

Flood Risk Assessment & Drainage Strategy

Housing Development – Ivy Mill, Hensingham, Whitehaven

Gleeson Homes & Regeneration

Ref: K36892.FRA/001

Version	Date	Prepared By	Checked By	Approved By
Original Issue	11 June 2021	C. Abram	O. Sugden	O. Sugden

1. INDEMNITIES

This report is for the sole use and benefit of Gleeson Homes & Regeneration and their professional advisors. RG Parkins & Partners Ltd will not be held responsible for any actions taken, nor decisions made, by any third party resulting from this report.

RG Parkins & Partners Ltd are not qualified to advise on contamination. Any comments contained within this report with regards to contamination are noted as guidance only and the Client should appoint a suitably qualified professional to provide informed advice. The absence of any comments regarding contamination does not represent any form of neglect, carelessness, or failure to undertake our service.

2. COPYRIGHT

The copyright of this report remains vested in RG Parkins & Partners Ltd.

All digital mapping reproduced from Ordnance Survey digital map data. ©Crown Copyright. All rights reserved. Licence Number 100038055

3. CONTENTS

1.	In	demnities2
2.	Сс	pyright2
3.	Сс	ontents
4.	Та	ble of Figures4
5.	Gl	ossary of Terms6
6.	In	troduction7
	6.1	Background7
	6.2	Planning Policy7
	6.3	The Development in the Context of Planning Policy7
7.	Sit	e Characterisation9
	7.1	Site Location9
	7.2	Site Description9
	7.3	Geology & Hydrogeology
	7.4	Hydrology10
	7.5	Existing Sewers
	7.6	Ground Investigation
8.	As	sessment of Flood Risk
	8.1	Background
	8.2	Flood Risk Terminology13
	8.3	Data Collection
	8.4	Strategic Flood Risk Assessment
	8.5	Environment Agency Flood Map for Planning15
	8.6	Environment Agency Surface Water Flood Map16
	8.7	Groundwater Flood Risk
	8.8	Flooding from Reservoirs, Canals or Other Artificial Sources
	8.9	Flooding from Sewers
9.	Su	rface Water Drainage Strategy 20
	9.1	Introduction
	9.2	Site Areas
	9.3	Surface Water Design Parameters
	9.3.1	Climate Change
	9.3.2	22 Urban Creep
	9.3.3	Percentage Impermeability (pimp)
	9.3.4	Volumetric Runoff Coefficient, Cv 22
	9.3.5	Rainfall Model
	9.4	Surface Water Disposal

9.4.1	Infiltration	3
9.4.2	Positive Drainage - Watercourse Connection	
9.4.3	Positive Drainage – Surface WAter Sewer Connection	
9.4.4	Positive Drainage – Highway Drainage Connection	
9.4.5	Positive Drainage – Combined Sewer Connection	
9.4.6	Consideration of SuDS Components	
9.5	Pre-development Rate of Runoff Assessment	5
9.6	Surface Water Drainage Design	6
9.6.1	Existing Culverted Watercourse	7
9.6.2	Runoff Control	7
9.6.3	Storage Volume	8
9.6.4	Outfall Design	8
9.7	Designing for Local Drainage System Failure	8
9.7.1	Blockage and Exceedence	8
9.8	Surface Water Quality	9
9.9	Operations and Maintenance Responsibility	0
9.10	Potential Neighbouring Development	0
10. F	oul Water Drainage Strategy	1
11. C	onclusions and Recommendations	2
12. R	eferences	4
Appendix	x A	5
Archit	ects Proposed Layout	5
Outlin	e Drainage Layout Plan	5
Appendix	K B	6
Pre-De	evelopment Runoff Calculations	6
Cause	way Flow Drainage Calculations	6
Sustai	nable Drainage Treatment Calculations	6
Appendix	K C	7
United	Utilities Sewer Records	7

4. TABLE OF FIGURES

Figure 6.3.1 Vulnerability Classification	8
Figure 7.1.1 Site Location	9
Figure 7.3.1 Site Geological Summary	10
Figure 8.2.1 Flood Return Periods & Exceedance Probabilities	14
Figure 8.5.1 Environment Agency Flood Map for Planning	15
Figure 8.6.1 Environment Agency Surface Water Flood Map	17

Figure 8.7.1 British Geological Society Ground Water Flood Map	18
Figure 9.2.1 Land Cover Areas	21
Figure 9.2.2 Area of Potentially Impermeable & Permeable Land Cover	21
Figure 9.3.1 Peak Rainfall Intensity Allowance in Small and Urban Catchment	22
Figure 9.5.1 Pre Development Runoff Results	25
Figure 9.8.1 Pollution Hazard & Mitigation Indices- Roof Areas	29
Figure 9.8.2 Pollution Hazard & Mitigation Indices- Residential Parking	29
Figure 9.8.3 Pollution Hazard & Mitigation Indices- Residential Roads	29
Figure 9.10.1 Peak Foul Flow Rates	31

5. GLOSSARY OF TERMS

AEP	Annual Exceedance Probability
AOD	Above Ordnance Datum
BGL	Below Ground Level
BGS	British Geological Society
СС	Climate Change
ССС	Cumbria County Council
DSM	Digital Surface Model
DTM	Digital Terrain Model
EA	Environment Agency
FEH	Flood Estimation Handbook
FFL	Finished Floor Level
FRA	Flood Risk Assessment
GIS	Geographical Information System
Lidar	Light Detection and Ranging
LLFA	Lead Local Flood Authority
NPPF	National Planning Policy Framework
OS	Ordnance Survey
RGP	RG Parkins & Partners Ltd
SFRA	Strategic Flood Risk Assessment
SuDS	Sustainable Drainage System
UU	United Utilities

6. INTRODUCTION

6.1 BACKGROUND

This report has been prepared by R. G. Parkins & Partners Ltd (RGP) for Gleeson Homes and Regeneration in support of their proposal for a residential development comprising of 26 dwellings at Ivy Mill, Hensingham, Whitehaven.

RGP has been appointed to undertake a Flood Risk Assessment and Outline Surface and Foul Water Drainage Strategy in in accordance with the National Planning Policy Framework (NPPF) to support a planning application that fulfils the requirements of the Local Planning Authority, Environment Agency and the Sewerage Undertaker.

The following study assesses flood risk to the site and proposed development and demonstrates the proposed development will not adversely affect flood risk elsewhere.

6.2 PLANNING POLICY

The NPPF ^[1] and its Planning Practice Guidance ^[2] states "a site-specific flood risk assessment should be provided for all development in Flood Zones 2 and 3. In Flood Zone 1, an assessment should accompany all proposals involving: sites of 1 hectare or more; land which has been identified by the Environment Agency as having critical drainage problems; land identified in a strategic flood risk assessment as being at increased flood risk in the future; or land that may be subject to other sources of flooding, where its development would introduce a more vulnerable use."

6.3 THE DEVELOPMENT IN THE CONTEXT OF PLANNING POLICY

Owing to the size of the development, it is classed as major development in accordance with The Town and Country Planning Order 2015^[3], due to the development comprising of more than 10 dwellings.

The area covered by the application is 0.911ha (hectares) and by reference to the Environment Agency Flood Map, the site lies in Flood Zone 1. The latest site layout plan by TWENTY10 Management Ltd (drawing number MJG/PL-110-2) is included in Appendix A for reference.

Table 2 of the NPPF's Planning Practice Guidance ^[2] classifies each development into a vulnerability class, depending on the type of development, as outlined in Figure 6.3.1. As residential dwellings the site is classified as 'More vulnerable'. 'More Vulnerable' development classes are deemed acceptable in terms of flood risk within Flood Zone 1. However due to the site being classed as major development a Flood Risk Assessment is required.

Vulnerability Classification	Development
Essential Infrastructure	Essential transport infrastructure (including mass evacuation routes) which has to cross the area at risk. Essential utility infrastructure, which has to be located in a flood risk area for operational reasons, including electricity generating power stations and grid and primary substations; and water treatment works that need to remain operational in times of flood. Wind turbines.
Highly Vulnerable	 Police and ambulance stations; fire stations and command centres; telecommunications installations required to be operation during flooding. Emergency dispersal points. Basement dwellings. Caravans, mobile homes, and park homes intended for permanent residential use. Installations requiring hazardous substances consent.
More Vulnerable	 Hospitals. Residential institutions such as residential care homes, children's homes, prisons and hostels. Buildings used for dwelling houses, student halls of residence, drinking establishments, nightclubs, and hotels. Non-residential uses for health services, nurseries, and education establishments. Landfill and sites used for waste management facilities for hazardous waste. Sites used for holiday or short let caravans and camping, subject to a specific warning and evacuation plan
Less Vulnerable	 Police, ambulance, and fire stations which are NOT required to be operational during flooding. Buildings used for shops; financial, professional, and other services; restaurants, cafes and hot food takeaways; offices; general industry, storage and distributions; non-residential institutions not included in the 'more vulnerable' class; and assemble and leisure. Land and buildings used for agriculture and forestry. Waste treatment (except landfill & hazardous waste facilities). Minerals working & processing (except for sand & gravel working). Water treatment works which do not need to remain operational during times of flood. Sewage treatment works, if adequate measures to control pollution and manage sewage during flooding events are in place.
Water- Compatible Development	Flood control infrastructure. Water transmission infrastructure & pumping stations. Sewage transmission infrastructure & pumping stations. Sand & gravel working. Docks, marinas, and wharves. Navigation facilities. Ministry of Defence installations. Ship building, repairing & dismantling, dockside fish processing & refrigeration & compatible activities requiring a waterside location. Water based recreation (excluding sleeping accommodation). Lifeguard and coastguard stations. Amenity open space, nature conservation & biodiversity, outdoor sports and recreation and essential facilities such as changing rooms. Essential ancillary sleeping or residential accommodation for staff required by uses in this category subject to a specific warning & evacuation plan.

Figure 6.3.1 Vulnerability Classification

7. SITE CHARACTERISATION

7.1 SITE LOCATION

The site is located in the centre of Hensingham, off Main Street (B5295) at National Grid Co-Ordinates 299056E 517145N. The site's location is shown in Figure 7.1.1

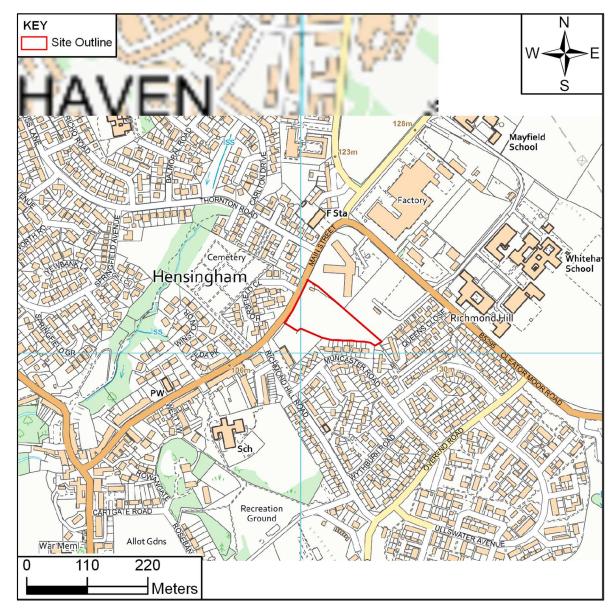


Figure 7.1.1 Site Location

7.2 SITE DESCRIPTION

The 0.91 ha site is located on currently a mix of greenfield and brownfield land. This site was previously occupied by recently demolished workwear production factory buildings and is therefore predominantly covered by demolition rubble/made ground across the majority of the site, with the remaining land comprising of concrete hardstanding and granular hardcore surfacing to the west and overgrown grassed areas to the east.

The site is bounded by the B5295 (Main Street) to the west, further industrial units to the north and existing residential dwellings to the south and east.

Topographically, the site slopes from east to west at an average gradient of approximately 1:14, with the highest elevation of around 126.00 mAOD in the far east of the site and the lowest elevation of approximately 114.30 mAOD in the west.

7.3 GEOLOGY & HYDROGEOLOGY

British Geological Survey (BGS)^[4] and Land Information Systems (LandIS)^[5] mapping indicates the site is underlain by the geological sequences outlined in Figure 7.3.1.

Geological Unit	Classification	Description	Aquifer Classification
Soil	Soilscape 6	Freely draining slightly acid loamy sails	N/A
Drift	Till, Devensian - Diamicton	Sediments laid down by the direct actions of glacial ice	Summary: Secondary
Solid	Stainmore Formation	Mudstone, Siltstone and Sandstone	Summary: Secondary A

Figure 7.3.1 Site Geological Summary

The Land Information System (LandIS) Soil Portal indicates the site is underlain by Soilscape 6, described as "freely draining, slightly acid loamy soils". Which implies the soil has properties that will not impede drainage, however, the superficial deposits of glacial till, will provide limited infiltration.

Although the above soil conditions are recorded on desktop data it is possible that some of the soils are comprised of fill.

'The Defra Groundwater Vulnerability Map^[6] indicates the nearest Groundwater Source Protection Zone is a Zone 3 'Total catchment' which is situated approximately 2 km north of the site. The development site overlies a secondary aquifer with 'Medium to low' vulnerability.

7.4 HYDROLOGY

The closest 'Main River' is Snebra Beck, approximately 0.5 km southwest of the development site. Other main rivers in close proximity are approx. Midgey Gill 1.0 km northwest and Pow Beck approx. 1.3 km west of the development site with the River Keele approximately 1.8km to the east.

An adopted 350 mm culverted surface water sewer crosses Main Street 0.95 km north of the site, flowing in a south westerly direction, under Horsfield Close. At present, it appears that surface water from the existing development is discharged into this watercourse. This is shown on the UU Sewer Records included in Appendix C.

7.5 EXISTING SEWERS

Reference to the United Utilities sewer records indicates that there are no sewers crossing the site. The nearest adopted sewer to the site location is a 225 mm diameter combined sewer which passes the site entrance in Main Street flowing in a south westerly direction.

In the nearby residential estate located on Muncaster Road to the southeast of the site there are both 150mm diameter foul and surface water sewers present. Further investigations have determined that these do not present viable connection points for the new site due to topographical and accessibility restrictions.

7.6 GROUND INVESTIGATION

Ground investigation was undertaken at the site by GEO Environmental Engineering Ltd.

Intrusive ground investigations were carried out at the site in August 2019 where 10 mechanically excavated trial pits with in-situ geotechnical testing to depths of between 1.10m and 3.00m below ground level and 4 no. dynamic sampling boreholes to depths between 1.50m and 5.00m below ground level with gas and groundwater monitoring were carried out at various locations across the site.

As the site is on the location of the recently demolished workwear factory, made ground / crushed demolition rubble was encountered across the majority of the site area at variable depths up to 1.25m below ground level.

The ground conditions in the predominantly grassland areas to the east of the site consist of initially firm becoming stiff, occasionally soft, slightly sandy, slightly gravelly clay with occasional cobbles to a depth of 5.0m below ground level.

The strata below the made ground in the rest of the site was found to comprise of initially firm becoming stiff, slightly sandy, slightly gravelly clay with occasional cobbles to a depth of 4.2m below ground level.

No bedrock was encountered during the investigations.

Groundwater was encountered predominantly on the western side of the site in numerous trial pits at variable depths of between 0.40m and 2.20m below ground level and was noted within the demolition rubble, former foundation runs and the interface of the made ground and natural clay deposits.

Ground water monitoring recorded standing groundwater depths of between 0.35m and 2.58m below ground level at all the borehole locations with perched water most likely originating from the surface. It was also observed that the vegetated area in the east of the site was waterlogged following periods of heavy rainfall.

Based on the ground conditions encountered across the site, the potential for permeable ground is considered negligible to very low and soakaways are not recommended as an appropriate solution and alternative methods should be considered for drainage of surface water run-off.

For reference refer to Geo Environmental Engineering Phase 2 Ground Investigation Report Ref: 2019-3886

8. ASSESSMENT OF FLOOD RISK

8.1 BACKGROUND

The following risk assessment has been carried out in accordance with the National Planning Policy Framework^[1] and its Planning Practice Guidance^[2] on Flood Risk. The broad aim of the guidance is to reduce the number of people and properties within the natural and built environment at risk of flooding. To achieve this aim, planning authorities are required to ensure that flood risk is properly assessed during the initial planning stages.

Responsibility for this assessment lies with the developers and they must demonstrate:

- Whether the proposed development is likely to be affected by flooding.
- Whether the proposed development will increase flood risk in other parts of the hydrological catchment.
- That the measures proposed to deal with any flood risk are sustainable.
- The developer must prove to the Local Planning Authority and the Environment Agency that the existing flood risk or the flood risk associated with the proposed development can be satisfactorily managed.

8.2 FLOOD RISK TERMINOLOGY

Flood risk considers both the probability and consequence of flooding.

Flood events are often described in terms of their probability of recurrence or probability of occurring in any one year. The threshold between a medium flood and a large flood is often regarded as the 1 in 100-year event. This is an event which statistical analysis suggests will occur on average once every hundred years. However, this does not mean that such an event will not occur more than once every hundred years. Figure 8.2.1 shows the event return periods expressed in years and annual exceedance probabilities as a fraction and a percentage.

For example, a 1 in 100-year event has a 1% probability of occurring in any one year, i.e. a 1 in 100 probability. A 1000-year event has a 0.1% probability of occurring in any one year, i.e. a 1 in 1000 probability.

Return Period	Annual Exceedance Probability (AEP)		
(years)	Fraction	Percentage	
2	0.5	50%	
10	0.1	10%	
25	0.04	4%	
50	0.02	2%	
100	0.01	1%	
200	0.005	0.5%	
500	0.002	0.2%	
1000	0.001	0.1%	

Figure 8.2.1 Flood Return Periods & Exceedance Probabilities

8.3 DATA COLLECTION

The following information was referred to for the Flood Risk Assessment:

- a) Environment Agency Flood Map for Planning covering the site and adjacent area
- b) Environment Agency Surface Water Flood Risk Map
- c) Environment Agency Reservoir Flood Risk Map
- d) Environment Agency Historic Flood Map
- e) United Utilities sewer records
- f) British Geological Survey Groundwater Flooding Susceptibility Map
- g) Copeland Borough Council Strategic Flood Risk Assessment
- h) Topographic survey
- i) Development layout plan provided by Twenty10 Management Ltd (Appendix A)

8.4 STRATEGIC FLOOD RISK ASSESSMENT

Copeland Borough Council undertook a Strategic Flood Risk Assessment (SFRA)^[7] in 2007 which refers to the Environment Agency Flood Maps to determine flood risk. (The SFRA maps are regarded as superseded by current EA Flood Map for Planning).

It states there are several historic flooding incidents in Whitehaven, but these are generally attributed to tidal flooding due to the proximity of the town centre to the coastline. Some properties are at risk from the main watercourse Pow Beck, which bisects the town and during extreme events flooding can be exacerbated in certain areas by insufficient sewer capacities.

This site however is located away from the historically affected areas and is not shown to be at risk of fluvial or tidal flooding or localised drainage issues.

8.5 ENVIRONMENT AGENCY FLOOD MAP FOR PLANNING

Figure 8.5.1 is an extract from the EA's Flood Map for Planning^[8]. This has been reviewed to assess the level of flood risk to the area. The flood map shows areas that may be at risk of fluvial flooding in a 1% (1 in 100 year, dark blue) or 0.1% (1 in 1000 year, light blue) Annual Exceedance Probability (AEP) event. Alternatively, if the flood risk is tidal the flood map will show areas predicted to be at risk of flooding from the sea in a 0.5% AEP event (1 in 200 year, dark blue) or a 0.1% AEP event (1 in 1000 year, light blue).

The Flood Map shows the current best information on the extent of the extreme flood from rivers or the sea that would occur without the presence of flood defences. The potential impact of climate change is not considered by the mapping.

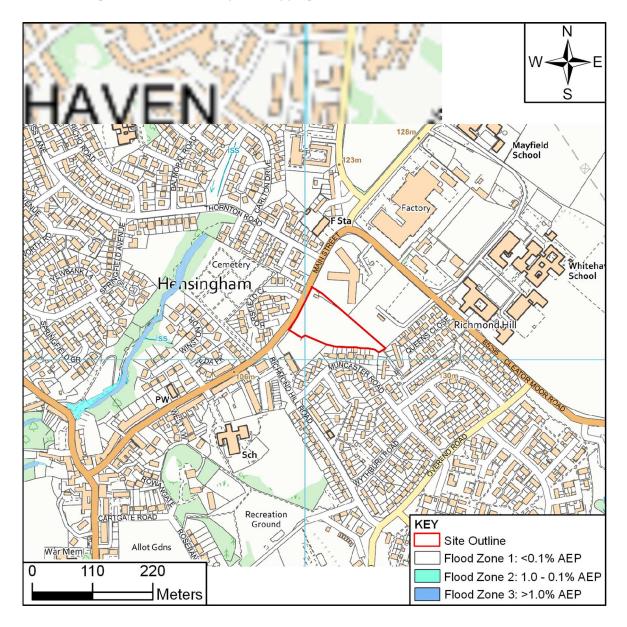


Figure 8.5.1 Environment Agency Flood Map for Planning

Reference to Figure 8.5.1 indicates the site lies within Flood Zone 1 "Low Probability", land assessed as having a less than 0.1% annual probability of flooding (i.e., rivers, lake or sea) in any year by reference to the NPPF. Given the site is approx. 120 mAOD, the site is not at risk of tidal flooding.

8.6 ENVIRONMENT AGENCY SURFACE WATER FLOOD MAP

Surface water flooding is that which results from extreme rainfall rather than overflowing rivers. This type of flooding typically occurs when extreme rainfall causes water to run down slopes and collect in depressions in the landscape or where runoff is focussed into an area where drainage is insufficient. It can also cause erosion resulting in the partial or complete blockage of drains or culverts.

Figure 8.6.1 shows an extract from the EA surface water flood risk map^[8]. This has four risk classifications from very low probability (<0.1% AEP) to high probability (>3.3% AEP).

The EA surface water flood map indicates the site is predominantly at 'Very Low' risk of surface water flooding. The risk of flooding is less than 0.1% AEP (1 in 1000 year), However, there is a topographic low point shown at what was the rear of the former factory. This area is considered to be at 'Medium' to 'High' risk of surface water flooding and has a predicted AEP of between 1% (1 in 100 year) and greater than 3.3% (1 in 30 year).

As the development of the site will include levelling of the topography, the surface water flood map therefore does not provide an accurate model of the post-development surface water flood risk. Levelling during development will remove this risk and mitigate this issue as part of the overall Drainage Strategy. This is discussed in further detail in Section 9.0.

The EA's map shows that the site has a very low probability of surface water flooding. It should be noted that there are some obvious problems with the mapping at this location relating to predicted flooding within the lake. This should not affect the accuracy of the mapping within the site.

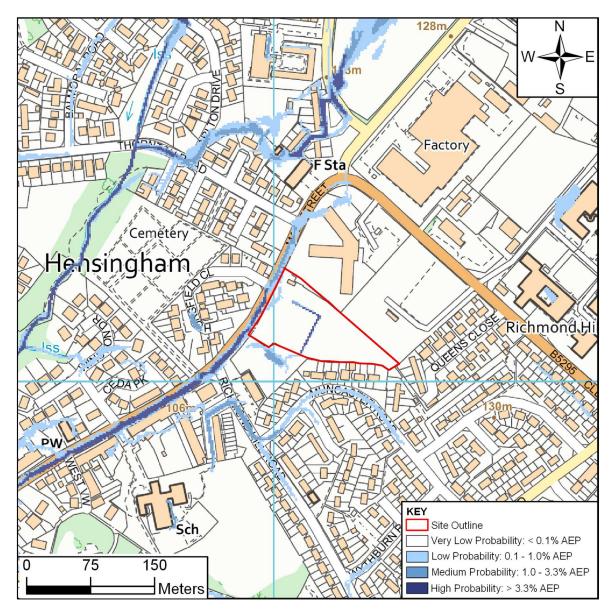


Figure 8.6.1 Environment Agency Surface Water Flood Map

8.7 GROUNDWATER FLOOD RISK

Groundwater flooding occurs when groundwater levels rise above the ground level. It is most likely to occur in low lying areas underlain by permeable drift and rocks.

British Geological Survey (BGS) records (Figure 8.7.1) show the majority of the site lies within an area of 'Limited Potential for Groundwater Flooding to Occur' in the east of the site and 'Potential for Groundwater Flooding of Property Situated Below Ground Level'.

However, the SFRA ^[6] states the sandstone aquifer is mostly overlain with glacial deposits of clay, and therefore groundwater flooding is considered unlikely. There is no further evidence to suggest the development is at risk of groundwater flooding. In any case, there will be no development of property below the existing ground level and finished floor levels will be situated 150mm above ground level, and as such the development will be at low risk of groundwater flooding.

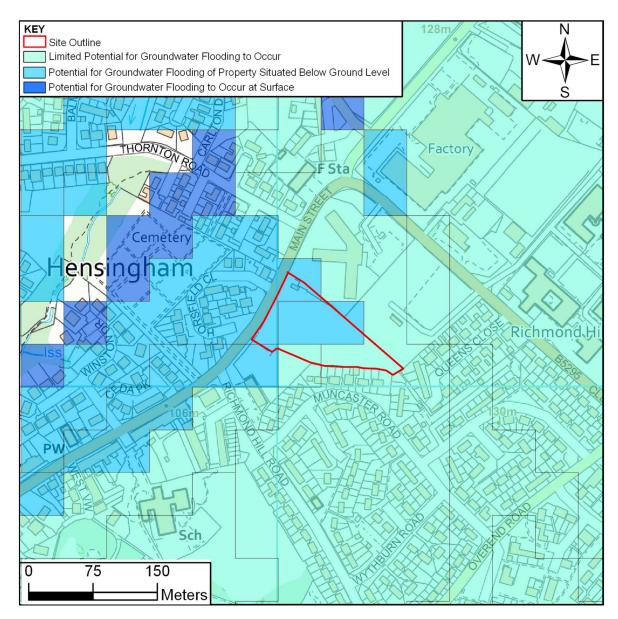


Figure 8.7.1 British Geological Society Ground Water Flood Map

8.8 FLOODING FROM RESERVOIRS, CANALS OR OTHER ARTIFICIAL SOURCES

The likelihood of reservoir flooding is considered to be much lower than other forms of flooding. Current reservoir regulation, which has been further enhanced by the Flood and Water Management Act, aims to make sure that all reservoirs are properly maintained and monitored to detect and repair any problem.

The Ordnance Survey map indicates that there are no reservoirs, canals or artificial structures in the close proximity of the proposed development site and the EA mapping for reservoir flood risk does not show the site to be at risk.

8.9 FLOODING FROM SEWERS

United Utilities (UU) do not provide information on flood risk from their assets and there have been no reports within the SFRA. It is known that a 225 mm diameter combined sewer passes the site entrance in Main Street flowing in a south westerly direction. Should this sewer fail, flooding would follow the topographic gradients away from the site.

9. SURFACE WATER DRAINAGE STRATEGY

9.1 INTRODUCTION

The principal aim of the following drainage strategy is to design the development to avoid, reduce and delay the discharge of rainfall to public sewers and watercourses in order to protect watercourses and reduce the risk of localised flooding, pollution and other environmental damage.

In order to satisfy these criteria this surface water runoff assessment and drainage design has been undertaken in accordance with the following reports and guidance documents:

- SuDS Manual, CIRIA Report C753, 2015^[9]
- Code of Practice for Surface Water Management, BS8582:2013, November 2013^[10]
- Rainfall Runoff Management for Developments, Defra/EA, SC030219, October 2013^[11]
- Designing for Exceedance in Urban Drainage Good Practice, CIRIA Report C635, 2006^[12]
- Flood Estimation Handbook (FEH)^[13]
- Flood Studies Report (FSR), Volume 1, Hydrological Studies, 1993^[14]
- Flood Studies Supplementary Report No 14 (FSSR14), Review of Regional Growth Curves, 1983^[15]
- Flood Estimation for Small Catchments, Marshall & Bayliss, Institute of Hydrology, Report No. 124 (IoH 124), 1994^[16]
- Department for Environment, Food and Rural Affairs, Non-Statutory Technical Standards for Sustainable Drainage Systems, March 2015^[17]
- Water UK, Design and Construction Guidance for Foul & Surface Water Sewers, Approved Version 2.0, March 2020^[18]

The following assessment and drainage strategy are based on the latest site layout plan by TWENTY10 Management Ltd (drawing number MJG/PL-110) included in Appendix A.

Any alterations to the site plan resulting in changes to impermeable areas will require the drainage strategy to be revisited.

9.2 SITE AREAS

To support the exploration of options for site drainage, the spatial extent of different types of proposed land cover on the site have been measured. Table 9.2.1 shows the measured proposed land cover areas. The highest percentage is garden area covering 45% of the total site area. The roof areas cover 16%, parking and paved areas 15% and site road areas 23%.

Land Cover	Area		Percentage of total
	m²	На	site area
Total housing roof area	1486.1	0.149	16%
Total parking and paved area	1391.1	0.139	15%
Total road area	2092.0	0.209	23%
Garden areas	4135.8	0.414	45%

Figure 9.2.1 Land Cover Areas

The site can be subdivided into land cover that could be permeable and that which could be impermeable. Potential impermeable areas are regarded as housing, parking, roads, driveways and walkways. All other areas (principally gardens) are regarded as having a permeable surface. Figure 9.2.2 gives the areas of potentially permeable and impermeable land cover and this shows that impermeable areas could cover 55% of the site and permeable areas 45%.

Land Cover Area			Percentage of total	
	m ²	На	site area	
Total impermeable area	4969.2	0.497	55%	
Remaining permeable area	4135.8	0.414	45%	

Figure 9.2.2 Area of Potentially Impermeable & Permeable Land Cover

9.3 SURFACE WATER DESIGN PARAMETERS

The surface water drainage system has been designed on the following basis using the modified rational method and a generated rainfall profile:

9.3.1 CLIMATE CHANGE

Projections of future climate change indicate that more frequent short-duration, high intensity rainfall and more frequent periods of long-duration rainfall are likely to occur over the next few decades in the UK. These future changes will have implications for river flooding and for local flash flooding. These factors will lead to increased and new risks of flooding within the lifetime of planned developments.

Current climate change guidance issued by the Environment Agency came into effect outlining the anticipated changes in extreme rainfall intensity.

Figure 9.3.1 shows anticipated changes in extreme rainfall intensity in small and urban catchments. Guidance states that for site-specific flood risk assessments and strategic flood risk assessments, both the central and upper end allowances should be assessed to understand the range of impacts. A climate change allowance of 40% has been selected for the purpose of drainage design based on the 100-year anticipated design life of the proposed development in accordance with LLFA requirements. No properties are located immediately downstream of the site and therefore the site poses low risk to neighbouring property.

Applies across all of England	Total potential change anticipated for the '2020s' (2015 to 2039)	Total potential change anticipated for the '2050s' (2040 to 2069)	Total potential change anticipated for the '2080s' (2070 to 2115)
Upper end	10%	20%	40%
Central	5%	10%	

9.3.2 URBAN CREEP

BS 8582:2013^[10] outlines best practice with regard to Urban Creep. Although not a statutory requirement, future increase in impermeable area due to extensions and introduction of impervious positively drained areas has been considered. An uplift of 10% on impermeable areas associated with plots only (excluding roads) has been applied to the contributing area.

The inclusion of 10% is highly conservative due to the provision of adequate parking on the site and the density of the properties.

9.3.3 PERCENTAGE IMPERMEABILITY (PIMP)

The percentage impermeability (PIMP) for all impermeable areas is modelled as 100%. The entirety of the impermeable areas is to be positively drained.

9.3.4 VOLUMETRIC RUNOFF COEFFICIENT, CV

The volumetric runoff coefficient describes the volume of surface water which runs off an impermeable surface following losses due to infiltration, depression storage, initial wetting and evaporation. The coefficient is dimensionless. Default industry standard volumetric runoff coefficients are 0.75 for summer and 0.84 for winter.

9.3.5 RAINFALL MODEL

The calculations use the REFH2 unit hydrograph methodology in line with best practice as outlined in the SuDS Manual^[9]. The calculations use the most up to date available catchment descriptors (2013) provided by the Centre for Ecology and Hydrology Flood Estimation Handbook web service.

9.4 SURFACE WATER DISPOSAL

Surface water disposal has been considered in line with the hierarchy outlined in the SuDS Manual^[9]. The approach considers infiltration drainage in preference to disposal to watercourse, in preference to discharge to sewer.

Cumbria County Council as Lead Local Flood Authority prefer design in accordance with the Cumbria Design Guide which identifies the following hierarchy of techniques to be used:

• **Prevention**: Prevention of runoff by good site design and the reduction of impermeable areas.

- **Source Control**: Dealing with water where and when it falls (e.g. permeable paving).
- Site Control: Management of water in the local area (e.g. swales, detention basins).
- **Regional Control**: Management of runoff from sites (e.g. balancing ponds, wetlands).

9.4.1 INFILTRATION

Geotechnical testing indicates underlying soil on the site is unsuitable for the disposal of surface water by this method. For further information refer to Section 7.6

9.4.2 POSITIVE DRAINAGE - WATERCOURSE CONNECTION

The entire impermeable area of the site will require a positive drainage solution. In line with the SuDS hierarchy discharge to a watercourse has been investigated. A watercourse within the site is located at a high level and a gravity connection to this cannot be achieved within the site boundary. A gravity connection to this watercourse further downstream is technically possible but would require a significant length of new sewer crossing the highway and public open space. This watercourse currently causes significant flood risk to property and is undersized. Its route through a cemetery and under private property result in any works to increase its conveyance capacity being involved and prohibitively expensive. Site surface water runoff currently discharges to the combined public sewer and therefore any connection to the watercourse would contribute additional flow to an under-capacity culvert, increasing flood risk in contravention of NPPF. Both Copeland Borough Council and the LLFA have advised that connection to this watercourse is not advisable / permissible.

9.4.3 POSITIVE DRAINAGE - SURFACE WATER SEWER CONNECTION

Surface water sewers exist to the southeast of the proposed development site in the vicinity of Muncaster Road and Crossing Richmond Hill Road. There is no possible route from the east part of the development through third party land to allow connection to this sewer due to construction of extensions and outbuildings. The sewer us located at an elevation above the level of the development site and connection to this would require a surface water pumping station. The LLFA do not permit surface water pumping stations serving new development.

A surface water sewer located at the SPAR supermarket to the south of the development site discharges to the combined sewer.

There are no existing surface water sewers accessible to allow connection.

9.4.4 POSITIVE DRAINAGE - HIGHWAY DRAINAGE CONNECTION

There are highway gullies located within the adjacent highway, Main Street, however in the vicinity of the site these discharge to the combined sewer. Approximately 170m south of the site within Main Street a 150mm diameter highway drain exists however this is too far from the proposed development to allow easy connection and has insufficient spare capacity to receive additional flow.

9.4.5 POSITIVE DRAINAGE - COMBINED SEWER CONNECTION

In line with the SuDS hierarchy, in the absence of feasible alternatives a connection to the combined sewer is proposed. Flows will be attenuated and therefore discharge rate will be lower than the current site contribution to this sewer. The existing site connection to the combined sewer is to be replaced by a new connection and this shall be future proofed to allow future diversion to a potential LLFA / CCC highways scheme to improve highway drainage on Main Street, once infrastructure has been installed.

9.4.6 CONSIDERATION OF SUDS COMPONENTS

A full range of SuDS components and techniques have been considered for the development of the site and their applicability to the site is discussed below.

SOURCE CONTROL:

- Green roofs discounted due to cost and limits of water volume retention.
- Soakaways Insufficient soil permeability.
- Water butts these are suitable for the site but their effectiveness would depend on them being empty prior to a period of significant rainfall. This could occur during the summer when occupiers are likely to use the water but unlikely during the autumn and winter Irrelevant for drainage design due to their inability to provide reliable stormwater storage.
- **Permeable paving** Insufficient soil permeability for Type A permeable block paving (full infiltration). Type B (partial infiltration) permeable block paving would be suitable for private driveways but would still require a positive drainage connection.
- **Swales** Would require large areas within the site that are not available.
- Filter drains Insufficient soil permeability.
- Infiltration trenches and basins Insufficient soil permeability.
- **Detention basins** Would require large areas within the site that are not available.
- **Ponds / wetland –** A detention basin is regarded as more effective and reliable alternative.
- **Rain gardens** discounted due to high capital and maintenance costs. Maintenance cannot practically be enforced.
- Geocellular crate systems these could be used as an alternative or in conjunction with the preferred option to store private runoff from the individual dwellings roofs and driveways. These tanks would be wrapped and sealed with an impermeable geomembrane to provide a water-tight structure. Offsite flows would need to be controlled via an orifice flow control device. A precast box culvert/ tank is considered a better option for this

particular site as there is no public open space available within the site to house a large shared geocellular crate system.

Precast Box Culvert/Tank – Preferred option for surface water runoff due to site restrictions and the requirements to locate storage under the new development access roads. Precast concrete box culverts/tanks are rectangular in shape to maximise storage capacity and are available in a range of various sizes and are therefore considered more adaptable to suit the locations available for surface water storage on this site. Offsite discharge from the precast concrete storage structures would be controlled via HydroBrake/Orifice flow control devices to an acceptable rate. The required size of the proposed storage structures has been calculated and is detailed in Section 9.6.3.

9.5 PRE-DEVELOPMENT RATE OF RUNOFF ASSESSMENT

Due to site constraints, it will be necessary to positively drain the entire impermeable area of the site. The total site area is 0.911 ha (9,105 m²). Following development, the proposed impermeable area to be positively drained is 4,969m².

The site has been designated as Brownfield for planning land use however for completeness greenfield runoff calculations have also been undertaken. As the site covers an area of less than 200 ha, (2.5 ha) the Greenfield calculations have been undertaken in accordance with methodology described in IoH 124^[16]. For catchments of less than 50 ha the Greenfield runoff rate is scaled according to the size of the catchment in relation to a 50-hectare site.

Full details of the calculations and the methodology for deriving the Peak Rate of Runoff are in included in Appendix B. A summary of the results is included in Figure 9.5.1.

Rate of Runoff (I/s)				
Event	Greenfield	Brownfield	Post Development	
Q1	3.7	41.7	5.0	
QBAR	4.2	61.1	5.0	
Q10	5.9	83.4	5.0	
Q30	7.2	101.9	5.0	
Q100	Q100 8.8		5.0	
Q100 + 40% CC 12.4		182.9	5.0	

Figure 9.5.1 Pre Development Runoff Results

Without attenuation or infiltration, the proposed development would not alter the Rate of Runoff from the developed areas of the site. A Sustainable Drainage System (SuDS) solution consisting of precast box culvert storage systems with flow control devices is proposed, attenuating runoff and controlling discharge from the site to an acceptable rate of 5 l/s which is as far as is practical to be

comparable to the pre-development Greenfield Qbar rate of 4.2 l/s, which in turn is a considerable improvement on the existing unattenuated discharge from the former brownfield (factory) site.

9.6 SURFACE WATER DRAINAGE DESIGN

The proposed surface water network serving the impermeable access roads and plots has been modelled using Causeway Flow.

The drainage design has been sized to store a future 1% AEP event of critical duration. Future climate change (40%) and urban creep (10% to housing area only) is accounted for in the design.

Due to the impermeability of the soils, all parking areas and private driveways are to be constructed of impermeable surfaces or block paving, with drainage connections to the proposed surface water sewer.

Roof water will connect directly into the surface water pipe network. This will require ground levels to fall consistently around the site in order to enable a gravity connection into the drainage system.

Due to space restrictions, it is proposed to provide three separate box culverts around the site to attenuate the surface water runoff from both the highways and plot drainage.

A series of gullies will be located within the site roads to collect and discharge highways run off into a new pipe network. The highways drainage network will be directed into the nearest localised box culvert.

Silt traps are to be provided at each plot and upstream of all storage structures.

An outline storage estimate model has been undertaken, which indicates that approximately 312m³ of storage will need to be provided to accommodate the combined highway and plot surface water runoff within the development for a Q100 + CC (40%) design storm event.

To control surface water runoff from the properties to the north of the site (Plots 10-19) upstream storage will be provided by a box culvert situated within the shared access road with a flow control device regulating flow to the main drainage network and 2 No. downstream box culvert storage structures as required.

A hydrobrake optimum vortex type flow control device will then limit discharge from the site to a new offsite public highways surface water sewer which is proposed for construction in the near future within Main Street to a rate of 5 l/s. It is acknowledged that this is greater than the estimated Greenfield Qbar of 4.2 l/s, however, current best practice dictates that 5 l/s is the minimum practical rate for discharge through a flow control device and approval will therefore need to be sought from Cumbria County Council.

Should the independent construction timescales for both the proposed development and the new public highways sewer in Main Street differ to an extent where disposal of surface water runoff is not possible through this method, the only feasible alternative connection point would be to the existing combined sewer located in Main Street and agreement would have to be sought with

United Utilities prior to construction. Dialogue has begun to this effect and at the time of writing a formal response to this proposal is being considered by UU.

The surface water drainage network for the positively drained areas shall be constructed to adoptable standards wherever possible.

For further detail refer to the Outline Drainage Layout Plan (K36892/A1/103) included in Appendix A.

It is concluded the site is suitable for SuDS, however other options could be considered including a hybrid strategy comprising of individual geocellular crates for each dwelling, with potentially reduced box culvert sizes servicing the highways runoff. This will be looked at during the detailed design stage as it may prove to be more economical.

9.6.1 EXISTING CULVERTED WATERCOURSE

The existing culverted watercourse shown on the UU records emanating from the western site boundary is known to be in to be in very poor condition downstream and is therefore not considered a viable option for disposal of the development site surface water runoff. Further consultation with the LLFA is required to determine the extent of repairs required by owners outside of the proposed site boundary, and to safeguard the local area and future proof the existing culvert it is recommended that the LLFA liaise directly with the downstream Riparian owners to undertake the necessary repairs.

9.6.2 RUNOFF CONTROL

Cumulative discharge from the development shall be controlled to a rate of 5I/s to be comparable to the pre-development greenfield runoff Qbar rate of 4.2 I/s. This rate will allow adoption of the surface water system and mitigate blockage risk.

An upstream flow control device will control flow discharge to 4.5 l/s from one of the box culvert storage structures located in a higher part of the site before filtering into the lower storage structures and joining the main drainage network.

The upper site Hydrobrake optimum flow control device is therefore specified with the following parameters:

Design Head =	1.300 m
Design Flow =	4.5 l/s
Orifice diameter =	96 mm
Unit Reference:	MD-SHE-0096-4500-1300-4500

A separate device will then restrict the overall surface water discharge from the site via the lower box culvert storage structures and will control the flow to 5 l/s via a Hydrobrake flow control device.

The main site Hydrobrake optimum flow control device is therefore specified with the following parameters:

Design Head =	1.400 m
Design Flow =	5.0 l/s
Orifice diameter =	100 mm
Unit Reference:	MD-SHE-0100-5000-1400-5000

9.6.3 STORAGE VOLUME

Three number precast box culverts are proposed as outlined on the drainage layout plan (K36892/A1/103), which would provide a combined storage volume of approx 312m³.

The upper box culvert servicing the shared road and plots 10 to 19 would provide storage of approx. 60 m³. The lower box culvert servicing the lower shared road and plots 1 to 5 would provide approx. 87 m³ storage and the main site box culvert servicing the remaining majority of the site surface water runoff would provide approx. 165 m³ of storage capacity.

9.6.4 OUTFALL DESIGN

A 150mm diameter outfall pipe is proposed from the main hydrobrake chamber to the discharge point in the proposed offsite surface water drainage pipeline situated in Main Street, or in the absence of this sewer, to the public combined sewer.

9.7 DESIGNING FOR LOCAL DRAINAGE SYSTEM FAILURE

In accordance with the general principles discussed in CIRIA Report C635 – Designing for Exceedance in Urban Drainage^[12] the proposed surface water drainage, where practical, should be designed to ensure there is no increased risk of flooding to the buildings on the site or elsewhere as a result of extreme rainfall, lack of maintenance, blockages or other causes.

9.7.1 BLOCKAGE AND EXCEEDENCE

The site drainage will be designed to attenuate a 100-year design storm including a 40% allowance for climate change. The drainage system will also provide capacity for lower probability (greater design storm events) which are not critical duration. Exceedance flows shall be retained on site within the drainage system as far as practical however for storms of a greater return period it may be necessary to pass forward more flow or spill flows.

In the unlikely case of blockage of the box culvert storage systems, associated silt traps and/or flow control chamber, spills would occur from the lowest access cover onto the new access roads. Runoff would occur along the highway and levels shall be designed such that water is constrained by kerbs and flows directed towards the existing highways drainage situated in Main Street away from the properties.

The new dwellings would not be at risk of flooding due to the proposed topography of the site and careful design of the access roads / parking areas, falling away from property.

9.8 SURFACE WATER QUALITY

The treatment of surface water is not a statutory requirement. Water quality remains a material consideration but there are no prescriptive standards to be imposed in terms of treatment train management. In the absence of a design standard, the SuDS manual has been used which outlines best practice.

Pollutants such as suspended solids, heavy metals and organic pollutants may be present in surface water runoff, the quantity and composition of the runoff is highly dependent upon site use. For housing developments the pollutant load is very low.

The SuDS Manual^[9] outlines best practice with regards to treatment of surface water by SuDS components prior to discharge to the environment. SuDS components can be effective in reducing the amount of pollutants within the surface water discharged and therefore environmental impact of the development. SuDS components may be installed in series to form a treatment train to treat the runoff.

The simple index approach as outlined in the SuDS manual has been used to assess the pollution hazard indices and proposed treatment components, the calculations are included in Appendix C. For the three categories of runoff areas served by the drainage system, Roof areas, residential parking and residential roads, treatment is proposed by use of a Downstream Defender hydrodynamic vortex separator (or similar device) which removes sediments, oils and floatables from the site stormwater runoff. Tables 9.8.1 - 9.8.3 summarise the pollution hazard and mitigation indices for this type of runoff.

Indices	Suspended Solids Metals		Hydrocarbons	
Pollution Hazard	0.2	0.2	0.05	
Pollution Mitigation	0.5	0.4	0.8	
Treatment Suitability	ADEQUATE	ADEQUATE	ADEQUATE	

Indices	Suspended Solids Metals		Hydrocarbons	
Pollution Hazard	0.5	0.4	0.4	
Pollution Mitigation	0.5	0.4	0.4	
Treatment Suitability	ADEQUATE	ADEQUATE	ADEQUATE	

Figure 9.8.1 Pollution Hazard & Mitigation Indices- Roof Areas

Figure 9.8.2 Pollution Hazard & Mitigation Indices- Residential Parking

Indices	Suspended Solids	Metals	Hydrocarbons	
Pollution Hazard	0.5	0.4	0.4	
Pollution Mitigation	0.5	0.4	0.8	
Treatment Suitability	ADEQUATE	ADEQUATE	ADEQUATE	

Figure 9.8.3 Pollution Hazard & Mitigation Indices- Residential Roads

9.9 OPERATIONS AND MAINTENANCE RESPONSIBILITY

Adoption of surface water drainage systems and SuDS components by the sewerage undertaker and/or the highways authority is intended wherever possible. During the detailed design stage a full review and consideration of UU requirements shall ensure the maximum practical extent of adoptable drainage in accordance with the Design and Construction Guidance for Foul and Surface Water Sewers^[18] and subject to a Section 104 Agreement.

Any private individual plot drainage is to be maintained by the property owners. Where required a private management company will be responsible for maintenance of any non-adoptable drainage runs or storage systems.

Highways gullies and associated pipework will be put forward for adoption by Cumbria County Council under a Section 38 Agreement.

Any areas associated with social housing will be managed by the relevant social housing association.

In addition to the above measures, where applicable, a *SuDS Operations & Maintenance Plan* will be made available to the site owners detailing the requirements for future maintenance of the drainage system.

9.10 POTENTIAL NEIGHBOURING DEVELOPMENT

Gleeson Homes and Regeneration are currently looking at the option of constructing another housing development in the local vicinity. The potential site in question is located off the nearby Cleator Moor Road and backs on to this site sharing a common boundary to the northeast of the (Ivy Mill) development. Should this adjacent site be acquired for development purposes it is anticipated that due to the site topography one of the more viable potential routes for surface water drainage would be through the Ivy Mill development site. It is therefore preliminarily proposed to provide a connection point from the new site located at the nearest point to the boundary at the upper most manhole shown on the outline drainage plan (MHS1) to receive surface water runoff from the new site. Should this be required in the future any surface water discharge from the new site would enter this proposed drainage network at a controlled flow rate and would require minor alterations to the Ivy Mill site outfall flow control chamber and discharge rates to accommodate the additional runoff serving both sites.

Any such proposals would require further consultation and approval from the Lead Local Flood Authority and acceptable discharge rates would need to be agreed prior to development in the usual manner via the planning process.

10. FOUL WATER DRAINAGE STRATEGY

It is proposed that foul water from the development shall be drained via gravity within the site before being connected to the existing manhole on the 225mm diameter combined sewer situated within the adjacent highway, Main Street, near the proposed site entrance.

Under Section 106 of The Water Industry Act 1991, 'the owner / occupier of any premises shall be entitled to have his drain or sewer communicate with the public sewer of any sewerage undertaker and thereby to discharge foul water and surface water from those premises or that private sewer.' Unless 'the making of the communication would be prejudicial to the undertaker's sewerage system'.

The drainage system shall be designed to adoptable standards to allow adoption by United Utilities under Section 104 of the Water Industry Act 1991. A pre-development enquiry has been submitted to United Utilities and their response provides an agreement in principle for a connection to the existing foul network.

Preliminary foul water discharge calculations have been undertaken for the whole site in accordance with the Design and Construction Guidance for Foul and Surface Water Sewers^[18], see Figure 10.1 below.

Sewerage Sector Design and Construction Guidance Clause B3.1			
Peak Load based on number of dwellings, 26 No units @ 4000l/day (l/day)	104,000		
Total Foul Flow Rate from Site (I/s)	1.2		

Figure 9.10.1 Peak Foul Flow Rates

The estimated peak foul flow rate from the development is 1.2 litres/second.

A drainage connection via gravity to the existing 225mm combined sewer situated in Main Street is achievable, however investigations are required to determine the exact level of the combined sewer at the connection point proposed.

For further detail refer to the Drainage Layout Plan included in Appendix A.

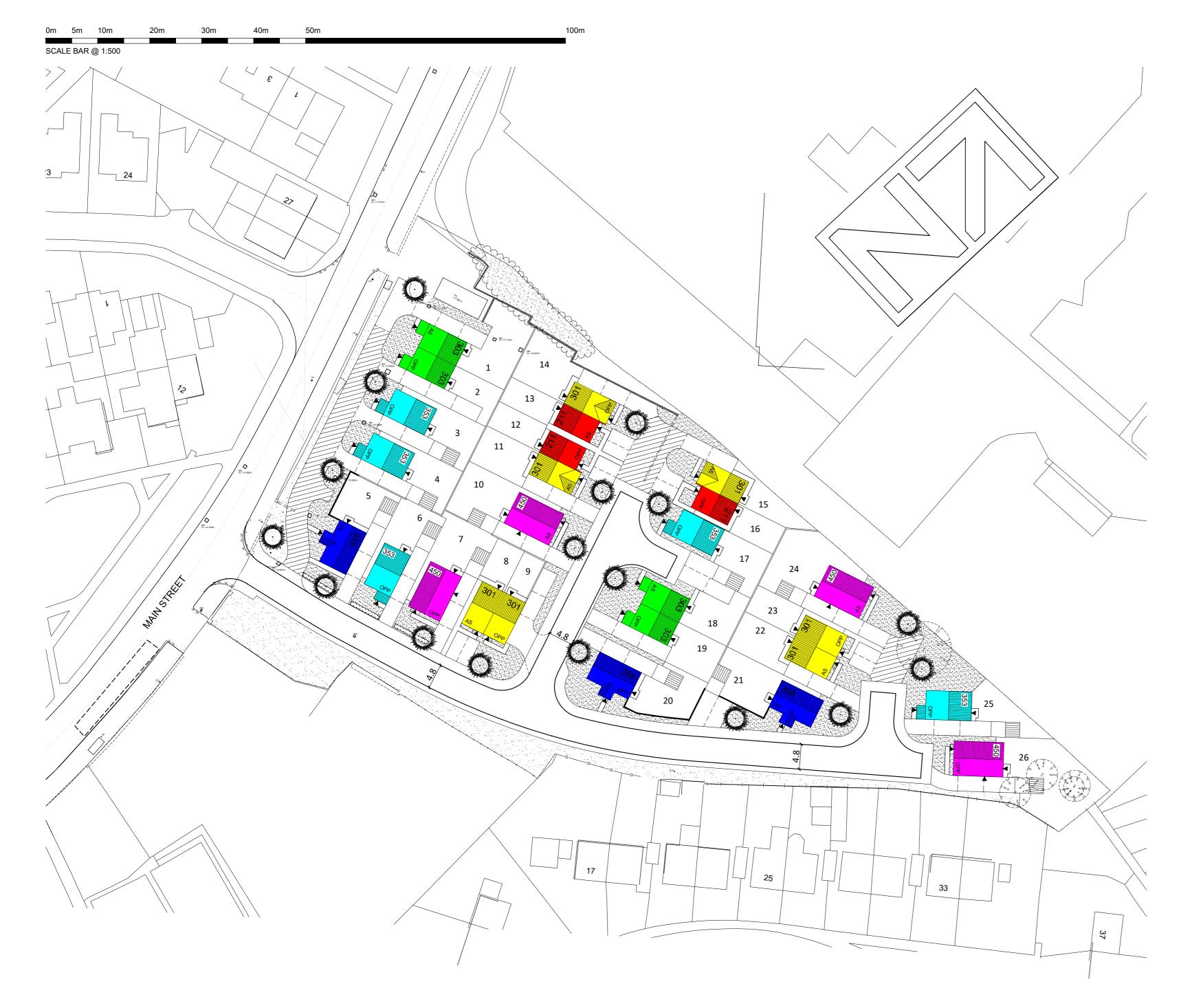
11. CONCLUSIONS AND RECOMMENDATIONS

In consideration of the Flood Risk Assessment and proposed Drainage Strategy for the site the following conclusions and recommendations are made:

- The site is located in Flood Zone 1 with a predicted annual probability of flooding from rivers or the sea of less than 0.1% AEP (1 in 1000).
- By reference to the National Planning Policy Framework ^[1] on Flood Risk, More Vulnerable development is acceptable within this flood zone.
- Following development and reprofiling of the existing topography the site is not considered to be at significant risk of flooding from surface water, groundwater, sewers, reservoirs, canals or any artificial structures.
- Surface water runoff from the site shall be positively drained and attenuated prior to discharge. Despite being a predominantly brownfield site with formerly unrestricted discharge rates, the total offsite discharge rate will be controlled to be comparable to the pre-development Greenfield Qbar rate.
- The minimum orifice size to allow adoption shall be specified which results in discharge rate of 5l/s.
- In line with the SuDS hierarchy discharge shall be to the public combined sewer in absence of any suitable alternatives. However, the surface water drainage shall be designed to allow easy diversion of flow to a new highway drain which may be installed by Cumbria County Council in future.
- A new surface water drainage network will convey the combined plot and highways drainage along the new site roads to the proposed connection point in Main Street to the west of the site via a series of attenuation structures.
- A volume of approximately 312m³ storage will be provided by precast box culverts situated within the site to accommodate the proposed development surface water run-off.
- It is anticipated that discharge from the development, shall be controlled to a rate of 5 l/s via a HydroBrake before connecting into a proposed new offsite public highways surface water drainage pipe network due to be constructed within Main Street in the near future.
- The foul drainage will connect via gravity into the existing 225mm combined sewer located within Main Street which runs parallel to the new site entrance to the west of the proposed development. A pre-development enquiry has provided an agreement in principle from UU.
- Full repair of the existing culverted watercourse to the west of the site boundary is recommended to prevent any risk of surface water flooding in this area.

- To safeguard the local area and future proof the existing culvert it is recommended that the LLFA liaise directly with the downstream Riparian owners to undertake the necessary repairs.
- The drainage system will be designed to ensure that there is no increased flood risk on or off the site as a result of extreme rainfall, lack of maintenance or blockages. A series of safety features within the development and careful design of building layout will mitigate against this.
- In addition to these measures, a SuDS Operations and Maintenance Plan will be made available to the site owners detailing future maintenance requirements of all sustainable drainage systems.

12. REFERENCES


- [1] Ministry of Housing, Communities and Local Government, National Planning Policy Framework, May 2021.
- [2] Ministry of Housing, Communities and Local Government, Planning Practice Guidance to the National Planning Policy Framework, May 2021
- [3] Defra/Environment Agency, The Town and Country Planning Order 2015, 2015 No.595, May 2021
- [4] British Geological Survey, 2020. Geoindex. http://mapapps2.bgs.ac.uk/geoindex/home.html May 2021
- [5] Land Information System (LANDIS)- Soilscapes viewer, Accessed May 2021. http://www.landis.org.uk/soilscapes
- [6] Defra Magic Maps, 2020. https://magic.defra.gov.uk/MagicMap.aspx.
- [7] Copeland Borough Council, Strategic Flood Risk Assessment (SFRA), August 2007.
- [8] Environment Agency Spatial Data Catalogue, WMS Links, May 2021. http://environment.data.gov.uk/ds/catalogue/#/catalogue
- [9] CIRIA, The SuDS Manual, Report C753, 2015.
- [10] BS8582:2013, Code of Practice for Surface Water Management, November 2013.
- [11] DEFRA/EA, Rainfall Runoff Management for Developments, SC030219, October 2013.
- [12] CIRIA, Designing for Exceedance in Urban Drainage Good Practice, Report C635, London, 2006.
- [13] Centre for Ecology and Hydrology, Flood Estimation Handbook, Vols. 1 5 & FEH CD-ROM 3, 2009.
- [14] Institute of Hydrology, Flood Studies Report, Volume 1, Hydrological Studies, 1993.
- [15] Institute of Hydrology, Flood Studies Supplementary Report No 14 Review of Regional Growth Curves, August 1983.
- [16] Marshall & Bayliss, 1994. Flood Estimation for Small Catchments, Report No. 124 (IoH 124), Institute of Hydrology.
- [17] Department for Environment, Food and Rural Affairs, Non-Statutory Technical Standards for Sustainable Drainage Systems, March 2015
- [18] Water UK, Design and Construction Guidance for Foul & Surface Water Sewers Offered for Adoption Under the Code for Adoption Agreements for Water and Sewage Companies Operating Wholly or Mainly in England, Approved Version 2.0, March 2020

APPENDIX A

ARCHITECTS PROPOSED LAYOUT

OUTLINE DRAINAGE LAYOUT PLAN

IVY MILL, WHITEHAVEN

DWELLING KEY

		201
450	4 BED DETACHED HOUSE	4
358	3 BED DETACHED HOUSE	3
353	3 BED DETACHED HOUSE	5
303	3 BED SEMI-DETACHED HOUSE	4
301	3 BED SEMI-DETACHED HOUSE	7
211	2 BED SEMI-DETACHED HOUSE	3

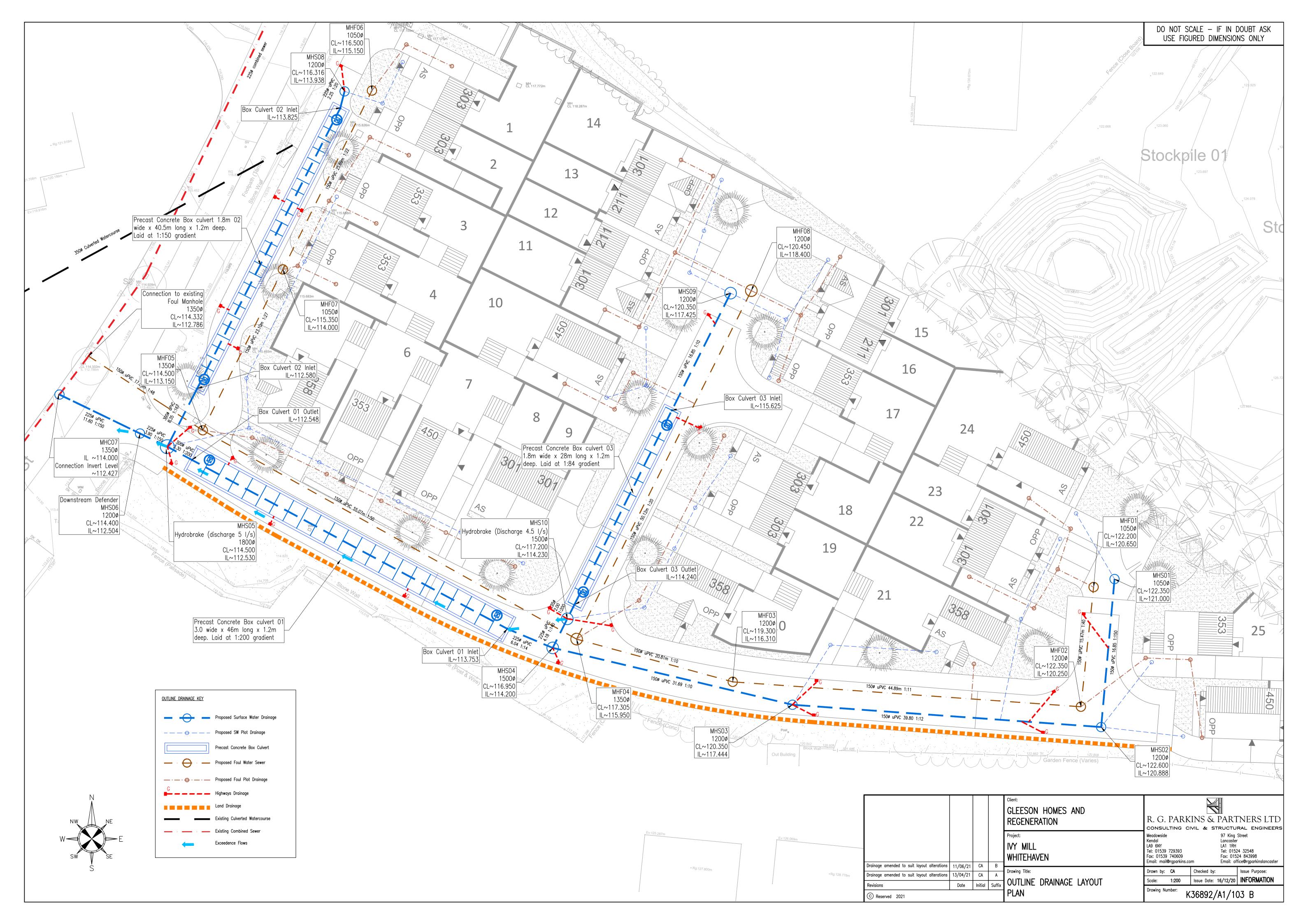
26No.

315 & 401 REPLACED WITH 353 & 450. HIGHWAYS COMMENTS ADDED. В MAY'21 FEB'21 А REV DESCRIPTION DATE

GLEESON HOMES & REGENERATION

DRAWING

PLANNING LAYOUT (colour coded)


PROJECT

IVY MILL, WHITEHAVEN

	1:500@A2	REV.	В	DRAWING No.
	JULY '20			MJG/PL-110-2
N	TWENTY10			1000/1 E-110-2
	N	JULY '20	JULY '20	JULY '20

Twenty10 Management Limited, 62 Hawkshead Avenue, Euxton, Chorley , Lancashire. PR7 6TE Tel: (01257) 277 100 Fax: (01257) 266 911 Email: info@twenty10.biz

APPENDIX B

PRE-DEVELOPMENT RUNOFF CALCULATIONS CAUSEWAY FLOW DRAINAGE CALCULATIONS SUSTAINABLE DRAINAGE TREATMENT CALCULATIONS

R G PARKINS & PARTNERS LTD	CALCULATION		Job No.	K36892	Page	1 of 6
Meadowside	Job	lvy Mill	Drg no.	N/A	Date	10/06/2021
Shap Road		Whitehaven	Revision	A	Initial	CA
KENDAL LA9 6NY	Title	Rate of Run-Off			Checked	OS

DESIGN BASIS MEMORANDUM - PEAK RATE OF RUN-OFF CALCULATION

<u>Design Brief</u>

The following peak rate of run-off calculations have been undertaken to determine changes in peak flow resulting from the development of a greenfield or brownfield site. These calculations are for the **Peak Rate of Run-Off** requirements only.

Background Information & References

The site area **is less than** 200ha and the Greenfield (pre-development) calculation has been undertaken in accordance with methodology described by Marshall & Bayliss, Institute of Hydrology, Report No. 124, Flood Estimation for Small Catchments, 1994 (IoH 124).

In addition, the following references have been used in the preparation of these calculations:

- Interim Code of Practice for Sustainable Drainage Systems (SUDS), CIRIA, 2004
- CIRIA, The SUDS Manual, Report C753, 2015
- Designing for Exceedance in Urban Drainage good practice, CIRIA Report C635, 2006
- Flood Estimation Handbook (FEH)
- Flood Studies Report (FSR), Volume 1, Hydrological Studies, 1993
- Flood Studies Supplementary Report No 2 (FSSR2), The Estimation of Low Return Period Floods
- Flood Studies Supplementary Report No 14 (FSSR14), Review of Regional Growth Curves, 1983
- Planning Practice guidance of the National Planning Policy Framework, Recommended national precautionary sensitivity ranges for peak rainfall intensities, peak river flows, offshore wind speeds and wave heights.

Proposed Land Use Changes

Changes to the existing site are as follows:

Brownfield Site to Brownfield Site (Reduced Impermeable Area)

Results Summary

Rate of Run-Off (I/s)								
Event	Greenfield	Brownfield	Post- Development					
Q1	3.7	41.7	5.0					
QBAR	4.2	61.1	5.0					
Q10	5.9	83.4	5.0					
Q30	7.2	101.9	5.0					
Q100	8.8	130.6	5.0					
Q100 + 40% CC	12.4	182.9	5.0					

R G PARKINS & PARTNERS LTD	CALCULATION		Job No.	K36892	Page	2 of 6
Meadowside	Job	lvy Mill	Drg no.	N/A	Date	10/06/2021
Shap Road		Whitehaven	Revision	А	Initial	CA
KENDAL LA9 6NY	Title	Rate of Run-Off			Checked	OS

SITE AREAS (LAND COVER AREAS)

Existing Impermeable & Permeable Land Cover

Total Site Area:

<mark>0.9105</mark>ha

Existing Impermeable & Permeable Land Cover

Land Cover	Are	a	Percentage of total site area
	m²	ha	
Total impermeable area	9105.0	0.911	100%
Remaining permeable area	0.0	0.000	0%

Proposed Land Cover Areas

Land Cover	Are	a	Percentage of total site
	m²	ha	area
Total housing roof area	1486.1	0.149	16%
Total parking and paved area	1391.1	0.139	15%
Total road area	2092.0	0.209	23%
Garden & landscaped areas	4135.8	0.414	45%

Proposed Impermeable & Permeable Land Cover

Land Cover	Are	a	Percentage of total site
	m²	ha	area
Total impermeable area	4969.2	0.497	55%
Remaining permeable area	4135.8	0.414	45%

R G PARKIN	NS & PARTNERS LTD	CALCULA	TION	DN Job No. K36892 Page 3 of							
Meadowside)	Job			Drg no. N/A Date 10/06/202						
Shap Road			Whitehaven		Revision A Initial C						
KENDAL L	KENDAL LA9 6NY Title Rate of Run-Off Checked OS										
ESTIMATION OF QBAR (RURAL) (GREENFIELD RUNOFF RATE)											
IoH 124 base	ed on research on small	catchmen	ts < 25 km2								
	ased on regression analy nents from 0.9 to 22.9 k		onse times								
QBAR _{rural} QBAR _{rural}	is mean annual flood o depends on SOIL, SAA			ificantly							
QBAR _{rural}	=	0.00108	x AREA ^{0.89} x	SAAR ^{1.17} x \$	SOIL ^{2.17}						
For SOIL ref	er to FSR Vol 1, Sectior	n 4.2.3 and	4.2.6 and lol	H 124							
Contributing Area, A	watershed area	= = =	500000 0.500 50.000	m ² km ² ha	insert 50 small cate						
SAAR		=	1140	mm	From UK	Suds web	site (point	data)			
Soil index ba	ased on soil type, SOIL		:	= <u>(0.1S1+0.3</u> (S1+3	S2+0.37S S2+S3+S4		+0.53S5)				
Where:	S1 S2 S3 S4 S5	= = = =	100 100	% % % %	based on	the equivasion		value of 4 t value. This ground			
So,	SOIL	=	0.47								
Note: for ver	y small catchments it is	far better to	o rely on loca	ıl site investiç	ation info	rmation.					
QBAR _{rural}		=	0.427 427.1	m³/s I/s							
Small rural catchments less than 50 ha The Environment Agency recommends that this method should be used for development sizes from 0 to 50 ha and should linearly interpolate the formula to 50 ha.											
So, catchme	ent size	= = =	4969 0.005 0.497	m ² km ² ha	would ren	nain disco	nt open sp onnected f ystem dur				
QBAR _{rural site}		=	0.00424 4.24	m³/s I/s							

R G PARKINS & PARTNERS LTD	CALCULATION		Job No.	K36892	Page	4 of 6
Meadowside	Job	lvy Mill	Drg no.	N/A	Date	10/06/2021
Shap Road		Whitehaven	Revision	A	Initial	CA
KENDAL LA9 6NY	Title	Rate of Run-Off			Checked	OS

GREENFIELD RETURN PERIOD ORDINATES

QBAR can be factored by the UK FSR regional growth curves for return periods <2 years and for all other return periods to obtain peak flow estimates for required return periods.

These regional growth curves are constant throughout a region, whatever the catchment type and size.

See Table 2.39 for region curve ordinates Use FSSR2 Growth Curves to estimate Qbar Reference- Pg 173-FSR V.1, ch 2.6.2

Region

10

Use Figure A1.1 to determine region

GREENFIELD RETURN PERIOD FLOW RATES

	Q (I/s)	Ordinate	Return Period
from FSSR2	3.69 Ordinat	0.87	1
	3.95	0.93	2
	5.05	1.19	5
	5.86	1.38	10
	6.96	1.64	25
	7.22	1.7	30
	7.85	1.85	50
	8.83	2.08	100
	9.85	2.32	200
	11.59	2.73	500
Interpolation take	12.90	3.04	1000

Interpolation taken from Figure 24.2 (pg 515) SuDS Manual

R G PARKINS & PARTNERS LTD	CALCULA	ATION	Job No.	K36892	Page	5 of 6
Meadowside	Job	lvy Mill	Drg no.	N/A	Date	10/06/202
Shap Road		Whitehaven	Revision	A	Initial	C/
KENDAL LA9 6NY	Title	Rate of Run-Off			Checked	08
ESTIMATE OF BROWNFIELD RUN Total site impermeable		4969 m²				
M5-60 raiı Ratio M5-60/N	•		[The Wall Modified	lingford P Rational I	oort (NER) roceedure Method, Fi rch, 1983)	e - V4 ig A.2
Storn	n Duration	15 mins	Anticipate usually 15			or the site -
	factor, Z1	0.59	Modified	Rational I	roceedure Method, Fi rch, 1983)	g A.3b
M5-15 rainf	fall depth =	= 10.0 mm				
	M1-15 M10-15 M30-15 M100-15	5 1.22 5 1.49	Modified	Rational I	roceedure Method, Ta rch, 1983)	able A1
	M1-15 M10-15 M30-15 M100-15	12.2 49 14.9 60 19.2 77				
Peak discha	arge, Qp =	Cv Cr i A				
Where:	Cr =	Volumetric Runoff Coe Routing Coefficient Rainfall intensity (mm/l				
	Cv = Cr =					
	Pea Q1 Q10 Q30 Q100	0 83.4 0 101.9				

R G PARKINS & PARTNERS LTD	CALCULA	TION	Job No.	K36892	Page	6 of 6
Meadowside	Job	Ivy Mill	Drg no.	N/A	Date	10/06/2021
Shap Road		Whitehaven	Revision	A	Initial	CA
KENDAL LA9 6NY	Title	Rate of Run-Off			Checked	OS
ESTIMATION OF QBAR (BROWNE See Table 2.39 for region curve ordi Use FSSR2 Growth Curves to estim	nates ate Qbar				-FSR V.1,	
	Region =	10	Use Figur	re A1.1 to	determine	e region
	Return Period 1 2 5 10 25 30 50 100 200 500 1000	Ordinate 0.87 0.93 1.19 1.38 1.64 1.70 1.85 2.08 2.32 2.73 3.04	Ordinate •	tion taker		ure 24.2 (pg al
Orc	linate used 10 year 30 year 100 year	Qbar 1/s 60.5 59.9 62.8				
Proposed Brownfield Runo	ff, Qbar =	61.07 l/s	Using the derived fr ordinates	om three	Qbar	

R G Parkins & Partners Ltd

Rainfall Methodology	FEH-13	Minimum Velocity (m/s)	1.00
Return Period (years)	100	Connection Type	Level Soffits
Additional Flow (%)	40	Minimum Backdrop Height (m)	0.200
CV	0.840	Preferred Cover Depth (m)	1.200
Time of Entry (mins)	5.00	Include Intermediate Ground	\checkmark
Maximum Time of Concentration (mins)	30.00	Enforce best practice design rules	\checkmark
Maximum Rainfall (mm/hr)	50.0		

<u>Nodes</u>

Name	Area (ha)	T of E (mins)	Cover Level (m)	Diameter (mm)	Easting (m)	Northing (m)	Depth (m)
1	0.019	5.00	122.350	1050	299103.582	517044.145	1.350
2	0.053	5.00	122.600	1200	299101.861	517025.111	1.727
3	0.055	5.00	120.350	1200	299062.168	517027.980	2.906
4	0.024	5.00	116.950	1500	299031.335	517035.293	2.750
BC1 Inlet			116.600		299025.491	517037.746	3.822
BC1 Outlet			114.600		298984.938	517059.460	2.052
5 HB	0.144	5.00	114.500	1800	298981.772	517061.162	1.970
6			114.400	1200	298978.260	517062.859	1.896
OUTFALL			114.000	1350	298967.903	517067.863	1.573
8	0.027	5.00	116.316	1200	299004.567	517106.849	2.378
BC2 Inlet			116.100		299004.002	517104.665	3.250
BC2 Outlet	0.014	5.00	114.680		298985.585	517068.592	2.100
9	0.066	5.00	120.350	1200	299054.208	517080.906	2.925
BC3 Inlet	0.050	5.00	118.700		299046.654	517065.842	4.125
BC3 Outlet			117.250		299034.103	517040.812	3.010
10 HB	0.052	5.00	117.200	1500	299033.209	517039.029	2.970

<u>Links</u>

Name	US Node	DS Node	Length (m)	ks (mm) / n	US IL (m)	DS IL (m)	Fall (m)	Slope (1:X)	Dia (mm)	T of C (mins)	Rain (mm/hr)
1.000	1	2	19.112	0.600	121.000	120.873	0.127	150.0	150	5.39	50.0
1.001	2	3	39.797	0.600	120.873	117.444	3.429	11.6	150	5.61	50.0
1.002	3	4	31.688	0.600	117.444	114.200	3.244	9.8	150	5.78	50.0
1.003	4	BC1 Inlet	6.338	0.600	114.200	113.753	0.447	14.2	225	5.81	50.0
1.004	BC1 Inlet	BC1 Outlet	46.000	0.600	112.778	112.548	0.230	200.0	3000	6.04	50.0
1.005	BC1 Outlet	5 HB	3.594	0.600	112.548	112.530	0.018	199.7	300	6.09	50.0
1.006	5 HB	6	3.901	0.600	112.530	112.504	0.026	150.0	225	6.15	50.0
1.007	6	OUTFALL	11.502	0.600	112.504	112.427	0.077	149.4	225	6.33	50.0

Name	Vel (m/s)	Cap (I/s)	Flow (I/s)	US Depth (m)	DS Depth (m)	Σ Area (ha)	Σ Add Inflow (I/s)
1.000	0.818	14.5	4.0	1.200	1.577	0.019	0.0
1.001	2.973	52.5	15.3	1.577	2.756	0.072	0.0
1.002	3.242	57.3	27.0	2.756	2.600	0.127	0.0
1.003	3.493	138.9	67.8	2.525	2.622	0.319	0.0
1.004	3.287	11832.0	67.8	2.622	0.852	0.319	0.0
1.005	1.109	78.4	67.8	1.752	1.670	0.319	0.0
1.006	1.065	42.3	107.1	1.745	1.671	0.504	0.0
1.007	1.067	42.4	107.1	1.671	1.348	0.504	0.0

	SEV	MY	6	R G P	Parkins	& Partner	rs Ltd	N Cł	etwo hris A	ow Mod ork: Storr Abram /2021		ised layo ork	Page 2		
								<u>Links</u>							
Name		US ode	D: No		Lengt (m)	-		US IL (m)		DS IL (m)	Fall (m)	Slope (1:X)	Dia (mm)	T of C (mins)	Rain (mm/hr)
2.000	8		BC2 Ir		2.25			113.93		113.825			225	5.01	50.0
2.001	BC2	Inlet	BC2 O	utlet	40.50)2 (.600	112.85	50	112.580	0.270	150.0	1800	5.21	50.0
2.002	BC2	Outlet	5 HB		8.35			112.58		112.530			300	5.33	50.0
3.000	9		BC3 Ir		16.85			117.42		115.625			150	5.08	50.0
3.001		Inlet	BC3 O		28.00			114.57		114.240			1800	5.19	50.0
3.002 3.003	BC3 10 H	Outlet	10 HB 4		1.99 4.18			114.24 114.23		114.230 114.200			225 225	5.22 5.29	50.0 50.0
5.005	10 H	D												5.29	50.0
			Ν	lame	Vel (m/s	Cap) (l/s)	Flov (I/s) De	JS pth	DS Depth	Σ Are (ha)	Inflow			
			-		2 0 2		·	-	n)	(m)	0.00	(I/s)			
				2.000	2.939 3.413				153 050	2.050 0.900					
				2.001	3.413 1.213				800	1.670					
				3.000	3.312				775	2.925					
				8.001	4.57				925	1.810					
			3	3.002	0.922	2 36.7	7 24.	7 2.	785	2.745	0.11	6 0.0)		
			3	8.003	1.106	5 44.0	35.	7 2.	745	2.525	0.16	8 0.0)		
							<u>Pipeli</u>	ine Sch	edu	<u>e</u>					
	Link	Length			Dia	Link	US CL		JS IL		Depth	DS CL	DS IL	DS De	-
		(m)	(1:)		nm)	Туре	(m)		(m)	-	m)	(m)	(m)	(m	-
	L.000 L.001	19.112				Circular Circular	122.35 122.60		1.00 0.87			122.600 120.350	120.873 117.444		.577
	L.001	39.797 31.688				Circular	122.00		.0.87 .7.44			120.350	117.444		.756 .600
	L.002	6.338				Circular	116.95		4.20			116.600	113.753		.622
	L.004	46.000				Culvert	116.60		2.77			114.600	112.548		.852
	L.005	3.594				Circular	114.60		2.54			114.500	112.530		.670
	L.006	3.901	150	.0		Circular	114.50	0 11	2.53	0 :		114.400	112.504		.671
	L.007	11.502				Circular	114.40		2.50			114.000	112.427		.348
	2.000	2.256				Circular	116.31		3.93			116.100	113.825		.050
	2.001	40.502				Culvert	116.10		2.85			114.680	112.580		.900
	2.002 3.000	8.351 16.852				Circular Circular	114.68 120.35		.2.58 .7.42			114.500 118.700	112.530 115.625		.670 .925
	3.001	28.001				Culvert	118.70		4.57			117.250	114.240		.810
	I	.ink	US		Dia	Node	ſ	мн		DS	Dia	Nod	e	мн	
	_		Node	e ((mm)	Туре		уре		Node	(mm			Гуре	
	1	.000 1			1050	Manhole	e Ado	ptable	2		120			optable	
		.001 2			1200	Manhole		ptable			120			ptable	
		.002 3			1200	Manhole		ptable			150			optable	
		.003 4			1500	Manhole		ptable		1 Inlet		Junctio			
			BC1 Inle			Junction				1 Outlet		Junctio		ntable	
			3C1 Out 5 HB		1800	Junction Manhole		ptable		HB	180) 120)			optable optable	
		.006 5 .007 6			1200	Manhole		ptable		JTFALL	1350			pravie	
		.000 8			1200	Manhole		ptable		2 Inlet	1000	Junctio			
			,) () , n -			lunction						Junctio			

BC2 Outlet

BC3 Outlet

5 HB

Adoptable BC3 Inlet

Junction

Manhole

Junction

Junction

Adoptable

1800

Junction

Junction

Junction

1200 Manhole

2.001

2.002

3.000

BC2 Inlet

9

3.001 BC3 Inlet

BC2 Outlet

USEV			s & Partners	N C			-	Page	23	
				Pipeline Sch	<u>edule</u>					
Link	-	ope Dia :X) (mm)	Link Type		JS IL (m)	US Depth (m)	DS CL (m)	DS (n		Depth m)
3.002 3.003	1.995 19	9.5 225 9.3 225	Circular 1		.4.240 .4.230	2.785 2.745	117.200 116.950		230	2.745 2.525
	N	US Di a I ode (m r Outlet		МН Туре	D: No 10	de (mm)	Node Type Manho		MH Type loptable	
	3.002 DC3					1500	Manho		loptable	
			<u>I</u>	<u>Manhole Sc</u>	<u>hedule</u>					
Node	Easting (m)	(m)	(m)		(mm)	Connec	tions	Link	IL (m)	Dia (mm)
1	299103.5	82 517044.	145 122.3	50 1.350	1050	\bigcirc				
2	200101.0	C1 F1702F	111 122 0	00 1 7 7 7	1200	0	0	1.000	121.000	150
2	299101.8	61 517025	111 122.6	00 1.727	1200	0 <	1	1.000	120.873	150
3	200062.1	60 517027	000 100 2	F0 2.00C	1200		0	1.001	120.873	150
3	299062.1	.68 517027.	980 120.3	50 2.906	1200	0 <	-1	1.001	117.444	150
4	299031.3	35 517035	293 116.9	50 2.750	1500	1	0	1.002 3.003	117.444 114.200	150 225
-	235051.5	55 517055.	295 110.5	50 2.750	1500		2	1.002	114.200	150
BC1 Inlet	299025.4	91 517037.	746 116.6	00 3.822			0	1.003	114.200 113.753	225 225
						OF	1			
BC1 Outlet	t 298984.9	38 517059	460 114.6	00 2.052		0 K	0	1.004 1.004	112.778 112.548	3000 3000
						× ×	1	1 005	112 540	200
5 HB	298981.7	72 517061	162 114.5	00 1.970	1800	1	0	1.005 2.002	112.548 112.530	300 300
						° «	2	1.005	112.530	
6	298978.2	60 517062	859 114.4	00 1.896	1200		0	1.006	112.530 112.504	225 225
							1			
OUTFALL	298967.9	03 517067.	863 114.0	00 1.573	1350		0	1.007	112.504 112.427	225 225
						۵ مر	1			
8	299004.5	67 517106	849 116.3	16 2.378	1200					
							0	2.000	113.938	225

Manhole Schedule

				<u></u>		cuule					
Node	Easting (m)		thing m)	CL (m)	Depth (m)	Dia (mm)	Con	nections	Link	IL (m)	Dia (mm)
BC2 Inlet	299004.002	5171	04.665	116.100	3.250		1	1 1	2.000	113.825	225
							o	0	2.001	112.850	1800
BC2 Outlet	298985.585	5170	58.592	114.680	2.100				2.001	112.580	1800
9	299054.208	5170	80.906	120.350	2.925	1200	o ^K	0	2.002	112.580	300
5	239034.208	51704	50.500	120.330	2.925	1200	5				
DC2 Inlat	200046 654	F170	CE 040	110 700	4 4 2 5		0	0	3.000	117.425	150
BC3 Inlet	299046.654	5170	55.842	118.700	4.125			1	3.000	115.625	150
							04	0	3.001	114.575	1800
BC3 Outlet	299034.103	51704	40.812	117.250	3.010		1	1 1	3.001	114.240	1800
							o	0	3.002	114.240	225
10 HB	299033.209	51703	39.029	117.200	2.970	1500	6		3.002	114.230	225
							of	0	3.003	114.230	225
			<u>Nod</u>	e 5 HB Onl	line Hydro	o-Brake [@]	[®] Contro	<u>ol</u>			
Renlac	Flap es Downstrean	Valve n Link	x √		Si	Obje ump Ava		(HE) Minim √	ise upsti	ream storag	ge
Replac	Invert Leve		v 112.53	30		duct Nu		CTL-SHE-01	00-5000	-1400-5000	0
	Design Dept	• •	1.400		in Outlet			0.150			
	Design Flow	w (I/s)	5.0	Mir	n Node Di	iameter	(mm)	1200			
			Node	e 10 HB On	line Hydr	o-Brake	e Contro	<u>ol</u>			
		Valve	\checkmark		-	-		(HE) Minim	ise upsti	ream storag	ge
Replac	es Downstrean Invert Leve		√ 114.23	30		ump Ava duct Nu		√ CTL-SHE-00	06_1500	1-1300-450	n
	Design Dept		1.300		in Outlet			0.150	50-4500	-1300-4300	0
	Design Flow		4.5		n Node Di		• •	1200			

Page 5

Results for 100 year +40% CC Critical Storm Duration. Lowest mass balance: 98.80%

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
15 minute winter	1	10	121.096	0.096	10.1	0.1102	0.0000	ОК
15 minute winter	2	10	120.967	0.094	37.9	0.1638	0.0000	ОК
15 minute winter	3	12	118.060	0.616	66.7	0.9305	0.0000	SURCHARGED
960 minute winter	4	840	114.405	0.205	11.1	0.3978	0.0000	ОК
960 minute winter	BC1 Inlet	840	114.404	1.626	11.1	0.0000	0.0000	SURCHARGED
960 minute winter	BC1 Outlet	840	114.404	1.856	7.4	0.0000	0.0000	FLOOD RISK
960 minute winter	5 HB	840	114.404	1.874	8.1	7.5100	0.0000	FLOOD RISK
960 minute winter	6	840	112.561	0.057	5.7	0.0640	0.0000	ОК
960 minute winter	OUTFALL	840	112.482	0.055	5.7	0.0000	0.0000	ОК
960 minute winter	8	840	114.404	0.466	1.2	0.6332	0.0000	SURCHARGED
960 minute winter	BC2 Inlet	840	114.404	1.554	2.7	0.0000	0.0000	SURCHARGED
960 minute winter	BC2 Outlet	840	114.404	1.824	3.9	0.2426	0.0000	FLOOD RISK
15 minute winter	9	10	117.511	0.086	34.9	0.1361	0.0000	ОК
120 minute winter	BC3 Inlet	116	115.796	1.221	30.7	0.2954	0.0000	SURCHARGED
120 minute winter	BC3 Outlet	116	115.796	1.556	24.6	0.0000	0.0000	SURCHARGED
120 minute winter	10 HB	116	115.796	1.566	10.3	3.3142	0.0000	SURCHARGED

Node Event	US	Peak	Level	Depth	Inflow	Node	Flood
	Node	(mins)	(m)	(m)	(I/s)	Vol (m³)	(m³)
15 minute winter	1	10	121.096	0.096	10.1	0.1102	0.0000
15 minute winter	2	10	120.967	0.094	37.9	0.1638	0.0000
15 minute winter	3	12	118.060	0.616	66.7	0.9305	0.0000
960 minute winter	4	840	114.405	0.205	11.1	0.3978	0.0000
960 minute winter	BC1 Inlet	840	114.404	1.626	11.1	0.0000	0.0000
960 minute winter	BC1 Outlet	840	114.404	1.856	7.4	0.0000	0.0000
960 minute winter	5 HB	840	114.404	1.874	8.1	7.5100	0.0000
960 minute winter	6	840	112.561	0.057	5.7	0.0640	0.0000
960 minute winter	OUTFALL	840	112.482	0.055	5.7	0.0000	0.0000
960 minute winter	8	840	114.404	0.466	1.2	0.6332	0.0000
960 minute winter	BC2 Inlet	840	114.404	1.554	2.7	0.0000	0.0000
960 minute winter	BC2 Outlet	840	114.404	1.824	3.9	0.2426	0.0000
15 minute winter	9	10	117.511	0.086	34.9	0.1361	0.0000
120 minute winter	BC3 Inlet	116	115.796	1.221	30.7	0.2954	0.0000
120 minute winter	BC3 Outlet	116	115.796	1.556	24.6	0.0000	0.0000
120 minute winter	10 HB	116	115.796	1.566	10.3	3.3142	0.0000

R G PARKINS & PARTNERS LTD	CALCULATION		Job No.	K36892	Page	1 of 4
Meadowside	Job	Ivy Mill	Drg no.		Date	10/06/2021
Shap Road		Whitehaven	Revision		Initial	CA
KENDAL LA9 6NY	Title	Sustainable Dra	ainage - T	reatment	Checked	OS

DESIGN BASIS MEMORANDUM - SUSTAINABLE DRAINAGE TREATMENT OF SURFACE WATER

Design Brief

The following calculations outline the recommended treatment requirements for a sustaionable drainage system as outlined in the SuDS Manual 2015. The method used is the simple index approach outlined in section 26. The requirement for oil interceptors has been assessed in line with the now withdrawn Pollution Prevention Guidance document PPG3, produced by the Environment Agency. An oil interceptor is not required for the proposed development.

Treatment within SuDS components is affected by the flow rate and volume of water which passes through the component. It is not reasonable or practical to treat the entirety of the runoff for infrequent greater intensity design storms. In any case the majority of the pollutants are removed from surfaces by the more frequent rainfall events and in the first flush resulting from the initial runoff from the larger events. and to a certain capacity.

The following references have been used in the preparation of these calculations:

- SUDS Manual, CIRIA Report C753, 2015
- Pollution Mitigation Indicies provided by Hydro International

Results Summary

Roof Area:

Treatment component 1 Hydo International Downstream Defender

Treatment component 2 None

Indices	Suspended Solids	Metals	Hydrocarbons
Pollution Hazard	0.2	0.2	0.05
Pollution Mitigation	0.5	0.4	0.8
Treatment Suitability	Adequate	Adequate	Adequate

Residential Parking:

Treatment component 1 Hydo International Downstream Defender

Treatment component 2 None

Indices	Suspended Solids	Metals	Hydrocarbons
Pollution Hazard	0.5	0.4	0.4
Pollution Mitigation	0.5	0.4	0.8
Treatment Suitability	Adequate	Adequate	Adequate

Residential Roads

Treatment component 1 Hydo International Downstream Defender **Treatment component 2** None

Indices	Suspended Solids	Metals	Hydrocarbons
Pollution Hazard	0.5	0.4	0.4
Pollution Mitigation	0.5	0.4	0.8
Treatment Suitability	Adequate	Adequate	Adequate

R G PARKINS & PARTNERS LTD	CALCULATION		Job No.	K36892	Page	2 of 4
Meadowside	Job	lvy Mill	Drg no.		Date	10/06/2021
Shap Road		Whitehaven	Revision		Initial	CA
KENDAL LA9 6NY	Title	Sustainable Drainage - Treatment		Checked	OS	

POLLUTION HAZARD INDEX

				ndices
Source of Runoff	Pollution Hazard	Suspended Solids	Metals	Hydro- carbons
Residential roofing	Very low	0.2	0.2	0.05

POLLUTION MITIGATION INDEX

The receiving water body shall be: Surface Water

Pollution Mitigation In		Indices		
	Suds Component	Suspended Solids	Metals	Hydro- carbons
1	Hydo International Downstream Defender	0.5	0.4	0.8
2	None	0	0	0
3	None	0	0	0
4	None	0	0	0

Total Pollution Mitigation Index 0.5 0.4

ASSESSMENT OF TREATMENT PROPOSAL

Indices	Suspended Solids	Metals	Hydro-carbons
Pollution Hazard	0.2	0.2	0.05
Pollution Mitigation	0.5	0.4	0.8
	Adequate	Adequate	Adequate

0.8

R G PARKINS & PARTNERS LTD	CALCULATION		Job No.	K36892	Page	3 of 4
Meadowside	Job	lvy Mill	Drg no.		Date	10/06/2021
Shap Road		Whitehaven	Revision		Initial	CA
KENDAL LA9 6NY	Title	Sustainable Drainage - Treatment		Checked	OS	

POLLUTION HAZARD INDEX

				ndices
Source of Runoff	Pollution Hazard	Suspended Solids	Metals	Hydro- carbons
Residential parking	Low	0.5	0.4	0.4

POLLUTION MITIGATION INDEX

The receiving water body shall be: Surface Water

Pollution Mitiga		litigation	Indices	
	Suds Component	Suspended Solids	Metals	Hydro- carbons
1	Hydo International Downstream Defender	0.5	0.4	0.8
2	None	0	0	0
3	None	0	0	0
4	None	0	0	0

Total Pollution Mitigation Index 0.5 0.4

ASSESSMENT OF TREATMENT PROPOSAL

Indices	Suspended Solids	Metals	Hydro-carbons
Pollution Hazard	0.5	0.4	0.4
Pollution Mitigation	0.5	0.4	0.8
	Adequate	Adequate	Adequate

0.8

R G PARKINS & PARTNERS LTD	CALCULATION		Job No.	K36892	Page	4 of 4
Meadowside	Job	lvy Mill	Drg no.		Date	10/06/2021
Shap Road		Whitehaven	Revision		Initial	CA
KENDAL LA9 6NY	Title	Sustainable Drainage - Treatment		Checked	OS	

POLLUTION HAZARD INDEX

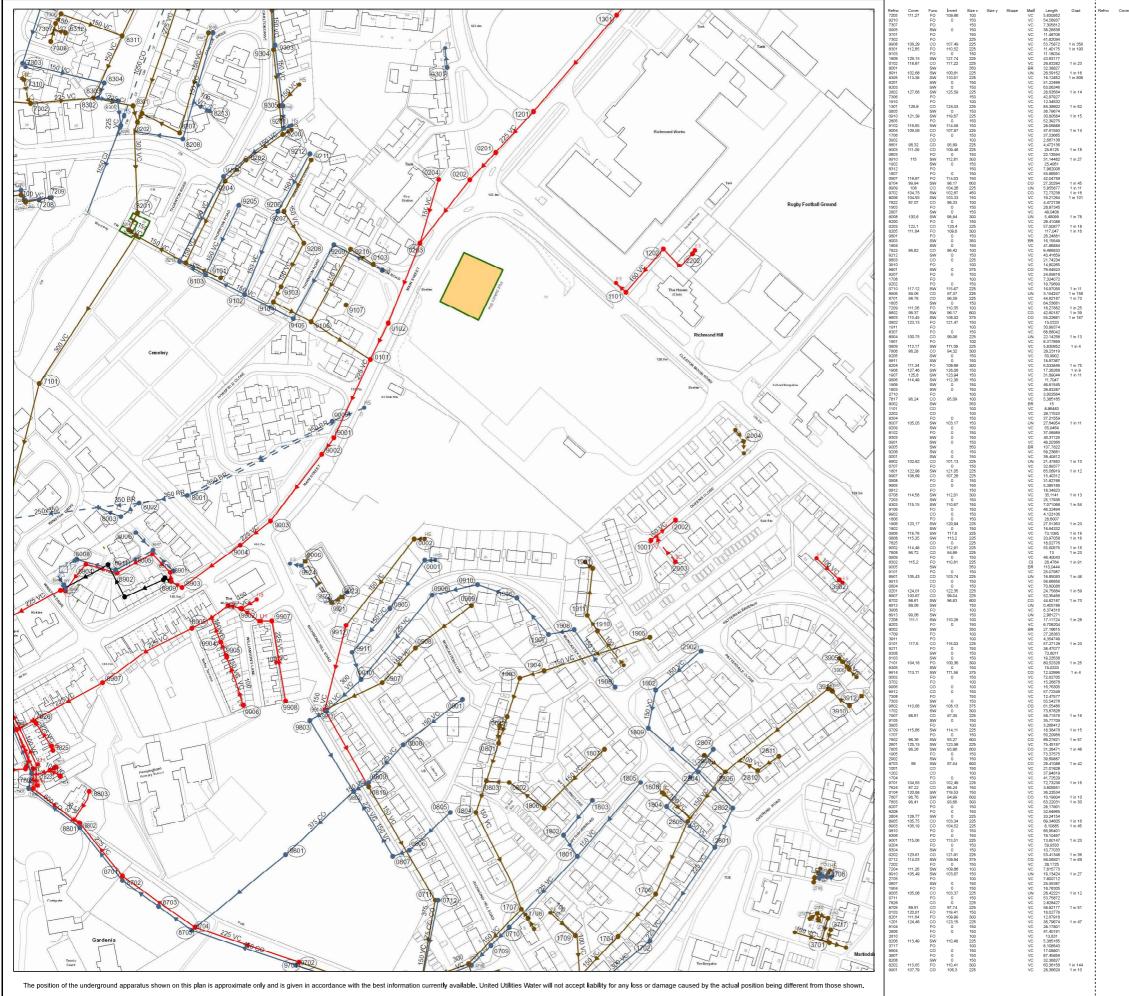
		Pollution Hazard Indices		
Source of Runoff	Pollution Hazard	Suspended Solids	Metals	Hydro- carbons
Low traffic roads (e.g. residential roads and general access roads, < 300 traffic movements/day)	Low	0.5	0.4	0.4

POLLUTION MITIGATION INDEX

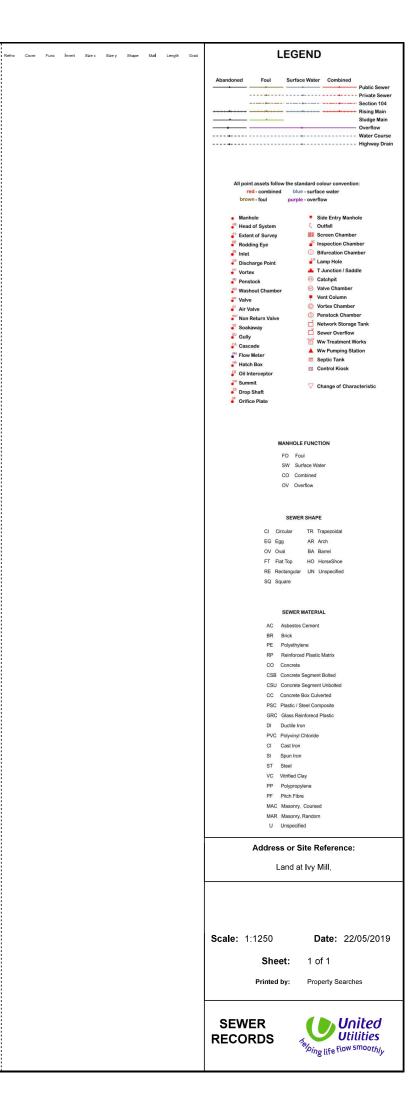
The receiving water body shall be: Surface Water

Pollution Mitigation In			Indices	
Suds Component		Suspended Solids	Metals	Hydro- carbons
1	Hydo International Downstream Defender	0.5	0.4	0.8
2	None	0	0	0
3	None	0	0	0
4	None	0	0	0

Total Pollution Mitigation Index 0.5 0.4 0.8


ASSESSMENT OF TREATMENT PROPOSAL

Indices	Suspended Solids	Metals	Hydro-carbons
Pollution Hazard	0.5	0.4	0.4
Pollution Mitigation	0.5	0.4	0.8
	Adequate	Adequate	Adequate


APPENDIX C

UNITED UTILITIES SEWER RECORDS

Page | 37

Crown copyright and database rights 2017 Ordnance Survey 100022432. Unauthorised reproduction will infringe these copyrights.

