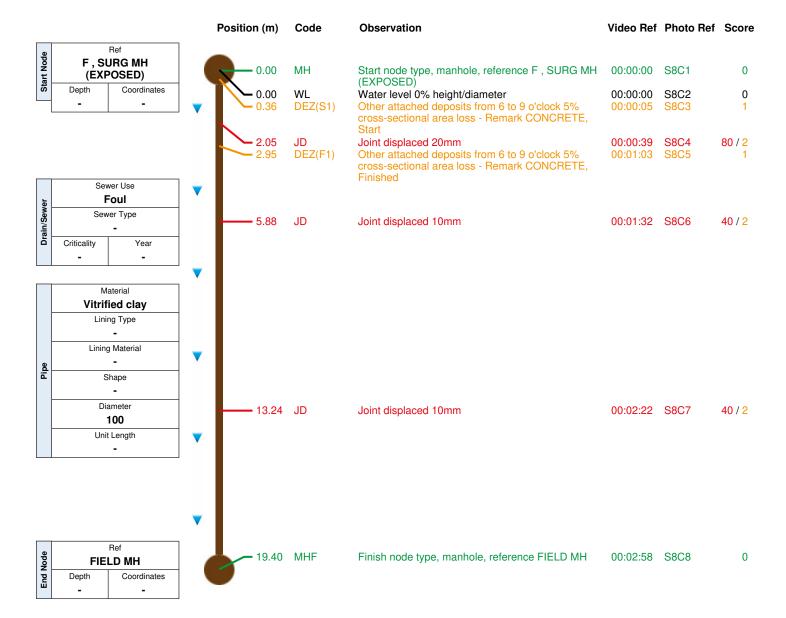
There were no structural defects recorded

Service/Operational Defects	Quantity
Deposits	1

Service/Operational

31 Adams Road, Workington, Cumbria, CA14 3YS Tel: 01900268189 office@skds.ltd

CCTV Inspection - Section No. 8 - F, SURG MH (EXPOSED) to FIELD MH


Job Info		
Contractor's Job Ref.	SK - S 056-2024	
Pipeline Length Ref.	F, SURG MX	
Drainage Area		
Division/District		

	Location
Street Name	
Town or Village	
Location Type	
Land Ownership	

	Factors
Date	03/07/2024
Time	10:28 - 10:33
Weather	2 - Heavy Rain
Temp.	

Surveyor Details			
Name of Surveyor	Camera System		
B. Hughes	VJ7B51U7GO		

Survey Details						
Purpose of Inspection	Pre Cleaned	Flow Control	Direction	Expected Length	Inspected Length	
-	N	-	Downstream	19.40	19.40	

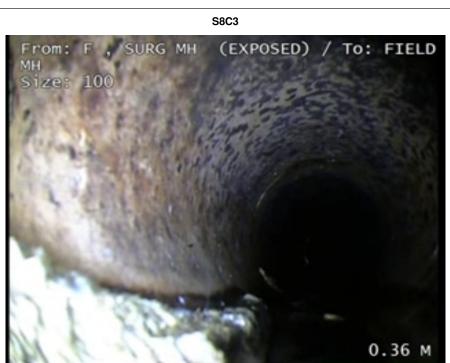
General Remarks		

Defect	Quantity	Peak	Mean	Total	Grade	Key	
Structural	3	80	8.25	160	4	Structural Defects	Construction Observations
Operational	6	3	0.46	9	3	Service/Operational Defects	Miscellaneous Observations

SK Drainage Solutions Ltd 31 Adams Road, Workington, Cumbria, CA14 3YS Tel: 01900268189 office@skds.ltd

Pictures - Section No. 8 - F , SURG MH (EXPOSED) to FIELD MH

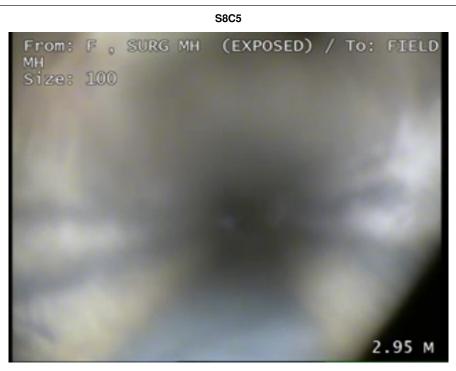
Client - THOMAS ARMSTRONG CONSTRUCTION LTD


Start node type, manhole, reference ${\sf F}$, SURG MH (EXPOSED)

office@skds.ltd

Pictures - Section No. 8 - F, SURG MH (EXPOSED) to FIELD MH

00:00:05 - 0.36 m


Other attached deposits from 6 to 9 o'clock 5% cross-sectional area loss - Remark CONCRETE, Start

SRM5 - Pictures - Section No. 8 - F , SURG MH (EXPOSED) to FIELD MH

Pictures - Section No. 8 - F, SURG MH (EXPOSED) to FIELD MH

00:01:03 - 2.95 m

Other attached deposits from 6 to 9 o'clock 5% cross-sectional area loss - Remark CONCRETE, Finished

SRM5 - Pictures - Section No. 8 - F , SURG MH (EXPOSED) to FIELD MH

office@skds.ltd

Pictures - Section No. 8 - F, SURG MH (EXPOSED) to FIELD MH

00:02:22 - 13.24 m Joint displaced 10mm

00:02:58 - 19.40 m Finish node type, manhole, reference FIELD MH

Overview - Section No. 8 - F, SURG MH (EXPOSED) to FIELD MH

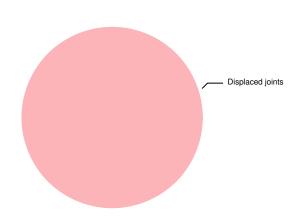
Section Information		
Total Length	19.4 m	
Inspected Length	19.4 m	
Not Inspected Length	0 m	

Resources Collected
Inspection Photos 8
Inspection Videos 1
Manhole Photos 0

Defects Found		
Structural	3	
Service/Operational	5	
Survey Abandoned	No	

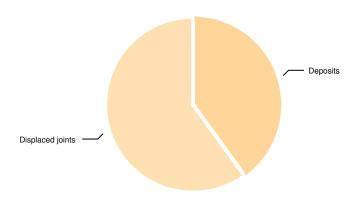
Work Carried Out		
Pipeline Surveyed	Yes	
Pipeline Pre Cleaned	No	
Flow Control Used	No	

Pipeline Length Ref. F, SURG MX	Direction Downstream F,		Downstream Node FIELD MH	Pipe Material Vitrified clay	Dia/Height 100 mm
Meas. from MH (m)	Code	Observation			
0	MH	Start node type, manho	ole, reference F , SURG	MH (EXPOSED)	
0	WL	Water level 0% height/o	diameter		
0.36	DEZ	Other attached deposits CONCRETE, Start	s from 6 to 9 o'clock 5%	cross-sectional area loss - Remark	(
2.05	JD	Joint displaced 20mm			
2.95	DEZ	Other attached deposits CONCRETE, Finished	s from 6 to 9 o'clock 5%	cross-sectional area loss - Remark	(
5.88	JD	Joint displaced 10mm			
13.24	JD	Joint displaced 10mm			
19.4	MHF	Finish node type, manh	nole, reference FIELD M	Н	



Damage Overview - Section No. 8 - F , SURG MH (EXPOSED) to FIELD MH

Client - THOMAS ARMSTRONG CONSTRUCTION LTD

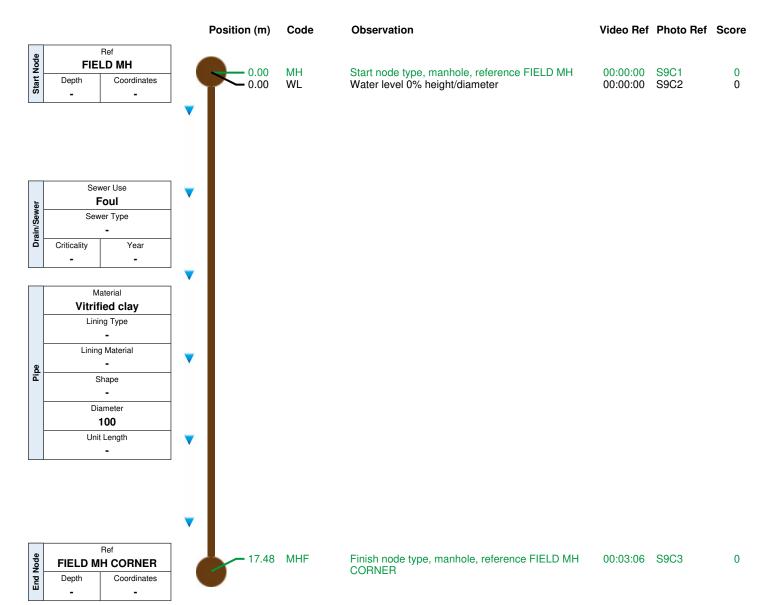

Structural Defect		Quantity
	Displaced joints	3

Structural

,	Service/Operational Defects	Quantity
	Displaced joints	3
	Deposits	2

Service/Operational

CCTV Inspection - Section No. 9 - FIELD MH to FIELD MH CORNER


Job Info			
Contractor's Job Ref.	SK - S 056-2024		
Pipeline Length Ref.	FIELD MH X		
Drainage Area			
Division/District			

	Location
Street Name	
Town or Village	
Location Type	
Land Ownership	

	Factors
Date	03/07/2024
Time	10:36 - 10:40
Weather	2 - Heavy Rain
Temp.	

Surveyor Details		
Name of Surveyor	Camera System	
B. Hughes	VJ7B51U7GO	

Survey Details					
Purpose of Inspection	Pre Cleaned	Flow Control	Direction	Expected Length	Inspected Length
-	N	-	Downstream	17.48	17.48

General Remarks		

Defect	Quantity	Peak	Mean	Total	Grade	K	еу
Structural	0	0	0.00	0	1	Structural Defects	Construction Observations
Operational	0	0	0.00	0	1	Service/Operational Defects	Miscellaneous Observations

SK Drainage Solutions Ltd 31 Adams Road, Workington, Cumbria, CA14 3YS Tel: 01900268189

office@skds.ltd

Pictures - Section No. 9 - FIELD MH to FIELD MH CORNER

00:00:00 - 0.00 m Start node type, manhole, reference FIELD MH

office@skds.ltd

Pictures - Section No. 9 - FIELD MH to FIELD MH CORNER

Client - THOMAS ARMSTRONG CONSTRUCTION LTD

S9C3

00:03:06 - 17.48 m Finish node type, manhole, reference FIELD MH CORNER

office@skds.ltd

Overview - Section No. 9 - FIELD MH to FIELD MH CORNER

Section Information		
Total Length	17.48 m	
Inspected Length	17.48 m	
Not Inspected Length	0 m	

Resources Collected
Inspection Photos 3
Inspection Videos 1
Manhole Photos 0

Defects Found		
Structural	0	
Service/Operational	0	
Survey Abandoned	No	

Work Carried Out		
Pipeline Surveyed	Yes	
Pipeline Pre Cleaned	No	
Flow Control Used	No	

Pipeline Length Ref. FIELD MH X	Direction Downstream	Upstream Node Downstream Node FIELD MH FIELD MH CORNER	Pipe Material Vitrified clay	Dia/Height 100 mm
Meas. from MH (m)	Code	Observation		
0	МН	Start node type, manhole, reference FIELD MH		
0	WL	Water level 0% height/diameter		
17.48	MHF	Finish node type, manhole, reference FIELD MH CORNER		

Damage Overview - Section No. 9 - FIELD MH to FIELD MH CORNER

Client - THOMAS ARMSTRONG CONSTRUCTION LTD

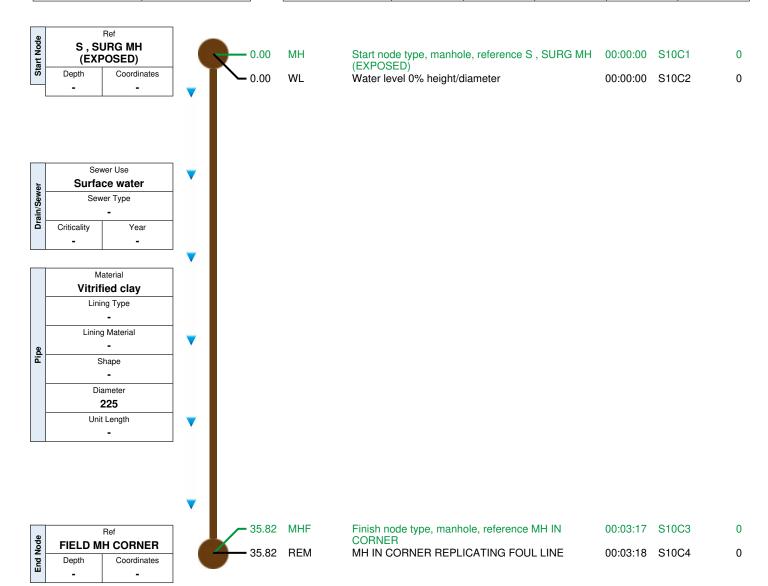
Structural Defect Quantity

There were no structural defects recorded

Service/Operational Defects	Quantity
Delecto	

There were no service/operational defects recorded

CCTV Inspection - Section No. 10 - S , SURG MH (EXPOSED) to FIELD MH CORNER



	Location
Street Name	
Town or Village	
Location Type	
Land Ownership	

Factors		
Date	03/07/2024	
Time	11:14 - 11:21	
Weather	1 - Dry	
Temp.		

Surveyor Details		
Name of Surveyor	Camera System	
B. Hughes	VJ7B51U7GO	

		Survey Deta	nils		
Purpose of Inspection	Pre Cleaned	Flow Control	Direction	Expected Length	Inspected Length
-	N	-	Downstream	35.82	35.82

General Remarks	

Defect	Quantity	Peak	Mean	Total	Grade	Key	
Structural	0	0	0.00	0	1	Structural Defects	Construction Observations
Operational	0	0	0.00	0	1	Service/Operational Defects	Miscellaneous Observations

SK Drainage Solutions Ltd 31 Adams Road, Workington, Cumbria, CA14 3YS Tel: 01900268189 office@skds.ltd

Pictures - Section No. 10 - S , SURG MH (EXPOSED) to FIELD MH CORNER

00:00:00 - 0.00 m Start node type, manhole, reference S , SURG MH (EXPOSED)

00:00:00 - 0.00 m Water level 0% height/diameter

Pictures - Section No. 10 - S , SURG MH (EXPOSED) to FIELD MH CORNER

00:03:17 - 35.82 m Finish node type, manhole, reference MH IN CORNER

Overview - Section No. 10 - S , SURG MH (EXPOSED) to FIELD MH CORNER

Section In	nformation
Total Length	35.82 m
Inspected Length	35.82 m
Not Inspected Length	0 m

Resources Collected
Inspection Photos 4
Inspection Videos 1
Manhole Photos 0

Defects Found		
Structural	0	
Service/Operational	0	
Survey Abandoned	No	

Work Carried Out		
Pipeline Surveyed	Yes	
Pipeline Pre Cleaned	No	
Flow Control Used	No	

Pipeline Length Ref. S, SURG MX	Direction Downstream S	Upstream Node Downstream Node , SURG MH (EXPOSED) FIELD MH CORNER	Pipe Material Vitrified clay	Dia/Height 225 mm
Meas. from MH (m)	Code	Observation		
0	MH	Start node type, manhole, reference S , SURG MH	(EXPOSED)	
0	WL	Water level 0% height/diameter		
35.82	MHF	Finish node type, manhole, reference MH IN CORN	IER	
35.82	REM	MH IN CORNER REPLICATING FOUL LINE		

Damage Overview - Section No. 10 - S , SURG MH (EXPOSED) to FIELD MH CORNER

Client - THOMAS ARMSTRONG CONSTRUCTION LTD

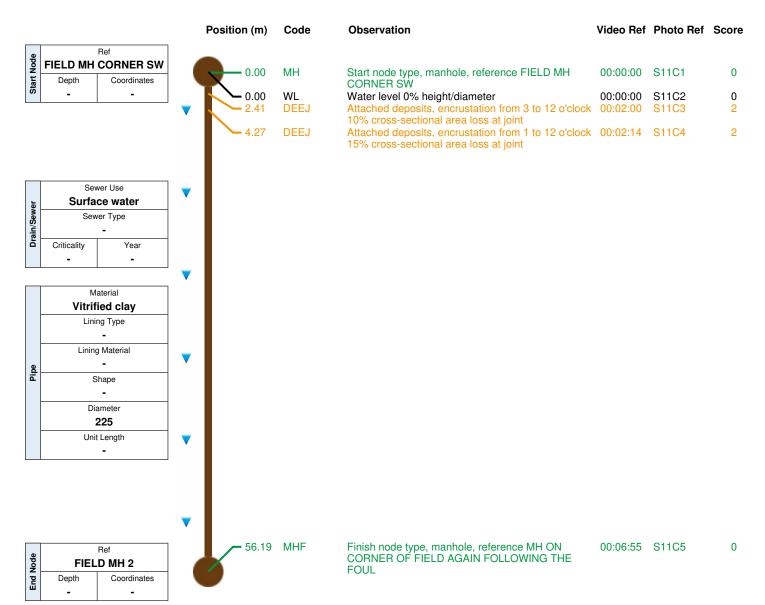
Structural Defect	Quantity
-------------------	----------

There were no structural defects recorded

Service/Operational Quantity
Defects

There were no service/operational defects recorded

CCTV Inspection - Section No. 11 - FIELD MH CORNER SW to FIELD MH 2


Job Info			
Contractor's Job Ref.	SK - S 056-2024		
Pipeline Length Ref.	FIELD MH CX		
Drainage Area			
Division/District			

	Location
Street Name	
Town or Village	
Location Type	
Land Ownership	

	Factors
Date	03/07/2024
Time	11:36 - 11:45
Weather	1 - Dry
Temp.	

Surveyor Details		
Name of Surveyor	Camera System	
B. Hughes	VJ7B51U7GO	

Survey Details					
Purpose of Inspection	Pre Cleaned	Flow Control	Direction	Expected Length	Inspected Length
-	N	-	Downstream	56.19	56.19

General Remarks	

Defect	Quantity	Peak	Mean	Total	Grade	K	еу
Structural	0	0	0.00	0	1	Structural Defects	Construction Observations
Operational	2	2	0.07	4	3	Service/Operational Defects	Miscellaneous Observations

office@skds.ltd

Pictures - Section No. 11 - FIELD MH CORNER SW to FIELD MH 2

00:00:00 - 0.00 m Start node type, manhole, reference FIELD MH CORNER SW

00:00:00 - 0.00 m Water level 0% height/diameter

Pictures - Section No. 11 - FIELD MH CORNER SW to FIELD MH 2

Client - THOMAS ARMSTRONG CONSTRUCTION LTD

S11C3

00:02:00 - 2.41 m

Attached deposits, encrustation from 3 to 12 o'clock 10% cross-sectional area loss at joint

S11C4

00:02:14 - 4.27 m

Attached deposits, encrustation from 1 to 12 o'clock 15% cross-sectional area loss at joint

Pictures - Section No. 11 - FIELD MH CORNER SW to FIELD MH 2

Client - THOMAS ARMSTRONG CONSTRUCTION LTD

S11C5

\$00:06:55 - $56.19~\mathrm{m}$ Finish node type, manhole, reference MH ON CORNER OF FIELD AGAIN FOLLOWING THE FOUL

Overview - Section No. 11 - FIELD MH CORNER SW to FIELD MH 2

Section Information	
Total Length	56.19 m
Inspected Length	56.19 m
Not Inspected Length	0 m

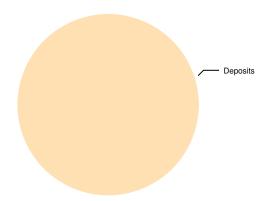
Resources Collected	
Inspection Photos 5	
Inspection Videos 1	
Manhole Photos 0	

Defects Found		
Structural	0	
Service/Operational	2	
Survey Abandoned	No	

Work Carried Out	
Pipeline Surveyed	Yes
Pipeline Pre Cleaned	No
Flow Control Used	No

Pipeline Length Ref. FIELD MH CX	Direction Downstream	Upstream Node Downstream FIELD MH CORNER SW FIELD M		Dia/Height 225 mm
Meas. from MH (m)	Code	Observation		
0	MH	Start node type, manhole, refere	Start node type, manhole, reference FIELD MH CORNER SW	
0	WL	Water level 0% height/diameter		
2.41	DEEJ	Attached deposits, encrustation from 3 to 12 o'clock 10% cross-sectional area loss at joint		ea loss at joint
4.27	DEEJ	Attached deposits, encrustation from 1 to 12 o'clock 15% cross-sectional area loss at joint		ea loss at joint
56.19	MHF	Finish node type, manhole, refer FOUL	ence MH ON CORNER OF FIELD AGAIN	FOLLOWING THE

Damage Overview - Section No. 11 - FIELD MH CORNER SW to FIELD MH 2


Client - THOMAS ARMSTRONG CONSTRUCTION LTD

Structural Defect	Quantity
-------------------	----------

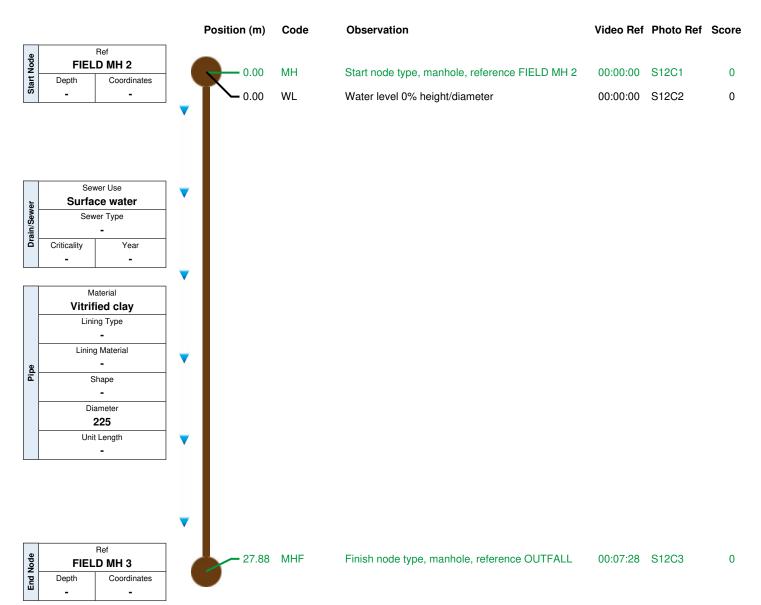
There were no structural defects recorded

Service/Operational Defects	Quantity
Deposits	2

Service/Operational

Tel: 01900268189 office@skds.ltd

CCTV Inspection - Section No. 12 - FIELD MH 2 to FIELD MH 3


Job Info	
Contractor's Job Ref.	SK - S 056-2024
Pipeline Length Ref.	FIELD MH 2X
Drainage Area	
Division/District	

	Location
Street Name	
Town or Village	
Location Type	
Land Ownership	

	Factors
Date	03/07/2024
Time	11:46 - 12:59
Weather	1 - Dry
Temp.	

Surveyo	r Details
Name of Surveyor	Camera System
B. Hughes	VJ7B51U7GO

		Survey Deta	ils		
Purpose of Inspection	Pre Cleaned	Flow Control	Direction	Expected Length	Inspected Length
-	N	-	Downstream	27.88	27.88

General Remarks			

Defect	Quantity	Peak	Mean	Total	Grade	Key	
Structural	0	0	0.00	0	1	Structural Defects	Construction Observations
Operational	0	0	0.00	0	1	Service/Operational Defects	Miscellaneous Observations

SK Drainage Solutions Ltd 31 Adams Road, Workington, Cumbria, CA14 3YS Tel: 01900268189 office@skds.ltd

Pictures - Section No. 12 - FIELD MH 2 to FIELD MH 3

00:00:00 - 0.00 m Start node type, manhole, reference FIELD MH 2

Pictures - Section No. 12 - FIELD MH 2 to FIELD MH 3

Client - THOMAS ARMSTRONG CONSTRUCTION LTD

00:07:28 - 27.88 m Finish node type, manhole, reference OUTFALL

Overview - Section No. 12 - FIELD MH 2 to FIELD MH 3

Section	Information
Total Length	27.88 m
Inspected Length	27.88 m
Not Inspected Length	0 m

Resources Collected
Inspection Photos 3
Inspection Videos 1
Manhole Photos 0

Defects	Found	
Structural	0	
Service/Operational	0	
Survey Abandoned	No	

Work Carr	ied Out
Pipeline Surveyed	Yes
Pipeline Pre Cleaned	No
Flow Control Used	No

Pipeline Length Ref. FIELD MH 2X	Direction Downstream	Upstream Node FIELD MH 2 FIELD MH 3	Pipe Material Vitrified clay	Dia/Height 225 mm
Meas. from MH (m)	Code	Observation		
0	MH	Start node type, manhole, reference FIELD MH 2		
0	WL	Water level 0% height/diameter		
27.88	MHF	Finish node type, manhole, reference OUTFALL		

Damage Overview - Section No. 12 - FIELD MH 2 to FIELD MH 3

Client - THOMAS ARMSTRONG CONSTRUCTION LTD

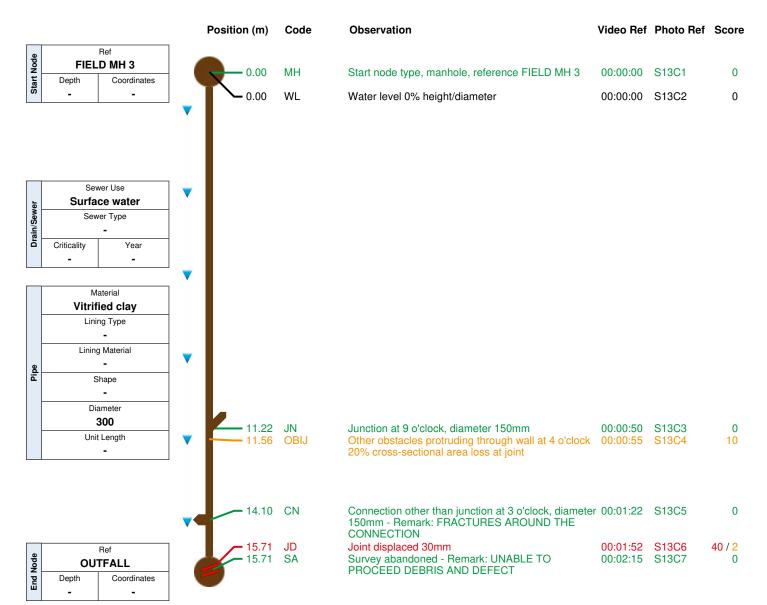
Structural Defect Quantity

There were no structural defects recorded

Service/Operational Quantity
Defects

There were no service/operational defects recorded

CCTV Inspection - Section No. 13 - FIELD MH 3 to OUTFALL


Job Info			
Contractor's Job Ref. SK - S 056-2024			
Pipeline Length Ref.	FIELD MH 3X		
Drainage Area			
Division/District			

	Location
Street Name	
Town or Village	
Location Type	
Land Ownership	

	Factors
Date	03/07/2024
Time	13:18 - 16:10
Weather	1 - Dry
Temp.	

Surveyor Details			
Name of Surveyor Camera System			
B. Hughes	VJ7B51U7GO		

Survey Details					
Purpose of Inspection Pre Cleaned Flow Control Direction Expected Length Inspected Length					
-	N	-	Downstream	15.71	15.71

General Remarks	

Defect	Quantity	Peak	Mean	Total	Grade	Key	
Structural	1	40	2.55	40	3	Structural Defects	Construction Observations
Operational	2	10	0.76	12	5	Service/Operational Defects	Miscellaneous Observations

office@skds.ltd

Pictures - Section No. 13 - FIELD MH 3 to OUTFALL

00:00:00 - 0.00 m Start node type, manhole, reference FIELD MH 3

00:00:00 - 0.00 m Water level 0% height/diameter

office@skds.ltd

Pictures - Section No. 13 - FIELD MH 3 to OUTFALL

Client - THOMAS ARMSTRONG CONSTRUCTION LTD

S13C3

00:00:50 - 11.22 m Junction at 9 o'clock, diameter 150mm

S13C4

 $00:\!00:\!55-11.56~m$ Other obstacles protruding through wall at 4 o'clock 20% cross-sectional area loss at joint

office@skds.ltd

Pictures - Section No. 13 - FIELD MH 3 to OUTFALL

00:01:22 - 14.10 m

Connection other than junction at 3 o'clock, diameter 150mm - Remark: FRACTURES AROUND THE CONNECTION

00:01:52 - 15.71 m Joint displaced 30mm

office@skds.ltd

Pictures - Section No. 13 - FIELD MH 3 to OUTFALL

Client - THOMAS ARMSTRONG CONSTRUCTION LTD

S13C7

00:02:15 - 15.71 m Survey abandoned - Remark: UNABLE TO PROCEED DEBRIS AND DEFECT

office@skds.ltd

Overview - Section No. 13 - FIELD MH 3 to OUTFALL

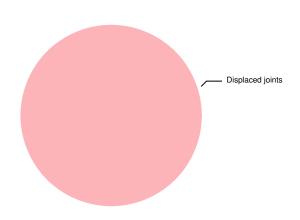
Section Information		
Total Length	15.71 m	
Inspected Length	15.71 m	
Not Inspected Length	0 m	

Resources Collected
Inspection Photos 7
Inspection Videos 1
Manhole Photos 0

Defects Found				
Structural 1				
Service/Operational	2			
Survey Abandoned	Yes			

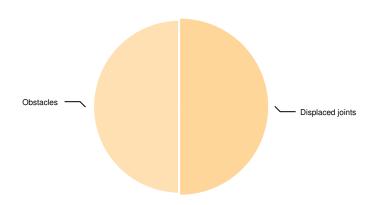
Work Carried Out				
Pipeline Surveyed Yes				
Pipeline Pre Cleaned	No			
Flow Control Used	No			

Pipeline Length Ref. FIELD MH 3X	Direction Downstream	Upstream Node Downstream Node FIELD MH 3 OUTFALL	Pipe Material Vitrified clay	Dia/Height 300 mm	
Meas. from MH (m)	Code	Observation			
0	MH	Start node type, manhole, reference FIELD MH	3		
0	WL	Water level 0% height/diameter			
11.22	JN	Junction at 9 o'clock, diameter 150mm			
11.56	OBIJ	Other obstacles protruding through wall at 4 o'c	lock 20% cross-sectional area	loss at joint	
14.1	CN	Connection other than junction at 3 o'clock, diameter AROUND THE CONNECTION	meter 150mm - Remark: FRAC	TURES	
15.71	JD	Joint displaced 30mm			
15.71	SA	Survey abandoned - Remark: UNABLE TO PRO	OCEED DEBRIS AND DEFECT	Γ	



Damage Overview - Section No. 13 - FIELD MH 3 to OUTFALL

Client - THOMAS ARMSTRONG CONSTRUCTION LTD

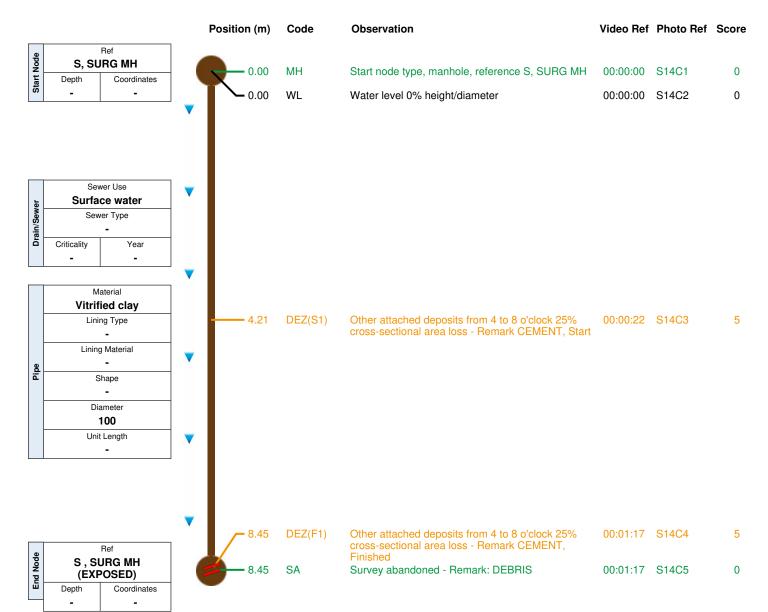

Structural Defect	Quantity	
Displaced joints	1	

Structural

;	Service/Operational Defects	Quantity
	Obstacles	1
	Displaced joints	1

Service/Operational

CCTV Inspection - Section No. 14 - S, SURG MH to S, SURG MH (EXPOSED)


Job Info				
Contractor's Job Ref.	SK - S 056-2024			
Pipeline Length Ref.	S, SURG MHX			
Drainage Area				
Division/District				

	Location
Street Name	
Town or Village	
Location Type	
Land Ownership	

	Factors
Date	03/07/2024
Time	16:22 - 16:24
Weather	1 - Dry
Temp.	

Surveyor Details				
Name of Surveyor	Camera System			
B. Hughes	VJ7B51U7GO			

Survey Details					
Purpose of Inspection	Pre Cleaned	Flow Control	Direction	Expected Length	Inspected Length
-	N	-	Downstream	8.45	8.45

General Remarks

Defect	Quantity	Peak	Mean	Total	Grade	Key	
Structural	0	0	0.00	0	1	Structural Defects	Construction Observations
Operational	5	5	2.96	25	4	Service/Operational Defects	Miscellaneous Observations

SK Drainage Solutions Ltd 31 Adams Road, Workington, Cumbria, CA14 3YS

Tel: 01900268189 office@skds.ltd

Pictures - Section No. 14 - S, SURG MH to S , SURG MH (EXPOSED)

00:00:00 - 0.00 m Start node type, manhole, reference S, SURG MH

l el: 01900268189 office@skds.ltd

Pictures - Section No. 14 - S, SURG MH to S, SURG MH (EXPOSED)

00:00:22 - 4.21 m

Other attached deposits from 4 to 8 o'clock 25% cross-sectional area loss - Remark CEMENT, Start

00:01:17 - 8.45 m Other attached deposits from 4 to 8 o'clock 25% cross-sectional area loss - Remark CEMENT, Finished

Pictures - Section No. 14 - S, SURG MH to S , SURG MH (EXPOSED)

office@skds.ltd

Overview - Section No. 14 - S, SURG MH to S , SURG MH (EXPOSED)

Section I	nformation
Total Length	8.45 m
Inspected Length	8.45 m
Not Inspected Length	0 m

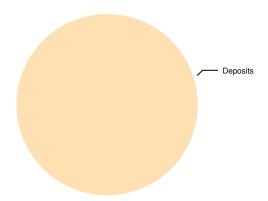
Resources Collected
Inspection Photos 5
Inspection Videos 1
Manhole Photos 0

Defects Found				
Structural 0				
Service/Operational	2			
Survey Abandoned	Yes			

Work Carried Out				
Pipeline Surveyed Yes				
Pipeline Pre Cleaned	No			
Flow Control Used	No			

Pipeline Length Ref. S, SURG MHX	Direction Downstream	Upstream Node Downstream Node S, SURG MH S, SURG MH (EXPOSED)	Pipe Material Vitrified clay	Dia/Height 100 mm
Meas. from MH (m)	Code	Observation		
0	МН	Start node type, manhole, reference S, SURG MH		
0	WL	Water level 0% height/diameter		
4.21	DEZ	Other attached deposits from 4 to 8 o'clock 25% cro Start	ss-sectional area loss - Re	emark CEMENT,
8.45	DEZ	Other attached deposits from 4 to 8 o'clock 25% cro Finished	ss-sectional area loss - Re	emark CEMENT,
8.45	SA	Survey abandoned - Remark: DEBRIS		

Damage Overview - Section No. 14 - S, SURG MH to S , SURG MH (EXPOSED)


Client - THOMAS ARMSTRONG CONSTRUCTION LTD

Structural Defect	Quantity
-------------------	----------

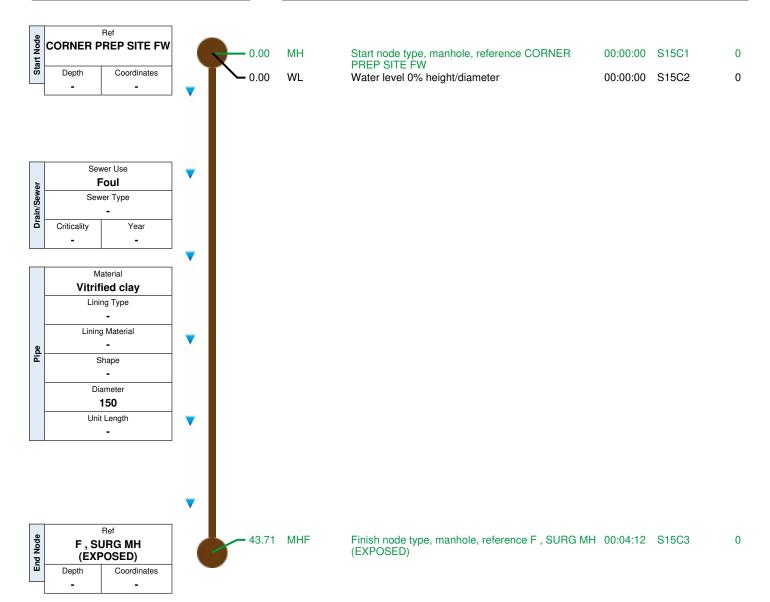
There were no structural defects recorded

Service/Operational Defects	Quantity	
Deposits	2	

Service/Operational

office@skds.ltd

CCTV Inspection - Section No. 15 - CORNER PREP SITE FW to F , SURG MH (EXPOSED)


Job Info		
Contractor's Job Ref.	SK - S 056-2024	
Pipeline Length Ref.	CORNER PREX	
Drainage Area		
Division/District		

	Location
Street Name	
Town or Village	
Location Type	
Land Ownership	

	Factors
Date	09/07/2024
Time	15:06 - 15:11
Weather	1 - Dry
Temp.	

Surveyor Details			
Name of Surveyor Camera System			
B. Hughes	VJ7B51U7GO		

Survey Details					
Purpose of Inspection	Pre Cleaned	Flow Control	Direction	Expected Length	Inspected Length
-	N	-	Downstream	43.71	43.71

General Remarks			

Defect	Quantity	Peak	Mean	Total	Grade	K	еу
Structural	0	0	0.00	0	1	Structural Defects	Construction Observations
Operational	0	0	0.00	0	1	Service/Operational Defects	Miscellaneous Observations

Pictures - Section No. 15 - CORNER PREP SITE FW to F, SURG MH (EXPOSED)

00:00:00 - 0.00 m Start node type, manhole, reference CORNER PREP SITE FW

office@skds.ltd

Pictures - Section No. 15 - CORNER PREP SITE FW to F , SURG MH (EXPOSED)

00:04:12 - 43.71 m Finish node type, manhole, reference ${\sf F}$, SURG MH (EXPOSED)

Overview - Section No. 15 - CORNER PREP SITE FW to F , SURG MH (EXPOSED)

Section I	nformation
Total Length	43.71 m
Inspected Length	43.71 m
Not Inspected Length	0 m

Resources Collected
Inspection Photos 3
Inspection Videos 1
Manhole Photos 0

Defects Found		
Structural	0	
Service/Operational	0	
Survey Abandoned	No	

Work Carried Out		
Pipeline Surveyed	Yes	
Pipeline Pre Cleaned	No	
Flow Control Used	No	

Pipeline Length Ref. CORNER PREX	Direction Downstream	Upstream Node Downstream Node CORNER PREP SITE FW F, SURG MH (EXPOSED)	Pipe Material Vitrified clay	Dia/Height 150 mm
Meas. from MH (m)	Code	Observation		
0	MH	Start node type, manhole, reference CORNER PREP SITE FW		
0	WL	Water level 0% height/diameter		
43.71	MHF	Finish node type, manhole, reference F , SURG MH (E	EXPOSED)	

Damage Overview - Section No. 15 - CORNER PREP SITE FW to F , SURG MH (EXPOSED)

Client - THOMAS ARMSTRONG CONSTRUCTION LTD

Structural Defect	Quantity
-------------------	----------

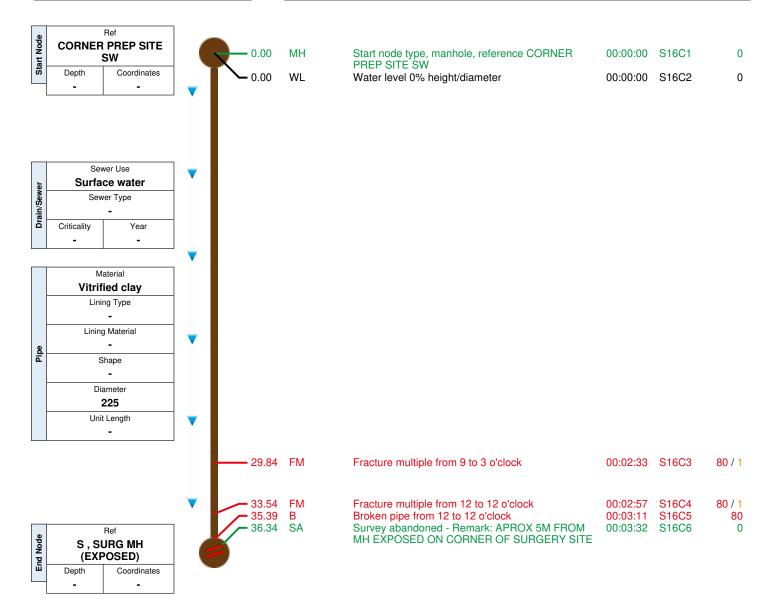
There were no structural defects recorded

Service/Operational Quantity
Defects

There were no service/operational defects recorded

office@skds.ltd

CCTV Inspection - Section No. 16 - CORNER PREP SITE SW to S , SURG MH (EXPOSED)


Job Info		
Contractor's Job Ref.	SK - S 056-2024	
Pipeline Length Ref.	CORNER PREX	
Drainage Area		
Division/District		

	Location
Street Name	
Town or Village	
Location Type	
Land Ownership	

	Factors
Date	09/07/2024
Time	15:20 - 15:26
Weather	1 - Dry
Temp.	

Surveyor Details		
Name of Surveyor	Camera System	
B. Hughes	VJ7B51U7GO	

		Survey Deta	nils		
Purpose of Inspection	Pre Cleaned	Flow Control	Direction	Expected Length	Inspected Length
-	N	-	Downstream	36.34	36.34

General Remarks	

Defect	Quantity	Peak	Mean	Total	Grade	Key	
Structural	3	80	6.60	240	4	Structural Defects	Construction Observations
Operational	2	1	0.06	2	2	Service/Operational Defects	Miscellaneous Observations

SK Drainage Solutions Ltd 31 Adams Road, Workington, Cumbria, CA14 3YS Tel: 01900268189 office@skds.ltd

Pictures - Section No. 16 - CORNER PREP SITE SW to S , SURG MH (EXPOSED)

00:00:00 - 0.00 m Start node type, manhole, reference CORNER PREP SITE SW

00:00:00 - 0.00 m Water level 0% height/diameter

Pictures - Section No. 16 - CORNER PREP SITE SW to S , SURG MH (EXPOSED)

Client - THOMAS ARMSTRONG CONSTRUCTION LTD

00:02:33 - 29.84 m Fracture multiple from 9 to 3 o'clock


From: CORNER PREP SITE SW / To: S , SURG MH (EXPOSED) Size: 225

00:02:57 - 33.54 m Fracture multiple from 12 to 12 o'clock

Pictures - Section No. 16 - CORNER PREP SITE SW to S , SURG MH (EXPOSED)

Client - THOMAS ARMSTRONG CONSTRUCTION LTD

00:03:11 - 35.39 m Broken pipe from 12 to 12 o'clock

S16C6

00:03:32 - 36.34 m

Survey abandoned - Remark: APROX 5M FROM MH EXPOSED ON CORNER OF SURGERY SITE

office@skds.ltd

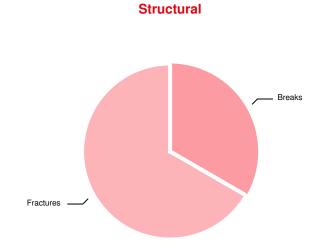
Overview - Section No. 16 - CORNER PREP SITE SW to S , SURG MH (EXPOSED)

Section I	nformation
Total Length	36.34 m
Inspected Length	36.34 m
Not Inspected Length	0 m

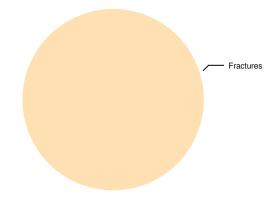
Resources Collected
Inspection Photos 6
Inspection Videos 1
Manhole Photos 0

Defects Found		
Structural	3	
Service/Operational	2	
Survey Abandoned	Yes	

Work Carried Out		
Pipeline Surveyed	Yes	
Pipeline Pre Cleaned	No	
Flow Control Used	No	


Pipeline Length Ref. CORNER PREX	Direction Downstream C	Upstream Node	Downstream Node S, SURG MH (EXPOSED)	Pipe Material Vitrified clay	Dia/Height 225 mm
Meas. from MH (m)	Code	Observation			
0	MH	Start node type, manh	Start node type, manhole, reference CORNER PREP SITE SW		
0	WL	Water level 0% height	Vater level 0% height/diameter		
29.84	FM	Fracture multiple from	fracture multiple from 9 to 3 o'clock		
33.54	FM	Fracture multiple from	Fracture multiple from 12 to 12 o'clock		
35.39	В	Broken pipe from 12 to	Broken pipe from 12 to 12 o'clock		
36.34	SA	Survey abandoned - F SITE	Remark: APROX 5M FROM MH	EXPOSED ON CORNE	R OF SURGERY

Damage Overview - Section No. 16 - CORNER PREP SITE SW to S , SURG MH (EXPOSED)


Client - THOMAS ARMSTRONG CONSTRUCTION LTD

Structural Defect Quantity	
Fractures	2
Breaks	1

Service/Operation	Service/Operational Defects	
Fractures		2

Service/Operational

office@skds.ltd

Summary - All Sections

Client - THOMAS ARMSTRONG CONSTRUCTION LTD

Sewer Network Information		
Number of Sections	16	
Total Length	398.52 m	
Inspected Length	398.38 m	
Not Inspected Length	0.139999999999 m	

Resources Collected
Inspection Photos 89
Inspection Videos 16
Manhole Photos 0
Abandoned Surveys 6

Section Breakdowns / Data Collections

1 - 3 / 16

Pipeline Length Ref. NODE X	Direction Upstream	Ups	stream Node 2301	Downstream Node NODE	Pipe Material Vitrified clay	Dia/Height 150 mm	Inspected Length Total Length	3.8m 3.8m
Meas. from M	H (m)	Code	Observ	ation				
0		МН	Start no	ode type, manhole, re	ference 2301			
0		WL	Water I	evel 0% height/diam	eter			
1.72		JD	Joint di	splaced 15mm				
3.12		JD	Joint di	splaced 20mm				
3.8		SA	Survey	abandoned - Remar	«: CRAWLER UNABLE	TO PASS JDN	1	

Pipeline Length Ref. NODE X Directi Upstre		tream Node Downstream Node 2301 NODE	Pipe Material Vitrified clay	Dia/Height 150 mm	Inspected Length Total Length	37.07m 37.07m
Meas. from MH (m)	Code	Observation				
0	МН	Start node type, manhole,	reference 2301			
0	WL	Water level 10% height/dia	meter			
35.9	REM	MH LOCATED IN FIELD				
37.07	SA	Survey abandoned - Rema	rk: UNABLE TO PUSH R	OUND MH FII	NISH 2301A	

Pipeline Length Ref. Directi 2301 X Downst	•	tream Node Downstream Node 2301 OUTFALL	Pipe Material Vitrified clay	Dia/Height 150 mm	Inspected Length Total Length	23.88m 24.02m
Meas. from MH (m)	Code	Observation				
0	MH	Start node type, manhole, re	ference 2301			
0	WL	Water level 10% height/diam	eter			
0.1	FL	Fracture longitudinal at 9 o'cl	ock - Remark: Possibly	been a manh	ole	
0.48	LL	Line of drain/sewer deviates	left			

office@skds.ltd

Summary - All Sections

Client - THOMAS ARMSTRONG CONSTRUCTION LTD

Section Breakdowns / Data Collections ...3 - 4 / 16

Meas. from MH (m)	Code	Observation
8.86	CUW	Loss of vision, camera under water, Start
11.67	CUW	Loss of vision, camera under water, Finished
16.69	CUW	Loss of vision, camera under water, Start
19.81	CUW	Loss of vision, camera under water, Finished
22.38	CUW	Loss of vision, camera under water, Start
23.6	CUW	Loss of vision, camera under water, Finished
23.88	MHF	Finish node type, manhole, reference 2301B

Pipeline Length Ref. Direction 2301C X Downstrea	•	stream Node Downstream Node 2301C 2301B	Pipe Material Vitrified clay	Dia/Height 150 mm	Inspected Length Total Length	13.69m 13.69m
Meas. from MH (m)	Code	Observation				
0	МН	Start node type, manhole, ref	erence 2301C			
0	WL	Water level 0% height/diamet	ter			
0.29	CC	Crack circumferential from 7	to 10 o'clock			
0.98	RMJ	Roots mass 10% cross-section	onal area loss at joint			
1.52	RMJ	Roots mass 15% cross-section	onal area loss at joint			
7.55	JD	Joint displaced 25mm				
8.45	FM	Fracture multiple from 4 to 11	o'clock			
8.79	FL	Fracture longitudinal at 9 o'cle	ock			
13.69	MHF	Finish node type, manhole, re	eference 2301B			

office@skds.ltd

Summary - All Sections

Client - THOMAS ARMSTRONG CONSTRUCTION LTD

Section Breakdowns / Data Collections

5 - 7 / 16

Pipeline Length Ref. Direction 2301B X Downstrea	•	tream Node Downstream Node 2301B OUTFALL	Pipe Material Vitrified clay	Dia/Height 150 mm	Inspected Length Total Length	30.86m 30.86m
Meas. from MH (m)	Code	Observation				
0	МН	Start node type, manhole, ref	ference 2301B			
0	WL	Water level 15% height/diam	eter			
8.57	JD	Joint displaced 20mm				
11.74	CUW	Loss of vision, camera under	water			
24.83	REM	Manhole noted in the distance	е			
30.86	MHF	Finish node type, manhole, re	eference 2301D			

Pipeline Length Ref. Direction F , SURG MX Downstrea	•	tream Node Downstream Node JRG MH OUTFALL	Pipe Material Vitrified clay	Dia/Height 100 mm	Inspected Length Total Length	15m 15m
Meas. from MH (m)	Code	Observation				
0	МН	Start node type, manhole, ref	erence F , SURG MH			
0	WL	Water level 5% height/diamet	er			
14.24	JN	Junction at 6 o'clock, diameter	er 100mm - Remark: Ba	ack Drop Conr	nection to manhole	
15	MHF	Finish node type, manhole, re	eference OUTFALL			

Pipeline Length Ref. Direction MH 56 X Downstre		tream Node Downstream Node MH 56 OUTFALL	Pipe Material Vitrified clay	Dia/Height 100 mm	Inspected Length Total Length	13.1m 13.1m
Meas. from MH (m)	Code	Observation				
0	МН	Start node type, manhole, ref	erence MH 56			
0	WL	Water level 0% height/diame	ter			
0.1	REM	Joins another run				
1.55	LL	Line of drain/sewer deviates	eft			
11.71	DEX	Other settled deposits 30% c	ross-sectional area loss	s - Remark: W	'aste	
13.1	SA	Survey abandoned - Remark	: Unable to pass waste			

office@skds.ltd

Summary - All Sections

Client - THOMAS ARMSTRONG CONSTRUCTION LTD

Section Breakdowns / Data Collections

8 - 10 / 16

Pipeline Length Ref. Direction F, SURG MX Downstrea	m F,SI	ream Node JRG MH POSED) Downstream Node Pipe Material Dia/Height Inspected Length 19.4m Total Length 19.4m
Meas. from MH (m)	Code	Observation
0	МН	Start node type, manhole, reference F , SURG MH (EXPOSED)
0	WL	Water level 0% height/diameter
0.36	DEZ	Other attached deposits from 6 to 9 o'clock 5% cross-sectional area loss - Remark CONCRETE, Start
2.05	JD	Joint displaced 20mm
2.95	DEZ	Other attached deposits from 6 to 9 o'clock 5% cross-sectional area loss - Remark CONCRETE, Finished
5.88	JD	Joint displaced 10mm
13.24	JD	Joint displaced 10mm
19.4	MHF	Finish node type, manhole, reference FIELD MH

Pipeline Length Ref. Direction FIELD MH X Downstrea	•	tream Node ELD MH Downstream Node FIELD MH CORNER	Pipe Material Vitrified clay	Dia/Height 100 mm	Inspected Length Total Length	17.48m 17.48m
Meas. from MH (m)	Code	Observation				
0	МН	Start node type, manhole, refere	ence FIELD MH			
0	WL	Water level 0% height/diameter				
17.48	MHF	Finish node type, manhole, refe	rence FIELD MH CO	ORNER		

Pipeline Length Ref. Direction S, SURG MX Downstrea	m S, SI	Tream Node Downstream Node JRG MH FIELD MH CORNER POSED)	Pipe Material Vitrified clay	Dia/Height 225 mm	Inspected Length Total Length	35.82m 35.82m
Meas. from MH (m)	Code	Observation				
0	МН	Start node type, manhole, reference	e S , SURG MH	(EXPOSED)		
0	WL	Water level 0% height/diameter				
35.82	MHF	Finish node type, manhole, reference	ce MH IN CORN	IER		
35.82	REM	MH IN CORNER REPLICATING FO	OUL LINE			

office@skds.ltd

Summary - All Sections

Client - THOMAS ARMSTRONG CONSTRUCTION LTD

Section Breakdowns / Data Collections

11 - 13 / 16

Pipeline Length Ref. Direction FIELD MH CX Downstream	Upst FIELD MH C	Peam Node ORNER SW Downstream Node Pipe Material Dia/Height Inspected Length 56.19m Total Length 56.19m
Meas. from MH (m)	Code	Observation
0	МН	Start node type, manhole, reference FIELD MH CORNER SW
0	WL	Water level 0% height/diameter
2.41	DEEJ	Attached deposits, encrustation from 3 to 12 o'clock 10% cross-sectional area loss at joint
4.27	DEEJ	Attached deposits, encrustation from 1 to 12 o'clock 15% cross-sectional area loss at joint
56.19	MHF	Finish node type, manhole, reference MH ON CORNER OF FIELD AGAIN FOLLOWING THE FOUL

Pipeline Length Ref. FIELD MH 2X D	Direction ownstrean		stream Node Downstream Node Pipe Mater ELD MH 2 FIELD MH 3 Vitrified of		Dia/Height 225 mm	Inspected Length Total Length	27.88m 27.88m	
Meas. from MH	(m)	Code	Observation					
0 MH			Start node type, manhole, reference FIELD MH 2					
0 WL		Water level 0% height/diameter						
27.88 MHF			Finish node type, manhole,	reference OUTFALL				

J	'	tream Node Downstream Node LD MH 3 OUTFALL	Pipe Material Vitrified clay	Dia/Height	Inspected Length Total Length	15.71m 15.71m			
Meas. from MH (m)	Code	Observation							
0	МН	Start node type, manhole, re-	ference FIELD MH 3						
0	WL	Water level 0% height/diame	ter						
11.22 JN Junction at 9 o'clock, diameter 150mm									
11.56	OBIJ	Other obstacles protruding through wall at 4 o'clock 20% cross-sectional area loss at joint							
14.1	CN	Connection other than junction at 3 o'clock, diameter 150mm - Remark: FRACTURES AROUND THE CONNECTION							
15.71 JD Joint displaced 30mm									
15.71 SA Survey abandoned - Remark: UNABLE TO PROCEED DEBRIS AND DEFECT									

office@skds.ltd

Summary - All Sections

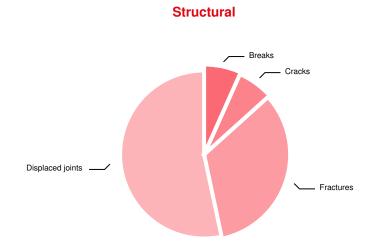
Client - THOMAS ARMSTRONG CONSTRUCTION LTD

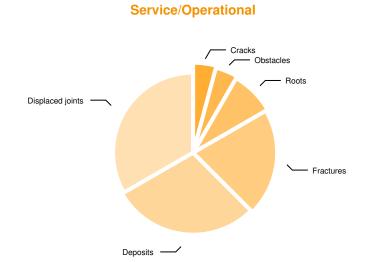
Section Breakdowns / Data Collections

14 - 16 / 16

Pipeline Length Ref. Direction S, SURG MHX Downstrea		ream Node S , SURG MH (EXPOSED)	Pipe Material Vitrified clay	Dia/Height 100 mm	Inspected Length Total Length	8.45m 8.45m			
Meas. from MH (m)	Code	Observation							
0	МН	Start node type, manhole, re	ference S, SURG MH						
0	WL	Water level 0% height/diame	Water level 0% height/diameter						
4.21	DEZ	Other attached deposits from 4 to 8 o'clock 25% cross-sectional area loss - Remark CEMENT, Start							
8.45	DEZ	Other attached deposits from 4 to 8 o'clock 25% cross-sectional area loss - Remark CEMENT, Finished							
8.45	SA	Survey abandoned - Remark	: DEBRIS						

Pipeline Length Ref. Direction CORNER PREX Downstrea	CORNE	eam Node R PREP F, SURG MH ITE FW (EXPOSED)	Pipe Material Vitrified clay	Dia/Height 150 mm	Inspected Length Total Length	43.71m 43.71m		
Meas. from MH (m)	Code	Observation						
0	МН	Start node type, manhole, reference CORNER PREP SITE FW						
0	WL	Water level 0% height/diameter						
43.71	MHF	Finish node type, manhole, re	eference F , SURG MH	(EXPOSED)				


Pipeline Length Ref. Direction CORNER PREX Downstrea	CORNE	tream Node Downstream Node ER PREP S , SURG MH SITE SW (EXPOSED) Pipe Material Dia/Height Inspected Length 36.34m Total Length 36.34m							
Meas. from MH (m)	Code	Observation							
0	MH	Start node type, manhole, reference CORNER PREP SITE SW							
0	WL	Water level 0% height/diameter							
29.84	FM	Fracture multiple from 9 to 3 o'clock							
33.54	FM	Fracture multiple from 12 to 12 o'clock							
35.39	В	Broken pipe from 12 to 12 o'clock							
36.34	SA	Survey abandoned - Remark: APROX 5M FROM MH EXPOSED ON CORNER OF SURGERY SITE							


office@skds.ltd

Damage Overview - All Sections

Structural Defect	Quantity
Displaced joints	8
Fractures	5
Cracks	1
Breaks	1

;	Service/Operational Defects	Quantity
	Displaced joints	8
	Deposits	7
	Fractures	5
	Roots	2
	Obstacles	1
	Cracks	1

SK Drainage Solutions Ltd 31 Adams Road, Workington, Cumbria, CA14 3YS Tel: 01900268189 office@skds.ltd

Inspection Summary

Client - THOMAS ARMSTRONG CONSTRUCTION LTD

No	Section		Expected	Defects								
From	То	Height (mm)	Length (m)	Length (m)	JD	F	С	R	DE	ОВ	В	Total
2301	NODE	150	3.80	3.80	2	0	0	0	0	0	0	2
2301	NODE	150	37.07	37.07	0	0	0	1	0	0	0	1
2301	OUTFALL	150	23.88	24.02	0	1	6	0	0	0	0	7
2301C	2301B	150	13.69	13.69	1	2	1	2	0	0	0	6
2301B	OUTFALL	150	30.86	30.86	1	0	1	1	0	0	0	3
F , SURG MH	OUTFALL	100	15.00	15.00	0	0	0	0	0	0	0	0
MH 56	OUTFALL	100	13.10	13.10	0	0	0	1	1	0	0	2
F , SURG MH (FIELD MH	100	19.40	19.40	3	0	0	0	2	0	0	5
FIELD MH	FIELD MH CO	100	17.48	17.48	0	0	0	0	0	0	0	0
S , SURG MH (FIELD MH CO	225	35.82	35.82	0	0	0	1	0	0	0	1
FIELD MH CO	FIELD MH 2	225	56.19	56.19	0	0	0	0	2	0	0	2
FIELD MH 2	FIELD MH 3	225	27.88	27.88	0	0	0	0	0	0	0	0
FIELD MH 3	OUTFALL	300	15.71	15.71	1	0	1	0	0	1	0	3
S, SURG MH	S , SURG MH (100	8.45	8.45	0	0	0	0	2	0	0	2
CORNER PRE	F , SURG MH (150	43.71	43.71	0	0	0	0	0	0	0	0
CORNER PRE	S , SURG MH (225	36.34	36.34	0	2	0	0	0	0	1	3
	Total		398.38	398.52	8	5	9	6	7	1	1	37

SRM5 - Inspection Summary Page 113

31 Adams Road, Workington, Cumbria, CA14 3YS Tel: 01900268189 office@skds.ltd

Remarks Summary

Client - THOMAS ARMSTRONG CONSTRUCTION LTD

Job Details and Remarks

Total distance inspected Engineer Number of Surveys Number of Grade 4/5 Surveys
60.8 B. Hughes 16 16

PLEASE REFER TO SURVEYS FOR FURTHER INFORMATION

Survey 1 - 2301 to NODE (09/04/2024)

Pipe Length: 3.80m Inspection Length: 3.80m Structural Grade: 4 Service Grade: 0 Material: Vitrified clay Pipe Size: 150mm Use: Combined Survey abandoned as the camera could not pass the displaced joint.

Survey 2 - 2301 to NODE (09/04/2024)

Pipe Length: 37.07m Inspection Length: 37.07m Structural Grade: 0 Service Grade: 0 Material: Vitrified clay Pipe Size: 150mm Use: Combined Camera under water due to flow. Manhole located at 35.9m in a field.

Survey 3 - 2301 to OUTFALL (09/04/2024)

Pipe Length: 24.02m Inspection Length: 23.88m Structural Grade: 3 Service Grade: 0 Material: Vitrified clay Pipe Size: 150mm Use: Combined This section has areas of standing water. The fracture at the start could be a repair to a manhole.

Survey 4 - 2301C to 2301B (09/04/2024)

Pipe Length: 13.69m Inspection Length: 13.69m Structural Grade: 4 Service Grade: 3 Material: Vitrified clay Pipe Size: 150mm Use: Combined Root ingress noted at 0.98 and 1.52m. Joint displaced 7.55m, 0.29m. Fractured at 8.45m.

Survey 5 - 2301B to OUTFALL (09/04/2024)

Pipe Length: 30.86m Inspection Length: 30.86m Structural Grade: 4

Structural Grade: 4 Service Grade: 0 Material: Vitrified clay Pipe Size: 150mm Use: Combined Camera under water most of the way due to the flow. Displaced joint noted at 8.57m. Manhole noted at

24.83m.

31 Adams Road, Workington, Cumbria, CA14 3YS Tel: 01900268189 office@skds.ltd

Remarks Summary

Client - THOMAS ARMSTRONG CONSTRUCTION LTD

Survey 6 - F, SURG MH to OUTFALL (09/04/2024)

Pipe Length: 15.00m Inspection Length: 15.00m Structural Grade: 0 Service Grade: 0 Material: Vitrified clay Pipe Size: 100mm Use: Foul Back drop connection to the manhole.

Survey 7 - MH 56 to OUTFALL (09/04/2024)

Pipe Length: 13.10m Inspection Length: 13.10m Structural Grade: 0 Service Grade: 4 Material: Vitrified clay Pipe Size: 100mm

Use: Foul

Survey abandoned due to amount of waste in the pipe run.

Survey 8 - F, SURG MH (EXPOSED) to FIELD MH (03/07/2024)

Pipe Length: 19.40m Inspection Length: 19.40m Structural Grade: 4 Service Grade: 2 Material: Vitrified clay Pipe Size: 100mm Use: Foul CONCRETE AT THE START. FEW DISPLACED JOINTS

Survey 9 - FIELD MH to FIELD MH CORNER (03/07/2024)

Pipe Length: 17.48m Inspection Length: 17.48m Structural Grade: 0 Service Grade: 0 Material: Vitrified clay Pipe Size: 100mm Use: Foul OK

Survey 10 - S, SURG MH (EXPOSED) to FIELD MH CORNER (03/07/2024)

Pipe Length: 35.82m Inspection Length: 35.82m Structural Grade: 0 Service Grade: 0 Material: Vitrified clay Pipe Size: 225mm Use: Surface water WOULD BENEFIT FROM A CLEAN WITH A JET VAC

31 Adams Road, Workington, Cumbria, CA14 3YS Tel: 01900268189 office@skds.ltd

Remarks Summary

Client - THOMAS ARMSTRONG CONSTRUCTION LTD

Survey 11 - FIELD MH CORNER SW to FIELD MH 2 (03/07/2024)

Pipe Length: 56.19m Inspection Length: 56.19m Structural Grade: 0 Service Grade: 3 Material: Vitrified clay Pipe Size: 225mm Use: Surface water ENCRUSTATION AT THE JOINTS AT 2.41M AND 4.27M.

Survey 12 - FIELD MH 2 to FIELD MH 3 (03/07/2024)

Pipe Length: 27.88m Inspection Length: 27.88m Structural Grade: 0 Service Grade: 0 Material: Vitrified clay Pipe Size: 225mm Use: Surface water APPEARS OK

Survey 13 - FIELD MH 3 to OUTFALL (03/07/2024)

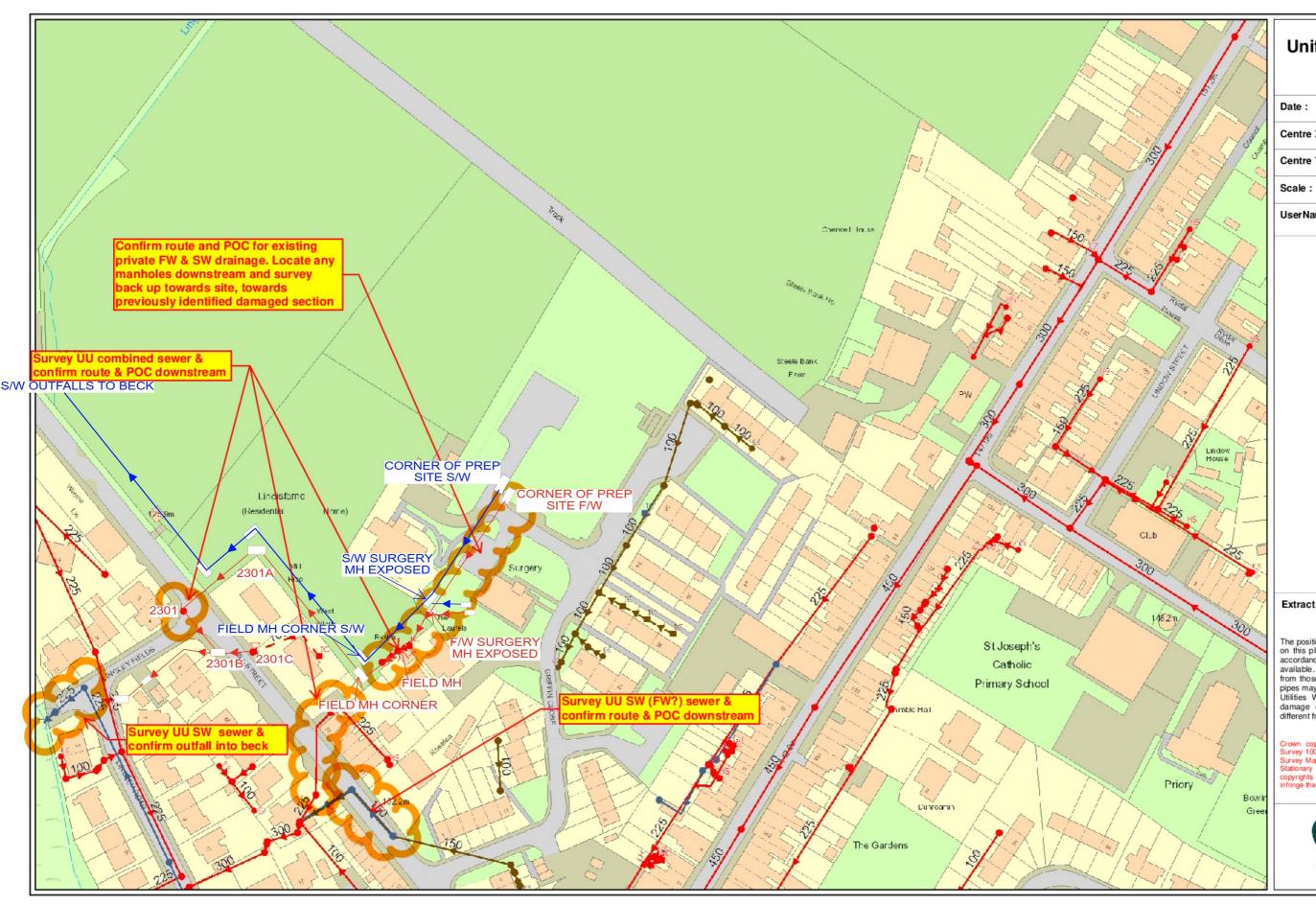
Pipe Length: 15.71m Inspection Length: 15.71m Structural Grade: 3 Service Grade: 5 Material: Vitrified clay Pipe Size: 300mm Use: Surface water NEEDS A CLEAN IN ORDER TO SURVEY FURTHER

Survey 14 - S, SURG MH to S, SURG MH (EXPOSED) (03/07/2024)

Pipe Length: 8.45m Inspection Length: 8.45m Structural Grade: 0 Service Grade: 4 Material: Vitrified clay Pipe Size: 100mm Use: Surface water **DEBRIS PREVENTED PROGRESS**

Survey 15 - CORNER PREP SITE FW to F, SURG MH (EXPOSED) (09/07/2024)

Pipe Length: 43.71m Inspection Length: 43.71m Structural Grade: 0 Service Grade: 0 Material: Vitrified clay Pipe Size: 150mm Use: Foul OK


31 Adams Road, Workington, Cumbria, CA14 3YS Tel: 01900268189 office@skds.ltd

Remarks Summary

Client - THOMAS ARMSTRONG CONSTRUCTION LTD

Survey 16 - CORNER PREP SITE SW to S, SURG MH (EXPOSED) (09/07/2024)

Pipe Length: 36.34m Inspection Length: 36.34m Structural Grade: 4 Service Grade: 0 Material: Vitrified clay Pipe Size: 225mm Use: Surface water UNABLE TO PASS DEFECTS

United Utilities Maps for SafeDig

 Date :
 12/12/2023 16:17:50

 Centre X:
 303384

 Centre Y:
 517369

 Scale :
 1250

 UserName:
 RGP4RK1NS

Extract from maps of United Utilities' Underground Assets

The position of the underground apparatus shown on this plan is approximate only and is given in accordance with the best information currently available. The actual positions may be different from those shown on the plan and private service pipes may be shown by a blue broken line. United Utilities Water will not accept liability for any damage caused by the actual position being different from those shown.

Crown copyright and database rights 2023.Ordnance Survey 100022432 This plan is based on the Ordnance Survey Map with the sanction of the Controller of H.M. Stationary Office. Crown and United Utilities Water copyrights are reserved. Unauthorised reproduction will infringe these copyrights.

