Drainage Strategy

Proposed Housing Development, Land at Scalegill Road, Moor Row

Washington Homes Ltd

Ref: K40461.DS/001

Version	Date	Prepared By	Checked By	Approved By
Original	26 January 2024	O. Sugden		

INDEMNITIES

This report is for the sole use and benefit of Washington Homes Ltd and their professional advisors. RG Parkins & Partners Ltd will not be held responsible for any actions taken, nor decisions made, by any third party resulting from this report.

RG Parkins & Partners Ltd are not qualified to advise on contamination. Any comments contained within this report with regards to contamination are noted as guidance only and the Client should appoint a suitably qualified professional to provide informed advice. The absence of any comments regarding contamination does not represent any form of neglect, carelessness, or failure to undertake our service.

COPYRIGHT

The copyright of this report remains vested in RG Parkins & Partners Ltd.

All digital mapping reproduced from Ordnance Survey digital map data. ©Crown Copyright. All rights reserved. Licence Number 100038055

CONTENTS

1.	Intro	oduction	1
	1.1	Background	1
2.	Site	Characterisation	2
	2.1	Site Location	2
	2.2	Site Description	2
	2.3	Geology & Hydrogeology	3
	2.4	Hydrology	3
	2.5	Existing Surface Water Drainage	4
	2.6	Existing Foul Water Drainage	8
	2.7	Existing Surface Water Flows	8
	2.8	Ground Investigation	10
3.	Surf	ace Water Drainage Strategy	11
	3.1	Introduction	11
	3.2	Site Areas	11
	3.3	Pre-development Greenfield Runoff Assessment	12
	3.4	Surface Water Drainage Design Parameters	13
	3.4.1	Climate Change	13
	3.4.2	Urban Creep	13
	3.4.3	Percentage Impermeability (PIMP)	13
	3.4.4	Volumetric Runoff Coefficient (CV)	14
	3.4.5	Rainfall Model	15
	3.5	Surface Water Disposal	15
	3.5.1	Infiltration	15
	3.5.2	Positive Drainage – watercourse	15
	3.6	Surface Water Drainage Network	15
	3.7	Flow Control	15
	3.8	Volumetric Storage	16
	3.9	Designing for Local Drainage System Failure	16
	3.10	Operations & Maintenance Responsibility	17
	3.11	Surface Water Quality	18
4.	Foul	Water Drainage Strategy	19
5.	Con	clusions and Recommendations	20
6.	Refe	rences	21

FIGURES

Figure 2.1 Site Location	2
Figure 2.2 Surface water culvert	4
Figure 2.3 Drainage survey adjacent to site	5
Figure 2.4 Culvert inlet and ditch	6
Figure 2.5 View up culvert inlet	6
Figure 2.6 Excavation on culvert at extent of camera survey	7
Figure 2.7 EA surface water flood map	9
Figure 2.8 Catchment boundary	10
TABLES	
Table 2.1 Site Geological Summary	3
Table 3.1 Area of Potentially Impermeable & Permeable Land Cover	12
Table 3.2 Pre-Development Peak Runoff Rates	12
Table 3.3 South West Lakes Management Catchment Peak Rainfall Allowances (1% AEP)	13
Table 3.4 Detention basin storage volumes and depths	16
Table 3.5 Pollution Hazard & Mitigation Indices - Roof Areas	18
Table 3.6 Pollution Hazard & Mitigation Indices - Residential Parking	18
Table 3.7 Pollution Hazard & Mitigation Indices - Residential Roads	18

GLOSSARY OF TERMS

AEP	Annual Exceedance Probability
AOD	Above Ordnance Datum
BGL	Below Ground Level
BGS	British Geological Society
CC	Climate Change
DSM	Digital Surface Model
DTM	Digital Terrain Model
EA	Environment Agency
FEH	Flood Estimation Handbook
FFL	Finished Floor Level
FRA	Flood Risk Assessment
GIS	Geographical Information System
LiDAR	Light Detection and Ranging
LLFA	Lead Local Flood Authority
NPPF	National Planning Policy Framework
OS	Ordnance Survey
RGP	RG Parkins & Partners Ltd
SFRA	Strategic Flood Risk Assessment
SuDS	Sustainable Drainage System
UU	United Utilities

1. INTRODUCTION

1.1 BACKGROUND

This report has been prepared by R. G. Parkins & Partners Ltd (RGP) for Washington Homes Ltd in support of their proposals to construct 19 No. new dwellings on land North of Scalegill Road, at the western edge of the village of Moor Row.

RGP has been appointed to undertake a Drainage Strategy in accordance with the National Planning Policy Framework (NPPF) [1][2] to support a planning application that fulfils the requirements of the Local Planning Authority, Environment Agency, Lead Local Flood Authority and the Sewerage Undertaker.

The following study outlines the proposed drainage strategy for the development and demonstrates the proposed development will not adversely affect flood risk elsewhere.

The existing greenfield site covers approximately 1.53 ha (15,286 m²).

2. SITE CHARACTERISATION

2.1 SITE LOCATION

The land proposed for development is situated towards the western extent of the village of Moor Row (Figure 2.1). The National Grid Co-ordinates to the centre of the site are 300185mE 514420mN.

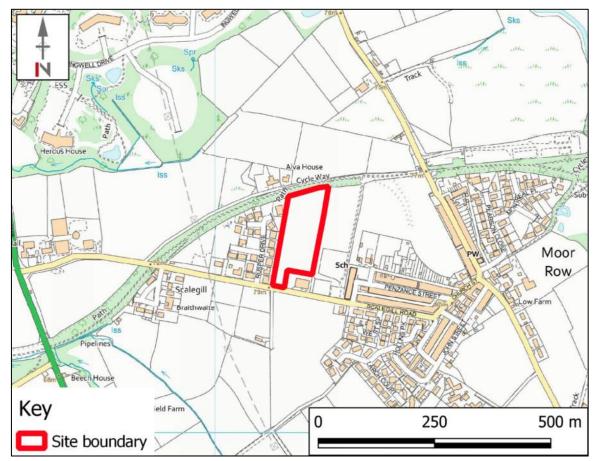


Figure 2.1 Site Location

2.2 SITE DESCRIPTION

The development site is currently greenfield and is used for agriculture and is not currently stock poof. A public highway, Scalegill Road is located to the south of the site, and this contains a gated access. The site area measures 1.5ha (15,352 m²).

The site is bounded by a residential development, Rusper Drive on its western boundary, a national cycleway and former railway to the north and a school playing field to the east. Immediately south of the site, between the site and public highway is Moor Row Working Men's Club.

Topographically, the site slopes gently from the site access at its southern extent (78.8 mAOD) towards the boundary with the cycle path at its northern extent (72.5 mAOD). The existing ground profile is uniformly sloping with little to no undulation.

2.3 GEOLOGY & HYDROGEOLOGY

British Geological Survey (BGS) ^[4] and Land Information Systems (LandIS)^[5] mapping indicates the site is underlain by the geological sequences outlined in Table 2.1. The EA Groundwater Vulnerability Map ^[6] indicates that the site is in a medium-low area of vulnerability and within a Soluble Rock Risk area. There are no Groundwater Source Protection Zones (SPZ) within 5.0 km of the site.

According to the Environment Agency Aquifer Designation Map ^[6], the site is located over Principal Bedrock and Secondary undifferentiated aquifers.

Table 2.1 Site Geological Summary

Geological Unit	Classification	Description	Aquifer Classification
Soil	Soilscape 17	Slowly permeable seasonally wet acid loamy and clayey soils	N/A
Drift Till, Devensian – Unsorted sediment with grave fine mud matrix		Unsorted sediment with gravel in a fine mud matrix	Secondary Undifferentiated
	Pennine Lower Coal Measures Formation (north)	Sedimentary bedrock	Secondary A
Solid	Brockram – Breccia (central)	Sedimentary bedrock	Principal
	St Bees Sandstone (south)	Sandstone	Secondary A

2.4 HYDROLOGY

The site lies in the Pow Beck Catchment and does not contain any visible surface water drainage features although it is possible land drainage exists. Site levels indicate that surface water runoff drains towards the cycle path / disused railway. Drainage within the cycle path runs in a westerly direction within the south verge / banking to meet Needless Beck, discharging to Scalegill Beck and Pow Beck before discharging to the Irish Sea.

Ground levels at the site entrance indicate no surface water contributions will occur from the public highway. Land to the west is positively drained via a separate drainage system and land to the east falls towards the cycle path and also contains a slight swale feature adjacent to the development site boundary. Therefore, the site will receive no surface water inflows from beyond its boundaries. For further information refer to Section 2.7.

2.5 EXISTING SURFACE WATER DRAINAGE

There are no identified surface water drainage features within the site boundary however the cycle path on the sites northern boundary contains drainage which was presumably associated with the former railway. This drainage is located at a level below that of the lowest point on the site and would naturally receive site runoff due to topography. An overview of the surface water drainage is provided in Figure 2.2. Further detail is provided in closer proximity to the site in Figure 2.3.

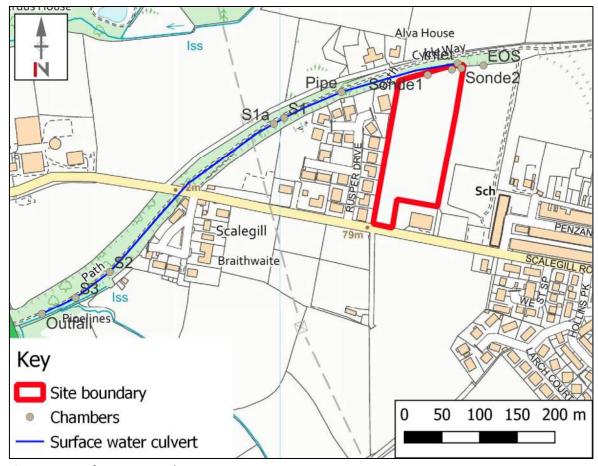


Figure 2.2 Surface water culvert

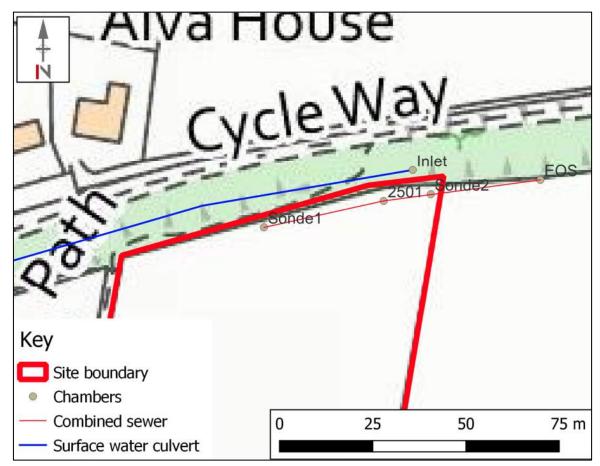


Figure 2.3 Drainage survey adjacent to site

The cycle path drainage has been investigated and found to comprise a ditch at its upstream extent (Figure 2.4) before changing to a stone culvert adjacent to the site boundary. Beyond the site the stone culvert changes to a 400mm diameter pipe, becoming 300mm diameter prior to outfall to an open ditch. The drainage survey was undertaken on 7th July 2023 during dry conditions and the system was surveyed as far as possible without damaging the watercourse. The stone culvert is difficult to survey, and the camera made limited progress. It was possible to investigate the culvert 16.5m downstream of the upstream headwall and culvert depth at this location was 0.7m deep to crown. Further excavations on the line of the stone section were not possible due to vegetation, increasing depth and digger access constraints.

The results of the drainage survey are included in Appendix B.

Figure 2.4 Culvert inlet and ditch

Figure 2.5 View up culvert inlet

Figure 2.6 Excavation on Culvert at Extent of Camera Survey

The stone culvert contained water at its inlet however was dry beyond. The culvert changed construction to a 400mm diameter clay pipe at a point approximately 160m downstream of the culvert inlet. The stone culvert appears to be in generally good condition.

Access to the pipe was achievable at 5 locations and this section of the drain is generally located at a depth of 500 - 600mm. Small, shallow stone built chambers are present and three of these were located to allow camera access. It is probable that other buried chambers also exist. At manhole S2 pipe diameter reduces from 400mm to 300mm and the outfall was flowing freely.

The piped section of watercourse is in good condition and would be a suitable connection point for the disposal of surface water.

It is also possible that historic land drainage features may exist within the site although none were encountered during the ground investigation and no incoming drainage was identified within the adjacent surveyed culvert or combined sewer.

2.6 EXISTING FOUL WATER DRAINAGE

Reference to the United Utilities Sewer Records indicates there is a 300 mm diameter combined sewer located within the site running east to west adjacent to the site's boundary with the cycle path.

Camera survey was undertaken as far as possible. The pipe was dry at time of survey however there is evidence of surface water flow with silt deposition within the pipe impeding camera progress. Contrary to UU records the combined sewer continues for some distance upstream of the site. The sewer was located by sonde at the east site boundary and at the surveys downstream extent where progress was prevented by a stone. The sewer is in good condition however requires cleaning. A further survey following drain cleaning is recommended to provide a pre-construction condition record within the site.

Sonde measurements indicate a sewer depth of 2.27 - 2.60m. The manhole survey provides a more accurate depth of sewer of 2.56m from cover level which sits proud of the surrounding ground by 150mm. United Utilities provide a cover level for this manhole (UU ref 2501) of 73.24 mAOD and invert of 70.78 mAOD, a depth of 2.46m.

The topographic survey was extended to record the manhole cover level and locations of pegs identifying the extent of the sewer / survey.

2.7 EXISTING SURFACE WATER FLOWS

The site is located above the level of the obvious low point at the railway where surface water is likely to pond and levels at the site entrance will prevent incoming flows from the highway.

The surface water mapping product produced by the Environment Agency has been reviewed to determine the EA predicted risk of surface water flooding. The surface water flood maps are not suitable for informing planning decisions, because it is based on relatively coarse resolution DTM (2m), does not represent surface features accurately and makes no account for underground drainage.

The EA surface water flood map product is provided with the following information warning (https://www.data.gov.uk/dataset/d5ca01ec-e535-4d3f-adc0-089b4f03687d/risk-of-flooding-from-surface-water-suitability):

"Information Warnings: Risk of Flooding from Surface Water is not to be used at property level. If the Content is displayed in map form to others we recommend it should not be used with basemapping more detailed than 1:10,000 as the data is open to misinterpretation if used as a more detailed scale. Because of the way they have been produced and the fact that they are indicative, the maps are not appropriate to act as the sole evidence for any specific planning or regulatory decision or assessment of risk in relation to flooding at any scale without further supporting studies or evidence."

Whilst the product is not suitable for the purpose of informing planning decisions it can be a useful tool to provide an indication of possible overland flow routes.

For the site a low probability 0.1% AEP flow route is predicted along the site's east boundary. This however does not appear correct following a walkover survey.

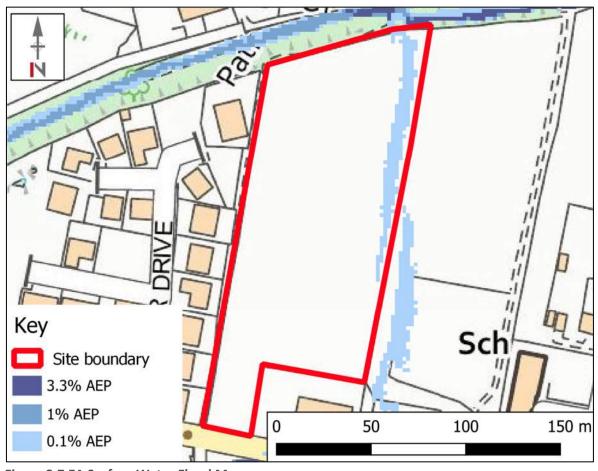


Figure 2.7 EA Surface Water Flood Map

Further investigation has been undertaken using LiDAR data dated 2021 and catchment analysis to define the contributing area to the watercourse. Results provided in Figure 2.8 show the catchment covers little more than the site boundary and disproves the EA surface water flood map product. An area to the south associated with the working man's club is predominantly hardstanding and roof area which is positively drained and would not contribute flow.

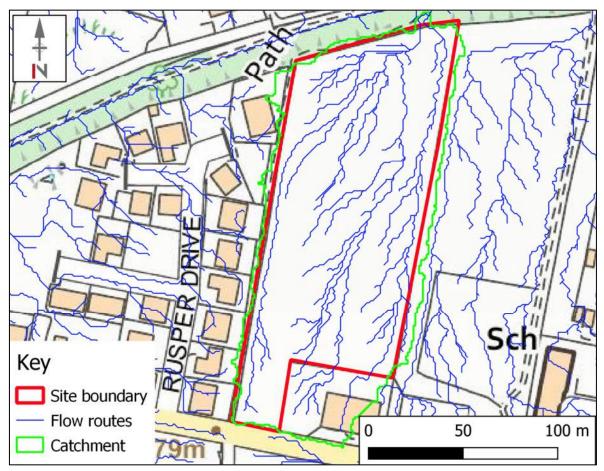


Figure 2.8 Catchment Boundary

2.8 GROUND INVESTIGATION

Ground Investigations including trial pits with permeability tests have been carried out on site in December 2022 and as the trial holes failed to drain down over a significant time period the tests were abandoned proving there is limited soakaway potential for infiltration type drainage systems within the underlying strata. It is therefore not recommended that soakaways are used for the disposal of surface water runoff from the proposed residential development.

For further information refer to the Phase 2 Ground Investigation Report (2023-5970) prepared by Geo Environmental Engineering in November 2023.

3. SURFACE WATER DRAINAGE STRATEGY

3.1 INTRODUCTION

The principal aim of the following drainage strategy is to design the development to avoid, reduce and delay the discharge of rainfall to public sewers and watercourses in order to protect watercourses and reduce the risk of localised flooding, pollution and other environmental damage. In order to satisfy these criteria this surface water runoff assessment and drainage design has been undertaken in accordance with the following reports and guidance documents:

- SuDS Manual, CIRIA Report C753, 2015^[7]
- Code of Practice for Surface Water Management, BS8582:2013, November 2013^[8]
- Rainfall Runoff Management for Developments, Defra/EA, SC030219, October 2013^[9]
- Designing for Exceedance in Urban Drainage Good Practice, CIRIA Report C635, 2006^[10]
- Flood Estimation Handbook (FEH)[11]
- Flood Studies Report (FSR), Volume 1, Hydrological Studies, 1993^[12]
- Flood Studies Supplementary Report No 14 (FSSR14), Review of Regional Growth Curves, 1983^[13]
- Flood Estimation for Small Catchments, Marshall & Bayliss, Institute of Hydrology, Report No. 124 (IoH 124), 1994^[14]
- Non-Statutory technical Standards for Sustainable Drainage Systems, Defra, March 2015^[15]
- Water UK, Design and Construction Guidance for Foul & Surface Water Sewers March 2020^[16]
- Design and analysis of urban storm drainage, The Wallingford Procedure, Volume 4 The Modified Rational Method, 1981^[17]

The following assessment and drainage strategy are based on the latest site layout plan by Green Swallow (drawing no.1375-01-G). Any alterations to the site plan resulting in changes to impermeable areas will require the drainage strategy to be revisited.

3.2 SITE AREAS

Based on the gently sloping topography of the existing Greenfield site and on the basis of the flow routing analysis outlined in Section 2.7, it can be concluded that the entirety of the site area drains downslope towards the existing drainage ditch. As such the pre-development Greenfield runoff rates will be calculated based on the positively drained impermeable areas in addition to verges as outlined in the modified Rational Method.

The entire site area (1.535 ha) is currently greenfield and there is no existing known drainage within the site.

The site can be subdivided into land cover that could be permeable and that which could be impermeable. Potential impermeable areas are regarded as buildings, parking, roads, and hardstanding. All other areas (principally gardens and areas of public open space) are regarded as having a permeable surface. Permeable and Impermeable Areas have been calculated as shown in Table 3.1.

Table 3.1 Area of Potentially Impermeable & Permeable Land Cover

Land Cover	Area		Proportion of total site
	m²	На	area
Roof Area	1,956	0.196	13%
Roads, drives and paved areas	3,889	0.389	32%
Detention basin	794	0.079	6%
Remaining Permeable Area	8713	0.871	57%
Total	15,352	1.535	100%

3.3 PRE-DEVELOPMENT GREENFIELD RUNOFF ASSESSMENT

As the area to be drained covers an area of less than 200 ha, the Greenfield calculations have been undertaken in accordance with methodology described in IoH 124^[14]. For catchments of less than 50 ha the Greenfield runoff rate is scaled according to the size of the catchment in relation to a 50-hectare site.

The pre-development runoff assessment has been calculated based on the drained areas of the site, measuring 6,639 m² being classified as greenfield. A catchment plan is included in Appendix A (drawing K40461/24).

Full details of the calculations and the methodology for deriving the Greenfield Runoff Rate are in included in Appendix C. A summary of the results is included in Table 3.2.

Table 3.2 Pre-Development Peak Runoff Rates

Event	Greenfield Rate of Runoff (I/s)
Q1	5.3
QBAR	6.1
Q10	8.4
Q30	10.3
Q100	12.6
Q100 + 50% CC	19.0

Without attenuation, the proposed development would significantly increase the rate of Runoff from the developed areas of the site.

To mitigate against the potential increase in runoff, it is proposed to contain and attenuate runoff from the development site before being released at a controlled rate to the existing nearby watercourses to match the pre-existing greenfield runoff flow rate (QBAR) of 6.1 l/s.

3.4 SURFACE WATER DRAINAGE DESIGN PARAMETERS

The surface water drainage system has been designed on the following basis using the modified rational method and a generated rainfall profile:

3.4.1 CLIMATE CHANGE

Projections of future climate change indicate that more frequent short-duration, high intensity rainfall and more frequent periods of long-duration rainfall are likely to occur over the next few decades in the UK. These future changes will have implications for river flooding and for local flash flooding. These factors will lead to increased and new risks of flooding within the lifetime of planned developments.

The EA have provided a peak rainfall online map showing the anticipated changes in peak rainfall intensity across the UK. Climate change allowances are now provided on a catchment-by-catchment basis.

The site falls within the South West Lakes Management Catchment. Table 3.3 outlines the EA guidance for this catchment, for the anticipated design life of the proposed development. In line with current guidance and for conservative design, a 50% allowance shall be used within this assessment.

Table 3.3 South West Lakes Management Catchment Peak Rainfall Allowances (1% AEP)

Epoch	Central Allowance (%)	Upper End Allowance (%)	
2050s	30	45	
2070s	35	50	

3.4.2 URBAN CREEP

BS 8582:2013 [8] outlines best practice with regard to Urban Creep. Although not a statutory requirement, future increase in impermeable area due to extensions and introduction of impervious positively drained areas has been considered. An uplift of 10% on impermeable areas associated with plots only (excluding roads) is typically applied to the contributing area.

An increase in drained area of 196m² due to urban creep has been represented in the calculations which corresponds to 10% of plot roof areas. This has been modelled by applying a global increase to drained areas of 3%.

3.4.3 PERCENTAGE IMPERMEABILITY (PIMP)

The percentage impermeability (PIMP) for all impermeable areas is modelled as 100%. The entirety of the impermeable areas is to be positively drained.

3.4.4 VOLUMETRIC RUNOFF COEFFICIENT (CV)

The volumetric runoff coefficient describes the volume of rainfall which runs off an impermeable surface following losses due to infiltration, depression storage, initial wetting and evaporation. The coefficient is dimensionless.

Default industry standard volumetric runoff coefficients are typically 0.75 for summer and 0.84 for winter for drainage design. These can however be specified in greater detail by reference to soil type, rainfall and topography as outlined in , The Wallingford Procedure, Volume 4.

For urban catchments, percentage runoff (PR) can be estimated in accordance with the Wallingford Procedure using the following equation:

Where the Urban Catchment Wetness Index (UCWI) is a function of the 5-day antecedent precipitation index (API5) and the soil moisture deficit (SMD). UCWI can also be obtained using a best-fit graph derived from multiple catchments to correlate UCWI with Standardised Average Annual Rainfall (SAAR).

For the proposed development site:

PIMP = 100%

SOIL = 0.47

UCWI = 117 (summer), 145 (winter)

PR(summer) = 83, PR(winter) = 85

Volumetric runoff coefficient is described by the below formula:

Cv = PR / 100

Cv (summer) = 0.83, Cv (winter) = 0.85

The percentage runoff equation is thought to underestimate runoff from long duration rainfall events however there is no data available to substantiate or quantify this assertion. It should be noted that the above methodology was developed based on measured flows in 33 catchments. Further increasing the coefficient of runoff has been suggested to account for wetter antecedent conditions than the scenario represented by the winter UCWI above.

Winter design storms are the critical consideration for long duration events whilst summer events are likely to be critical for the shorter duration events. To account for additional catchment wetness winter volumetric runoff coefficient has been further uplifted to 0.9.

3.4.5 RAINFALL MODEL

The calculations use the FEH22 rainfall depth-duration-frequency model with the latest available rainfall descriptors provided by the Centre for Ecology and Hydrology Flood Estimation Handbook web service.

3.5 SURFACE WATER DISPOSAL

Surface water disposal has been considered in line with the hierarchy outlined in the SuDS Manual ^[7]. The approach considers infiltration drainage in preference to disposal to watercourse, in preference to discharge to sewer.

3.5.1 INFILTRATION

In-situ permeability testing was undertaken as part of the ground investigation at this site (See Section 2.6) and the slow infiltration rates encountered combined with the variable soil conditions precludes disposal of surface water via. infiltration. Soakaways would not form an effective drainage solution for this site.

On this basis it is therefore considered that disposal of surface water using an attenuation based SuDS system is required.

3.5.2 POSITIVE DRAINAGE – WATERCOURSE

All impermeable site areas i.e. roof, driveway and hardstanding areas will drain via. gravity through a network of pipes and chambers into a detention basin located in the natural low point of the site with a direct outfall to the existing culverted watercourse located within the disused railway / cycle path to the north of the development site.

A length of new sewer within third party land shall be constructed to allow disposal to the watercourse at a point where it is conveyed by 400mm pipe rather than within a stone drain.

This strategy will replicate the existing runoff characteristics of the site.

3.6 SURFACE WATER DRAINAGE NETWORK

Roof water, driveway and road runoff will connect directly into the surface water pipe network upstream of the detention basin, with inspection and manhole chambers utilised to route the new pipework to suit the proposed development layout and allow for future inspection and maintenance.

Due to the relative impermeability of the soils and site topography, all parking areas and private driveways are to be constructed with positive drainage connections to the proposed attenuation system.

3.7 FLOW CONTROL

Because it is not possible to dispose of surface water within the site it is necessary to follow the long term storage approach which requires limiting discharge for all events up to and including the 1% AEP with allowance for climate change to no greater than greenfield Qbar.

A vortex type flow control will therefore restrict discharge from the detention basin to a total discharge rate of 6.1 l/s equivalent to the QBAR rate.

For further details of the drainage layout, please refer to the Outline Drainage Layout plans (K40461-20 & K40461-21) included in Appendix A.

3.8 VOLUMETRIC STORAGE

Storm water storage Detention basins are landscaped depressions that are normally dry except during and immediately following storm events. The vegetated depressions can provide treatment for surface water removing sediment and buoyant materials, as well as nutrients and heavy metals.

Side slopes should be no steeper than 1 in 3 wherever mowing is required, to reduce the risks associated with maintenance activities. Side slopes of 1:3.5 have been selected in this instance to improve on the minimum values and provide a more gentle gradient to the basin.

The proposed surface water attenuation requirements for the site have been calculated using a Causeway Flow hydraulic model (results are included in Appendix C). A total storage volume of 637 m³ is provided to emergency spillway level.

Predicted storage volumes and depths are outlined in Table 3.4. The basin has 0.06m freeboard allowance and 62 m³ spare capacity for the most severe design storm.

Table 3.4 Detention basin storage volumes and depths

Design Event		Water Double	Stores Volume
AEP (%)	Return Period (years)	Water Depth (m)	Storage Volume (m³)
50	2	0.346	104
3.3	30	0.614	210
1 + CC	100	1.262	575

3.9 DESIGNING FOR LOCAL DRAINAGE SYSTEM FAILURE

In accordance with the general principles discussed in CIRIA Report C635 – Designing for Exceedance in Urban Drainage [10] the proposed surface water drainage, where practical, should be designed to ensure there is no increased risk of flooding on the site or elsewhere as a result of extreme rainfall, lack of maintenance, blockages or other causes. These measures are discussed below.

Surface Storage & External Levels – where possible driveway/car parking areas will be designed to offer additional surface water storage volume and conveyance of flood water should the SuDS and drainage system fail, flood or exceed capacity. Where appropriate, the kerb lines will be raised to channel surface water runoff back into the drainage system or onto the existing highway.

Drainage Contingency – the sustainable drainage systems have been conservatively designed to attenuate a 100-year design storm including a 50% allowance for climate change. The drainage system will also provide capacity for lower probability (greater design storm events) which are not critical duration.

Building Layout & Detail – the dwellings will be designed and situated to ensure that they are not at risk of flooding from overland flow. The finished floor and threshold levels of the proposed new dwellings will be set above the external levels, and external footpaths will fall away from the dwellings, ensuring that any flood water runs away from, rather than towards the properties.

Blockage and exceedance — Exceedance flows shall be retained on site within the drainage system as far as practical and in the case of extreme events site levels will be set to divert any exceedance flows to fall away from the properties towards green areas. In the unlikely case of exceedance or blockage from the detention basin and/or associated flow control chamber, spills would be directed away from the development where they would follow the existing ground levels towards the existing culverted watercourse. The detention basin is proposed to be sited at the remote end of the site downslope of the dwellings and therefore any flood event should not adversely affect properties in the locality.

3.10 EXCEEDANCE FLOWS

The rainfall parameters of the model have been increased to identify the locations in the drainage system where spills would occur.

Manhole S17 is the first manhole predicted to flood for a short duration (flashy event) when climate change allowance is increased to 70%. This is considered to be unrealistic due to the drainage connections, downpipes, gutters etc being unable to convey this flow to the sewer. However assuming this flow could enter the surface water drainage system, spill would occur to the private access road and be contained by kerbs. Should the kerb be overtopped water would enter land to the east and dwellings would not be at risk of flooding. Flood volumes from flashy events are relatively low.

Longer duration events that will be more problematic in terms of flood volume will flood first from the detention basin. Initially flows will be contained with the additional freeboard within the basin. With climate change allowance inflated to 70% the basin will commence spilling via the emergency spillway although flows are very low (4.8l/s). Discharge shall flow north away from the site and into the verge of the cycle path where it will drain to the existing drainage.

If climate change allowance is increased to 80%, spills are predicted from manholes S05 and S07 during short duration 'flashy' 15 / 30 minute rainfall events. Flows would follow the highway to the turning head where surface water would pond prior to being drained into the system via the road gully's. Due to storm duration such events produce relatively low flood volumes.

3.11 OPERATIONS & MAINTENANCE RESPONSIBILITY

The private individual plot drainage is to be maintained by the property owners and it is anticipated the overall SuDS features (Detention Basin) will be offered for adoption. Should UU

refuse to adopt the drainage system it will be necessary to appoint a third-party management company to maintain the system.

A SuDS 'Operations & Maintenance Plan' has been made available by RGP (report no. K40461-002-O&M) and specifies the requirements for future maintenance of the drainage system. This covers the maintenance activities for the detention basin should UU refuse to adopt the system.

3.12 SURFACE WATER QUALITY

The treatment of surface water is not a statutory requirement. Water quality remains a material consideration but there are no prescriptive standards to be imposed in terms of treatment train management. In the absence of a design standard, the SuDS manual has been used which outlines best practice.

Pollutants such as suspended solids, heavy metals and organic pollutants may be present in surface water runoff, the quantity and composition of the runoff is highly dependent upon site use. For housing developments, the pollutant load is very low.

The SuDS Manual ^[7] outlines best practice with regards to treatment of surface water by SuDS components prior to discharge to the environment. SuDS components can be effective in reducing the amount of pollutants within the surface water discharged and therefore environmental impact of the development. SuDS components may be installed in series to form a treatment train to treat the runoff.

The simple index approach as outlined in the SuDS manual has been used to assess the pollution hazard indices and proposed treatment components. Tables 3.5-3.7 summarise the pollution hazard and mitigation indices for the various runoff sources and show that adequate treatment of surface water runoff is provided by the provision of a detention basin.

Table 3.5 Pollution Hazard & Mitigation Indices - Roof Areas

Indices	Suspended Solids	Metals	Hydrocarbons
Pollution Hazard	0.2	0.2	0.05
Pollution Mitigation	0.5	0.5	0.6
Treatment Suitability	ADEQUATE	ADEQUATE	ADEQUATE

Table 3.6 Pollution Hazard & Mitigation Indices - Residential Parking

Indices	Suspended Solids	Metals	Hydrocarbons
Pollution Hazard	0.5	0.4	0.4
Pollution Mitigation	0.5	0.5	0.6
Treatment Suitability	ADEQUATE	ADEQUATE	ADEQUATE

Table 3.7 Pollution Hazard & Mitigation Indices - Residential Roads

Indices	Suspended Solids	Metals	Hydrocarbons
Pollution Hazard	0.5	0.4	0.4
Pollution Mitigation	0.5	0.5	0.6
Treatment Suitability	ADEQUATE	ADEQUATE	ADEQUATE

4. FOUL WATER DRAINAGE STRATEGY

A 300mm diameter combined sewer is located at the northern extent of the site and a gravity connection to this sewer is possible. The sewer has been surveyed as far as possible. Although generally in good condition there was a stone downstream of the manhole within the site that prevented survey beyond 32m and settled deposits prevented upstream progress beyond 12m. A copy of the drainage survey report is included in Appendix D.

United Utilities were made aware of the debris within the sewer, and we believe this has since been rectified. Regardless the sewer was found to be in serviceable condition and suitable to receive foul drainage from the site.

Foul drainage design has been undertaken in accordance with the Sewer Construction Guide and building regulations Part H. The system shall be offered for adoption under a Section 104 agreement.

Using the industry standard 4000l / dwelling per day figure for peak flow results in a peak foul flow rate of 0.88 l/s. This can easily be accommodated by the receiving 300mm diameter combined sewer.

For further detail refer to the Drainage Layout Plan included in Appendix A.

5. CONCLUSIONS AND RECOMMENDATIONS

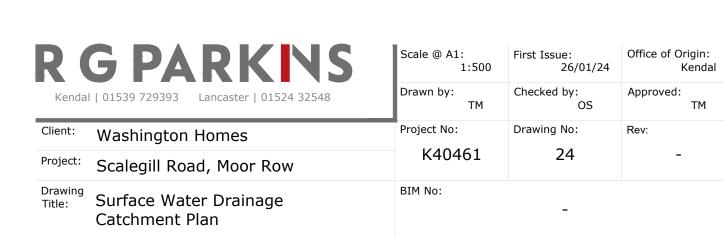
In consideration of the Drainage Strategy for the proposed development, the following conclusions and recommendations are made:

- The site is located in Flood Zone 1 with a predicted annual probability of flooding from rivers or the sea of less than 0.1% AEP (1 in 1000).
- The site is shown to be at low risk of surface water flooding and does not receive surface flow from off-site.
- Ground investigations undertaken by Geo Environmental Engineering in November 2023 have shown that the underlying ground conditions across the site have poor levels of permeability and are not deemed suitable for an infiltration-based SuDS solution for a development of this scale.
- The existing sloping topography is more suited to an interception and attenuation-based surface water drainage strategy.
- It is proposed that surface water drainage shall be positively drained and attenuated, using a detention basin, with a flow control device restricting discharge.
- The detention basin attenuation system has been sized to contain flows based on a Q100 + 50% storm event.
- Controlled runoff for the development will be restricted to match the pre-development greenfield runoff (QBAR) rate of 6.1 l/s with outfall proposed to the existing surface water drainage ditch in close proximity to the site to replicate existing site conditions.
- In line with the SuDS hierarchy surface water discharge will be via. the nearest existing watercourse/drainage ditch with the proposed connection point located approximately 70m North of the wider field boundary.
- Foul flows from the site will discharge into the existing 300 dia. public combined sewer crossing site from east to west, along the northern boundary.
- In addition to these measures, a SuDS Operations and Maintenance Plan has been made available detailing future maintenance requirements of all sustainable drainage systems at detailed design stage to suit the finalised development scale and layout. Although the intention is to provide an adoptable surface water drainage system, should UU refuse to adopt a private system shall be used.

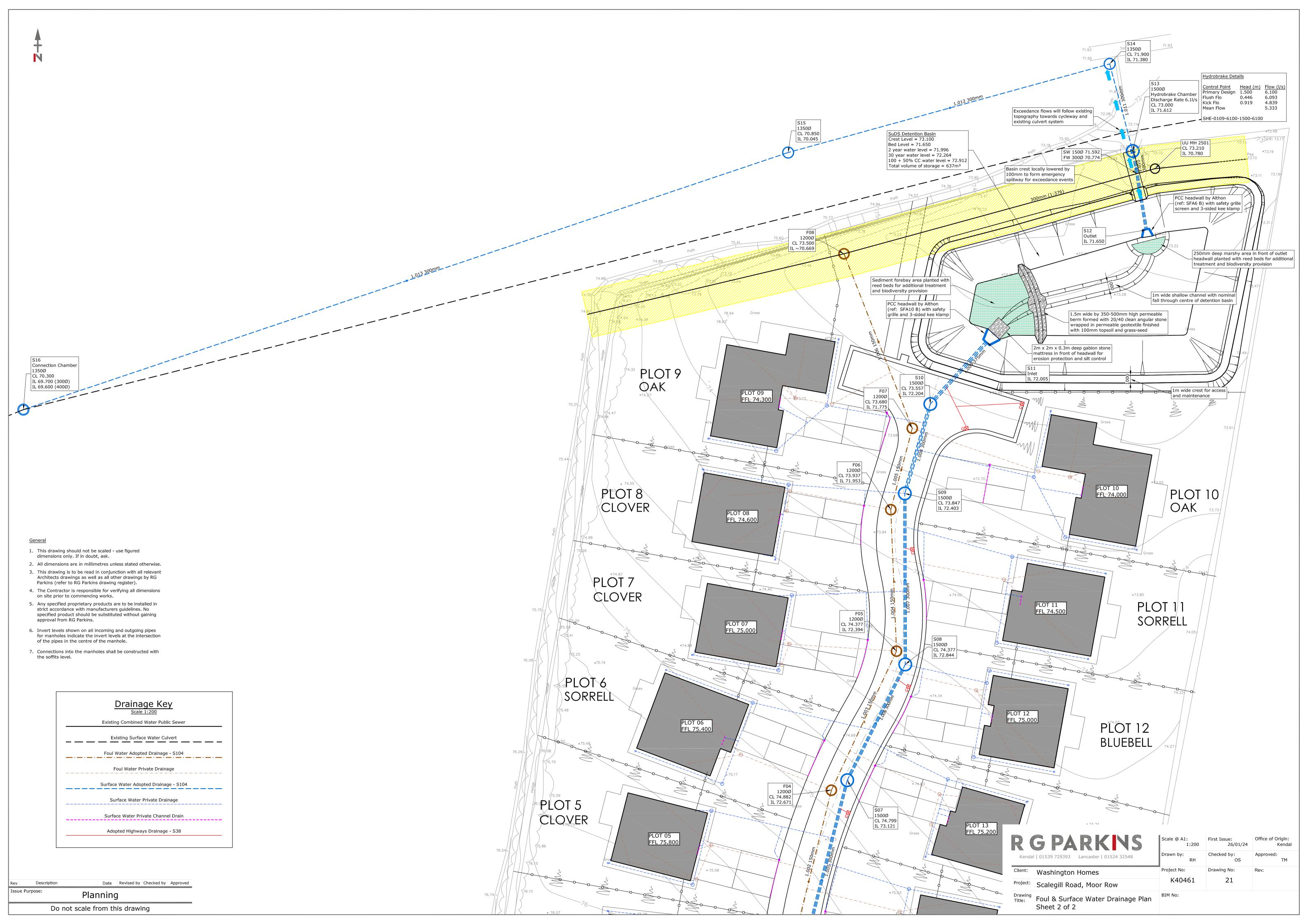
6. REFERENCES

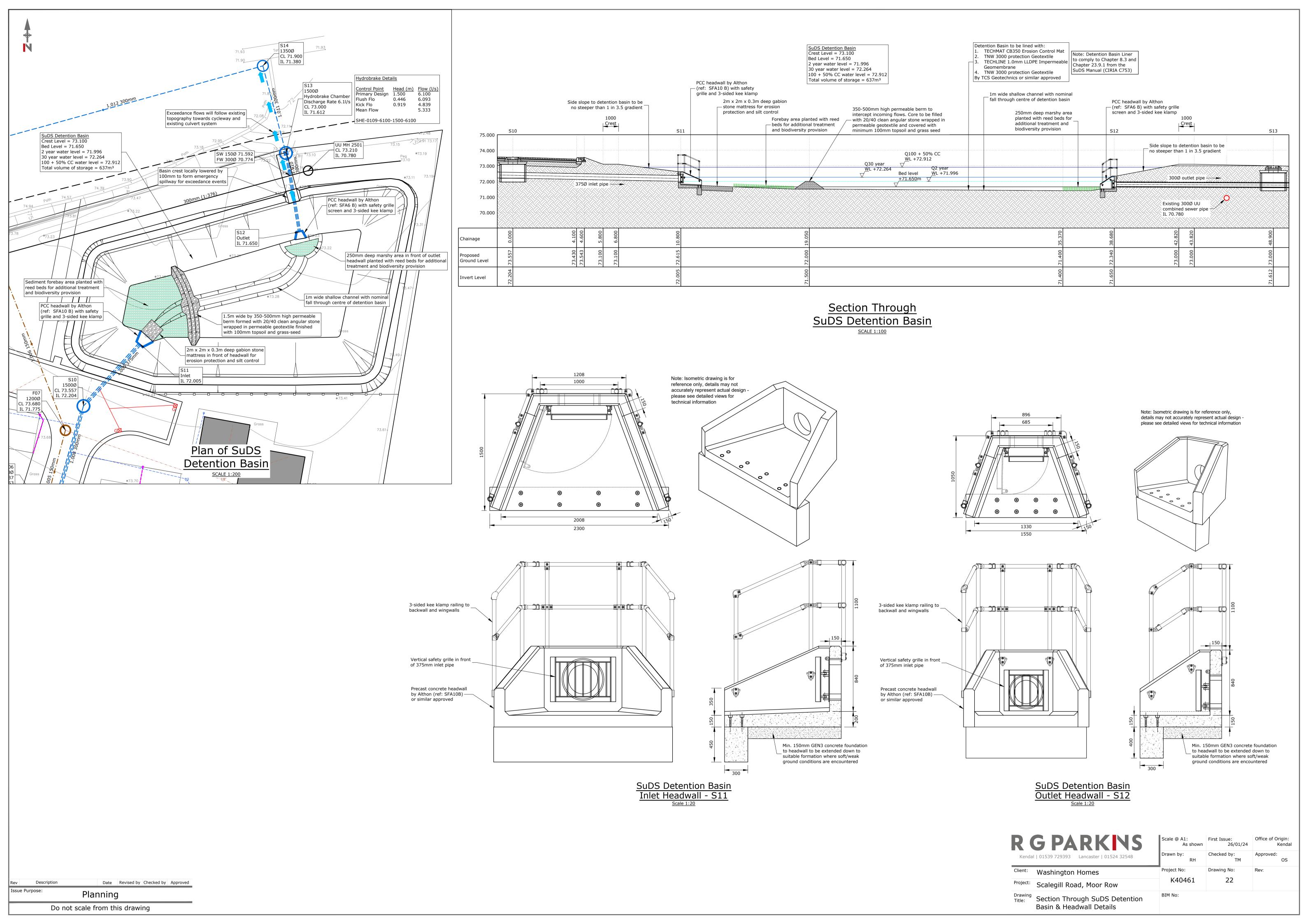
- [1] Ministry of Housing, Communities and Local Government, National Planning Policy Framework, July 2021.
- [2] Ministry of Housing, Communities and Local Government, Planning Practice Guidance to the National Planning Policy Framework, July 2018.
- [3] Defra/Environment Agency, The Town and Country Planning Order 2015, 2015 No.595, April 2015.
- [4] British Geological Survey, 2023. Geoindex. http://mapapps2.bgs.ac.uk/geoindex/home.html
- [5] Land Information System (LANDIS) Soilscapes viewer, Accessed December 2023. http://www.landis.org.uk/soilscapes
- [6] Defra Magic Maps, 2023. https://magic.defra.gov.uk/MagicMap.aspx. Accessed December
- [7] CIRIA, The SuDS Manual, Report C753, 2015.
- [8] BS8582:2013, Code of Practice for Surface Water Management, November 2013.
- [9] DEFRA/EA, Rainfall Runoff Management for Developments, SC030219, October 2013.
- [10] CIRIA, Designing for Exceedance in Urban Drainage Good Practice, Report C635, London, 2006.
- [11] Centre for Ecology and Hydrology, Flood Estimation Handbook, Vols. 1-5 & FEH CD-ROM 3, 2009.
- [12] Institute of Hydrology, Flood Studies Report, Volume 1, Hydrological Studies, 1993.
- [13] Institute of Hydrology, Flood Studies Supplementary Report No 14 Review of Regional Growth Curves, August 1983.
- [14] Marshall & Bayliss, 1994. Flood Estimation for Small Catchments, Report No. 124 (IoH 124), Institute of Hydrology.
- [15] Department for Environment, Food and Rural Affairs, Non-Statutory Technical Standards for Sustainable Drainage Systems, March 2015
- [16] Water UK, Design and Construction Guidance for Foul & Surface Water Sewers Offered for Adoption Under the Code for Adoption Agreements for Water and Sewage Companies Operating Wholly or Mainly in England, Approved Version 2.0, March 2020
- [17] Hydraulics Research Limited, The Wallingford Procedure, Volume 4, The modified Rational Method, 1981

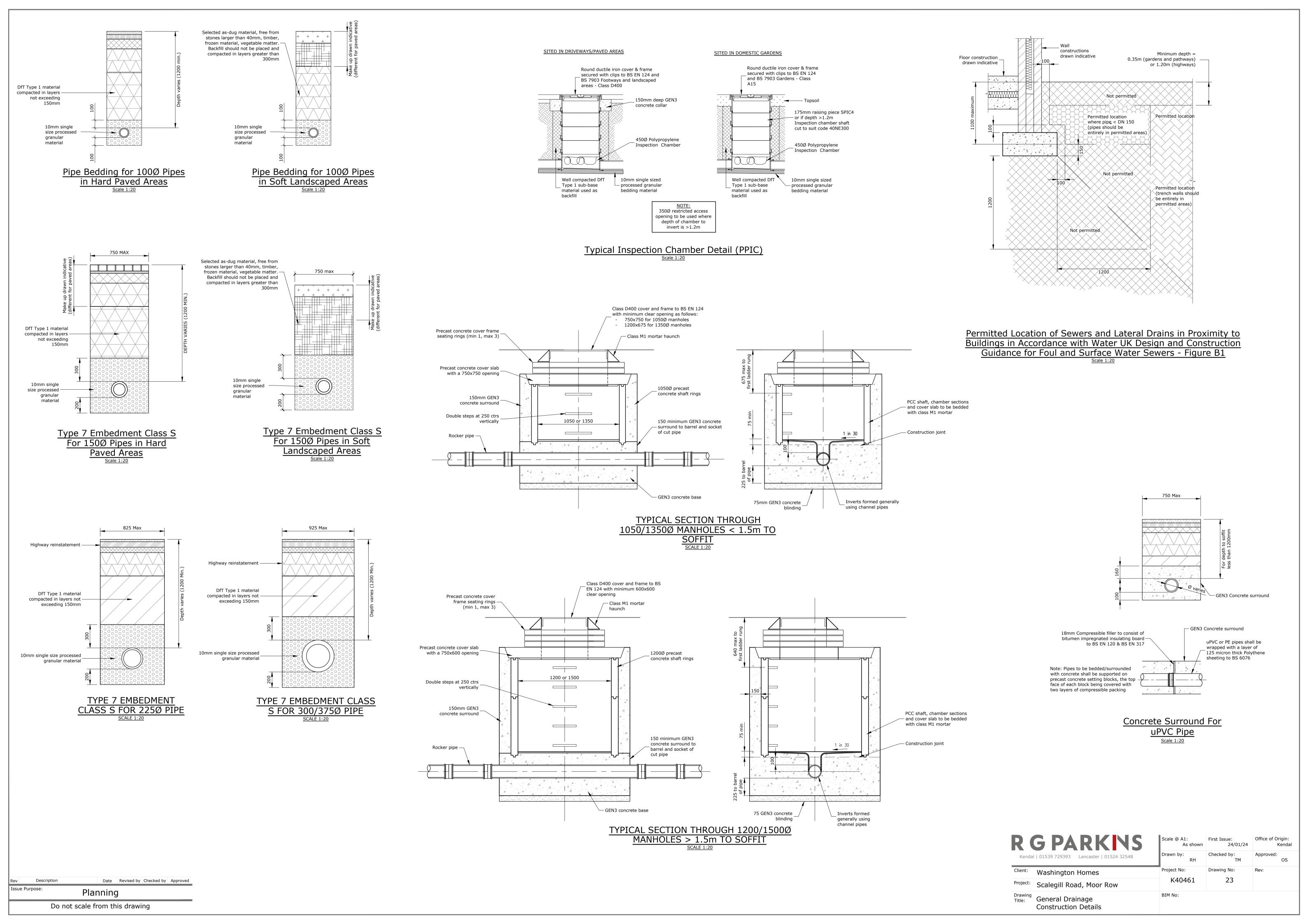



APPENDIX A - DRAWINGS

CATCHMENT PLAN


OUTLINE DRAINAGE LAYOUT


TYPICAL DRAINAGE DETAILS



APPENDIX B

DRAINAGE SURVEY



Project

Project Name: 2023-06-20460 RG Parkin Scalegill Road Moor Row CA24 3JL

Project Date: 12/07/2023

Inspection Standard: MSCC5 Sewers & Drainage GB (SRM5 Scoring)

DRAIN DOCTOR NW

Table of Contents

Project Name Project	Number Project Date	
2023-06-20460 RG Parkin Scalegill Road Moor Row CA24 3JL	12/07/2023	

Project Information	P-1
Section Item 1: UU 2501 > Downstream (UU 2501X)	1
Section Item 2: Upstream > UU 2501 (Upstream X)	3
Section Item 3: Culvert 1 > Culvert 2 (Culvert 1X)	5
Section Item 4: Culvert2 > S1 (Culvert2X)	8
Section Item 5: S1 > S1a (S1X)	11
Section Item 6: S1a > S2 (S1aX)	14
Section Item 7: S2 > S3 (S2X)	18
Section Item 8: S3 > Outfall (S3X)	22

Tel. 08000 266623

Project Information

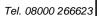
Project Name Project Number Project Date
2023-06-20460 RG Parkin Scalegill Road Moor Row CA24 3JL 12/07/2023

Client

Company: RG Parkin
Department: Meadowside
Street: Shap Road
Town or City: Kendal
Post Code: LA9 6NY

R. G. PARKINS & PARTNERS LTD

Site


Company: RG Parkin Street: Scalegill Road Town or City: Moor Row

Contractor

Company: DRAIN DOCTOR NW

Phone: 08000 266623

Section Inspection - 07/07/2023 - UU 2501X

Item No.	Insp. No.	Date:	Time:	Client's Job Ref	Weather	Pre Cleaned	PLR
1	1	07/07/23	16:18	Not Specified	Not Specified	Yes	UU 2501X
Ope	rator	Vehicle		Camera	Preset Length	Legal Status	Alternative ID
Not Sp	ecified	Not Sp	ecified	Not Specified	Not Specified	Not Specified	Not Specified

Town or Village:	Scale Gill Road	Inspection Direction:	Downstream	Upstream Node:	UU 2501
Road:	Moor Row	Inspected Length:	32.46 m	Upstream Pipe Depth:	
Location:		Total Length:	32.46 m	Downstream Node:	DOWNSTREAM
Surface Type:		Joint Length:		Downstream Pipe Depth	:
Use:	Combined		Pipe Shape:	Circular	
Type of Pipe:	Gravity drain/sewer		Dia/Height:	300 mm	
Flow Control:			Material:	Vitrified clay	
Year Constructed:	Not Specified		Lining Type:	No Lining	
Inspection Purpose:	Routine inspection		Lining Material:	No Lining	
Commonts:			•		

Comments:

Depth: m UU 2501 0.00 MH Start node, manhole, reference: UU 2501 0.00 WL Water level, 0% of the vertical dimension 0.00 Soft DES Settled deposits, fine, 20% cross-sectional area loss, start 2501X_15 25b246-7c 2.69 JN Junction at 03 o'clock, 100mm dia 00:00:32 UU 2501X_15 25b246-7c 00:00:32 UU 2501X_31 428173-80 Downstream Depth: m	UU 2501 0.00 MH Start node, manhole, reference: UU 2501 00:00:00 0.00 VL Water level, 0% of the vertical dimension 0.00 S01 DES Settled deposits, fine, 20% cross-sectional area loss, start 2501X_15 25b246-7c 2.69 JN Junction at 03 o'clock, 100mm dia 00:00:32 UU 2501X_16 25b246-7c 0.00 Other obstacles, other object in invert from 04 o'clock to 08 o'clock, 25% cross-sectional area loss: stone ?? 4261X_3d 426173-80 32.46 F01 DES Settled deposits, fine, 20% cross-sectional area loss, finish 00:02:43	cale:	1:282	Position [m]	Code	Observation	MPEG	Photo	Grade
0.00 WL Water level, 0% of the vertical dimension 0.00 S01 DES Settled deposits, fine, 20% cross-sectional area loss, start 2501X_15 25b246-7c 00:00:32 32.45 OBX Other obstacles, other object in invert from 04 o'clock to 08 o'clock, 25% cross-sectional area loss; stone ?? 32.46 F01 DES Settled deposits, fine, 20% cross-sectional area loss, finish 00:02:43 426173-80	0.00 S01 DES Settled deposits, fine, 20% cross-sectional area loss, start 2501X.15 25b246-7c 2.69 JN Junction at 03 o'clock, 100mm dia 00:00:32 Obx Other obstacles, other object in invert from 04 o'clock to 08 o'clock, 25% cross-sectional area loss: stone?? 32.45 OBX Other obstacles, other object in invert from 04 o'clock to 08 o'clock, 25% cross-sectional area loss: stone?? Downstream Depth: m								
0.00 S01 DES Settled deposits, fine, 20% cross-sectional area loss, start 2501X_15 25b246-7c 00:00:32 DES Settled deposits, fine, 20% cross-sectional area loss, start 2501X_15 25b246-7c 00:00:32 OBX Other obstacles, other object in invert from 04 o'clock to 08 o'clock, 25% cross-sectional area loss: stone ?? 32.45 OBX Other obstacles, other object in invert from 04 o'clock to 08 o'clock, 25% cross-sectional area loss: stone ?? 32.46 F01 DES Settled deposits, fine, 20% cross-sectional area loss, finish 00:02:43 Downstream	0.00 S01 DES Settled deposits, fine, 20% cross-sectional area loss, start 2501X_15 250246-7c 2.69 JN Junction at 03 o'clock, 100mm dia 00:00:32 Other obstacles, other object in invert from 04 o'clock to 08 o'clock, 25% cross-sectional area loss: stone ?? 32.45 OBX Other obstacles, other object in invert from 04 o'clock to 08 o'clock, 25% cross-sectional area loss: stone ?? 32.46 Fol DES Settled deposits, fine, 20% cross-sectional area loss, finish Downstream Depth: m			0.00	МН	Start node, manhole, reference: UU 2501	00:00:00		
2501X_15 250246-7c 2.69 JN Junction at 03 o'clock, 100mm dia 00:00:32 32.45 OBX Other obstacles, other object in invert from 04 o'clock to 08 o'clock, 25% cross-sectional area loss: stone ?? Downstream 2501X_15 250246-7c 00:00:32 UU 2501X_3d 426f73-80	2501X_15 25b246-7c 2.69 JN Junction at 03 o'clock, 100mm dia 00:00:32 Obs. Other obstacles, other object in invert from 04 o'clock to 08 o'clock, 25% cross-sectional area loss; stone?? 2501X_15 25b246-7c 00:00:43 UU 2501X_3d 426f73-80 Downstream Depth: m			0.00	WL	Water level, 0% of the vertical dimension			
2.69 JN Junction at 03 o'clock, 100mm dia 00:00:32 32.45 OBX Other obstacles, other object in invert from 04 o'clock to 08 o'clock, 25% cross-sectional area loss: stone ?? 32.46 F01 DES Settled deposits, fine, 20% cross-sectional area loss, finish 00:00:43 UU 2501X_3d 426f73-80	2.69 JN Junction at 03 o'clock, 100mm dia 00:00:32 32.45 OBX Other obstacles, other object in invert from 04 o'clock to 08 o'clock to 08 o'clock, 25% cross-sectional area loss: stone ?? 32.46 F01 DES Settled deposits, fine, 20% cross-sectional area loss, finish 00:02:43 Downstream Depth: m			0.00 S01	DES	Settled deposits, fine, 20% cross-sectional area loss, start		2501X_15	
o'clock, 25% cross-sectional area loss: stone ?? 2501X_3d 426f73-80 32.46 F01 DES Settled deposits, fine, 20% cross-sectional area loss, finish 00:02:43 Downstream	o'clock, 25% cross-sectional area loss: stone ?? 2501X_3d 426f73-80 Downstream Depth: m			2.69	JN	Junction at 03 o'clock, 100mm dia	00:00:32	250246-7C	
o'clock, 25% cross-sectional area loss: stone ?? 2501X_3d 426f73-80 32.46 F01 DES Settled deposits, fine, 20% cross-sectional area loss, finish 00:02:43 Downstream	o'clock, 25% cross-sectional area loss: stone ?? 2501X_3d 426f73-80 Downstream Depth: m								
o'clock, 25% cross-sectional area loss: stone ?? 32.46 F01 DES Settled deposits, fine, 20% cross-sectional area loss, finish 00:02:43 Downstream	o'clock, 25% cross-sectional area loss: stone ?? 2501X_3d 426f73-80 Downstream Depth: m								
o'clock, 25% cross-sectional area loss: stone ?? 32.46 F01 DES Settled deposits, fine, 20% cross-sectional area loss, finish 00:02:43 Downstream	o'clock, 25% cross-sectional area loss: stone ?? 2501X_3d 426f73-80 Downstream Depth: m	1							
o'clock, 25% cross-sectional area loss: stone ?? 32.46 F01 DES Settled deposits, fine, 20% cross-sectional area loss, finish 00:02:43 Downstream	o'clock, 25% cross-sectional area loss: stone ?? 2501X_3d 426f73-80 Downstream Depth: m	•							
o'clock, 25% cross-sectional area loss: stone ?? 32.46 F01 DES Settled deposits, fine, 20% cross-sectional area loss, finish 00:02:43 Downstream	o'clock, 25% cross-sectional area loss: stone ?? 2501X_3d 426f73-80 Downstream Depth: m								
o'clock, 25% cross-sectional area loss: stone ?? 32.46 F01 DES Settled deposits, fine, 20% cross-sectional area loss, finish 00:02:43 Downstream	o'clock, 25% cross-sectional area loss: stone ?? 32.46 F01 DES Settled deposits, fine, 20% cross-sectional area loss, finish Depth: m								
o'clock, 25% cross-sectional area loss: stone ?? 32.46 F01 DES Settled deposits, fine, 20% cross-sectional area loss, finish 00:02:43 Downstream	o'clock, 25% cross-sectional area loss: stone ?? 32.46 F01 DES Settled deposits, fine, 20% cross-sectional area loss, finish 00:02:43 Downstream Depth: m								
o'clock, 25% cross-sectional area loss: stone ?? 32.46 F01 DES Settled deposits, fine, 20% cross-sectional area loss, finish 00:02:43 Downstream	o'clock, 25% cross-sectional area loss: stone ?? 32.46 F01 DES Settled deposits, fine, 20% cross-sectional area loss, finish Depth: m								
426f73-80 32.46 F01 DES Settled deposits, fine, 20% cross-sectional area loss, finish 00:02:43 Downstream	32.46 F01 DES Settled deposits, fine, 20% cross-sectional area loss, finish 00:02:43 Downstream Depth: m			32.45	OBX	Other obstacles, other object in invert from 04 o'clock to 08	00:02:43	UU	
Downstream	Downstream Depth: m			32.46 F01	DES		00:03:43		
	Depth: m	Dov	vnstream	<u>02.40</u> FUI	DEG	Octado deposito, iirie, 2070 Giossisectional alea 1088, IIIIISII	00.02.43		
•									

STR Grade SER No. Def

STR Mean

0.0

STR Total

0.0

STR Peak

0.0

STR No. Def

SER Grade

0.0

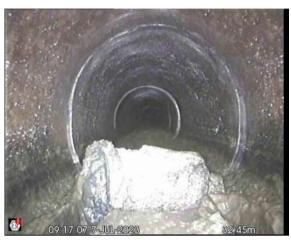
SER Mean

SER Peak

SER Total

0.0

Tel. 08000 266623


Section Pictures - 07/07/2023 - UU 2501X

 Item No.
 Inspection Direction
 PLR
 Client's Job Ref
 Contractor's Job Ref

 1
 Downstream
 UU 2501X

UU 2501X_1525b246-7c97-4a47-8638-d2ac21bcdff2_20230712_ 151704_481.jpg, 0.00 m Settled deposits, fine, 20% cross-sectional area loss, start

UU
2501X_3d426f73-80a1-4f90-a740-7d70d26a2f4f_20230712_1
51908_456.jpg, 00:02:43, 32.45 m
Other obstacles, other object in invert from 04 o'clock to 08
o'clock, 25% cross-sectional area loss, stone ??

Section Inspection - 07/07/2023 - UpstreamX

Item No.	Insp. No.	Date:	Time:	Client`s Job Ref	Weather	Pre Cleaned	PLR
2	1	07/07/23	16:18	Not Specified	Not Specified	Yes	UPSTREAMX
Ope	Operator Vehicle		Camera	Preset Length	Legal Status	Alternative ID	
Not Sp	ecified	Not Sp	ecified	Not Specified	Not Specified	Not Specified	Not Specified

Town or Village:	Scale Gill Road	Inspection Direction:	Upstream	Upstream Node:	UPSTREAM
Road:	Moor Row	Inspected Length:	41.70 m	Upstream Pipe Depth:	
Location:		Total Length:	41.70 m	Downstream Node:	UU 2501
Surface Type: Joint Length:			Downstream Pipe Depth:		
Use:	Combined	·	Pipe Shape:	Circular	
Type of Pipe:	Gravity drain/sewer		Dia/Height:	300 mm	
Flow Control:			Material:	Vitrified clay	
Year Constructed:	Not Specified		Lining Type:	No Lining	
Inspection Purpose:	Routine inspection		Lining Material:	No Lining	
Comments:					

Scale:	1:362	Position [m]	Code	Observation	MPEG	Photo	Grade
	Depth: m						
(0.00	МН	Start node, manhole, reference: UU 2501	00:00:00		
		0.00	WL	Water level, 0% of the vertical dimension			
		<u>0.00</u> S01	DES	Settled deposits, fine, 10% cross-sectional area loss, start	00:00:27	Upstream X_1f9e9eb a-3129-40	
†		15.48	DES	Settled deposits, fine, 20% cross-sectional area loss	00:01:14	Upstream X_16a788 4a-b1a9-4	4
		41.64 F01	DES	Settled deposits, fine, 10% cross-sectional area loss, finish Other obstacles, other object in invert from 04 o'clock to 08 o'clock, 25% cross-sectional area loss	00:00:27	Upstream X d0f13ee	3
				O GIOCK, Z5% CIOSS-SECHODAL AREA IOSS		∧ auri3ee	

STR Grade SER No. Def

STR Peak STR Mean

STR No. Def

Structural Defects

STR Total

SER Grade

5.0

SER Total

99.0

Service & Operational Observations

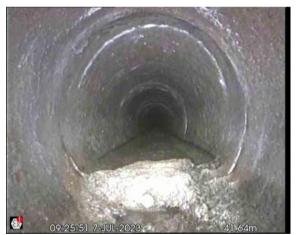
SER Mean

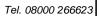
2.4

SER Peak

12.0

Section Pictures - 07/07/2023 - UpstreamX


Item No.	Inspection Direction	PLR	Client`s Job Ref	Contractor`s Job Ref
2	Unstream	UPSTREAMX		


UpstreamX_1f9e9eba-3129-4080-a726-869b478841a0_20230 712_152033_962.jpg, 00:00:27, 0.00 m Settled deposits, fine, 10% cross-sectional area loss, start

UpstreamX_16a7884a-b1a9-40ba-a95e-05f619c9b81d_20230 712_152100_901.jpg, 00:01:14, 15.48 m Settled deposits, fine, 20% cross-sectional area loss

UpstreamX_d0f13ee9-871a-4629-ba44-8d6ef983a3a5_20230 712_152448_915.jpg, 00:03:03, 41.64 m Other obstacles, other object in invert from 04 o'clock to 08 o'clock, 25% cross-sectional area loss

Section Inspection - 07/07/2023 - Culvert 1X

Item No.	Insp. No.	Date:	Time:	Client`s Job Ref	Weather	Pre Cleaned	PLR
3	1	07/07/23	16:19	Not Specified	Not Specified	Yes	CULVERT 1X
Ope	rator	Veh	icle	Camera	Preset Length	Legal Status	Alternative ID
Not Sp	ecified	Not Sp	ecified	Not Specified	Not Specified	Not Specified	Not Specified

Town or Village:	Scale Gill Road	Inspection Direction:	Downstream	Upstream N	Node:	CULVERT 1
Road:	Moor Row	Inspected Length:	16.50 m	Upstream F	Pipe Depth:	
Location:		Total Length:	16.50 m	Downstrea	m Node:	CULVERT 2
Surface Type:		Joint Length:		Downstream Pipe Depth:		
Use:	Surface water	•	Pipe Shape:	Rectangula	r	
Type of Pipe:	Gravity drain/sewer		Dia/Height:	380 mm	Width:	350 mm
Flow Control:			Material:	Masonry (ra	indom)	
Year Constructed:	Not Specified		Lining Type:	No Lining		
Inspection Purpose:	Routine inspection		Lining Material:	No Lining		

Scale:	1:143	Position [m]	Code	Observation	MPEG	Photo	Grade
	Depth: m Culvert 1						
		0.00	ОС	Start node, other special chamber, reference: Culvert 1: open pipe	00:00:00		
		0.00	WL	Water level, 10% of the vertical dimension	00:00:03		
		0.12	DES	Settled deposits, fine, 25% cross-sectional area loss	00:00:13	Culvert 1X_d6dfd3 73-dab2-4	4
		1.08	GP	General photograph taken at this point: connecting culvert from the left ???	00:00:16	Culvert 1X_10949 04e-3591-	
		2.36	OBX	Other obstacles, other object in invert from 03 o'clock to 07 o'clock, 30% cross-sectional area loss: displaced stone	00:00:21	Culvert 1X_86003 402-d99d-	5
•		6.00	DES	Settled deposits, fine, 15% cross-sectional area loss	00:00:58	Culvert 1X_8f182d 66-4aff-4a	3
		16.13_	DER	Settled deposits, coarse, 40% cross-sectional area loss	00:01:39	Culvert	4
						1X_41f6f3 eb-d91f-48	
		16.50	SA	Survey abandoned: unable to pass	00:02:01		

	Cor	istruction Feati	ures		Miscellaneous Features				
	S	tructural Defec	ts		Service & Operational Observations				
STR No. Def	STR Peak	STR Mean	STR Total	STR Grade	SER No. Def SER Peak SER Mean SER Total SER				
0	0.0	0.0	0.0	1.0	4	10.0	1.3	22.0	5.0

Section Pictures - 07/07/2023 - Culvert 1X

Item No.	Inspection Direction	PLR	Client`s Job Ref	Contractor`s Job Ref
3	Downstream	CULVERT 1X		

Culvert 1X_d6dfd373-dab2-499d-98f8-233d747fb44b_20230712_152 754_219.jpg, 00:00:13, 0.12 m Settled deposits, fine, 25% cross-sectional area loss

Tel. 08000 266623

Section Pictures - 07/07/2023 - Culvert 1X

 Item No.
 Inspection Direction
 PLR
 Client's Job Ref
 Contractor's Job Ref

 3
 Downstream
 CULVERT 1X

Culvert

1X_8f182d66-4aff-4aeb-830d-9c08d6412329_20230712_1528
53_392.jpg, 00:00:58, 6.00 m
Settled deposits, fine, 15% cross-sectional area loss

Culvert 1X_41f6f3eb-d91f-4842-b36a-a9daab8be696_20230712_152 917_449.jpg, 00:01:39, 16.13 m Settled deposits, coarse, 40% cross-sectional area loss

Section Inspection - 07/07/2023 - Culvert 2X

Item No.	Insp. No.	Date:	Time:	Client's Job Ref	Weather	Pre Cleaned	PLR
4	2	07/07/23	16:24	Not Specified	Not Specified	Yes	CULVERT 2X
Ope	rator	Veh	icle	Camera	Preset Length	Legal Status	Alternative ID
Not Sp	ecified	Not Sp	ecified	Not Specified	Not Specified	Not Specified	Not Specified

Town or Village:	Scale Gill Road	Inspection Direction:	Upstream	Upstream Node:	CULVERT 2
Road:	Moor Row	Inspected Length:	41.28 m	Upstream Pipe Depth:	
Location:		Total Length:	41.28 m	Downstream Node:	S1
Surface Type:		Joint Length:		Downstream Pipe Depth:	:
Use:	Surface water	-	Pipe Shape:	Circular	
Type of Pipe:	Gravity drain/sewer		Dia/Height:	400 mm	
Flow Control:			Material:	Vitrified clay	
Year Constructed:	Not Specified		Lining Type:	No Lining	
Inspection Purpose:	Routine inspection		Lining Material:	No Lining	
Comments:			1		

Recommendations:

Scale	Recom	menda	tions:										
Miscellaneous Features Construction Features Structural Defects STR No. Def STR Peak STR Mean STR Total STR Grade SER No. Def SER Peak SER Mean SER Total SER Grade SER Grade SER No. Def SER Reak SER Mean SER Total SER Grade SER Ro. Def SER Reak SER Mean SER Total SER Grade SER Grade SER Total SER Grade SER Ro. Def SER Reak SER Mean SER Total SER Grade SER No. Def SER Reak SER Mean SER Total SER Grade SER No. Def SER Reak SER Mean SER Total SER Grade SER Ro. Def SER Reak SER Mean SER Total SER Grade SER Ro. Def SER Reak SER SER Mean SER Total SER Grade SER Total SER Gra	Scale:	1:35	8 Positio	on [m] C	ode	Observ	ation			M	PEG	Photo	Grade
0.00 WL Water level, 0% of the vertical dimension 00:00:00 41.27 RM Roots, mass, 10% cross-sectional area loss 00:03:23 3 41.28 SA Survey abandoned: unable to pass 00:03:24 Construction Features Structural Defects Structural Defects Structural Defects Structural Defects STR No. Def STR Peak STR Peak STR Peak SER Mean STR Total STR Grade SER No. Def STR Peak SER Mean SER Total SER Grade			m										
41.27 RM Roots, mass, 10% cross-sectional area loss 00:03:23 3 41.28 SA Survey abandoned: unable to pass 00:03:24 Construction Features Structural Defects Structural Defects Structural Defects Structural Defects Structural STR No. Def SER Peak SER Mean SER Total SER Grade SER No. Def SER Mean SER SER total SER Grade SER Grade SER No. Def SER Mean SER SER Mean SER Grade SER No. Def SER Mean SER SER Mean SER SER Mean SER Grade SER No. Def SER Mean SER SER			0.00	<u>) </u>	ИΗ	Start no	ode, manhole,	reference: S1		00:	00:00		
41.28 SA Survey abandoned: unable to pass 00:03:24 Construction Features			0.00	<u>) </u>	VL	Water I	evel, 0% of the	e vertical dimen	sion	00:	00:00		
41.28 SA Survey abandoned: unable to pass 00:03:24 Construction Features	*		41.27	, E	RM	Roots.	mass. 10% cro	oss-sectional ar	ea loss	00:	03:23		3
Construction Features Structural Defects STR No. Def STR Peak STR Mean STR Total STR Grade SER No. Def SER Peak SER Mean SER Total SER Grade			71.21	_ '`	CIVI	110013,	111033, 1070 010	33-300lional al	Ca 1033	00.	00.20		3
Structural Defects Service & Operational Observations STR No. Def STR Peak STR Mean STR Total STR Grade SER No. Def SER Peak SER Mean SER Total SER Grade			41.28	<u>;</u>	SA	Survey	abandoned: u	nable to pass		00:	03:24		
Structural Defects Service & Operational Observations STR No. Def STR Peak STR Mean STR Total STR Grade SER No. Def SER Peak SER Mean SER Total SER Grade			Cor	nstruction Feat	IIIPS				Misc	ellaneous Feat	tures		
STR No. Def STR Peak STR Mean STR Total STR Grade SER No. Def SER Peak SER Mean SER Total SER Grade									Service & (Operational Of	servatio	ns	
	STR No	o. Def				R Total	STR Grade	SER No. Def					ER Grade

Section Inspection - 07/07/2023 - Culvert 2X

Item No.	Insp. No.	Date:	Time:	Client's Job Ref	Weather	Pre Cleaned	PLR
4	1	07/07/23	16:19	Not Specified	Not Specified	Yes	CULVERT 2X
Ope	rator	Veh	icle	Camera	Preset Length	Legal Status	Alternative ID
Not Sp	ecified	Not Sp	ecified	Not Specified	Not Specified	Not Specified	Not Specified

Town or Village:	Scale Gill Road	Inspection Direction:	Downstream	Upstream Node:	CULVERT 2
Road:	Moor Row	Inspected Length:	4.71 m	Upstream Pipe Depth:	
Location:		Total Length:	41.28 m	Downstream Node:	S1
Surface Type:		Joint Length:		Downstream Pipe Depth:	
Use:	Surface water		Pipe Shape:	Circular	
Type of Pipe:	Gravity drain/sewer		Dia/Height:	400 mm	
Flow Control:			Material:	Vitrified clay	
Year Constructed:	Not Specified		Lining Type:	No Lining	
Inspection Purpose:	Routine inspection		Lining Material:	No Lining	

Comments:

Scale:	1:358	Position [m]	Code	Observation		MPEG	Photo	Grade
	Depth: m ulvert 2							
(0.00	МН	Start node, manhole, reference: Culvert 2		00:00:00		
		0.00	WL	Water level, 0% of the vertical dimension		00:00:07		
		0.10	DER	Settled deposits, coarse, 15% cross-sections	al area loss	00:00:07	Culvert 2X_c420a 4d8-6f79-4	3
		4.21	DER	Settled deposits, coarse, 60% cross-sections	al area loss	00:00:19	Culvert 2X_3d796 954-06bb-	4
		4.71	SA	Survey abandoned: unable to pass		00:00:38	304 0000	
•								
		41.28		End of pipe				
(71.20		End of pipe				
	S1 Depth: m							
		Construction	Features		Miscellaneou	s Features		
		Structural		Ser	vice & Operation		tions	

STR Grade SER No. Def

SER Peak

SER Mean

2.1

0.0

STR Total

0.0

STR Peak STR Mean

0.0

STR No. Def

SER Grade

4.0

SER Total

10.0


Tel. 08000 266623

Section Pictures - 07/07/2023 - Culvert 2X

Item No.	Inspection Direction	PLR	Client`s Job Ref	Contractor`s Job Ref
4	Downstream	CULVERT 2X		

Culvert 2X_3d796954-06bb-49e0-85b5-42e8f7daafe1_20230712_153 133_483.jpg, 00:00:19, 4.21 m Settled deposits, coarse, 60% cross-sectional area loss

MPEG

Photo

Grade

Section Inspection - 07/07/2023 - S1X

Item No.	Insp. No.	Date:	Time:	Client's Job Ref	Weather	Pre Cleaned	PLR
5	1	07/07/23	16:27	Not Specified	Not Specified	Yes	S1X
Ope	rator	Veh	icle	Camera	Preset Length	Legal Status	Alternative ID
Not Sp	ecified	Not Sp	ecified	Not Specified	Not Specified	Not Specified	Not Specified

Town or Village:	Scale Gill Road	Inspection Direction:	Downstream	Upstream Node:	S1
Road:	Moor Row	Inspected Length:	85.74 m	Upstream Pipe Depth:	
Location:		Total Length:	85.74 m	Downstream Node:	S1A
Surface Type:		Joint Length:		Downstream Pipe Depth:	:
Use:	Surface water	•	Pipe Shape:	Circular	
Type of Pipe:	Gravity drain/sewer		Dia/Height:	400 mm	
Flow Control:			Material:	Vitrified clay	
Year Constructed:	Not Specified		Lining Type:	No Lining	
Inspection Purpose:	Routine inspection		Lining Material:	No Lining	
Comments:					
Decemmendations					

Recommendations:

Scale:

1:743

Position [m]

Code

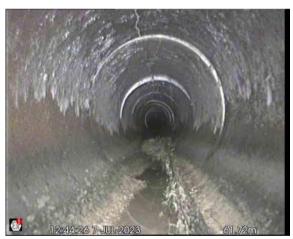
Observation

Depth: m S1 0.00 МН Start node, manhole, reference: S1 00:00:00 41.60 S01 CL Crack, longitudinal at 01 o'clock, start 00:02:43 S1X_e2f9 9fed-5821-4776-9c9e 43.05 RMRoots, mass, 20% cross-sectional area loss 00:02:48 S1X_45acf 5 c27-6d4f-4 806-ab6a-44.50 F01 CL Crack, longitudinal at 1 o'clock, finish 00:05:17 2/2 44.83 RMRoots, mass, 25% cross-sectional area loss 00:03:05 S1X_3c92 5 3e43-07ef-43e7-ab5b CL Crack, longitudinal at 11 o'clock 00:04:43 S1X_0da7 2/2 7cd8-fcb1-4675-a079 85.73 SC Pipe size changes, new size(s), 350mm high, 380mm wide: 00:07:12 S1X 4679 47fe-245fchanges to stone culvert 42d2-9d27 SA Survey abandoned: unable to pass 00:07:12 85.74

	Con	struction Feat	ıres			Misc	ellaneous Feat	ures	
	S	tructural Defec	ts		Service & Operational Observations				
STR No. Def	STR Peak	STR Mean	STR Total	STR Grade	SER No. Def SER Peak SER Mean SER Total SER Grad				
2	10.0	0.5	40.0	2.0	4 11.0 0.3 24.0				

Section Pictures - 07/07/2023 - S1X

Item No.	Inspection Direction	PLR	Client`s Job Ref	Contractor`s Job Ref
5	Downstream	S1X		


S1X_e2f99fed-5821-4776-9c9e-a2e1b8bafd3b_20230712_15 3748_131.jpg, 00:02:43, 41.60 m Crack, longitudinal at 01 o'clock, start

S1X_45acfc27-6d4f-4806-ab6a-398c2d1aa1b4_20230712_15 3627_751.jpg, 00:02:48, 43.05 m Roots, mass, 20% cross-sectional area loss

S1X_3c923e43-07ef-43e7-ab5b-b781b3bc5df2_20230712_15 3641_621.jpg, 00:03:05, 44.83 m Roots, mass, 25% cross-sectional area loss

\$1X_0da77cd8-fcb1-4675-a079-829a03bf0231_20230712_15 3819_414.jpg, 00:04:43, 61.72 m Crack, longitudinal at 11 o'clock

Section Pictures - 07/07/2023 - S1X

Item No.	Inspection Direction	PLR	Client`s Job Ref	Contractor`s Job Ref
5	Downstream	S1X		

S1X_467947fe-245f-42d2-9d27-58a3b9efde16_20230712_15 4112_037.jpg, 00:07:12, 85.73 m Pipe size changes, new size(s), 350mm high, 380mm wide, changes to stone culvert

Section Inspection - 07/07/2023 - S1aX

Item No.	Insp. No.	Date:	Time:	Client`s Job Ref	Weather	Pre Cleaned	PLR
6	6 1 07/07/23 16:27		Not Specified	Not Specified	Yes	S1AX	
Operator		Veh	icle	Camera	Preset Length	Legal Status	Alternative ID
Not Specified		Not Sp	ecified	Not Specified	Not Specified	Not Specified	Not Specified

Scale Gill Road	Inspection Direction:	Downstream	Upstream Node:	S1A
Moor Row	Inspected Length:	11.26 m	Upstream Pipe Depth:	
	Total Length:	11.26 m	Downstream Node:	S2
	Joint Length:		Downstream Pipe Depth:	
Surface water		Pipe Shape:	Circular	
Gravity drain/sewer		Dia/Height:	400 mm	
		Material:	Vitrified clay	
Not Specified		Lining Type:	No Lining	
Routine inspection		Lining Material:	No Lining	
	Moor Row Surface water Gravity drain/sewer Not Specified	Moor Row Inspected Length: Total Length: Joint Length: Surface water Gravity drain/sewer Not Specified	Moor Row Inspected Length: 11.26 m Total Length: 11.26 m Joint Length: 11.26 m Surface water Gravity drain/sewer Not Specified Pipe Shape: Dia/Height: Material: Lining Type:	Moor Row Inspected Length: 11.26 m Upstream Pipe Depth: Downstream Node: Downstream Pipe Depth: Dia/Height: 400 mm Material: Vitrified clay Not Specified Lining Type: No Lining

Comments:

Recom	nmendatio	ns:						
Scale:	1:98	Position [m]	Code	Observation		MPEG	Photo	Grade
	Depth: m							
	S1a							
		0.00	МН	Start node, manhole,	reference: S1a	00:00:00		
		0.00	WL	Water level, 0% of the	vertical dimension	00:00:00		
		0.00	VVL	water level, 076 or the	vertical dimension	00.00.00		
		2.60	RF	Roots, fine		00:00:16	S1aX_9d4	
							8a358-d88 7-4d64-8c	
1								
•								
		7.80	RF	Roots, fine		00:00:35	S1aX_83c	
							ce470-f0b c-443b-b8	
		8.25	Н	Hole in drain or sewer	from 11 o'clock to 01 o'clock	00:00:37	S1aX_454 040a4-625	
							4-4383-b5	
		11.26	OBX	Other obstacles, other	object in invert from 03 o'clock to 09	00:00:46	S1aX_ef4	
		_		o'clock, 50% cross-se	ctional area loss: brick		5af67-820 c-429f-b1a	
	S2 Depth: m							
			_					
		Construction Structural [Miscellaneous Service & Operation		ions	
					Coco a Operation			

STR Grade SER No. Def

SER Peak

SER Mean

0.0

SER Total

0	0.0	0.0	0.0	0.0
2023-06-2046	0 RG Parkin S	calegill Road I	Moor Row CA2	4 3JL

STR Total

STR No. Def STR Peak STR Mean

SER Grade

0.0

Section Pictures - 07/07/2023 - S1aX

Item No.	Inspection Direction	PLR	Client`s Job Ref	Contractor`s Job Ref
6	Downstream	S1AX		

\$1aX_9d48a358-d887-4d64-8c53-e56040260046_20230712_ 154232_072.jpg, 00:00:16, 2.60 m Roots, fine

S1aX_83cce470-f0bc-443b-b859-a585f6d0a394_20230712_1 54244_815.jpg, 00:00:35, 7.80 m Roots, fine

S1aX_ef45af67-820c-429f-b1af-b6abd90ddd0a_20230712_15 4306_174.jpg, 00:00:46, 11.26 m Other obstacles, other object in invert from 03 o'clock to 09 o'clock, 50% cross-sectional area loss, brick

Section Inspection - 07/07/2023 - S1aX

Item No.	Insp. No.	Date:	Time:	Client`s Job Ref	Weather	Pre Cleaned	PLR
6	2	07/07/23	16:19	Not Specified	Not Specified	Yes	S1AX
Operator		Veh	icle	Camera	Preset Length	Legal Status	Alternative ID
Not Sp	Not Specified Not Specif		ecified	Not Specified	Not Specified	Not Specified	Not Specified

Town or Village:	Scale Gill Road	Inspection Direction:	Upstream	Upstream Node:	S1A
Road:	Moor Row	Inspected Length:	2.71 m	Upstream Pipe Depth:	
Location:		Total Length:	11.26 m	Downstream Node:	S2
Surface Type:		Joint Length:		Downstream Pipe Depth:	
Use:	Surface water		Pipe Shape:	Circular	
Type of Pipe:	Gravity drain/sewer		Dia/Height:	400 mm	
Flow Control:			Material:	Vitrified clay	
Year Constructed:	Not Specified		Lining Type:	No Lining	
Inspection Purpose:	Routine inspection		Lining Material:	No Lining	

Comments:

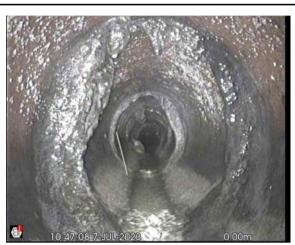
Scale:	1:98	Position [m]	Code	Observation	MPEG	Photo	Grade
D	epth: m						
		0.00	МН	Start node, manhole, reference: S2	00:00:00		
		0.00	WL	Water level, 0% of the vertical dimension	00:00:00		
		0.02	DEEJ	Attached deposits, encrustation at joint from 12 o'clock to 12 o'clock, 15% cross-sectional area loss	00:00:07	S1aX_74b 68c6f-5bd b-4b7e-b4	3
!		2.70	DEEJ	Attached deposits, encrustation at joint from 12 o'clock to 12 o'clock, 20% cross-sectional area loss	00:00:53	S1aX_85b aacd2-e3d c-47e1-ad	3
		2.71	SA	Survey abandoned: unable to pass	00:00:53		
A	1						
T							

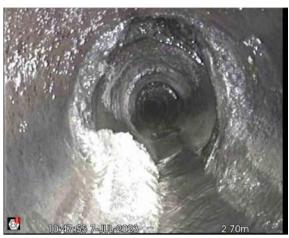
	Construction Features					Miscellaneous Features				
	Structural Defects					Service & Operational Observations				
STR No. Def	STR Peak	STR Mean	STR Total	STR Grade	SER No. Def	SER Peak	SER Mean	SER Total	SER Grade	
0	0 0.0 0.0 0.0 1.0					2.0	0.4	4.0	3.0	

End of pipe

11.26

Depth: m



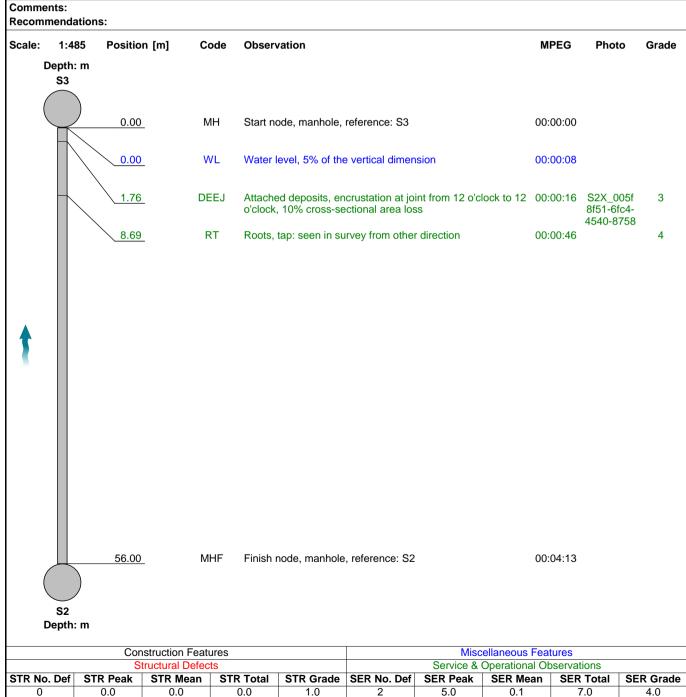


Section Pictures - 07/07/2023 - S1aX

Item No.	Inspection Direction	PLR	Client`s Job Ref	Contractor`s Job Ref
6	Upstream	S1AX		

S1aX_74b68c6f-5bdb-4b7e-b449-aba34dede2d0_20230712_ 154434_773.jpg, 00:00:07, 0.02 m Attached deposits, encrustation at joint from 12 o'clock to 12 o'clock, 15% cross-sectional area loss

S1aX_85baacd2-e3dc-47e1-ad39-c863b252ea2d_20230712_ 154515_279.jpg, 00:00:53, 2.70 m Attached deposits, encrustation at joint from 12 o'clock to 12 o'clock, 20% cross-sectional area loss



Section Inspection - 07/07/2023 - S2X

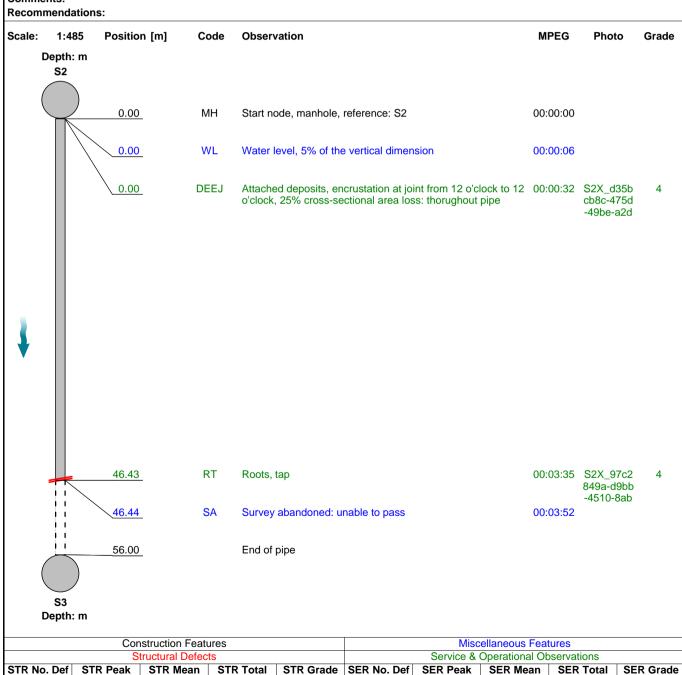
Item No.	Insp. No.	Date:	Time:	Client's Job Ref	Weather	Pre Cleaned	PLR
7	2	07/07/23	16:23	Not Specified	Not Specified	Yes	S2X
Operator		Veh	icle	Camera	Preset Length	Legal Status	Alternative ID
Not Specified		Not Sp	ecified	Not Specified	Not Specified	Not Specified	Not Specified

Town or Village:	Scale Gill Road	Inspection Direction:	Upstream	Upstream Node:	S2
Road:	Moor Row	Inspected Length:	56.00 m	Upstream Pipe Depth:	
Location:		Total Length:	56.00 m	Downstream Node:	S3
Surface Type:		Joint Length:		Downstream Pipe Depth:	
Use:	Surface water		Pipe Shape:	Circular	
Type of Pipe:	Gravity drain/sewer		Dia/Height:	300 mm	
Flow Control:			Material:	Vitrified clay	
Year Constructed:	Not Specified		Lining Type:	No Lining	
Inspection Purpose:	Routine inspection		Lining Material:	No Lining	

Section Pictures - 07/07/2023 - S2X

Item No.	Inspection Direction	PLR	Client`s Job Ref	Contractor`s Job Ref
7	Unstream	S2X		

\$2X_005f8f51-6fc4-4540-8758-8f36a8146638_20230712_155 007_199.jpg, 00:00:16, 1.76 m Attached deposits, encrustation at joint from 12 o'clock to 12 o'clock, 10% cross-sectional area loss



Section Inspection - 07/07/2023 - S2X

Item No.	Insp. No.	Date: Time:		Client`s Job Ref	Weather	Pre Cleaned	PLR
7	1	07/07/23	16:21	Not Specified	Not Specified	Yes	S2X
Ope	rator	Vehicle		Camera	Preset Length	Legal Status	Alternative ID
Not Sp	ecified	Not Specified		Not Specified	Not Specified	Not Specified	Not Specified

Town or Village: Scale Gill Road **Inspection Direction:** Downstream **Upstream Node:** S2 Road: Moor Row Inspected Length: **Upstream Pipe Depth:** 46.44 m Location: **Total Length:** 56.00 m **Downstream Node:** S3 Surface Type: Joint Length: **Downstream Pipe Depth:** Use: Pipe Shape: Surface water Circular Type of Pipe: Gravity drain/sewer Dia/Height: 300 mm Flow Control: Material: Vitrified clay Year Constructed: Not Specified **Lining Type:** No Lining **Inspection Purpose:** Routine inspection **Lining Material:** No Lining

Comments:

0.0

0.0

1.0

5.0

0.2

10.0

0.0

4.0

Tel. 08000 266623

Section Pictures - 07/07/2023 - S2X

Item No.	Inspection Direction	PLR	Client`s Job Ref	Contractor`s Job Ref
7	Downstream	S2X		

S2X_d35bcb8c-475d-49be-a2de-f415b27af1f6_20230712_15 4751_477.jpg, 00:00:32, 0.00 m Attached deposits, encrustation at joint from 12 o'clock to 12 o'clock, 25% cross-sectional area loss, thorughout pipe

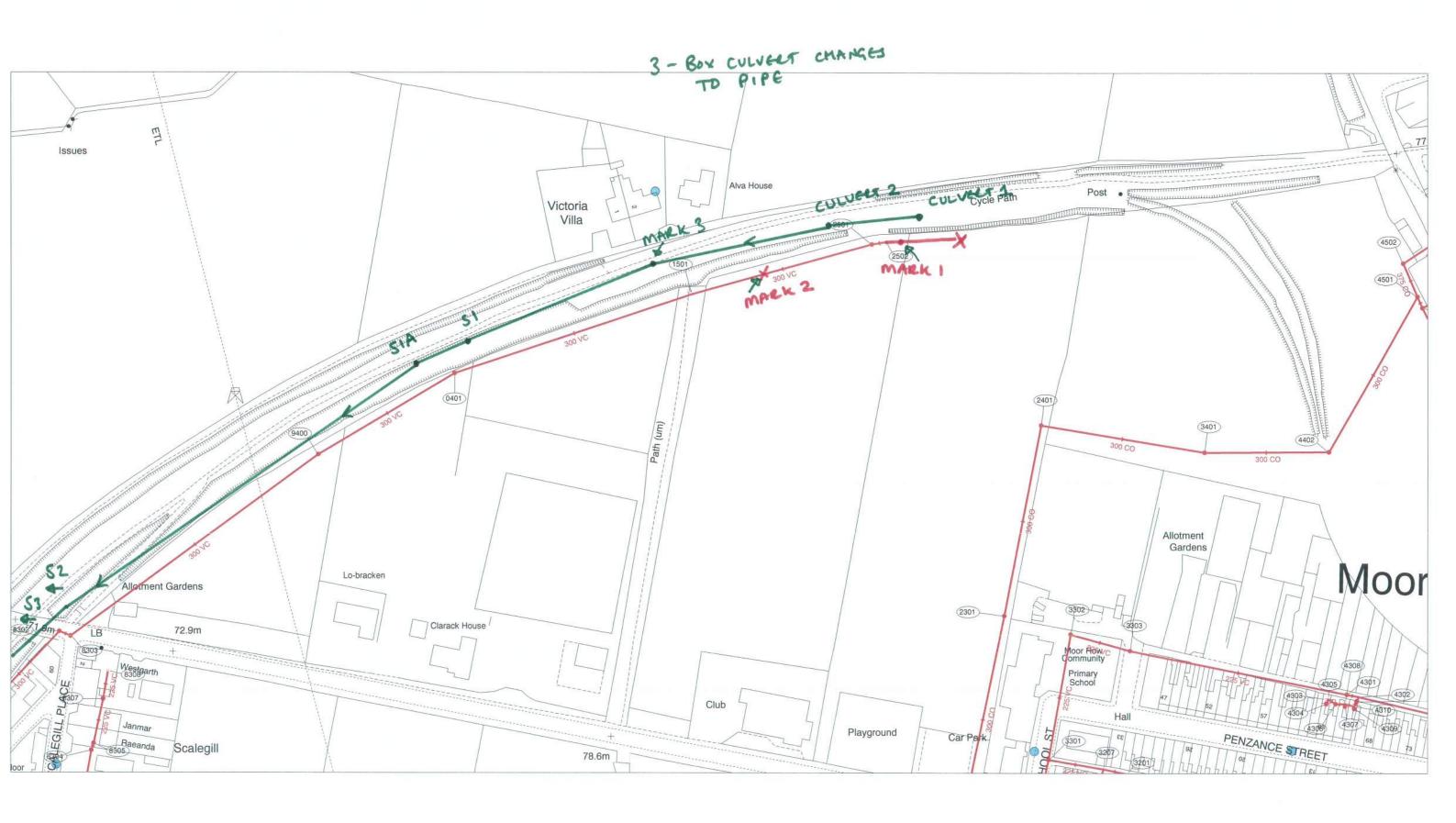
Section Inspection - 07/07/2023 - S3X

Item No.	Insp. No.	Date: Time:		Client`s Job Ref	Weather	Pre Cleaned	PLR
8	1	07/07/23	16:22	Not Specified	Not Specified	Yes	S3X
Ope	Operator Vehicle		Camera	Preset Length	Legal Status	Alternative ID	
Not Sp	ot Specified Not Specified Not Specified Not Specified		Not Specified	Not Specified			

Town or Village:	Scale Gill Road	Inspection Direction:	Upstream	Upstream Node:	S3
Road:	Moor Row	Inspected Length:	50.60 m	Upstream Pipe Depth:	
Location:		Total Length:	50.60 m	Downstream Node:	OUTFALL
Surface Type:		Joint Length:		Downstream Pipe Depth:	
Use:	Surface water		Pipe Shape:	Circular	
Type of Pipe:	Gravity drain/sewer		Dia/Height:	400 mm	
Flow Control:			Material:	Vitrified clay	
Year Constructed:	Not Specified		Lining Type:	No Lining	
Inspection Purpose:	Routine inspection		Lining Material:	No Lining	
Commonto					

Comm		1036. 1000	une inspection				Liming Water	ai. NO	Liffing			
	ents: imendati	ons:										
Scale:			n [m] C	ode	Observ	/ation				MPEG	Photo	Grade
	Depth: n	n										
		0.00	_	1H	Start no	ode, manhole,	reference: Outl	all		00:00:00		
		0.00	_ V	۷L	Water I	evel, 15% of th	ne vertical dime	nsion		00:00:03		
		9.58	_ DE	ΞEJ	Attache o'clock, of pipe	ed deposits, en , 10% cross-se	crustation at jo	int from 12 o'cl s: Through ou	lock to 12 t length	00:00:48	S3X_f002 6768-a756 -481a-961	3
		9.58	_	OJ		ion, dripping at	joint at 12 o'clo	ock: through ou	ut pipe	00:00:48		
†												
•												
		50.60	M	HF	Finish r	node, manhole	, reference: S3			00:03:54		
	S3 Depth: n	n										
		Con	struction Feat	Iros				Mico	ellaneous F	Patures		
			tructural Defec						Operational		tions	
STR N		STR Peak	STR Mean	STF	R Total	STR Grade	SER No. Def	SER Peak	SER Mea	n SER	Total SI	R Grade
0)	0.0	0.0		0.0	1.0	1	2.0	0.0	2	2.0	3.0

Tel. 08000 266623


Section Pictures - 07/07/2023 - S3X

Item No.	Inspection Direction	PLR	Client`s Job Ref	Contractor`s Job Ref
8	Unstream	S3X		

S3X_78760974-7af3-4e6e-be33-efc7330ed7c5_20230712_15 5451_998.jpg, 00:00:48, 9.58 m Infiltration, dripping at joint at 12 o'clock, through out pipe

Disclaimer: Condition Survey – to be used as a guide only

MANHOLE RECORD CHART

JOB NO.

SURVEYOR

REFERENCE MH UU2501					DATE	07/0	7/2023			
LOCATION RG Parkin Scalegill Road Moor Row										
CARRIAGEWAY FOO	TPATH [\	/ERGE		OUTSI	DE HIGH	HWAY B	OUNDA	ARY 🗸	
COVER SHAPE OTHER										
HEAVY DUTY MEDI	UM DUT	Y	LI	GHT DU	JTY	S	IZE _	500 di	a	
COVER CONDITION OK	/	ATTEN ⁻	TION RE	EQUIRE						
CHAMBER REGULATING COURSE OK SHAFT OK CHAMBER OK BENCHING / CHANNEL OK STEP IRONS / LADDER OK	X ✓		ATTEN ATTEN	ITION RI ITION RI ITION RI ITION RI	EQUIREI EQUIREI EQUIREI		SIZ SIZ	_	0 x 1000	
CONSTRUCTION BRICK ✓ PRECAST	IN	ISITU CO	ONC.	В	OLTED S	SEC.	o [.]	THER		
SERVICE SILT / DEBRIS SURCHARGE EVIDENT		EPTH _ EPTH _			NFILTRA		HERE _		VERMIN	N
FOUL SURFACE WATER		C	OMBIN	ED] WA	TERCO	URSE		T/EFFLU	ENT
CHAMBER CONTENT	INCOMI	NG PIPE	S				OUTGO	DING PIP	PES	
(I) PIPE	Α	В	С	D	Е		Χ	Y	Z	
(II) DEPTH TO INV. (mm)	2550						2560			
(III) SIZE (mm)	300 O						300 O			
(IV) SHAPE)(V) BACKDROP (mm)	0						U			
7(-)		I I							1	'
DETAILS x			LO	CATION	I		сом	MENTS		
A										

SHEET NO.

APPENDIX C - CALCULATIONS

PRE-DEVELOPMENT RUNOFF

LIVE DESIGN CALCULATIONS

TREATMENT CALCULATIONS

	Job Number	Page Number
Wallingford Runoff	K40461	1 of 4
Estimation	Calc by	Check by
	OS	
Scalegill Road	Date	Revised
Moor Row	27/11/2023	

DESIGN BASIS MEMORANDUM - PEAK RATE OF RUN-OFF CALCULATION

Design Brief

The following peak rate of run-off calculations have been undertaken to determine changes in peak flow resulting from the development of a greenfield or brownfield site. These calculations are for the **Peak Rate of Run-Off** requirements only.

Background Information & References

The site area **is less than** 200ha and the Greenfield (pre-development) calculation has been undertaken in accordance with methodology described by Marshall & Bayliss, Institute of Hydrology, Report No. 124, Flood Estimation for Small Catchments, 1994 (IoH 124).

In addition, the following references have been used in the preparation of these calculations:

- Interim Code of Practice for Sustainable Drainage Systems (SUDS), CIRIA, 2004
- CIRIA, The SUDS Manual, Report C753, 2015
- Designing for Exceedance in Urban Drainage good practice, CIRIA Report C635, 2006
- Flood Estimation Handbook (FEH)
- Flood Studies Report (FSR), Volume 1, Hydrological Studies, 1993
- Flood Studies Supplementary Report No 2 (FSSR2), The Estimation of Low Return Period Floods
- Flood Studies Supplementary Report No 14 (FSSR14), Review of Regional Growth Curves, 1983
- Planning Practice guidance of the National Planning Policy Framework, Recommended national precautionary sensitivity ranges for peak rainfall intensities, peak river flows, offshore wind speeds and wave heights.

Proposed Land Use Changes

Changes to the existing site are as follows:

Greenfield Site to Brownfield Site

Results Summary

Rate of Run-Off (I/s)							
Event	Greenfield						
Q1	5.3						
QBAR	6.1						
Q10	8.4						
Q30	10.3						
Q100	12.6						
Q100 + 50% CC	19.0						

	Job Number	Page Number
Wallingford Runoff	K40461	2 of 4
Estimation	Calc by	Check by
	OS	
Scalegill Road	Date	Revised
Moor Row	27/11/2023	

SITE AREAS (LAND COVER AREAS)

Existing Impermeable & Permeable Land Cover

Total Site Area: 1.5352 ha 15352 m²

Existing Impermeable & Permeable Land Cover

Land Cover	Are	a	Percentage of total site area
	m²	ha	
Total impermeable area	0.0	0.000	0%
Remaining permeable area	15352.0	1.535	100%

Proposed Land Cover Areas

Land Cover	Are	a	Percentage of total site
Lailu Covei	m²	ha	area
Total housing roof area	1956	0.196	13%
Total road, parking and paved area	3889	0.389	25%
Basin	794	0.079	5%
Garden & landscaped areas	8712.8	0.871	57%

1.0

Proposed Impermeable & Permeable Land Cover

Land Cover	Are	a	Percentage of total site
Land Cover	m²	ha	area
Total impermeable area	5845.2	1.535	38%
Remaining permeable area	8712.8	0.871	57%

Б					.	
K	G	PA	K	K	IN	2
	97 Kin	g Street Lar			RH	

Tel:01524 32548 Email: office@rgparkinslancaster.co.uk

Wallingford Runoff	Job Number K40461	Page Number 3 of 4
Estimation	Calc by OS	Check by
Scalegill Road	Date	Revised
Moor Row	27/11/2023	

ESTIMATION OF QBAR (RURAL) (GREENFIELD RUNOFF RATE)

IoH 124 based on research on small catchments < 25 km2

Method is based on regression analysis of response times using catchments from 0.9 to 22.9 km²

QBAR_{rural} is mean annual flood on rural catchment

QBAR_{rural} depends on SOIL, SAAR and AREA most significantly

0.00108 x AREA^{0.89} x SAAR^{1.17} x SOIL^{2.17} QBAR_{rural}

For SOIL refer to FSR Vol 1, Section 4.2.3 and 4.2.6 and IoH 124

Contributing watershed area

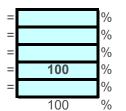
 m^2 Area, A 500000 insert 50 ha for EA km^2 0.500 small catchment method

> 50.000 ha

SAAR 1210 From FEH Web Service (point data) mm

Soil index based on soil type, SOIL = (0.1S1+0.3S2+0.37S3+0.47S4+0.53S5)

(S1+S2+S3+S4+S5)


Where: S1 S2

S3

S4

S5

SOIL So,

0.47

UK Suds website provides a value of 4 based on the equivalent Host value. This seems reasonable based on ground

investigation.

Note: for very small catchments it is far better to rely on local site investigation information.

QBAR_{rural} m³/s 0.458

458.0 I/s

Small rural catchments less than 50 ha

The Environment Agency recommends that this method should be used for development sizes from 0 to 50 ha and should linearly interpolate the formula to 50 ha.

 m^2 6639 So, catchment size 0.007

 $\,km^2\,$ 0.664 ha

Excluding significant open space which would remain disconnected from the positive drainage system during flood

events.

 m^3/s QBAR_{rural site} 0.00608

6.1 l/s

Wallingford Runoff	Job Number K40461	Page Number 4 of 4	
	Calc by OS	Check by	
Scalegill Road		Revised	
Moor Row	27/11/2023		

GREENFIELD RETURN PERIOD ORDINATES

QBAR can be factored by the UK FSR regional growth curves for return periods <2 years and for all other return periods to obtain peak flow estimates for required return periods.

These regional growth curves are constant throughout a region, whatever the catchment type and size.

See Table 2.39 for region curve ordinates Use FSSR2 Growth Curves to estimate Qbar Reference- Pg 173-FSR V.1, ch 2.6.2

Region

= 10

Use Figure A1.1 to determine region

GREENFIELD RETURN PERIOD FLOW RATES

Return Period	Ordinate	Q (I/s)
1	0.87	5.29
2	0.93	5.66
5	1.19	7.24
10	1.38	8.39
25	1.64	9.97
30	1.7	10.34
50	1.85	11.25
100	2.08	12.65
200	2.32	14.11
500	2.73	16.60
1000	3.04	18.49

Ordinate from FSSR2

Interpolation taken from Figure 24.2 (pg 515) SuDS Manual

R G PARKINS

File: FlowModel OS.pfd Network: Storm Network 1

Oliver Sugden 26/01/2024

Page 1

Nodes

Name	Area (ha)	T of E (mins)	Cover Level (m)	Diameter (mm)	Easting (m)	Northing (m)	Depth (m)
S01	0.040	5.00	78.407	1050	300139.914	514321.910	1.427
S02	0.051	5.00	77.570	1050	300146.227	514356.385	1.445
S03	0.036	5.00	76.575	1500	300179.845	514376.090	1.853
S04	0.030	5.00	76.319	1350	300183.985	514385.602	1.666
S05	0.070	5.00	75.957	1350	300182.914	514400.263	1.672
S06	0.082	5.00	75.454	1500	300181.847	514420.544	1.677
S07	0.050	5.00	74.799	1500	300188.324	514445.954	1.678
S08	0.075	5.00	74.377	1500	300195.787	514460.837	1.533
S09	0.076	5.00	73.847	1500	300195.726	514482.824	1.369
S10	0.023	5.00	73.557	1500	300199.007	514494.327	1.353
S11 inlet	0.000	5.00	73.100		300208.950	514505.286	1.400
S12	0.083	5.00	73.100		300225.837	514523.267	1.450
S13			73.000	1500	300225.194	514526.275	1.388
S14			71.900	1350	300222.071	514538.058	0.520
S15			70.850	1350	300180.727	514526.663	0.805
S16			70.300	1350	300082.385	514493.606	0.600
S17	0.047	5.00	76.470	1350	300196.088	514373.064	1.350

<u>Links</u>

Name	US Node	DS Node	Length (m)	ks (mm) / n	US IL (m)	DS IL (m)	Fall (m)	Slope (1:X)	Dia (mm)	T of C (mins)	Rain (mm/hr)
1.000	S01	S02	35.048	0.600	76.980	76.125	0.855	41.0	150	5.37	50.0
1.001	S02	S03	38.967	0.600	76.125	74.872	1.253	31.1	150	5.73	50.0
1.002	S03	S04	10.374	0.600	74.722	74.653	0.069	150.3	225	5.89	50.0
1.003	S04	S05	14.700	0.600	74.653	74.285	0.368	40.0	225	6.01	50.0
1.004	S05	S06	20.309	0.600	74.285	73.777	0.508	40.0	225	6.17	50.0
1.005	S06	S07	26.223	0.600	73.777	73.121	0.656	40.0	300	6.35	50.0
1.006	S07	S08	16.649	0.600	73.121	72.844	0.277	60.0	300	6.48	50.0
1.007	S08	S09	21.987	0.600	72.844	72.478	0.366	60.0	300	6.67	50.0
1.008	S09	S10	11.962	0.600	72.478	72.279	0.199	60.0	300	6.76	50.0
1.009	S10	S11 inlet	14.797	0.600	72.204	72.005	0.199	74.4	375	6.88	50.0
1.010	S12	S13	3.076	0.600	71.650	71.612	0.038	80.0	300	5.03	50.0
1.011	S13	S14	12.190	0.600	71.612	71.380	0.232	52.5	300	5.12	50.0
1.012	S14	S15	42.886	0.600	71.380	70.045	1.335	32.1	300	5.38	50.0

Name	Vel (m/s)	Cap (I/s)	Flow (I/s)	US Depth (m)	DS Depth (m)	Σ Area (ha)	Σ Add Inflow (I/s)
1.000	1.576	27.9	9.8	1.277	1.295	0.040	0.0
1.001	1.811	32.0	22.2	1.295	1.553	0.091	0.0
1.002	1.064	42.3	42.4	1.628	1.441	0.174	0.0
1.003	2.074	82.5	49.7	1.441	1.447	0.204	0.0
1.004	2.074	82.5	66.8	1.447	1.452	0.274	0.0
1.005	2.493	176.2	86.8	1.377	1.378	0.356	0.0
1.006	2.033	143.7	99.0	1.378	1.233	0.406	0.0
1.007	2.033	143.7	117.3	1.233	1.069	0.481	0.0
1.008	2.033	143.7	135.8	1.069	0.978	0.557	0.0
1.009	2.103	232.3	141.4	0.978	0.720	0.580	0.0
1.010	1.759	124.3	20.2	1.150	1.088	0.083	0.0
1.011	2.173	153.6	20.2	1.088	0.220	0.083	0.0
1.012	2.783	196.7	20.2	0.220	0.505	0.083	0.0

File: FlowModel OS.pfd

Network: Storm Network 1
Oliver Sugden

Oliver Sugden 26/01/2024

Page 2

<u>Links</u>

Name	US	DS	Length	ks (mm) /	US IL	DS IL	Fall	Slope	Dia	T of C	Rain
	Node	Node	(m)	n	(m)	(m)	(m)	(1:X)	(mm)	(mins)	(mm/hr)
1.013	S15	S16	103.749	0.600	70.045	69.700	0.345	300.7	300	7.30	50.0
2.000	S17	S03	16.522	0.600	75.120	74.872	0.248	66.6	150	5.22	50.0

Name		•		Depth	Depth	Σ Area (ha)	Inflow
1.013	0.901	63.7	20.2	0.505	0.300	0.083	0.0
2.000	1.234	21.8	11.4	1.200	1.553	0.047	0.0

Pipeline Schedule

Link	Length (m)	Slope (1:X)	Dia (mm)	Link Type	US CL (m)	US IL (m)	US Depth (m)	DS CL (m)	DS IL (m)	DS Depth (m)
1.000	35.048	41.0	150	Circular	78.407	76.980	1.277	77.570	76.125	1.295
1.001	38.967	31.1	150	Circular	77.570	76.125	1.295	76.575	74.872	1.553
1.002	10.374	150.3	225	Circular	76.575	74.722	1.628	76.319	74.653	1.441
1.003	14.700	40.0	225	Circular	76.319	74.653	1.441	75.957	74.285	1.447
1.004	20.309	40.0	225	Circular	75.957	74.285	1.447	75.454	73.777	1.452
1.005	26.223	40.0	300	Circular	75.454	73.777	1.377	74.799	73.121	1.378
1.006	16.649	60.0	300	Circular	74.799	73.121	1.378	74.377	72.844	1.233
1.007	21.987	60.0	300	Circular	74.377	72.844	1.233	73.847	72.478	1.069
1.008	11.962	60.0	300	Circular	73.847	72.478	1.069	73.557	72.279	0.978
1.009	14.797	74.4	375	Circular	73.557	72.204	0.978	73.100	72.005	0.720
1.010	3.076	80.0	300	Circular	73.100	71.650	1.150	73.000	71.612	1.088
1.011	12.190	52.5	300	Circular	73.000	71.612	1.088	71.900	71.380	0.220
1.012	42.886	32.1	300	Circular	71.900	71.380	0.220	70.850	70.045	0.505
1.013	103.749	300.7	300	Circular	70.850	70.045	0.505	70.300	69.700	0.300
2.000	16.522	66.6	150	Circular	76.470	75.120	1.200	76.575	74.872	1.553

Link	US	Dia	Node	MH	DS	Dia	Node	MH
	Node	(mm)	Type	Туре	Node	(mm)	Type	Type
1.000	S01	1050	Manhole	Adoptable	S02	1050	Manhole	Adoptable
1.001	S02	1050	Manhole	Adoptable	S03	1500	Manhole	Adoptable
1.002	S03	1500	Manhole	Adoptable	S04	1350	Manhole	Adoptable
1.003	S04	1350	Manhole	Adoptable	S05	1350	Manhole	Adoptable
1.004	S05	1350	Manhole	Adoptable	S06	1500	Manhole	Adoptable
1.005	S06	1500	Manhole	Adoptable	S07	1500	Manhole	Adoptable
1.006	S07	1500	Manhole	Adoptable	S08	1500	Manhole	Adoptable
1.007	S08	1500	Manhole	Adoptable	S09	1500	Manhole	Adoptable
1.008	S09	1500	Manhole	Adoptable	S10	1500	Manhole	Adoptable
1.009	S10	1500	Manhole	Adoptable	S11 inlet		Junction	
1.010	S12		Junction		S13	1500	Manhole	Adoptable
1.011	S13	1500	Manhole	Adoptable	S14	1350	Manhole	Adoptable
1.012	S14	1350	Manhole	Adoptable	S15	1350	Manhole	Adoptable
1.013	S15	1350	Manhole	Adoptable	S16	1350	Manhole	Adoptable
2.000	S17	1350	Manhole	Adoptable	S03	1500	Manhole	Adoptable

File: FlowModel OS.pfd Network: Storm Network 1

Oliver Sugden 26/01/2024

Page 3

Manhole Schedule

Node	Easting (m)	Northing (m)	CL (m)	Depth (m)	Dia (mm)	Connections	Link	IL (m)	Dia (mm)
S01	300139.914	514321.910	78.407	1.427	1050	Ċ			
						0	1.000	76.980	150
S02	300146.227	514356.385	77.570	1.445	1050	1	1.000	76.125	150
						1 0	1.001	76.125	150
S03	300179.845	514376.090	76.575	1.853	1500	0 1 2	2.000	74.872 74.872	150 150
						0	1.002	74.722	225
S04	300183.985	514385.602	76.319	1.666	1350		1.002	74.653	225
						1 0	1.003	74.653	225
S05	300182.914	514400.263	75.957	1.672	1350		1.003	74.285	225
506	200404.047	544420 544	75.454	4 677	4500	1 0	1.004	74.285	225
S06	300181.847	514420.544	75.454	1.677	1500		1.004	73.777	225
						1 0	1.005	73.777	300
S07	300188.324	514445.954	74.799	1.678	1500		1.005	73.121	300
500	200405 707	E4.44C0.027	74 277	4.522	1500	1' 0	1.006	73.121	300
S08	300195.787	514460.837	74.377	1.533	1500		1.006	72.844	300
S09	300195.726	514482.824	73.847	1.369	1500	0 0	1.007	72.844 72.478	300
309	300133.720	314402.024	73.847	1.309	1500	ϕ			
S10	300199 007	514494.327	73 557	1.353	1500	1 0	1.008	72.478 72.279	300
310	300133.007	314434.327	73.337	1.555	1300				
S11 inlet	300208.950	514505.286	73.100	1.400		1' 0	1.009	72.204 72.005	375 375
311 lillet	300208.930	314303.280	73.100	1.400		1	1.009	72.003	373
S12	300225.837	514523.267	73.100	1.450		0			
<u></u>	200225 404	F14F2C 27F	72.000	1 200	1500	0	1.010	71.650	300
S13	300225.194	514526.275	73.000	1.388	1500	1	1.010	71.612	300
						1 0	1.011	71.612	300

R G Parkins & Partners Ltd

File: FlowModel OS.pfd Network: Storm Network 1 Oliver Sugden 26/01/2024 Page 4

Manhole Schedule

Node	Easting (m)	Northing (m)	CL (m)	Depth (m)	Dia (mm)	Connection	ıs	Link	IL (m)	Dia (mm)
S14	300222.071	514538.058	71.900	0.520	1350	0 ←	1	1.011	71.380	300
						1	0	1.012	71.380	300
S15	300180.727	514526.663	70.850	0.805	1350	<u> </u>	1	1.012	70.045	300
						0 <				
							0	1.013	70.045	300
S16	300082.385	514493.606	70.300	0.600	1350		1	1.013	69.700	300
						<i>G</i> '				
S17	300196.088	514373.064	76.470	1.350	1350	_				
						0 ←				
							0	2.000	75.120	150

Simulation Settings

Rainfall Methodology	FEH-22	Analysis Speed	Detailed	Additional Storage (m³/ha)	20.0
Summer CV	0.830	Skip Steady State	X	Check Discharge Rate(s)	х
Winter CV	0.900	Drain Down Time (mins)	240	Check Discharge Volume	х

Storm Durations

15	60	180	360	600	960	2160
30	120	240	480	720	1440	2880

Return Period (years)	Climate Change (CC %)	Additional Area (A %)	Additional Flow (Q %)
2	0	0	0
30	0	0	0
100	50	3	0

Node S13 Online Hydro-Brake® Control

Flap Valve	Х	Objective	(HE) Minimise upstream storage
Replaces Downstream Link	\checkmark	Sump Available	\checkmark
Invert Level (m)	71.612	Product Number	CTL-SHE-0109-6100-1500-6100
Design Depth (m)	1.500	Min Outlet Diameter (m)	0.150
Design Flow (I/s)	6.1	Min Node Diameter (mm)	1200

Node S12 Offline Weir Control

Flap Valve x	Invert Level (m)	73.000	Discharge Coefficient	0.590
Loop to Node	Width (m)	1.400		

Node S12 Flow through Pond Storage Structure

Base Inf Coefficient (m/hr)	0.00000	Porosity	1.00	Main Channel Length (m)	20.000
Side Inf Coefficient (m/hr)	0.00000	Invert Level (m)	71.650	Main Channel Slope (1:X)	400.0
Safety Factor	2.0	Time to half empty (mins)		Main Channel n	0.030

R G Parkins & Partners Ltd

File: FlowModel OS.pfd Network: Storm Network 1 Oliver Sugden 26/01/2024 Page 5

Inlets S11 inlet

Depth (m)	Area (m²)	Inf Area (m²)									
0.000	249.1	0.0	0.400	370.4	0.0	0.800	509.1	0.0	1.150	644.4	0.0
0.100	277.8	0.0	0.500	403.5	0.0	0.900	546.4	0.0	1.250	685.3	0.0
0.200	307.6	0.0	0.600	437.6	0.0	1.000	584.8	0.0	1.350	727.4	0.0
0.300	338.4	0.0	0.700	472.8	0.0	1.050	604.4	0.0	1.450	770.6	0.0

R G PARKINS

File: FlowModel OS.pfd Network: Storm Network 1

Oliver Sugden 26/01/2024

Page 6

Results for 2 year Critical Storm Duration. Lowest mass balance: 99.50%

Node Event	US	Peak	Level	Depth	Inflow	Node	Flood	Status
	Node	(mins)	(m)	(m)	(I/s)	Vol (m³)	(m³)	
15 minute winter	S01	10	77.026	0.046	5.8	0.0658	0.0000	OK
15 minute winter	S02	11	76.192	0.067	13.1	0.1057	0.0000	OK
15 minute winter	S03	10	74.851	0.129	24.6	0.2771	0.0000	OK
15 minute winter	S04	11	74.748	0.095	28.6	0.1705	0.0000	OK
15 minute winter	S05	11	74.400	0.115	38.5	0.2601	0.0000	OK
15 minute winter	S06	11	73.887	0.110	49.9	0.3011	0.0000	OK
15 minute winter	S07	11	73.264	0.143	57.2	0.3373	0.0000	OK
15 minute winter	S08	11	72.998	0.154	67.8	0.4239	0.0000	OK
15 minute winter	S09	11	72.659	0.181	78.4	0.5202	0.0000	OK
15 minute winter	S10	11	72.365	0.161	81.5	0.3384	0.0000	OK
360 minute winter	S11 inlet	272	71.996	0.296	18.8	0.0000	0.0000	OK
360 minute winter	S12	272	71.996	0.346	14.3	0.3960	0.0000	SURCHARGED
360 minute winter	S13	272	71.996	0.384	18.9	0.6779	0.0000	SURCHARGED
360 minute winter	S14	272	71.416	0.036	6.1	0.0515	0.0000	OK
360 minute winter	S15	272	70.108	0.063	6.1	0.0904	0.0000	OK
360 minute winter	S16	272	69.758	0.058	6.1	0.0000	0.0000	OK
15 minute winter	S17	10	75.179	0.059	6.8	0.1252	0.0000	OK

Link Event	US Node	Link	DS Node	Outflow (I/s)	Velocity	Flow/Cap	Link Vol (m³)	Discharge
(Upstream Depth)					(m/s)			Vol (m³)
15 minute winter	S01	1.000	S02	5.7	0.941	0.205	0.2137	
15 minute winter	S02	1.001	S03	12.8	1.696	0.400	0.2942	
15 minute winter	S03	1.002	S04	24.4	1.243	0.578	0.2040	
15 minute winter	S04	1.003	S05	28.7	1.585	0.348	0.2665	
15 minute winter	S05	1.004	S06	38.6	1.955	0.468	0.4012	
15 minute winter	S06	1.005	S07	50.3	1.787	0.285	0.7388	
15 minute winter	S07	1.006	S08	57.5	1.653	0.400	0.5791	
15 minute winter	S08	1.007	S09	68.0	1.681	0.473	0.8893	
15 minute winter	S09	1.008	S10	78.3	1.923	0.545	0.4873	
15 minute winter	S10	1.009	S11 inlet	81.4	1.882	0.351	0.6404	
360 minute winter	S11 inlet	Flow through pond	S12	11.0	0.032	0.000	95.1518	
360 minute winter	S12	1.010	S13	18.9	0.556	0.152	0.2166	
360 minute winter	S12	Weir		0.0				0.0
360 minute winter	S13	Hydro-Brake®	S14	6.1				
360 minute winter	S14	1.012	S15	6.1	0.798	0.031	0.3333	
360 minute winter	S15	1.013	S16	6.1	0.598	0.095	1.0541	175.4
15 minute winter	S17	2.000	S03	6.6	1.061	0.305	0.1034	

R G PARKINS

Oliver Sugden 26/01/2024

Page 7

Results for 30 year Critical Storm Duration. Lowest mass balance: 99.50%

Node Event	US	Peak	Level	Depth	Inflow	Node	Flood	Status
	Node	(mins)	(m)	(m)	(I/s)	Vol (m³)	(m³)	
15 minute winter	S01	10	77.047	0.067	11.6	0.0955	0.0000	OK
15 minute winter	S02	11	76.230	0.105	26.2	0.1650	0.0000	OK
15 minute winter	S03	11	74.955	0.233	49.1	0.5021	0.0000	SURCHARGED
15 minute summer	S04	11	74.804	0.151	56.7	0.2714	0.0000	OK
15 minute summer	S05	11	74.480	0.195	76.0	0.4416	0.0000	OK
15 minute winter	S06	10	73.942	0.165	98.9	0.4542	0.0000	OK
15 minute winter	S07	12	73.463	0.342	113.2	0.8074	0.0000	SURCHARGED
15 minute winter	S08	12	73.243	0.399	130.6	1.0964	0.0000	SURCHARGED
15 minute winter	S09	12	72.871	0.393	143.2	1.1313	0.0000	SURCHARGED
15 minute summer	S10	11	72.437	0.233	147.1	0.4904	0.0000	OK
360 minute winter	S11 inlet	336	72.264	0.564	31.4	0.0000	0.0000	OK
360 minute winter	S12	336	72.264	0.614	24.4	0.7034	0.0000	SURCHARGED
360 minute winter	S13	336	72.264	0.652	17.8	1.1523	0.0000	SURCHARGED
60 minute winter	S14	153	71.416	0.036	6.1	0.0516	0.0000	OK
60 minute summer	S15	119	70.108	0.063	6.1	0.0906	0.0000	OK
60 minute summer	S16	119	69.758	0.058	6.1	0.0000	0.0000	OK
15 minute winter	S17	10	75.210	0.090	13.6	0.1908	0.0000	ОК

Link Event (Upstream Depth)	US Node	Link	DS Node	Outflow (I/s)	Velocity (m/s)	Flow/Cap	Link Vol (m³)	Discharge Vol (m³)
15 minute winter	S01	1.000	S02	11.4	1.099	0.411	0.3633	` '
15 minute winter	S02	1.001	S03	25.6	1.981	0.799	0.5032	
15 minute winter	S03	1.002	S04	48.3	1.408	1.142	0.3526	
15 minute summer	S04	1.003	S05	56.9	1.744	0.690	0.4772	
15 minute summer	S05	1.004	S06	76.3	2.267	0.925	0.6873	
15 minute winter	S06	1.005	S07	99.5	1.958	0.565	1.4424	
15 minute winter	S07	1.006	S08	108.8	1.741	0.757	1.1724	
15 minute winter	S08	1.007	S09	125.4	1.787	0.872	1.5483	
15 minute winter	S09	1.008	S10	143.4	2.114	0.998	0.8292	
15 minute summer	S10	1.009	S11 inlet	148.9	2.173	0.641	1.0137	
360 minute winter	S11 inlet	Flow through pond	S12	16.7	0.033	0.000	199.7041	
360 minute winter	S12	1.010	S13	17.8	0.573	0.143	0.2166	
360 minute winter	S12	Weir		0.0				0.0
360 minute winter	S13	Hydro-Brake®	S14	6.1				
60 minute winter	S14	1.012	S15	6.1	1.140	0.031	0.3342	
60 minute summer	S15	1.013	S16	6.1	0.598	0.096	1.0567	101.4
15 minute winter	S17	2.000	S03	13.3	1.255	0.611	0.1754	

RGPARKINS

File: FlowModel OS.pfd Network: Storm Network 1

Oliver Sugden 26/01/2024

Page 8

Results for 100 year +50% CC +3% A Critical Storm Duration. Lowest mass balance: 99.50%

Node Event	US	Peak	Level	Depth	Inflow	Node	Flood	Status
	Node	(mins)	(m)	(m)	(I/s)	Vol (m³)	(m³)	
15 minute winter	S01	13	77.835	0.855	22.3	1.2342	0.0000	SURCHARGED
15 minute winter	S02	12	77.570	1.445	45.9	2.3019	0.2586	FLOOD
15 minute winter	S03	13	76.234	1.512	65.3	3.2764	0.0000	SURCHARGED
15 minute winter	S04	13	76.041	1.388	73.2	2.5012	0.0000	FLOOD RISK
15 minute winter	S05	13	75.688	1.403	97.4	3.2184	0.0000	FLOOD RISK
15 minute winter	S06	12	74.890	1.113	130.3	3.0862	0.0000	SURCHARGED
15 minute winter	S07	12	74.455	1.334	147.7	3.1758	0.0000	SURCHARGED
15 minute winter	S08	12	74.036	1.192	181.0	3.3065	0.0000	SURCHARGED
15 minute winter	S09	12	73.260	0.782	215.7	2.2751	0.0000	SURCHARGED
2160 minute winter	S10	1680	72.912	0.708	19.3	1.4994	0.0000	SURCHARGED
2160 minute winter	S11 inlet	1680	72.912	1.212	38.2	0.0000	0.0000	OK
2160 minute winter	S12	1680	72.912	1.262	40.0	1.4881	0.0000	FLOOD RISK
2160 minute winter	S13	1680	72.912	1.300	14.3	2.2971	0.0000	FLOOD RISK
15 minute summer	S14	118	71.416	0.036	6.1	0.0516	0.0000	OK
15 minute summer	S15	119	70.108	0.063	6.1	0.0906	0.0000	OK
15 minute winter	S16	156	69.758	0.058	6.1	0.0000	0.0000	OK
15 minute winter	S17	13	76.385	1.265	26.1	2.7130	0.0000	FLOOD RISK

Link Event (Upstream Depth)	US Node	Link	DS Node	Outflow (I/s)	Velocity (m/s)	Flow/Cap	Link Vol (m³)	Discharge Vol (m³)
15 minute winter	S01	1.000	S02	19.1	1.162	0.685	0.6170	
15 minute winter	S02	1.001	S03	31.6	1.938	0.986	0.6860	
15 minute winter	S03	1.002	S04	62.3	1.568	1.474	0.4126	
15 minute winter	S04	1.003	S05	75.5	1.898	0.915	0.5846	
15 minute winter	S05	1.004	S06	97.0	2.439	1.176	0.8077	
15 minute winter	S06	1.005	S07	127.5	1.956	0.724	1.8466	
15 minute winter	S07	1.006	S08	148.9	2.114	1.036	1.1724	
15 minute winter	S08	1.007	S09	180.8	2.567	1.258	1.5483	
15 minute winter	S09	1.008	S10	214.9	3.053	1.496	0.8338	
2160 minute winter	S10	1.009	S11 inlet	38.2	1.171	0.165	1.6321	
2160 minute winter	S11 inlet	Flow through pond	S12	37.4	0.012	0.001	558.3292	
2160 minute winter	S12	1.010	S13	14.3	0.531	0.115	0.2166	
2160 minute winter	S12	Weir		0.0				0.0
2160 minute winter	S13	Hydro-Brake®	S14	6.1				
15 minute summer	S14	1.012	S15	6.1	1.459	0.031	0.3342	
15 minute summer	S15	1.013	S16	6.1	0.598	0.096	1.0567	89.2
15 minute winter	S17	2.000	S03	18.8	1.245	0.864	0.2909	

CALCULATION		Job No.	K40461	Page	1 of 4
Job	Scalegill Rd	Drg no.		Date	30/11/2023
	Moor Row	Revision		Initial	OS
Title	Sustainable Drainag	ge - Treatn	nent	Checked	

DESIGN BASIS MEMORANDUM - SUSTAINABLE DRAINAGE TREATMENT OF SURFACE WATER

Design Brief

The following calculations outline the recommended treatment requirements for a sustaionable drainage system as outlined in the SuDS Manual 2015. The method used is the simple index approach outlined in section 26. The requirement for oil interceptors has been assessed in line with the now withdrawn Pollution Prevention Guidance document PPG3, produced by the Environment Agency. An oil interceptor is not required for the proposed development.

Treatment within SuDS components is affected by the flow rate and volume of water which passes through the component. It is not reasonable or practical to treat the entirety of the runoff for infrequent greater intensity design storms. In any case the majority of the pollutants are removed from surfaces by the more frequent rainfall events and in the first flush resulting from the initial runoff from the larger events.

and to a certain capacity.

The following references have been used in the preparation of these calculations:

- SUDS Manual, CIRIA Report C753, 2015
- Pollution Mitigation Indicies provided by Hydro International

Results Summary

Roof Area:

Treatment component 1 Detention basin

Treatment component 2 None

Indices	Suspended Solids	Metals	Hydrocarbons
Pollution Hazard	0.2	0.2	0.05
Pollution Mitigation	0.5	0.5	0.6
Treatment Suitability	Adequate	Adequate	Adequate

Residential Parking:

Treatment component 1 Detention basin Treatment component 2 None

Indices	Suspended Solids	Metals	Hydrocarbons
Pollution Hazard	0.5	0.4	0.4
Pollution Mitigation	0.5	0.5	0.6
Treatment Suitability	Adequate	Adequate	Adequate

Residential Roads

Treatment component 1 Detention basin Treatment component 2 None

Indices	Suspended Solids	Metals	Hydrocarbons
Pollution Hazard	0.5	0.4	0.4
Pollution Mitigation	0.5	0.5	0.6
Treatment Suitability	Adequate	Adequate	Adequate

CALCUL	ATION	Job No.	K40461	Page	2 of 4
Job	Scalegill Rd	Drg no.		Date	30/11/2023
	Moor Row	Revision		Initial	OS
Title	Sustainable Drainage	- Treatme	ent	Checked	

POLLUTION HAZARD INDEX

		Pollution	Hazard II	ndices
Source of Runoff	Pollution Hazard	Suspended Solids	Metals	Hydro- carbons
Residential roofing	Very low	0.2	0.2	0.05

POLLUTION MITIGATION INDEX

The receiving water body shall be: Surface Water

		Pollution N	litigation	Indices
	Suds Component	Suspended Solids	Metals	Hydro- carbons
1	Detention basin	0.5	0.5	0.6
2	None	0	0	0
3	None	0	0	0
4	None	0	0	0

Total Pollution Mitigation Index 0.5 0.5 0.6

ASSESSMENT OF TREATMENT PROPOSAL

Indices	Suspended Solids	Metals	Hydro-carbons
Pollution Hazard	0.2	0.2	0.05
Pollution Mitigation	0.5	0.5	0.6
	Adequate	Adequate	Adequate

CALCULATION		Job No.	K40461	Page	3 of 4
Job	Scalegill Rd	Drg no.		Date	30/11/2023
	Moor Row	Revision		Initial	OS
Title	Sustainable Drain	Sustainable Drainage - Treatment			

POLLUTION HAZARD INDEX

	Pollution Hazard Indices			
Source of Runoff	Pollution Hazard	Suspended Solids	Metals	Hydro- carbons
Residential parking	Low	0.5	0.4	0.4

POLLUTION MITIGATION INDEX

The receiving water body shall be: Surface Water

		Pollution N	litigation	Indices
	Suds Component	Suspended Solids	Metals	Hydro- carbons
1	Detention basin	0.5	0.5	0.6
2	None	0	0	0
3	None	0	0	0
4	None	0	0	0

Total Pollution Mitigation Index 0.5 0.5 0.6

ASSESSMENT OF TREATMENT PROPOSAL

Indices	Suspended Solids	Metals	Hydro-carbons
Pollution Hazard	0.5	0.4	0.4
Pollution Mitigation	0.5	0.5	0.6
	Adequate	Adequate	Adequate

CALCULATION		Job No.	K40461	Page	4 of 4
Job	Scalegill Rd	Drg no.		Date	30/11/2023
	Moor Row	Revision		Initial	OS
Title	Sustainable Drainage - Treatment		Checked		

POLLUTION HAZARD INDEX

		Pollution Hazard Inc		
Source of Runoff	Pollution Hazard	Suspended Solids	Metals	Hydro- carbons
Low traffic roads (e.g. residential roads and general access roads, < 300 traffic movements/day)	Low	0.5	0.4	0.4

POLLUTION MITIGATION INDEX

The receiving water body shall be: Surface Water

		Pollution N	litigation	Indices
	Suds Component	Suspended Solids	Metals	Hydro- carbons
1	Detention basin	0.5	0.5	0.6
2	None	0	0	0
3	None	0	0	0
4	None	0	0	0

Total Pollution Mitigation Index 0.5 0.5 0.6

ASSESSMENT OF TREATMENT PROPOSAL

Indices	Suspended Solids	Metals	Hydro-carbons
Pollution Hazard	0.5	0.4	0.4
Pollution Mitigation	0.5	0.5	0.6
	Adequate	Adequate	Adequate

APPENDIX D - CORRESPONDANCE

UU CORRESPONDANCE

S104 Pre-Design Response Form

Version 1 (Nov 22)

United Utilities Reference Number:				04451386	;	
Applicant details						
Company name	Washington Homes Ltd					
Contact name	Oliver Sugden					
Site details						
Site name/address (including nearest postcode)	Scalegill Road, Moor Rov	v, Cumbr	ria, CA24 3LT			
Developer Engineer assessme	ent					
Area for discussion/assessment	Multiple phases/lando		☐ Multiple points ☐ Adoptable SuD		_	_
	Other 🛛	,	·	·	Ū	
SuDS Component(s) >	Pond / Wetland		Basin	\boxtimes	Infiltration System	
	Swale		Bio retention system		Filter Drains	
Developer Engineer comments	I have reviewed the documents submitted to reach the conclusion that United Utilities would accept the culvert as the discharge point for the surface water onsite subject to a full review once a S104 application is submitted. You have ticked the SuDs box indicating your drainage plan will include a basin. Please use the link below for guidance: https://www.unitedutilities.com/builders-developers/wastewater-services/sustainable-drainage-systems/ If you have any design questions or require any engineering advice please provide a drainage plan and respond with your question for review.					a S104 application is use the link below for -drainage-systems/
	will only be given once a guidance for more infor	ı full desi	ign review and accep	tance has b	een given (please sed	
Meeting required to discuss further	galadite joi more injuit	Yes				o 🛮
Reason for meeting						
Assistant Developer Engineer Name:	Lucy Clarke				Date (XX/XX/XX):	14/08/23
Applicant comments						