

Flood Risk Assessment & Drainage Strategy

Jefferson Park, Whitehaven – Phase 2

Thomas Armstrong and Home Group

Ref: K38379.DS/001

Version	Date	Prepared By	Checked By	Approved By
Original	26 th August 2021	C. Abram	T. Melhuish	T. Melhuish

Page | 1

Registered Office: RG Parkins & Partners Ltd, Meadowside, Shap Road, Kendal, LA9 6NY Registered in England & Wales - Company number 04107150

1. INDEMNITIES

This report is for the sole use and benefit of Thomas Armstrong on behalf of Home Group and their professional advisors. RG Parkins & Partners Ltd will not be held responsible for any actions taken, nor decisions made, by any third party resulting from this report.

RG Parkins & Partners Ltd are not qualified to advise on contamination. Any comments contained within this report with regards to contamination are noted as guidance only and the Client should appoint a suitably qualified professional to provide informed advice. The absence of any comments regarding contamination does not represent any form of neglect, carelessness, or failure to undertake our service.

2. COPYRIGHT

The copyright of this report remains vested in RG Parkins & Partners Ltd.

All digital mapping reproduced from Ordnance Survey digital map data. ©Crown Copyright. All rights reserved. Licence Number 100038055

3. CONTENTS

1.	li	nde	emnities	2
2.	C	Copyright		
3.	C	Contents		
4.	Т	abl	le of Figures	4
5.	Т	abl	le of Tables	4
6.	0	Glos	ssary of Terms	5
7.	li	ntro	oduction	6
	7.1		Background	6
	7.2		Planning Policy	6
	7.3		The Development in the Context of Planning Policy	6
8.	S	Site	Characterisation	8
	8.1		Site Location	8
	8.2		Site Description	8
	8.3		Geology & Hydrogeology	9
	8.4		Hydrology	9
	8.5		Existing Sewers	10
	8.6		Ground Investigation	11
9.	A	Asse	essment of Flood Risk	12
	9.1		Background	12
	9.2		Flood Risk Terminology	12
	9.3		Data Collection	13
	9.4		Strategic Flood Risk Assessment	13
	9.5		Environment Agency Flood Map for Planning	13
	9.6		Surface Water Flood Risk	14
	9.7		Groundwater Flood Risk	16
	9.8		Flooding From Reservoirs, Canals or Other Artificial Sources	17
	9.9		Flooding from Sewers	18
10).	Sı	urface Water Drainage Strategy	19
	10.	1	Introduction	19
	10.	2	Site Areas	19
	10.	3	Surface Water Drainage Design Parameters	20
	10.	3.1	Climate Change	20
	10.	3.2	Urban Creep	21
	10.	3.3	Percentage Impermeability (PIMP)	21
	10.	3.4	Volumetric Runoff Coefficient (Cv)	21
	10.	3.5	Rainfall Model	21

10.4	Pre-development Runoff Assessment	21
10.5	5 Surface Water Disposal	22
10.5	5.1 Infiltration	22
10.5	5.2 Positive Drainage – Watercourse	22
10.6	5 Surface Water Drainage Design	23
10.7	7 Designing for Local Drainage System Failure	24
10.8	3 Operations & Maintenance Responsibility	24
11.	Foul Water Drainage Strategy	25
12.	Conclusions and Recommendations	26
13.	References	27
Appen	dices	28

4. TABLE OF FIGURES

Figure 8.1 Site Location	8
Figure 9.1 Environment Agency Flood Map for Planning	14
Figure 9.2 Environment Agency Surface Water Flood Map	16
Figure 9.3 BGS Ground Water Flood Map	17

5. TABLE OF TABLES

Table 7.1 Vulnerability Classification	7
Table 8.1 Site Geological Summary	9
Table 9.1 Flood Return Periods & Exceedance Probabilities	12
Table 10.1 Land Cover Areas	20
Table 10.2 Area of Potentially Impermeable & Permeable Land Cover	20
Table 10.3 Peak Rainfall Intensity Allowance in Small and Urban Catchments	21
Table 10.4 Pre-Development Peak Runoff Rates	22
Table 11.1 Peak Foul Flow Rates	22 <u>5</u>

6. GLOSSARY OF TERMS

AEP	Annual Exceedance Probability
AOD	Above Ordnance Datum
BGL	Below Ground Level
BGS	British Geological Society
СС	Climate Change
CCC	Cumbria County Council
DSM	Digital Surface Model
DTM	Digital Terrain Model
EA	Environment Agency
FEH	Flood Estimation Handbook
FFL	Finished Floor Level
FRA	Flood Risk Assessment
GIS	Geographical Information System
Lidar	Light Detection and Ranging
LLFA	Lead Local Flood Authority
NPPF	National Planning Policy Framework
OS	Ordnance Survey
RGP	RG Parkins & Partners Ltd
SFRA	Strategic Flood Risk Assessment
SuDS	Sustainable Drainage System
UU	United Utilities

7. INTRODUCTION

7.1 BACKGROUND

This report has been prepared by R. G. Parkins & Partners Ltd (RGP) for Thomas Armstrong on behalf of Home Group in support of their proposal to construct 14 new properties within the existing residential development at Jefferson Park, Whitehaven.

RGP has been appointed to undertake a Flood Risk Assessment and Outline Surface and Foul Water Drainage Strategy in accordance with the National Planning Policy Framework (NPPF) to support a planning application that fulfils the requirements of the Local Planning Authority, Environment Agency, Lead Local Flood Authority and the Sewerage Undertaker.

The following study assesses flood risk to the site and proposed development and demonstrates the proposed development will not adversely affect flood risk elsewhere.

7.2 PLANNING POLICY

The NPPF^[1] and its Planning Practice Guidance^[2] states "a site-specific flood risk assessment should be provided for all development in Flood Zones 2 and 3. In Flood Zone 1, an assessment should accompany all proposals involving: sites of 1 hectare or more; land which has been identified by the Environment Agency as having critical drainage problems; land identified in a strategic flood risk assessment as being at increased flood risk in the future; or land that may be subject to other sources of flooding, where its development would introduce a more vulnerable use."

7.3 THE DEVELOPMENT IN THE CONTEXT OF PLANNING POLICY

Owing to the size of the development in terms of number of properties (14 No.), it is classed as major development (over 10 dwellings) in accordance with The Town and Country Planning Order 2015^[3].

The area covered by the application is 0.34 ha (hectares) and by reference to the Environment Agency Flood Map, the site lies in Flood Zone 1

Table 2 of the NPPF's Planning Practice Guidance ^[2] classifies each development into a vulnerability class, depending on the type of development, as outlined in Table 7.1. The site is to be developed for a housing development; and is classified as 'More vulnerable'. 'More Vulnerable' development classes are deemed acceptable in terms of flood risk within Flood Zones 1, 2 and 3a but are not generally considered acceptable within Flood Zone 3b.

Vulnerability Classification	Development
Essential Infrastructure	Essential transport infrastructure (including mass evacuation routes) which has to cross the area at risk. Essential utility infrastructure, which has to be located in a flood risk area for operational reasons, including electricity generating power stations and grid and primary substations; and water treatment works that need to remain operational in times of flood. Wind turbines.
Highly Vulnerable	Police and ambulance stations; fire stations and command centres; telecommunications installations required to be operation during flooding. Emergency dispersal points. Basement dwellings. Caravans, mobile homes, and park homes intended for permanent residential use. Installations requiring hazardous substances consent.
More Vulnerable	Hospitals. Residential institutions such as residential care homes, children's homes, prisons and hostels. Buildings used for dwelling houses, student halls of residence, drinking establishments, nightclubs, and hotels. Non-residential uses for health services, nurseries, and education establishments. Landfill and sites used for waste management facilities for hazardous waste. Sites used for holiday or short let caravans and camping, subject to a specific warning and evacuation plan
Less Vulnerable	 Police, ambulance, and fire stations which are NOT required to be operational during flooding. Buildings used for shops; financial, professional, and other services; restaurants, cafes and hot food takeaways; offices; general industry, storage and distributions; non-residential institutions not included in the 'more vulnerable' class; and assemble and leisure. Land and buildings used for agriculture and forestry. Waste treatment (except landfill & hazardous waste facilities). Minerals working & processing (except for sand & gravel working). Water treatment works which do not need to remain operational during times of flood. Sewage treatment works, if adequate measures to control pollution and manage sewage during flooding events are in place.
Water- Compatible Development	Flood control infrastructure. Water transmission infrastructure & pumping stations. Sewage transmission infrastructure & pumping stations. Sand & gravel working. Docks, marinas, and wharves. Navigation facilities. Ministry of Defence installations. Ship building, repairing & dismantling, dockside fish processing & refrigeration & compatible activities requiring a waterside location. Water based recreation (excluding sleeping accommodation). Lifeguard and coastguard stations. Amenity open space, nature conservation & biodiversity, outdoor sports and recreation and essential facilities such as changing rooms. Essential ancillary sleeping or residential accommodation for staff required by uses in this category subject to a specific warning & evacuation plan.

Table 7.1 Vulnerability Classification

8. SITE CHARACTERISATION

8.1 SITE LOCATION

The site is accessible directly from Low Road (B5345) and is located within the curtailment of the existing residential development of Jefferson Park (Figure 8.1), situated approx. 1.5km south of Whitehaven town centre, at National Grid Co-ordinates 297400E 516780N.

Figure 8.1 Site Location

8.2 SITE DESCRIPTION

The area of the site proposed for development covers approximately 0.34 ha. As the site already consists of existing dwellings and site access roads, it is classed as a mixture of both Greenfield and Brownfield.

Historically the site is known to have been used for a variety of industrial purposes since the late 1800's with uses including a brick field excavation, laundry and refuse tip evident within different areas of the Jefferson Park site boundary shown at various time periods on historical maps up to

approximately 1994. Thereafter the site was cleared of all structures in preparation for future development.

At present, the existing housing development comprises of 24 properties including houses and apartment blocks constructed circa. 2009-2010. The site access road is already in place to service the existing properties, with the areas outlined for new development currently forming an informal greenspace between the existing dwellings on the site in areas left from the initial phase of the residential development. It is bounded by a Cemetery to the south, the long since abandoned former Corkickle Brake railway line to the north with wooded areas to the west and Low Road and a few private dwellings directly to the east.

Topographically levels vary significantly, with the survey indicating the site is located on a relatively steep hill with levels typically falling from west to east towards Low Road.

Levels in the developable area range from approximately 32.00 mAOD at the western extent to around 23.5 mAOD in the east where they then steeply drop off again to around 19.00 mAOD towards the boundary with the existing private dwellings facing Low Road.

Access to the site is via a junction with Low Road.

8.3 GEOLOGY & HYDROGEOLOGY

British Geological Survey (BGS)^[4] and Land Information Systems (LandIS)^[5] mapping indicates the site is underlain by the geological sequences outlined in Table 8.1. The EA Groundwater Vulnerability Map^[6] indicates the nearest Groundwater Source Protection Zone is a Zone 3 which is situated approximately 4 km southeast of the site. The development site overlies a secondary aquifer with 'Medium-High' vulnerability.

Geological Unit	Classification	Description	Aquifer Classification		
Soil	Soilscape 6	Freely draining slightly acid loamy soils	N/A		
Drift	Till, Devensian- Diamicton	Clay, silt sand and gravels	Secondary (undifferentiated)		
Solid	Pennine Middle Coal Measures Formation	Mudstone, Siltstone, Sandstone	Secondary A		

Table 8.1 Site Geological Summary

8.4 HYDROLOGY

The closest surface water feature is Pow beck located approximately 20m to the east of the development site. This is classed as a 'main' river by the EA.

There is an existing culverted ordinary watercourse running through the site. This was diverted along the northern site boundary as part of the initial phase of the Jefferson Park development and continues northeast before eventually discharging to Pow Beck.

8.5 EXISTING SEWERS

Reference to United Utilities Sewer Records indicate the presence of an adopted 150mm and 225mm diameter foul sewer servicing the existing Jefferson Park development, which discharges into a combined sewer via. a manhole connection located at the junction between Low Road and Meadow Road.

Similarly, the existing UU records indicate a surface water system servicing the existing development residences is evident, this is understood to be private and maintained by Home Group.

To verify the size and condition of the existing drainage a CCTV survey including cleaning of the pipes, was commissioned by Thomas Armstrong and undertaken by SK Drainage Solutions on the 27th May 2021.

This found the existing foul sewerage system to be in good condition and working order. Some minor defects were identified in the existing surface water system, including partial blockage of a trash screen at the point where the watercourse diversion enters the site. This will need clearing to ensure functionality and a regular maintenance schedule is recommended to mitigate against future blockages.

One major defect in the form of a deformed pipe was identified at the head of the surface water system in the southwestern site road area. Although the location of this pipe identified as requiring remedial attention is outside the proposed developable area and scope of this report, it is recommended that these repairs are incorporated as part of the construction phase of the development to minimise future disturbance.

RGP have independently conducted recent investigations (February 2020) including CCTV surveys on the sewers near the site location within Low Road. This confirmed that the private drainage system comprised of a 900mm and 600mm diameter attenuation pipe system designed by another engineer specifically for the original development. As such, RGP do not consider this existing attenuation system a suitable discharge point for the next phase of development due to a lack of storage capacity. It Is therefore concluded that surface water run-off from any new development will connect independently to the existing culverted watercourse located within the site.

These independent investigations also confirmed the presence of this culverted watercourse running in a north easterly direction from Jefferson Park under Low Road (at a depth of approx. 5m). Dye testing confirmed that this culvert runs freely and outfalls downstream to Pow Beck.

Pre-development correspondence with the local Copeland Borough Council Drainage Engineer has identified that an existing field drain from Whitehaven cemetery to the south is connected to the existing drainage within the site. Historic council investigations have found this connection to be in poor condition causing restriction to the flows resulting in surcharges and overland flooding upstream to occur. It is therefore recommended that full investigations to determine the condition of the connection are undertaken and repairs conducted where necessary as part of this second phase of development.

8.6 GROUND INVESTIGATION

Numerous ground investigations have been undertaken at the site in line with the phased nature of the overall development.

Sub Surface North West Ltd conducted the original ground investigations for the initial phase of the Jefferson Park development in mid-2007.

More recently a Phase 1 and Phase 2 geo-environmental site investigation was carried out by E3P in January 2015 when the second phase of the Jefferson Park development was being explored.

Intrusive ground investigations comprising of 13 No. trial pits, 3 No. cable percussive probeholes and 6 No. window sample probeholes, completed as environmental monitoring stations were undertaken.

Made ground deposit comprising of sandy / gravelly clay of brick, ash, concrete, clinker and timber fragments underlain by a clayey sandy gravel of mixed lithology to a variable proven depth of 6.9m below ground level was encountered in the northeast quadrant of the site.

Drift deposits comprising of natural deposits of firm to very stiff gravelly and/or sandy Clay with cobbles of sub-rounded sandstone to a depth of 10.1m bgl were proven.

Below this depth a solid geology of Coal was encountered.

Groundwater was not encountered in any shallow trial pits and was only encountered in two borehole locations at depths of 7.5m and 6.9m below ground level.

With respect to potential drainage via. infiltration. The report states that "It is considered the predominantly cohesive soil matrix underlying the made ground is unlikely to provide a high degree of soakage potential for drainage systems in this instance".

Also included was a recommendation for further site investigation in areas identified as potential shallow mine areas linked to the abandoned coal mines in the wider area.

E3P subsequently revisited the site in June 2021 to undertake a coal mining risk assessment comprising of 3 No. deep rotary boreholes.

The risk assessment confirms the presence of coal and historical mining activity/voids under the proposed site area with recommendations for proof drilling grids to be undertaken under proposed construction areas with pressure grouting and stabilisation of any workings identified to ensure future stability (subject to the Coal Authority's specification for consolidation of abandoned mine workings).

For further information and full details refer to E3P ground investigation report references:

- 10-365-L1 Coal Mining Risk Assessment (Issued 19th July 2021)
- 10-365-R1 Phase 1 & Phase 2 Geo-environmental Site Investigation (Issued January 2015)

9. ASSESSMENT OF FLOOD RISK

9.1 BACKGROUND

The following risk assessment has been carried out in accordance with the National Planning Policy Framework ^[1] and its Planning Practice Guidance ^{Error! Reference source not found.} on Flood Risk. The broad aim of the guidance is to reduce the number of people and properties within the natural and built environment at risk of flooding. To achieve this aim, planning authorities are required to ensure that flood risk is properly assessed during the initial planning stages.

Responsibility for this assessment lies with the developers and they must demonstrate:

- Whether the proposed development is likely to be affected by flooding.
- Whether the proposed development will increase flood risk in other parts of the hydrological catchment.
- That the measures proposed to deal with any flood risk are sustainable.

The developer must prove to the Local Planning Authority and the Environment Agency that the existing flood risk or the flood risk associated with the proposed development can be satisfactorily managed.

9.2 FLOOD RISK TERMINOLOGY

Flood risk considers both the probability and consequence of flooding.

Flood events are often described in terms of their probability of recurrence or probability of occurring in any one year. The threshold between a medium flood and a large flood is often regarded as the 1 in 100-year event. This is an event which statistical analysis suggests will occur on average once every hundred years. However, this does not mean that such an event will not occur more than once every hundred years. Table 9.1 shows the event return periods expressed in years and annual exceedance probabilities as a fraction and a percentage. For example, a 1 in 100-year event has a 1% probability of occurring in any one year, i.e. a 1 in 100 probability. A 1000-year event has a 0.1% probability of occurring in any one year, i.e. a 1 in 100 probability.

Return Period	Annual Exceedance Probability (AEP)			
(years)	Fraction	Percentage		
2	0.5	50%		
10	0.1	10%		
25	0.04	4%		
50	0.02	2%		
100	0.01	1%		
200	0.005	0.5%		
500	0.002	0.2%		
1000	0.001	0.1%		

Table 9.1 Flood Return Periods & Exceedance Probabilities

9.3 DATA COLLECTION

The following information was referred to for the Flood Risk Assessment:

- Environment Agency Flood Map for Planning covering the site and adjacent area.
- Environment Agency Surface Water Flood Risk Map
- Environment Agency Reservoir Flood Risk Map
- Environment Agency Historic Flood Map
- United Utilities sewer records
- British Geological Survey Groundwater Flooding Susceptibility Map
- Copeland Borough Council Strategic Flood Risk Assessment
- Development layout plan
- Topographic survey

9.4 STRATEGIC FLOOD RISK ASSESSMENT

Copeland Borough Council commissioned JBA Consulting to produce a Final Draft Report Level 1 Strategic Flood Risk Assessment (SFRA) ^{Error! Reference source not found.[7]} in 2018 which refers to the Environment Agency Flood Maps to determine flood risk.

It states there are several historic flooding incidents in Whitehaven, but these are generally attributed to tidal flooding due to the proximity of the town centre to the coastline. Some properties are at risk from the main watercourse, Pow Beck which bisects the town and during extreme events, flooding can be exacerbated in certain areas by insufficient sewer capacities. This site however is located away from the historically affected areas and is not shown to be at risk of flooding.

However, since the original SFRA's were undertaken, the understanding of flood mechanisms and risks has developed, and the EA has carried out new modelling to define flood risks. The SFRA maps are therefore regarded as superseded by the new EA Flood Maps for Planning in any case which have been used to determine the sites flood risk for the basis of this report.

9.5 ENVIRONMENT AGENCY FLOOD MAP FOR PLANNING

Figure 9.2 is an extract from the EA's Flood Map for Planning^[6].

This has been reviewed to assess the level of flood risk to the area. The flood map shows areas that may be at risk of fluvial flooding in a 1% (1 in 100 year, dark blue) or 0.1% (1 in 1000 year, light blue) Annual Exceedance Probability (AEP) event. Alternatively, if the flood risk is tidal the flood map will show areas predicted to be at risk of flooding from the sea in a 0.5% AEP event (1 in 200 year, dark blue) or a 0.1% AEP event (1 in 1000 year, light blue).

The Flood Map shows the current best information on the extent of the extreme flooding from rivers or the sea that would occur without the presence of flood defences. The potential impact of climate change is not considered by the mapping.

Figure 9.1 Environment Agency Flood Map for Planning

Reference to Figure 9.1 indicates the site lies within Flood Zone 1 "Low Probability", land assessed as having a less than 0.1% annual probability of flooding (i.e. rivers, lake or sea) in any year by reference to the NPPF and is therefore not considered to be at risk of fluvial flooding.

9.6 SURFACE WATER FLOOD RISK

Surface water flooding is that which results from extreme rainfall rather than overflowing rivers. This type of flooding typically occurs when extreme rainfall causes water to run down slopes and collect in depressions in the landscape or where runoff is focussed into an area where drainage is insufficient. It can also cause erosion resulting in the partial or complete blockage of drains or culverts.

Figure 9.2 shows an extract from the EA Surface Water Flood Risk Map ^[6]. This has four risk classifications from very low probability (<0.1% AEP) to high probability (>3.3% AEP).

The EA surface water flood map indicates that the area proposed for development and the overall Jefferson Park site is predominantly at 'Very Low' risk of surface water flooding with the risk of flooding being less than 0.1% AEP (1 in 1000 year). There are however some 'Low' risk areas shown on the existing site road, this could be due to the run-off from the steep sloping topography above the west of the site over an area believed to be impervious soil.

Whilst not shown as extending into the site there is a small area of 'Medium' risk probability of surface water flooding shown at the northern end of the western site boundary along the line of an existing watercourse which then enters into a culvert that is routed through the site along the northern boundary before heading northeast under Low Road towards Pow Beck, this culvert is not shown on the EA surface water maps, however no incidences of surface water flooding relating to this area have been reported by residents of Jefferson Park and the development is therefore not considered to be at risk of flooding via. this method.

Outside the site boundary an area of 'High Probability' flooding is shown adjacent to Low Road downstream of the site along the line of the existing culverted watercourse. Pre-development correspondence with Copeland Borough District Council's Drainage Engineer confirms that the area shown as 'High' risk dates to an incident recorded in 2009 prior to upgrade works on the culvert being undertaken as part of the initial phase of the Jefferson Park development. These works have resolved this surface water flooding issue and as no incidents have been recorded since, the surface water flood map is therefore considered out of date for the purpose of this report and any future connection to this culvert is not considered to increase the risk of flooding downstream.

However, as surface water run-off from the site is currently directed towards Low Road due to the sloping topography, any development resulting in an increase in impermeable areas could cause additional run-off if not properly managed. It is therefore proposed to incorporate sufficient SuDS measures and attenuation storage to mitigate this as part of the overall Drainage Strategy. This is discussed in further detail in Section 10.0.

Figure 9.2 Environment Agency Surface Water Flood Map

9.7 GROUNDWATER FLOOD RISK

Groundwater flooding occurs when water levels in the ground rise above the ground surface. It is most likely to occur in low lying areas underlain by permeable drift and rocks.

British Geological Survey (BGS) records (Figure 9.3) indicate the majority of the site has 'Potential for Groundwater Flooding to Occur at the Surface'. The dataset shows areas susceptible to groundwater flooding, but it does not indicate the likelihood of it occurring.

Groundwater was not encountered during any shallow trial pits conducted as part of the ground investigations (Section 8.6); with groundwater only encountered in boreholes at depths of 6.9m and 7.5m bgl respectively. However, it is likely that groundwater levels will fluctuate, but given the site's raised position it is unlikely to be significantly affected and no flooding via. this method has been reported on the existing development.

Nevertheless, no below ground development is proposed and groundwater would not pose a risk of flooding to the site.

Figure 9.3 BGS Ground Water Flood Map

9.8 FLOODING FROM RESERVOIRS, CANALS OR OTHER ARTIFICIAL SOURCES

The likelihood of reservoir flooding is considered to be much lower than other forms of flooding. Current reservoir regulation, which has been further enhanced by the Flood and Water Management Act, aims to make sure that all reservoirs are properly maintained and monitored to detect and repair any problem.

The Ordnance Survey map indicates that there are no reservoirs, canals or artificial structures in the close proximity of the proposed development site.

9.9 FLOODING FROM SEWERS

United Utilities (UU) do not provide information on flood risk from their assets and there have been no reports within the SFRA. It is therefore concluded the site is not at risk of flooding from these sources.

10. SURFACE WATER DRAINAGE STRATEGY

10.1 INTRODUCTION

The principal aim of the following drainage strategy is to design the development to avoid, reduce and delay the discharge of rainfall to public sewers and watercourses in order to protect watercourses and reduce the risk of localised flooding, pollution and other environmental damage.

In order to satisfy these criteria this surface water runoff assessment and drainage design has been undertaken in accordance with the following reports and guidance documents:

- SuDS Manual, CIRIA Report C753, 2015^[8]
- Code of Practice for Surface Water Management, BS8582:2013, November 2013^[9]
- Rainfall Runoff Management for Developments, Defra/EA, SC030219, October 2013^[10]
- Designing for Exceedance in Urban Drainage Good Practice, CIRIA Report C635, 2006^[11]
- Flood Estimation Handbook (FEH)^[12]
- Flood Studies Report (FSR), Volume 1, Hydrological Studies, 1993^[13]
- Flood Studies Supplementary Report No 14 (FSSR14), Review of Regional Growth Curves, 1983^[14]
- Flood Estimation for Small Catchments, Marshall & Bayliss, Institute of Hydrology, Report No. 124 (IoH 124), 1994 ^[15]
- Non-Statutory technical Standards for Sustainable Drainage Systems, Defra, March 2015^[16]

The following assessment and drainage strategy are based on the latest site layout plan. Any alterations to the site plan resulting in changes to impermeable areas will require the drainage strategy to be revisited.

10.2 SITE AREAS

To support the exploration of options for site drainage, the spatial extent of different types of proposed land cover on the site have been measured. Table 10.1 shows the measured proposed land cover areas. The highest percentage is green and landscaped areas at 55% of the total site area. Roof areas cover 18%, road area 4% and parking areas 24%

Table 10.1 Land Cover Areas

Land Cover	Ar	Percentage of total	
	m²	На	site area
Total Housing Roof Area	599	0.060	18%
Total Parking & Paved Areas	799	0.080	24%
Total Road Area	119	0.012	4%
Green & Landscaped Areas	1863	0.186	55%

The site can be subdivided into land cover that could be permeable and that which could be impermeable. Potential impermeable areas are regarded as housing, parking, roads, driveways and walkways. All other areas (principally public open space) are regarded as having a permeable surface. Table 10.2 gives the areas of potentially permeable and impermeable land cover, and this shows that impermeable areas could cover 45% of the site and permeable areas 55%.

 Table 10.2 Area of Potentially Impermeable & Permeable Land Cover

Land Cover	Alea		
	m²	На	site area
Total Impermeable Area	1517	0.152	45%
Remaining Permeable Area	1863	0.186	55%

10.3 SURFACE WATER DRAINAGE DESIGN PARAMETERS

The surface water drainage system has been designed on the following basis using the modified rational method and a generated rainfall profile:

10.3.1 CLIMATE CHANGE

Projections of future climate change indicate that more frequent short-duration, high intensity rainfall and more frequent periods of long-duration rainfall are likely to occur over the next few decades in the UK. These future changes will have implications for river flooding and for local flash flooding. These factors will lead to increased and new risks of flooding within the lifetime of planned developments.

Climate change guidance is issued by the Environment Agency and outlines the anticipated changes to extreme rainfall intensity. Table 10.3 shows anticipated changes in extreme rainfall intensity in small and urban catchments. Guidance states that for site-specific flood risk assessments and strategic flood risk assessments, the upper end allowance should be assessed. A climate change allowance of 40% has been selected for the purpose of drainage design based on the 100-year anticipated design life of the proposed development. No properties are located immediately downstream of the site and therefore the site poses low risk to neighbouring property.

(use 1961 to 1990 baseline)						
Applies across all of England	Total potential change anticipated for the '2020s' (2015 to 2039)	Total potential change anticipated for the '2050s' (2040 to 2069)	Total potential change anticipated for the '2080s' (2070 to 2115)			
Upper End	10%	20%	40%			
Central	5%	10%	20%			

Table 10.3 Peak Rainfall Intensity Allowance in Small and Urban Catchments

10.3.2 URBAN CREEP

.

BS 8582:2013 ^[9] outlines best practice with regard to Urban Creep. Although not a statutory requirement, future increase in impermeable area due to extensions and introduction of impervious positively drained areas has been considered. An uplift of 10% on impermeable areas associated with plots only (excluding roads) has been applied to the contributing area.

The inclusion of 10% is highly conservative due to the provision of adequate parking on the site and considering the limited extension potential of the dwelling due to site topography.

10.3.3 PERCENTAGE IMPERMEABILITY (PIMP)

The percentage impermeability (PIMP) for all impermeable areas is modelled as 100%. The entirety of the impermeable areas is to be positively drained.

10.3.4 VOLUMETRIC RUNOFF COEFFICIENT (CV)

The volumetric runoff coefficient describes the volume of rainfall which runs off an impermeable surface following losses due to infiltration, depression storage, initial wetting and evaporation. The coefficient is dimensionless. Default industry standard volumetric runoff coefficients are 0.75 for summer and 0.84 for winter and are used for design.

10.3.5 RAINFALL MODEL

The calculations use the REFH2 unit hydrograph methodology in line with best practice as outlined in the SuDS Manual ^[8]. The calculations use the most up to date available catchment descriptors (2013) provided by the Centre for Ecology and Hydrology Flood Estimation Handbook web service.

10.4 PRE-DEVELOPMENT RUNOFF ASSESSMENT

As the site covers an area of less than 200 ha, (0.34 ha) the Greenfield calculations have been undertaken in accordance with methodology described in IoH 124^[15]. For catchments of less than 50 ha the Greenfield runoff rate is scaled according to the size of the catchment in relation to a 50-hectare site.

Full details of the calculations and the methodology for deriving the Peak Rate of Runoff are in included in Appendix B. A summary of the results is included in Table 10.4. Without attenuation or infiltration, the proposed development would not alter the Rate of Runoff from the developed areas of the site.

Rate of Runoff (l/s)							
Event	Greenfield	Brownfield Post- Development					
Q1	1.1	12.7					
QBAR	1.2	18.6					
Q10	1.7	25.5					
Q30	2.1	31.1					
Q100	2.6	39.9					
Q100+ 40% CC	3.6	55.8					

Table 10.4 Pre-Development Peak Runoff Rates

Without attenuation, the proposed development would increase the Rate of Runoff from the developed areas of the site. To mitigate against the potential increase in runoff, it is proposed to contain and attenuate runoff within the site before being released at a controlled rate to the existing culverted watercourse, at the pre-development Greenfield Qbar rate.

10.5 SURFACE WATER DISPOSAL

Surface water disposal has been considered in line with the hierarchy outlined in the SuDS Manual ^[8]. The approach considers infiltration drainage in preference to disposal to watercourse, in preference to discharge to sewer.

Cumbria County Council as Lead Local Flood Authority prefer design in accordance with the Cumbria Design Guide which identifies the following hierarchy of techniques to be used:

- **Prevention**: Prevention of runoff by good site design and the reduction of impermeable areas.
- **Source Control**: Dealing with water where and when it falls (e.g. permeable paving).
- Site Control: Management of water in the local area (e.g. swales, detention basins).
- **Regional Control**: Management of runoff from sites (e.g. balancing ponds, wetlands).

10.5.1 INFILTRATION

Geotechnical testing indicates soil on the site is unsuitable for the disposal of surface water by infiltration. The Geo-environmental Site Assessment indicates the underlying strata is likely to be unsuitable for drainage via infiltration. For further information refer to Section 8.6.

10.5.2 POSITIVE DRAINAGE - WATERCOURSE

The impermeable area of the site associated with the new dwellings will require a positive drainage solution. Runoff will be attenuated to pre-development Greenfield Qbar rates as far as practical, with discharge proposed to the existing culverted water course located within the Jefferson Park development.

10.6 SURFACE WATER DRAINAGE DESIGN

The proposed surface water network serving the impermeable access roads and plots has been modelled using Micro Drainage Source Control (results included in Appendix B).

The drainage design has been sized to contain a future 1% AEP event of critical duration. Future climate change (40%) and urban creep (10% to housing roof areas only) is accounted for.

It is proposed that all roof and driveway areas will drain into shared private geocellular crate attenuation systems, located within private drive areas.

Roof water and driveway runoff will connect directly into the surface water pipe network upstream of the crate systems, with inspection chambers utilised to route the new pipework and allow for future inspection and maintenance. Ground levels will be required to fall consistently around the site in order to enable gravity connections to the drainage system.

Advanced silt traps will be located upstream of each attenuation tank, which will provide surface water treatment and access for maintenance. Silt traps isolate silt and other particles by encouraging settlement into removal silt buckets, preventing ingress into the tank.

The crates will be founded at a suitable level providing a minimum depth of cover of 600 mm over the top. These tanks will be wrapped and sealed with an impermeable membrane to provide a water-tight structure.

Mini flow control chambers will restrict discharge from each shared geocellular crate system. With the cumulative discharge from the site culminating in a total discharge rate of 1.2 l/s from the new plots equalling the pre-development greenfield runoff Qbar rate for the equivalent site area.

A storage assessment has been undertaken for the Q100+40% CC storm event and has been designed with sufficient capacity to convey flows without causing flooding, the results are provided in Table 10.5.

Plot No.	Tank Plan Area (m²)	Tank Dimensions (m)	Volume to TWL (m ³)	Discharge Rate (I/s)
1 - 8	88	8 x 11 x 0.8	65.7	0.6
9 - 12	38.5	5.5 x 7 x 0.8	28	0.4
13 - 14	30	5 x 6 x 0.8	22	0.2
			TOTAL	1.2

Table 10.5 Attenuation Storage Volumes

Note: TWL - Top Water Level for the Q100 + 40%CC event

For further detail refer to the Outline Drainage Layout Plan included in Appendix A.

10.7 DESIGNING FOR LOCAL DRAINAGE SYSTEM FAILURE

In accordance with the general principles discussed in CIRIA Report C635 – Designing for Exceedance in Urban Drainage ^[13] the proposed surface water drainage, where practical, should be designed to ensure there is no increased risk of flooding on the site or elsewhere as a result of extreme rainfall, lack of maintenance, blockages or other causes. These measures are discussed below.

Surface Storage & External Levels – where possible driveway/car parking areas will be designed to offer additional surface water storage volume and conveyance of flood water should the SuDS and drainage system fail, flood or exceed capacity. Where appropriate, the kerb lines will be raised to channel surface water runoff back into the drainage system or onto the existing highway.

Drainage Contingency – the sustainable drainage systems have been designed to attenuate a 100year design storm including a 40% allowance for climate change. The drainage system will also provide capacity for lower probability (greater design storm events) which are not critical duration.

Building Layout & Detail – the dwellings will be designed and situated to ensure that they are not at risk of flooding from overland flow. The finished floor and threshold levels of the proposed new dwellings will be set above the external levels, and external footpaths will fall away from the dwellings, ensuring that any flood water runs away from, rather than towards the properties.

Blockage and exceedance – In the unlikely case of exceedance or blockage of the geocellular systems, associated silt traps and/or flow control chambers, spills would occur from the lowest access cover around the properties. Exceedance flows shall be retained on site within the drainage system as far as practical and in the case of extreme events site levels will be set to divert any exceedance flows to fall towards and disperse in more permeable green space areas as is currently the case, or towards the existing site highway where they would be contained and intercepted by gullies.

10.8 OPERATIONS & MAINTENANCE RESPONSIBILITY

The drainage will remain private and will therefore be maintained by Home Group. A SuDS 'Operations & Maintenance Plan' has been prepared by RGP detailing the requirements for future maintenance of the drainage system.

11. FOUL WATER DRAINAGE STRATEGY

It is proposed that foul water from the new dwellings shall be drained via gravity within the site before being connected to the nearest existing 150mm or 225mm diameter foul sewer located within the existing Jefferson Park site road, via new connections to the nearest existing UU manholes to the properties.

Under Section 106 of The Water Industry Act 1991, 'the owner / occupier of any premises shall be entitled to have his drain or sewer communicate with the public sewer of any sewerage undertaker and thereby to discharge foul water and surface water from those premises or that private sewer.' Unless 'the making of the communication would be prejudicial to the undertaker's sewerage system'.

A pre-development enquiry has been submitted to United Utilities to confirm acceptability of the foul water drainage proposals.

Preliminary foul water discharge calculations have been undertaken for the new dwellings in accordance with the Design and Construction Guidance for Foul and Surface Water Sewers ^[17], as shown in Table 11.1 below.

Table 11.1 Peak Foul Flow Rates

Sewerage Sector Design and Construction Guidance Clause B3.1					
Peak Load Based on Number of Dwellings – 14 No. @ 4000 L/day	56,000				
Peak Foul Flow Rate from Site (I/s)	0.65				

The estimated predicted peak foul flow rate from the new development is 0.65 l/s.

The outline foul water drainage pipe routes are included on drawing K38379-10, included in Appendix A.

12. CONCLUSIONS AND RECOMMENDATIONS

In consideration of the Flood Risk Assessment and Drainage Strategy for the new development the following conclusions and recommendations are made:

- The site is located in Flood Zone 1 with a predicted annual probability of flooding from rivers or the sea of less than 0.1% AEP (1 in 1000).
- By reference to the National Planning Policy Framework^[1] on Flood Risk, More Vulnerable development is acceptable within this flood zone.
- The site is not considered to be at significant risk of flooding from surface water, groundwater, reservoirs, canals, or any artificial structures.
- It is proposed that surface water drainage shall be positively drainage and attenuated, using 3 No. shared geocellular crate systems, with individual flow control devices restricting discharge to the pre-development Greenfield Qbar rate.
- Discharge from the site shall be controlled to a maximum rate of 1.2 l/s via the 3 No. orifice flow control devices, before connecting via gravity to the existing culverted watercourse running through the development site.
- In addition to these measures, a SuDS Operations and Maintenance Plan will be made available to Home Group detailing future maintenance requirements of all sustainable drainage systems.
- Foul flows from the site shall discharge by gravity to the existing public foul sewers located in the Jefferson Park site road. A pre-development enquiry has been submitted to UU.

13. REFERENCES

- [1] Ministry of Housing, Communities and Local Government, National Planning Policy Framework, July 2021.
- [2] Ministry of Housing, Communities and Local Government, Planning Practice Guidance to the National Planning Policy Framework, July 2018.
- [3] Defra/Environment Agency, The Town and Country Planning Order 2015, 2015 No.595, April 2015.
- [4] British Geological Survey, 2021. Geoindex. http://mapapps2.bgs.ac.uk/geoindex/home.html
- [5] Land Information System (LANDIS)- Soilscapes viewer, Accessed August 2021. http://www.landis.org.uk/soilscapes
- [6] Defra Magic Maps, 2021. <u>https://magic.defra.gov.uk/MagicMap.aspx</u>. Accessed August 2021.
- [7] Copeland Borough Council, Draft Strategic Flood Risk Assessment (SFRA), May 2018
- [8] CIRIA, The SuDS Manual, Report C753, 2015.
- [9] BS8582:2013, Code of Practice for Surface Water Management, November 2013.
- [10] DEFRA/EA, Rainfall Runoff Management for Developments, SC030219, October 2013.
- [11] CIRIA, Designing for Exceedance in Urban Drainage Good Practice, Report C635, London, 2006.
- [12] Centre for Ecology and Hydrology, Flood Estimation Handbook, Vols. 1 5 & FEH CD-ROM 3, 2009.
- [13] Institute of Hydrology, Flood Studies Report, Volume 1, Hydrological Studies, 1993.
- [14] Institute of Hydrology, Flood Studies Supplementary Report No 14 Review of Regional Growth Curves, August 1983.
- [15] Marshall & Bayliss, 1994. Flood Estimation for Small Catchments, Report No. 124 (IoH 124), Institute of Hydrology.
- [16] Department for Environment, Food and Rural Affairs, Non-Statutory Technical Standards for Sustainable Drainage Systems, March 2015
- [17] Water UK, Design and Construction Guidance for Foul & Surface Water Sewers Offered for Adoption Under the Code for Adoption Agreements for Water and Sewage Companies Operating Wholly or Mainly in England, Approved Version 2.0, March 2020

APPENDIX A

ARCHITECT'S SITE PLAN

OUTLINE FOUL AND SURFACE WATER DRAINAGE LAYOUT

—

APPENDIX B

PRE-DEVELOPMENT RUNOFF CALCULATIONS SOURCE CONTROL DRAINAGE CALCULATIONS

R G PARKINS & PARTNERS LTD	CALCULATION		Job No.	K38379	Page	1 of 6
Meadowside	Job	Jefferson Park	Drg No.	N/A	Date	25/08/2021
Shap Road		Whitehaven	Revision	Orig	Initial	CA
KENDAL LA9 6NY	Title	Rate of Run-Off			Checked	??

DESIGN BASIS MEMORANDUM - PEAK RATE OF RUN-OFF CALCULATION

<u>Design Brief</u>

The following peak rate of run-off calculations have been undertaken to determine changes in peak flow resulting from the development of a greenfield or brownfield site. These calculations are for the **Peak Rate of Run-Off** requirements only.

Background Information & References

The site area **is less than** 200ha and the Greenfield (pre-development) calculation has been undertaken in accordance with methodology described by Marshall & Bayliss, Institute of Hydrology, Report No. 124, Flood Estimation for Small Catchments, 1994 (IoH 124).

In addition, the following references have been used in the preparation of these calculations:

- Interim Code of Practice for Sustainable Drainage Systems (SUDS), CIRIA, 2004
- CIRIA, The SUDS Manual, Report C753, 2015
- Designing for Exceedance in Urban Drainage good practice, CIRIA Report C635, 2006
- Flood Estimation Handbook (FEH)
- Flood Studies Report (FSR), Volume 1, Hydrological Studies, 1993
- Flood Studies Supplementary Report No 2 (FSSR2), The Estimation of Low Return Period Floods
- Flood Studies Supplementary Report No 14 (FSSR14), Review of Regional Growth Curves, 1983
- Planning Practice guidance of the National Planning Policy Framework, Recommended national precautionary sensitivity ranges for peak rainfall intensities, peak river flows, offshore wind speeds and wave heights.

Proposed Land Use Changes

Changes to the existing site are as follows:

Greenfield Site to Brownfield Site

Results Summary

Rate of Run-Off (I/s)						
Event	Greenfield		Post- Development			
Q1	1.1		12.7			
QBAR	1.2		18.6			
Q10	1.7		25.5			
Q30	2.1		31.1			
Q100	2.6		39.9			
Q100 + 40% CC	3.6		55.8			

R G PARKINS & PARTNERS LTD	CALCULA	TION	Job No.	K38379	Page	2 of 6
Meadowside	Job	Jefferson Park	Drg no.	N/A	Date	25/08/2021
Shap Road		Whitehaven	Revision	Orig	Initial	CA
KENDAL LA9 6NY	Title	Rate of Run-Off			Checked	??

SITE AREAS (LAND COVER AREAS)

Existing Impermeable & Permeable Land Cover

Total Site Area:

<mark>0.338</mark>ha

Existing Impermeable & Permeable Land Cover

Land Cover	Area		Percentage of total site area
	m²	ha	
Total impermeable area	261	0.026	8%
Remaining permeable area	3119	0.312	92%

Proposed Land Cover Areas

Land Covor	Are	a	Percentage of total site
	m²	ha	area
Total housing roof area	599	0.060	18%
Total parking and paved area	799	0.080	24%
Total road area	119	0.012	4%
Garden & landscaped areas	1863	0.186	55%

Proposed Impermeable & Permeable Land Cover

Land Cover	Are	a	Percentage of total site		
	m²	ha	area		
Total impermeable area	1517	0.152	45%		
Remaining permeable area	1863	0.186	55%		

R G PARKI	NS & PARTNERS LTD	CALCULA	TION		Job No.	K38379	Page	3 of 6
Meadowside)	Job	Jefferson Pa	ark	Drg no.	N/A	Date	25/08/2021
Shap Road			Whitehaven		Revision	Orig	Initial	CA
KENDAL L	A9 6NY	Title	Rate of Run	-Off			Checked	??
ESTIMATION OF QBAR (RURAL) (GREENFIELD RUNOFF RATE)								
loH 124 bas	IoH 124 based on research on small catchments < 25 km2							
Method is ba using catchn	ased on regression analy nents from 0.9 to 22.9 k	ysis of resp m ²	oonse times					
QBAR _{rural} QBAR _{rural}	is mean annual flood o depends on SOIL, SAA	n rural cato	chment EA most sign	ificantly				
QBAR _{rural}	=	0.00108	x AREA ^{0.89} x	x SAAR ^{1.17} x \$	SOIL ^{2.17}			
For SOIL ref	fer to FSR Vol 1, Sectior	n 4.2.3 and	4.2.6 and lol	H 124				
Contributing Area, A	watershed area	= = =	500000 0.500 50.000	m ² km ² ha	insert 50 small cate	ha for EA chment m	ethod	
SAAR		=	1102	mm	From UK	Suds web	osite (point	t data)
Soil index ba	ased on soil type, SOIL		:	= <u>(0.1S1+0.3</u> (S1+3	<u>S2+0.37S</u> S2+S3+S4	<u>3+0.47S4</u> 1+S5)	+0.53S5)	
Where:	S1 S2 S3 S4 S5	= = = =	100 100	% % % %	UK Suds based on seems re investigat	website p the equiv asonable tion.	provides a valent Hos based on	value of 2 t value. This ground
So,	SOIL	=	0.47					
Note: for ver	y small catchments it is	far better t	o rely on loca	ıl site investiç	ation info	rmation.		
QBAR _{rural}		=	0.410 410.5	m ³ /s I/s				
Small rural catchments less than 50 ha The Environment Agency recommends that this method should be used for development sizes from 0 to 50 ha and should linearly interpolate the formula to 50 ha.								
So, catchme	ent size	= = =	1517 0.002 0.152	m ² km ² ha	Excluding would rer positive d events.	g significa nain disco Irainage s	nt open sp onnected f ystem dur	bace which from the fing flood
QBAR _{rural site}		=	0.00125 1.25	m ³ /s I/s				

			-			
R G PARKINS & PARTNERS LTD	CALCULA	TION	Job No.	K38379	Page	4 of 6
Meadowside	Job	Jefferson Park	Drg no.	N/A	Date	25/08/2021
Shap Road		Whitehaven	Revision	Orig	Initial	CA
KENDAL LA9 6NY	Title	Rate of Run-Off			Checked	??
GREENFIELD RETURN PERIOD ORDINATES						
QBAR can be factored by the UK FSR regional growth curves for return periods <2 years and for all other return periods to obtain peak flow estimates for required return periods.						
See Table 2.39 for region curve ordinates Use FSSR2 Growth Curves to estimate Qbar						
Region = 10 Use Figure A1.1 to determine region						
GREENFIELD RETURN PERIOD FLOW RATES						

Return Period	Ordinate	Q (I/s)
1	0.87	1.08
2	0.93	1.16
5	1.19	1.48
10	1.38	1.72
25	1.64	2.04
30	1.7	2.12
50	1.85	2.30
100	2.08	2.59
200	2.32	2.89
500	2.73	3.40
1000	3.04	3.79

Ordinate from FSSR2

Interpolation taken from Figure 24.2 (pg 515) SuDS Manual

					_	
R G PARKINS & PARTNERS LTD	CALCULA		Job No.	K38379	Page	5 of 6
Meadowside	Job	Jefferson Park	Drg no.	N/A	Date	25/08/2021
Shap Road		Whitehaven	Revision	Orig	Initial	CA
KENDAL LA9 6NY	Title	Rate of Run-Off			Checked	??
ESTIMATE OF BROWNFIELD RUN Total site impermeable	IOFF e area, A =	1517 m²				
M5-60 raiı Ratio M5-60/N	nfall depth //5-2Day, r	17 mm 0.30	[Flood St [The Wal Modified (Hydrauli	udies Rep lingford P Rational I cs Resea	oort (NER(roceedure Method, Fi rch, 1983)	C, 1975)] - V4 g A.2]
Storn	n Duration	15 mins	Anticipate usually 1	ed critical 5 minutes	duration fo	or the site -
Duration	factor, Z1	0.59	[The Wal Modified (Hvdrauli	lingford P Rational I cs Resea	roceedure Method, Fi rch. 1983)	e - V4 ig A.3b 1
M5-15 raint	fall depth =	10.0 mm	(Fry araan		,	1
	Return pe M1-15 M10-15 M30-15 M100-15	riod ratio, Z2 0.61 1.22 1.49 1.91	[The Wal Modified (Hydrauli	lingford P Rational I cs Resea	roceedure Method, Ta rch, 1983 <u>)</u>	e - V4 able A1]
		Rainfall	-			
	M1-15 M10-15 M30-15 M100-15	Depth Intensity, i (mm) (mm/hr) 6.1 24 12.2 49 14.9 60 19.2 77				
Peak discha	arge, Qp =	Cv Cr i A				
Where:	Cv = Cr = i = Cv = Cr =	Volumetric Runoff Coeff Routing Coefficient Rainfall intensity (mm/ho 0.95 1.3	ïcient our)			
	Peak Q1 Q10 Q30 Q100	Runoff 1/s 12.7 25.5 31.1 39.9				

R G PARKINS & PARTNERS LTD	CALCULA	TION	Job No.	K38379	Page	6 of 6	
Meadowside	Job	Jefferson Park	Drg no.	N/A	Date	25/08/2021	
Shap Road		Whitehaven	Revision	Orig	Initial	CA	
KENDAL LA9 6NY	Title	Rate of Run-Off			Checked	??	
ESTIMATION OF QBAR (BROWNF See Table 2.39 for region curve ordi	FIELD RUN	OFF RATE)	Referenc	<mark>e- Pa 17</mark> 3	-FSR V.1	. ch 2.6.2	
Use FSSR2 Growth Curves to estim	ate Qbar			<u> </u>		-	
	Region =	10	Use Figu	re A1.1 to	determin	e region	
	Return Period 1 2 5 10 25 30 50 100 200 500	Ordinate 0.87 0.93 1.19 1.38 1.64 1.70 1.85 2.08 2.32 2.73	Ordinate	from FSS	R2		
	1000	3.04	515) SuDS Manual				
Orc	(linate used 10 year 30 year 100 year	Dbar <u> /s</u> <u>18.5</u> <u>18.3</u> <u>19.2</u>					
Proposed Brownfield Runo	ff, Qbar =	18.64 l/s	Using the derived fr ordinates	e average om three	Qbar		

R G Parkins & Pa	rtners Lto	d]	Page 1
Meadowside	_									
Sharp Road Kend	al									
Cumbria LA9 6NY	14.25					~	,			Micro
Date 25/08/2021		00000	D	Desig	jned by	Chris A	bram			Drainage
FILE K383/9 - GE	U CRATES (J. 8DEE.	P	Check	ted by	mal 2020	1 2			J
AP SOLUCIOUS				SOULC		101 2020	.1.3			
	Summary o	of Resu	ults i	for 10	0 year	Return	Period	(+40%))	
		Н	alf Dr	ain Tir	ne : 780	minutes.			_	
	Storm	Max	Max	Ma	ax	Max	Max	Max	Status	
	Event	Level	Depth	Infilt	ration (Control E	Outflow	Volume		
		(m)	(m)	(1,	s)	(l/s)	(l/s)	(m³)		
15	min Summer	8.842	0.242		0.0	0.2	0.2	8.9	ОК	
30	min Summer	8.941	0.341		0.0	0.2	0.2	12.5	ΟK	
60) min Summer	9.055	0.455		0.0	0.3	0.3	16.6	ОК	
120) min Summer) min Summer	9.136	0.536		0.0	0.3	0.3	19.6 21 3	OK	
240	min Summer	9.212	0.612		0.0	0.3	0.3	22.4	ОК	
360	min Summer	9.246	0.646		0.0	0.3	0.3	23.6	ΟK	
480	min Summer	9.261	0.661		0.0	0.3	0.3	24.2	ОК	
600) min Summer	9.267	0.667		0.0	0.3	0.3	24.4	ОК	
960) min Summer	9.271	0.674		0.0	0.3	0.3	24.0	ОК	
1440	min Summer	9.268	0.668		0.0	0.3	0.3	24.4	ОК	
2160	min Summer	9.249	0.649		0.0	0.3	0.3	23.7	ΟK	
2880	min Summer	9.225	0.625		0.0	0.3	0.3	22.8	ОК	
4320	min Summer	9.175	0.575		0.0	0.3	0.3	21.0 10 /	ОК	
7200) min Summer	9.096	0.496		0.0	0.3	0.3	19.4	ОК	
8640	min Summer	9.066	0.466		0.0	0.3	0.3	17.1	ОК	
10080	min Summer	9.041	0.441		0.0	0.3	0.3	16.1	ΟK	
15	min Winter	8.872	0.272		0.0	0.2	0.2	9.9	ОК	
30) min Winter) min Winter	8.982 9 111	0.382		0.0	0.3	0.3	14.0 18 7	OK	
120	min Winter	9.204	0.604		0.0	0.3	0.3	22.1	ОК	
								_		
		Storm	(Rain	Flooded	Discharge	e Time-Po	eak		
		Evenc	()	,	(m ³)	(m ³)	(mine	,,		
	1 ⊑	min Cur	mmer 1	17 400	0 0	0	7	23		
	30	min Sur	mmer	83.122	0.0	12.3	, 1	23 37		
	60	min Sur	mmer	56.245	0.0	17.	2	66		
	120	min Sur	mmer	34.142	0.0	20.	9	126		
	180	min Sur	mmer	25.424	0.0	23.	3	184		
	240 360	min Sur	mmer	20.592	0.0	25.	2. 9.	244 362		
	480	min Su	mmer	12.318	0.0	30.0	0	480		
	600	min Sur	mmer	10.429	0.0	31.	7	540		
	720	min Sur	mmer	9.099	0.0	33.	0	598		
	960	min Sur	mmer	7.328	0.0	34.	9 8	722 988		
	2160	min Sur	mmer	3.998	0.0	44	2 1	408		
	2880	min Sur	mmer	3.240	0.0	47.	7 1	820		
	4320	min Sur	mmer	2.417	0.0	53.	3 2	636		
	5760	min Sur	mmer	1.975	0.0	58.	3 3	408		
	7200	min Sur	mmer	1.699	0.0	62.	/ 4. R /	184 928		
	10080	min Sur	mmer	1.370	0.0	70.	5 4: 7 5:	656		
	15	min Wi	nter 1	17.428	0.0	9.1	B	22		
	30	min Wi	nter	83.122	0.0	13.	3	37		
	60	min Wi	nter	56.245	0.0	19.3	3	66		
	TZ0	ULTI WTJ	TICGT	57.142	0.0	23.4	т.	127		

©1982-2020 Innovyze

R G Parkins & Partners Ltd		Page 2
Meadowside		
Sharp Road Kendal		
Cumbria LA9 6NY		Micro
Date 25/08/2021 14:38	Designed by Chris Abram	
File K38379 - GEO CRATES 0.8DEEP	Checked by	Diamage
XP Solutions	Source Control 2020.1.3	

Summary of Results for 100 year Return Period (+40%)

	Storm Event		Max Level (m)	Max Depth (m)	Max Infiltration (1/s)	Max Control (1/s)	Max Σ Outflow (1/s)	Max Volume (m³)	Status
180	min W	inter	9.221	0.621	0.0	0.5	0.5	51.9	ОК
240	min W	inter	9.260	0.660	0.0	0.5	0.5	55.1	ΟK
360	min W	inter	9.310	0.710	0.0	0.5	0.5	59.3	ОК
480	min W	inter	9.341	0.741	0.0	0.5	0.5	62.0	ОК
600	min W	inter	9.361	0.761	0.0	0.5	0.5	63.6	ΟK
720	min W	inter	9.374	0.774	0.0	0.5	0.5	64.7	ΟK
960	min W	inter	9.385	0.785	0.0	0.5	0.5	65.6	ΟK
1440	min W	inter	9.386	0.786	0.0	0.5	0.5	65.7	ΟK
2160	min W	inter	9.380	0.780	0.0	0.5	0.5	65.2	ΟK
2880	min W	inter	9.363	0.763	0.0	0.5	0.5	63.8	ΟK
4320	min W	inter	9.315	0.715	0.0	0.5	0.5	59.8	ΟK
5760	min W	inter	9.268	0.668	0.0	0.5	0.5	55.8	ΟK
7200	min W	inter	9.226	0.626	0.0	0.5	0.5	52.3	ОК
8640	min W	inter	9.189	0.589	0.0	0.5	0.5	49.3	ΟK
10080	min W	inter	9.157	0.557	0.0	0.4	0.4	46.6	ОК

	Stor: Even	m t	Rain (mm/hr)	Flooded Volume (m ³)	Discharge Volume (m ³)	Time-Peak (mins)
				()	()	
180	min	Winter	25.424	0.0	51.1	182
240	min	Winter	20.592	0.0	54.1	240
360	min	Winter	15.253	0.0	58.3	356
480	min	Winter	12.318	0.0	61.0	472
600	min	Winter	10.429	0.0	63.0	584
720	min	Winter	9.099	0.0	64.4	696
960	min	Winter	7.328	0.0	66.2	912
1440	min	Winter	5.399	0.0	67.1	1144
2160	min	Winter	3.998	0.0	102.9	1604
2880	min	Winter	3.240	0.0	109.3	2072
4320	min	Winter	2.417	0.0	112.8	2944
5760	min	Winter	1.975	0.0	136.8	3808
7200	min	Winter	1.699	0.0	147.1	4616
8640	min	Winter	1.509	0.0	156.7	5448
10080	min	Winter	1.370	0.0	165.6	6256

P.C. Darking & Dartnorg Itd		Page 3
No deveride		Page 3
Rear Bood Kondol		
Sharp Road Kendal		
Cumbria LA9 6NY		—— Micro
Date 25/08/2021 14:38	Designed by Chris Abram	Drainage
File K38379 - GEO CRATES 0.8DEEP	Checked by	Didiridge
XP Solutions	Source Control 2020.1.3	
Ra	ainfall Details	
Rainfall Moo Return Period (year	del FEH	
FEH Rainfall Versi	ion 2013	
Site Locati	ion GB 297410 516791 NX 97410 16791	
Data Ty	ype Point	
Summer Stor Winter Stor	rms Yes Yes	
Cv (Summe	er) 0.750	
Cv (Winte	er) 0.840	
Shortest Storm (mir	ns) 15	
Longest Storm (mir Climate Change	ns) 10080	
Ti	me Area Diagram	
	<u>_</u>	
Tot	tal Area (ha) 0.086	
Time (mins From: To:	(ha) From: To: (ha)	
110	(111) 110. 101 (111)	
0	4 0.043 4 8 0.043	

©1982-2020 Innovyze

					T
R G Parkins & Partners Ltd					Page 4
Meadowside					
Sharp Road Kendal					
Cumbria LA9 6NY					Mirro
Date 25/08/2021 14:38	Designe	d by Chris	Abram		Dcainago
File K38379 - GEO CRATES 0.8DEEP	Checked	by			Diamage
XP Solutions	Source	Control 202	20.1.3		
	Model De	etails			
Storage is O	nline Cov	er Level (m)	10.000		
Cellul	ar Stora	ge Structu	re		
Inve Infiltration Coefficient Infiltration Coefficient	ert Level 5 Base (m/ 5 Side (m/	(m) 8.600 (hr) 0.00000 (hr) 0.00000	Safety Fact Porosi	or 2.0 ty 0.95	
Depth (m) Area (m ²) Inf. An	rea (m²) I	Depth (m) Are	a (m²) Inf.	. Area (m²)	
0.000 88.0 0.800 88.0	88.0 118.4	0.801	0.0	118.4	
Orifi	lce Outfi	low Control	<u>.</u>		
Diameter (m) 0.017 Discharg	ge Coeffic	cient 0.600 I	nvert Level	(m) 8.600	

r										
R G Parkins & Pa	artners Lto	d								Page 1
Meadowside										
Sharp Road Kend	lal									
Cumbria LA9 6NY										Micco
$D_{2} = \frac{25}{08} \frac{25}{2021}$	11.21			Dogio	mod by	Chria A	hrom			MILIU
Date 25/08/2021	11.24	000000		Deste	yneu by	CIII IS A	DIam			Drainage
File K38379 - GE	CO CRATES	J.8DEEP.	••	Check	ted by					
XP Solutions				Sourc	ce Cont	rol 2020	.1.3			
	Summary o	of Resul	ts f	Eor 10	00 year	Return	Period	(+40%))	
		Half	Dra	ain Tim	ne : 1176	minutes.				
	Storm	Max M	iax	Ma	ax	Max	Max	Max	Status	
	Event	Level De	pth	Infilt	ration C	Control E	Outflow	Volume		
		(m) (m)	(1,	/s)	(1/s)	(1/s)	(m³)		
1	5 min Summer	8.821 0.	221		0.0	0.1	0.1	6.3	ОК	
30) min Summer	8.912 0.	312		0.0	0.1	0.1	8.9	ОК	
60) min Summer	9.018 0.	418		0.0	0.1	0.1	11.9	ОК	
120) min Summer	9.097 0.	497		0.0	0.1	0.1	14.2	ОК	
180) min Summer	9.145 0.	545		0.0	0.2	0.2	15.5	ОК	
240) min Summer	9.178 0.	578		0.0	0.2	0.2	16.5	ОК	
360) min Summer	9.219 0.	619		0.0	0.2	0.2	17.6	ОК	
480) min Summer	9.244 0.	644		0.0	0.2	0.2	18.4	ОК	
600) min Summer	9.259 0.	659		0.0	0.2	0.2	18.8	ОК	
720) min Summer	9.267 0.	667		0.0	0.2	0.2	19.0	ОК	
960) min Summer	9.274 0.	674		0.0	0.2	0.2	19.2	OK	
1440) min Summer) min Summer	9.279 0.	679		0.0	0.2	0.2	19.3	OK	
2100) min Summer	9.277 0.	668		0.0	0.2	0.2	19.3	0 K	
4320) min Summer	9.241 0.	641		0.0	0.2	0.2	18.3	ОК	
5760) min Summer	9.212 0.	612		0.0	0.2	0.2	17.4	ОК	
7200) min Summer	9.187 0.	587		0.0	0.2	0.2	16.7	ОК	
8640) min Summer	9.165 0.	565		0.0	0.2	0.2	16.1	ОК	
10080) min Summer	9.147 0.	547		0.0	0.2	0.2	15.6	ОК	
15	5 min Winter	8.848 0.	248		0.0	0.1	0.1	7.1	ОК	
30) min Winter	8.950 0.	350		0.0	0.1	0.1	10.0	ОК	
60) min Winter	9.069 0.	469		0.0	0.1	0.1	13.4	ОК	
120) min Winter	9.159 0.	559		0.0	0.2	0.2	15.9	ΟK	
		a h		Dela		Di sahawa		1-		
		Storm	(-	Rain	Flooded	Discharge	e Time-Po	ear		
		Event	(1		(m3)	vorume (m3)	(mins)		
					(1110)	(1110)				
	15	min Summe	er 11	17.428	0.0	5.6	5	23		
	30	min Summe	er 8	83.122	0.0	7.2	2	37		
	60	min Summe	er S	56.245	0.0	12.0)	68		
	120	min Summe	er 3	34.142	0.0	14.4	1 :	126		
	180	min Summe	er 2	25.424	0.0	15.9	9	186		
	240	min Summe	er 2	20.592	0.0	16.9) :	244		
	360	min Summe	er i	15.253	0.0	18.2	2	364		
	480	min Summe	er 1	10 400	0.0	19.2	<u>.</u>	±82		
	600 720	min Summe	er .	10.429 0 000	0.0	19.8	5 I	20Z 720		
	720 960	min Summe	 r	7.328	0.0	20.3))	, 20 338		
	1440	min Summe	er	5.399	0.0	20.2	3 1	086		
				3 998	0.0	31	2 1	492		
	2160	min Summe	er	5.220	0.0	JI.4				
	2160 2880	min Summe min Summe	er er	3.240	0.0	33.5	5 1	904		
	2160 2880 4320	min Summe min Summe min Summe	er er er	3.240 2.417	0.0	33.5	5 1: L 2'	904 728		
	2160 2880 4320 5760	min Summe min Summe min Summe	er er er	3.240 2.417 1.975	0.0 0.0 0.0	33.9 35.1 41.2	5 1: L 2' 2 3:	904 728 528		
	2160 2880 4320 5760 7200	min Summe min Summe min Summe min Summe	er er er er	3.240 2.417 1.975 1.699	0.0 0.0 0.0 0.0	33.5 35.2 41.2 44.3	5 1: 5 2: 2 3: 3 4:	904 728 528 328		
	2160 2880 4320 5760 7200 8640	min Summe min Summe min Summe min Summe min Summe	er er er er er	3.240 2.417 1.975 1.699 1.509	0.0 0.0 0.0 0.0 0.0	33.5 35.2 41.2 44.3	5 1: L 2' 2 3: 3 4: 2 5:	904 728 528 328 112		
	2160 2880 4320 5760 7200 8640 10080	min Summe min Summe min Summe min Summe min Summe min Summe	er er er er er	3.240 2.417 1.975 1.699 1.509 1.370	0.0 0.0 0.0 0.0 0.0 0.0	33.9 35.2 41.2 44.3 50.0	5 1: 1 2' 2 3: 3 4: 2 5: 0 5:	904 728 528 328 112 944		
	2160 2880 4320 5760 7200 8640 10080 15 30	min Summe min Summe min Summe min Summe min Summe min Summe min Winte min Winte	er er er er er er er 1:	3.240 2.417 1.975 1.699 1.509 1.370 17.428	0.0 0.0 0.0 0.0 0.0 0.0 0.0	33.5 35.2 41.2 44.3 50.0 6.2 7	5 1: 1 2' 2 3: 3 4: 2 5: 0 5: 1	904 728 528 328 112 944 23 37		
	2160 2880 4320 5760 7200 8640 10080 15 30 60	min Summe min Summe min Summe min Summe min Summe min Summe min Winte min Winte	er er er er er er fr er f er f	3.240 2.417 1.975 1.699 1.509 1.370 17.428 83.122 56.245	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	33.5 35.5 41.2 44.3 47.2 50.0 6.5 7.8		904 728 528 328 112 944 23 37 66		
	2160 2880 4320 5760 7200 8640 10080 15 30 60 120	min Summe min Summe min Summe min Summe min Summe min Summe min Winte min Winte min Winte	er er er er er er er er er er	3.240 2.417 1.975 1.699 1.509 1.370 17.428 83.122 56.245 34.142	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	33.9 35.2 41.2 44.3 47.2 50.0 6.2 7.8 13.4 15.9		904 728 528 328 112 944 23 37 66 124		

©1982-2020 Innovyze

R G Parkins & Partners Ltd		Page 2
Meadowside		
Sharp Road Kendal		
Cumbria LA9 6NY		Micro
Date 25/08/2021 14:37	Designed by Chris Abram	
File K38379 - GEO CRATES 0.8DEEP	Checked by	Diamage
XP Solutions	Source Control 2020.1.3	

Summary of Results for 100 year Return Period (+40%)

	Storm Event		Max Level (m)	Max Depth (m)	Max Infiltration (1/s)	Max Control (1/s)	Max Σ Outflow (1/s)	Max Volume (m³)	Status
180	min W	inter	9.257	0.657	0.0	0.3	0.3	24.0	ОК
240	min W	inter	9.292	0.692	0.0	0.3	0.3	25.3	ΟK
360	min W	inter	9.333	0.733	0.0	0.3	0.3	26.8	ОК
480	min W	inter	9.354	0.754	0.0	0.4	0.4	27.6	ΟK
600	min W	inter	9.364	0.764	0.0	0.4	0.4	27.9	ΟK
720	min W	inter	9.366	0.766	0.0	0.4	0.4	28.0	ОК
960	min W	inter	9.365	0.765	0.0	0.4	0.4	28.0	ΟK
1440	min W	inter	9.352	0.752	0.0	0.4	0.4	27.5	ΟK
2160	min W	inter	9.317	0.717	0.0	0.3	0.3	26.2	ΟK
2880	min W	inter	9.277	0.677	0.0	0.3	0.3	24.8	ΟK
4320	min W	inter	9.198	0.598	0.0	0.3	0.3	21.9	ΟK
5760	min W	inter	9.131	0.531	0.0	0.3	0.3	19.4	ΟK
7200	min W	inter	9.078	0.478	0.0	0.3	0.3	17.5	ΟK
8640	min W	inter	9.034	0.434	0.0	0.3	0.3	15.9	ΟK
10080	min W	inter	8.998	0.398	0.0	0.3	0.3	14.6	ОК

	Stor	m	Rain	Flooded	Discharge	Time-Peak
	Even	C	(1007112)	(m ³)	(m ³)	(mins)
180	min	Winter	25.424	0.0	26.1	182
240	min	Winter	20.592	0.0	28.2	238
360	min	Winter	15.253	0.0	31.2	354
480	min	Winter	12.318	0.0	33.5	464
600	min	Winter	10.429	0.0	35.3	572
720	min	Winter	9.099	0.0	36.6	672
960	min	Winter	7.328	0.0	38.5	758
1440	min	Winter	5.399	0.0	40.3	1068
2160	min	Winter	3.998	0.0	49.5	1516
2880	min	Winter	3.240	0.0	53.5	1960
4320	min	Winter	2.417	0.0	59.6	2812
5760	min	Winter	1.975	0.0	65.3	3624
7200	min	Winter	1.699	0.0	70.2	4400
8640	min	Winter	1.509	0.0	74.8	5184
10080	min	Winter	1.370	0.0	79.2	5944

R G Parkins & Partners Ltd		Page 3
Meadowside		
Sharp Road Kendal		
Cumbria LA9 6NY		
Date 25/08/2021 14:37	Designed by Chris Abram	
File K38379 - GEO CRATES 0 8DEED	Checked by	Drainage
XP Solutions	Source Control 2020 1 3	
R	ainfall Details	
Rainfall Mod	del FEH	
Return Period (year	rs) 100	
Site Locat	ion GB 297410 516791 NX 97410 16791	
Data Ty	ype Point	
Summer Stor	rms Yes	
Winter Stor	rms Yes	
Cv (Winte	er) 0.840	
Shortest Storm (min	ns) 15	
Longest Storm (mir	ns) 10080	
Climate Change	e % +40	
Ti	me Area Diagram	
Tot	tal Area (ha) 0.041	
mine (nine	-) Pues mins (mins) Pues	
From: To:	(ha) From: To: (ha)	
0	4 0.020 4 8 0.021	

R G Parkins & Partners Ltd					Page 4
Meadowside					
Sharp Road Kendal					
Cumbria LA9 6NY					Micro
Date 25/08/2021 14:37	Design	ed by Chris	Abram		Drainage
File K38379 - GEO CRATES 0.8DEEP		bidiridge			
XP Solutions	Source	Control 202	20.1.3		
	Model 1	Details			
Storage is O	Online Co	over Level (m)	10.000		
Cellul	ar Stor	age Structur	re		
Inve Infiltration Coefficient Infiltration Coefficient	ert Level t Base (r t Side (r	(m) 8.600 s a/hr) 0.00000 a/hr) 0.00000	Safety Facto Porosit	r 2.0 y 0.95	
Depth (m) Area (m²) Inf. An	rea (m²)	Depth (m) Are	a (m²) Inf.	Area (m²)	
0.000 38.5 0.800 38.5	38.5 58.5	0.801	0.0	58.5	
Orifi	ice Out:	flow Control			
Diameter (m) 0.014 Dischard	ae Coeff	icient 0.600 T	nvert Level	(m) 8.600	
	ge coerr			() 0.000	

R G Parkins & Partn	ers Lto	b								Page 1
Meadowside										
Sharp Road Kendal										
Cumbria LA9 6NY										Micco
$D_{2} = 2E (0.8) (2021 - 14)$	20			Dogio	mod by	Chria A	brom			MILIO
	50			Desig	JILEG DY	CIILIS A	Draill			Drainage
File K38379 - GEO C	RATES	J.8DEE	SP	Check	ed by					Brainage
XP Solutions				Sourc	e Cont	rol 2020	.1.3			
Su	mmary d	of Res	ults :	for 10	0 year	Return	Period	(+40%))	
									-	
		Н	alf Dra	ain Tim	e : 1213	8 minutes.				
Sto	rm	Max	Max	Ma	ax	Max	Max	Max	Status	3
Eve	nt	Level	Depth	Infilt	ration (Control S	Outflow	Volume		
		(m)	(m)	(1/	/s)	(l/s)	(l/s)	(m³)		
15 min	n Summer	8.824	0.224		0.0	0.3	0.3	18.7	OK	ζ -
30 mii	1 Summer	8.915	0.315		0.0	0.3	0.3	26.4	OK	ζ. 7
60 mli	1 Summer	9.023	0.423		0.0	0.4	0.4	35.3 10 1		ς
120 mli 100 mi	n Summor	9.103 9.150	0.503		0.0	0.4	0.4	42.1 16 1		ς
240 min	n Summer	9 1 Q E	0.554		0.0	0.4	0.4	40.1 48 0		ς
240 [[[1]] 360 min	n Summer	9 228	0.628		0.0	0.5	0.5	-10.9 52 5		ς
480 min	a Summer	9.254	0.654		0.0	0.5	0.5	54.7	O K	- (
600 min	n Summer	9.270	0.670		0.0	0.5	0.5	56.0	OF	ζ
720 min	n Summer	9.279	0.679		0.0	0.5	0.5	56.7	O F	ζ
960 min	n Summer	9.286	0.686		0.0	0.5	0.5	57.4	OK	ζ
1440 min	n Summer	9.292	0.692		0.0	0.5	0.5	57.8	OK	ζ
2160 min	n Summer	9.292	0.692		0.0	0.5	0.5	57.8	OF	ζ
2880 min	n Summer	9.284	0.684		0.0	0.5	0.5	57.2	OF	ζ
4320 min	n Summer	9.257	0.657		0.0	0.5	0.5	54.9	Οŀ	ζ
5760 min	n Summer	9.229	0.629		0.0	0.5	0.5	52.6	Οŀ	< C
7200 min	n Summer	9.205	0.605		0.0	0.5	0.5	50.6	Οŀ	ζ
8640 min	n Summer	9.183	0.583		0.0	0.5	0.5	48.8	Οŀ	ζ
10080 min	n Summer	9.165	0.565		0.0	0.4	0.4	47.2	OF	ζ
15 mii	1 Winter	8.851	0.251		0.0	0.3	0.3	21.0	OK	ζ
30 mii	1 Winter	8.954	0.354		0.0	0.4	0.4	29.6	OF	ζ •
60 mii	n Winter	9.074	0.4/4		0.0	0.4	0.4	39.6	OK	<. 7
	I WINCEL	9.100	0.500		0.0	0.5	0.5	47.5	U r	ς
		Ctorm		Dain	Floodod	Digabara	Time D			
		Storm	(Rain	Flooded	Discharge	e Time-P	eak		
		Storm Event	(1	Rain mm/hr)	Flooded Volume	Discharge Volume	e Time-P (mins	eak ;)		
		Storm Event	(:	Rain mm/hr)	Flooded Volume (m³)	Discharge Volume (m³)	e Time-P (mins	eak ;)		
	15	Storm Event min Su	(: ummer 1	Rain mm/hr) 17.428	Flooded Volume (m ³)	Discharge Volume (m ³) 16.2	e Time-P (mins	eak ;) 23		
	15 30	Storm Event min Su min Su	(: ummer 1 ummer	Rain mm/hr) 17.428 83.122	Flooded Volume (m ³) 0.0 0.0	Discharge Volume (m ³) 16.2 20.9	e Time-P (mins	eak ;) 23 37		
	15 30 60	Storm Event min Su min Su min Su	(: ummer 1 ummer ummer	Rain mm/hr) 17.428 83.122 56.245	Flooded Volume (m ³) 0.0 0.0 0.0	Discharge Volume (m ³) 16.2 20.9 35.2	e Time-P (mins	eak ;) 23 37 68		
	15 30 60 120	Storm Event min Su min Su min Su min Su	(: ummer 1 ummer ummer ummer	Rain mm/hr) 17.428 83.122 56.245 34.142	Flooded Volume (m ³) 0.0 0.0 0.0 0.0	Discharge Volume (m ³) 16.2 20.9 35.2 42.4	e Time-P (mins 2 3 4	eak 23 37 68 126		
	15 30 60 120 180	Storm Event min Su min Su min Su min Su	(: ummer 1 ummer ummer ummer ummer	Rain mm/hr) 17.428 83.122 56.245 34.142 25.424	Flooded Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0	Discharge Volume (m ³) 16.2 20.9 35.1 42.4 46.9	e Time-P (mins 2 3 4 5	23 37 68 126 186		
	15 30 60 120 180 240	Storm Event min Su min Su min Su min Su min Su min Su	(: ummer 1 ummer ummer ummer ummer	Rain mm/hr) 17.428 83.122 56.245 34.142 25.424 20.592	Flooded Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Discharge Volume (m ³) 16.2 35.3 42.4 46.9 49.4	e Time-P (mins 2 3 4 5 4	23 37 68 126 186 244		
	15 30 60 120 180 240 360	Storm Event min Su min Su min Su min Su min Su min Su	ummer 1 ummer ummer ummer ummer ummer ummer	Rain mm/hr) 17.428 83.122 56.245 34.142 25.424 20.592 15.253	Flooded Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Discharge Volume (m ³) 16.2 35.2 42.4 46.9 49.4 53.4	e Time-P (mins 2 3 4 5 4 4 4	23 37 68 126 186 244 364		
	15 30 60 120 180 240 360 480	Storm Event min Su min Su min Su min Su min Su min Su min Su	ummer 1 ummer 1 ummer ummer ummer ummer ummer ummer ummer	Rain mm/hr) 17.428 83.122 56.245 34.142 25.424 20.592 15.253 12.318	Flooded Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Discharge Volume (m ³) 16.2 35.2 42.4 46.9 49.4 53.4 56.2	Time-P (mins) 2 3 4 5 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	23 37 68 126 186 244 364 482		
	15 30 60 120 180 240 360 480 600	Storm Event min Su min Su min Su min Su min Su min Su min Su min Su	ummer 1 ummer 1 ummer 1 ummer 1 ummer 1 ummer 1 ummer 1 ummer 1 ummer 1	Rain mm/hr) 17.428 83.122 56.245 34.142 25.424 20.592 15.253 12.318 10.429	Flooded Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Discharge Volume (m ³) 16.2 20.9 35.2 42.4 46.9 49.4 53.4 56.2 58.0	Time-P (mins 2 3 4 5 4 4 4 4 1 2 2 3 3 4 4 1 2 3 3 4 1 3 3 3 4 3 3 3 4 3 3 3 4 3 3 3 4 3 3 3 4 3 3 3 4 3 3 3 4 3	eak 23 37 68 126 186 244 364 482 602		
	15 30 60 120 180 240 360 480 600 720	Storm Event min Su min Su min Su min Su min Su min Su min Su min Su	(mmer 1 mmer 1	Rain mm/hr) 17.428 83.122 56.245 34.142 25.424 20.592 15.253 12.318 10.429 9.099	Flooded Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Discharge Volume (m ³) 16.2 20.9 35.2 42.4 46.9 49.4 53.4 56.2 58.0 59.4	Time-P (mins) 2 3 4 5 4 4 4 4 1 2 2 3 3 4 4 1 4 1 2 3 3 4 4 1 2 3 3 4 4 1 2 3 3 4 4 1 2 3 3 4 4 1 2 3 3 4 4 1 2 3 3 4 4 1 2 3 3 4 4 1 2 3 3 4 4 1 2 3 3 4 1 2 3 3 4 4 1 2 3 3 4 3 3 3 4 3 3 3 3 3 3 3 3 3 3 3 3	eak 23 37 68 126 186 244 364 482 602 720		
	15 30 60 120 180 240 360 480 600 720 960	Storm Event min Su min Su min Su min Su min Su min Su min Su min Su	ummer 1 ummer 1 ummer ummer um	Rain mm/hr) 17.428 83.122 56.245 34.142 25.424 20.592 15.253 12.318 10.429 9.099 7.328 5.200	Flooded Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Discharge Volume (m ³) 16.2 20.9 35.2 42.4 46.9 49.4 53.4 56.2 58.0 59.4 61.2 62.2	e Time-P (mins 2 3 4 4 4 4 4 4 4 1 1	23 37 68 126 186 244 364 482 602 720 856 098		
	15 30 60 120 180 240 360 480 600 720 960 1440 2160	Storm Event min Su min Su min Su min Su min Su min Su min Su min Su min Su min Su	(: ummer 1 ummer ummer ummer ummer ummer ummer ummer ummer ummer	Rain mm/hr) 17.428 83.122 56.245 34.142 25.424 20.592 15.253 12.318 10.429 9.099 7.328 5.399 3.000	Flooded Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Discharge Volume (m ³) 16.2 20.9 35. 42.4 46.9 49.4 53.4 56.2 58.0 59.4 61.2 62.2	Time-P (mins 2 2 3 4 4 4 4 4 1 1	23 37 68 126 186 244 364 482 602 720 856 098		
	15 30 60 120 180 240 360 480 600 720 960 1440 2160 2800	Storm Event min Su min Su	ummer 1 ummer 1	Rain mm/hr) 17.428 83.122 56.245 34.142 20.592 15.253 12.318 10.429 9.099 7.328 5.399 3.998 3.240	Flooded Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Discharge Volume (m ³) 16.2 20.9 35.3 42.4 46.9 49.4 53.4 56.5 58.0 59.4 61.3 62.3 92.3 88.4	Time-P (mins 2 3 4 4 4 4 1 1 1 1 1 1 1 1 1	23 37 68 126 186 244 364 482 602 720 856 098 496 908		
	15 30 60 120 180 240 360 480 600 720 960 1440 2160 2880 4320	Storm Event min Su min Su	ammer 1 ammer	Rain mm/hr) 17.428 83.122 56.245 34.142 25.424 20.592 15.253 12.318 10.429 9.099 7.328 5.399 3.998 3.240 2.417	Flooded Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Discharge Volume (m ³) 16.2 20.9 35.3 42.4 46.9 49.4 53.4 56.5 58.0 59.4 61.1 62.2 92.1 98.6 103.0	Time-P(mins) (mins) 2 3 4 4 4 1<	23 37 68 126 186 244 364 482 602 720 856 098 496 908 728		
	15 30 60 120 360 480 600 720 960 1440 2160 2880 4320 5760	Storm Event min Su min Su	(: ammer 1 ammer 1 ammer 2 ammer 2 amm	Rain mm/hr) 17.428 83.122 56.245 34.142 25.424 20.592 15.253 12.318 10.429 9.099 7.328 5.399 3.998 3.240 2.417 1.975	Flooded Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Discharge Volume (m ³) 16.2 20.9 35. 42.4 46.9 49.4 53.4 56. 58.0 59.4 61. 62. 92. 98.0 103.0 122.	Time-P (mins (mins 2 3 4 4 4 4 4 4 4 1 1 1 5 1 1 5 1 2 2 4 4 1 1 5 1 2 2 3 4 4 1 1 1 5 1 2 3 4 4 1 1 1 5 1 2 3 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	23 37 68 126 186 244 364 482 602 720 856 098 496 908 728 568		
	15 30 60 120 180 240 360 480 600 720 960 1440 2160 2880 4320 5760 7200	Storm Event min Su min Su	(: ammer 1 ammer 1 ammer 2 ammer 2 amm	Rain mm/hr) 17.428 83.122 56.245 34.142 25.424 20.592 15.253 12.318 10.429 9.099 7.328 5.399 3.998 3.240 2.417 1.975 1.699	Flooded Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Discharge Volume (m ³) 16.2 20.9 35. 42.4 46.9 49.4 53.4 56. 58.0 59.4 61. 62. 92. 98.0 103.0 122. 131.	Time-P (mins (mins 2 3 4 5 4 4 4 4 1 1 1 5 1 1 5 1 1 5 1 2 2 4 3 3 4 4 3 3 4	eak 23 37 68 126 186 244 364 482 602 720 856 098 496 908 728 568 328		
	15 30 60 120 180 240 360 480 600 720 960 1440 2160 2880 4320 5760 7200 8640	Storm Event min Su min Su	(x ummer 1 ummer 1 umm	Rain mm/hr) 17.428 83.122 56.245 34.142 25.424 20.592 15.253 12.318 10.429 9.099 7.328 5.399 3.998 3.240 2.417 1.975 1.699 1.509	Flooded Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Discharge Volume (m ³) 16.2 20.9 355. 42.4 46.9 49.4 53.4 56.2 58.0 59.4 61.2 62.2 92.2 98.0 103.0 122.2 131.2	Time-P (mins (mins 2 2 3 4 4 4 4 4 1 1 1 5 1 1 5 1 1 5 1 1 5 1 2 2 4 4 2 3 4 4 5 1 5 1 2 2 3 4 5 5 4 5 5 4 5 5 4 5 5 4 5 5 5 5 5 5	eak 23 37 68 126 186 244 364 482 602 720 856 098 496 908 728 568 328 184		
	15 30 60 120 180 240 360 480 600 720 960 1440 2160 2880 4320 5760 7200 8640 10080	Storm Event min Su min Su	(: ammer 1 ammer a ammer ammer ammer ammer ammer ammer ammer ammer ammer ammer ammer ammer ammer ammer ammer ammer ammer	Rain mm/hr) 17.428 83.122 56.245 34.142 25.424 20.592 15.253 12.318 10.429 9.099 7.328 5.399 3.998 3.240 2.417 1.975 1.699 1.509 1.370	Flooded Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Discharge (m ³) 16.: 20.9 35.: 42.4 46.9 49.4 53.4 56.: 58.0 59.4 61.: 62.: 92.: 98.0 103.0 122.2 131.: 139.9	Time-P (mins (mins 2 2 3 4 4 4 4 4 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 2 2 4 4 2 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	eak 23 37 68 126 186 244 364 482 602 720 856 098 496 908 728 568 328 184 944		
	15 30 60 120 180 240 360 480 600 720 960 1440 2160 2880 4320 5760 7200 8640 10080 15	Storm Event min Su min Su	(: ammer 1 ammer 1 ammer 1 ammer 1 ammer 1 ammer 1 ammer 1 ammer 1 ammer 1	Rain mm/hr) 17.428 83.122 56.245 34.142 25.424 20.592 15.253 12.318 10.429 9.099 7.328 5.399 3.998 3.240 2.417 1.975 1.699 1.509 1.370 17.428	Flooded Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Discharge (m ³) 16.2 20.9 35.2 42.4 46.9 49.4 53.4 56.2 58.0 59.4 61.2 62.2 98.0 103.0 122.2 131.2 139.9 147.9	Time-P (mins (mins 2 2 3 4 5 4 4 4 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 2 2 4 4 5 1 5 5 5 5 5 5 5	23 37 68 126 186 244 364 482 602 720 856 098 496 908 728 568 328 184 944 23		
	15 30 60 120 180 240 360 480 600 720 960 1440 2160 2880 4320 5760 7200 8640 10080 15 30	Storm Event min Su min Su	(: ammer 1 ammer 1	Rain mm/hr) 17.428 83.122 56.245 34.142 25.424 20.592 15.253 12.318 10.429 9.099 7.328 5.399 3.998 3.240 2.417 1.975 1.699 1.509 1.509 1.370 17.428 83.122	Flooded Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Discharge (m ³) 16.2 20.9 35.2 42.4 46.9 49.4 53.4 56.2 58.0 59.4 61.2 62.2 98.0 103.0 122.2 131.2 139.9 147.9 17.0 22.0	Time-P (mins (mins 2 2 3 4 5 4 4 5 4 4 5 1 1 5 1 1 5 1 1 5 1 1 5 1 2 2 4 4 5 4 5 5 5 5 5 5 5	23 37 68 126 186 244 364 482 602 720 856 098 496 908 728 568 328 184 944 23 37		
	15 30 60 120 180 240 360 480 600 720 960 1440 2160 2880 4320 5760 7200 8640 10080 15 30 60	Storm Event min Su min Su	immer 1 immer 1 immer immer immer immer immer immer immer immer immer immer immer immer immer 1 immer 1 inter 1	Rain mm/hr) 17.428 83.122 56.245 34.142 25.424 20.592 15.253 12.318 10.429 9.099 7.328 5.399 3.998 3.240 2.417 1.975 1.699 1.509 1.509 1.370 17.428 83.122 56.245	Flooded volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Discharge (m ³) 16.2 20.9 35.2 42.4 46.9 49.4 53.4 56.2 58.0 59.4 61.2 62.2 98.6 103.0 122.2 131.2 139.9 147.9 17.0 22.0 39.4	Time-P (mins (mins 2 2 3 4 5 4 4 5 4 4 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 2 2 4 4 5 5 5 5 5 5 5 5	23 37 68 126 186 244 364 482 602 720 856 098 496 908 728 568 328 184 944 23 37 66		

©1982-2020 Innovyze

R G Parkins & Partners Ltd		Page 2
Meadowside		
Sharp Road Kendal		
Cumbria LA9 6NY		Micro
Date 25/08/2021 14:34	Designed by Chris Abram	
File K38379 - GEO CRATES 0.8DEEP	Checked by	Diamage
XP Solutions	Source Control 2020.1.3	

Summary of Results for 100 year Return Period (+40%)

	Storm Event		Max Level (m)	Max Depth (m)	Max Infiltration (1/s)	Max Control (1/s)	Max Σ Outflow (l/s)	Max Volume (m³)	Status
180	min W	linter	9.213	0.613	0.0	0.2	0.2	17.5	ОК
240	min W	linter	9.251	0.651	0.0	0.2	0.2	18.6	ОК
360	min W	linter	9.300	0.700	0.0	0.2	0.2	19.9	ОК
480	min W	linter	9.330	0.730	0.0	0.2	0.2	20.8	ОК
600	min W	linter	9.349	0.749	0.0	0.2	0.2	21.4	ОК
720	min W	linter	9.361	0.761	0.0	0.2	0.2	21.7	ОК
960	min W	linter	9.371	0.771	0.0	0.2	0.2	22.0	ОК
1440	min W	linter	9.371	0.771	0.0	0.2	0.2	22.0	ОК
2160	min W	linter	9.363	0.763	0.0	0.2	0.2	21.8	ОК
2880	min W	linter	9.345	0.745	0.0	0.2	0.2	21.2	ОК
4320	min W	linter	9.296	0.696	0.0	0.2	0.2	19.8	ОК
5760	min W	linter	9.248	0.648	0.0	0.2	0.2	18.5	ОК
7200	min W	linter	9.206	0.606	0.0	0.2	0.2	17.3	ОК
8640	min W	linter	9.169	0.569	0.0	0.2	0.2	16.2	ОК
10080	min W	linter	9.138	0.538	0.0	0.2	0.2	15.3	ОК

	Stor Even	m t	Rain (mm/hr)	Flooded Volume (m ³)	Discharge Volume (m³)	Time-Peak (mins)
180	min	Winter	25 424	0 0	174	182
240	min	Winter	20.592	0.0	18.5	240
360	min	Winter	15.253	0.0	19.9	356
480	min	Winter	12.318	0.0	20.9	472
600	min	Winter	10.429	0.0	21.6	584
720	min	Winter	9.099	0.0	22.1	696
960	min	Winter	7.328	0.0	22.7	908
1440	min	Winter	5.399	0.0	23.0	1142
2160	min	Winter	3.998	0.0	34.9	1604
2880	min	Winter	3.240	0.0	37.1	2052
4320	min	Winter	2.417	0.0	38.5	2944
5760	min	Winter	1.975	0.0	46.2	3808
7200	min	Winter	1.699	0.0	49.6	4616
8640	min	Winter	1.509	0.0	52.9	5448
10080	min	Winter	1.370	0.0	55.9	6248

P. C. Darking & Dartners Itd			Dage 3
Meadowside			rage 5
Sharp Road Kendal			
Cumbria LA9 6NY			
Date 25/08/2021 14:34	Designed by Chris Abram		MICIO
File $K38379 - GEO CRATES 0 8DEEP$	Checked by		Drainage
XP Solutions	Source Control 2020 1 3		
R	ainfall Details		
_			
Rainfall Moo	lel	FEH	
Return Period (year	rs) ion	100 2013	
Site Locat:	ion GB 297410 516791 NX 97410	16791	
Data Ty	<i>y</i> pe	Point	
Summer Stor	rms	Yes	
Cv (Summe	er)	0.750	
Cv (Winte	er)	0.840	
Shortest Storm (mir	ns)	15	
Longest Storm (min Climate Change	15) - 8	+40	
<u>Ti</u>	me Area Diagram		
Tot	tal Area (ha) 0.029		
Time (mins From: To:) Area Time (mins) Area (ha) From: To: (ha)		
0	4 0.014 4 8 0.015		

·					-		
R G Parkins & Partners Ltd					Page 4		
Meadowside							
Sharp Road Kendal							
Cumbria LA9 6NY					Micro		
Date 25/08/2021 14:34	Design	ned by Chris	Abram		Dcainago		
File K38379 - GEO CRATES 0.8DEEP	Checke	ed by			Diamage		
XP Solutions							
	Model	Details					
Storage is C	Online C	over Level (m)	10.000				
Cellul	ar Sto	rage Structur	re				
Inve Infiltration Coefficient Infiltration Coefficient	Invert Level (m) 8.600 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.00000 Porosity 0.95 Infiltration Coefficient Side (m/hr) 0.00000						
Depth (m) Area (m²) Inf. An	rea (m²)	Depth (m) Area	a (m²) Inf.	Area (m²)			
0.000 30.0 0.800 30.0	30.0 47.6	0.801	0.0	47.6			
Orifi	ice Out	flow Control					