

Report Title

Property Address

Client

Our Reference

Date

Prepared by

Flood Risk Assessment and Drainage Report

North Lane Haverigg Millom Cumbria PFK plc 22-111c001B June 2023 Colin Aimers BEng Hons CEng MICE CEnv Director colin.aimers@kingmoorconsulting.co.uk

Contents

Introduction	3
Existing Site and Drainage	4
Site Description	4
Superficial Deposits	4
Solid Geology	4
Surface Water	4
Foul Water	4
INITIAL FLOOD RISK	5
DETAILED FLOOD RISK ASSESSMENT	5
Flood Risk Assessment Criteria	5
Sources of Flooding	б
Flooding from Rivers / Watercourses	б
Flooding from Reservoirs	7
Flooding from the Sea	7
Flooding from the Land	8
Flooding from Groundwater	8
Flooding from Sewers	8
Summary	8
Increase to Off Site Flooding	8
Flood Risk Vulnerability	9
Assessment	9
Mitigation Measures	10
Flood Resilience and Resistance	10
Emergency Access	10
Proposed Drainage Strategy	11
Surface Water	11

Surface Water Runoff Rates and Volumes	11
Sustainable Urban Drainage [SUDS]	12
Foul Drainage	13
Hydraulic Design	14
Foul Drainage	14
Surface Water Drainage	14
Area A	16
Area B	16
Detailed Engineering	17
Maintenance of Drainage	19
Operation and Maintenance Requirements	19
Inlets, Outlets, Controls and Inspection Chambers	19
Appendices	21
Percolation Test Results	21
Detailed Foul Water Calculations	22
Detailed Surface Water Calculations	23
Drawings	24

Page 2 of 26

Introduction

The purpose of this report is to present the design of the proposed surface water drainage design for a residential development at North Lane, Haverigg, Millom, LA18 4LX (thereafter referred to as 'The Site'). The report has been commissioned by owners, for the purposes of supporting a planning application and providing a flood risk assessment and a detailed drainage strategy for foul and surface water drainage on the site.

Research has been undertaken on the site and observations made regarding the existing site and its former history.

The report should be read in conjunction with the documents referenced to it, generally appended to this report, and all works has been designed in accordance with the following standards :

- CIRIA Publication C753 The SuDS Manual
- CIRIA Publication C768 Guidance on the Construction of SuDS

Calculations associated with the drainage have been performed using analysis packages and where appropriate copies of calculations are provided in this report.

Existing Site and Drainage

Site Description

The site is presently arable fields located to the south of North Lane, Haverigg. Residential properties are present to the east and north of the site, with the remaining boundaries are arable fields.

The site is flat and boundaries are either formed by man made dykes or streams and wire fences.

Superficial Deposits

The published superficial geology by The British Geological Survey shows the site comprises Raised Beach formation and Storm Beach deposits. Both are generally formed with sands and gravels with good natural drainage.

Solid Geology

The solid geology as published by the British Geological Survey shows the site to be underlain by St Bees Sandstone Formation consisting of Sandstones.

Surface Water

Formal surface water drainage is present locally around the fields of the site in the form of land drainage discharging directly to the ditches and watercourses present around the site. The principal watercourse is referred to as Stroup Dub Cut and discharges into Duddon Sands nearby.

Foul Water

There the site and nearby properties are not serviced by a public sewer. All nearby properties have individual septic tanks and all discharge to the open water courses around the site.

The public sewers operated by United Utilities are located at the junction of North Lane and Red Brow approx 175m from the site.

INITIAL FLOOD RISK

An initial flood risk assessment was undertaken adopting mapping available at https://flood-map-for-planning.service.gov.uk/ and this identified the area of the site to be within a Flood Zone 1.

Due to the presence of surface watercourses around the site, a detailed flood risk assessment shall be undertaken.

DETAILED FLOOD RISK ASSESSMENT

Flood Risk Assessment Criteria

A Flood Risk Assessment Report was requested from the Environment Agency and identified that the site is considered in a Flood Zone 1.

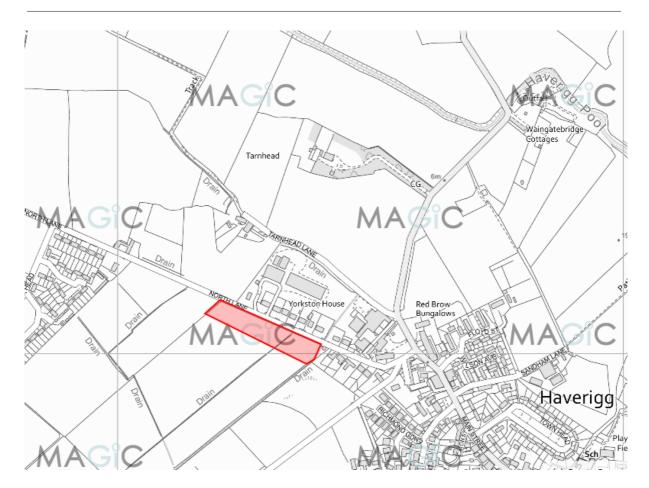
The Flood Zone classifications are as follows :

- Flood Zone 1 land assessed as having a less than 1 in 1,000 annual probability of river or sea flooding (<0.1%).
- Flood Zone 2 land assessed as having between a 1 in 100 and 1 in 1,000 annual probability of river flooding (1% 0.1%), or between a 1 in 200 and 1 in 1,000 annual probability of sea flooding (0.5% 0.1%) in any year.
- Flood Zone 3 land assessed as having a 1 in 100 or greater annual probability of river flooding (>1%), or a 1 in 200 or greater annual probability of flooding from the sea (>0.5%) in any year.

In respect to the proposed development, this is classified as More Vulnerable and as such the flood risk assessment is required to address :

• Surface water management

Sources of Flooding


As part of the risk assessment, consideration shall be given to the following sources of flooding and what effect these could have on the development:

Flooding from Rivers / Watercourses

There are a number of watercourses not by the Environment Agency as Main Rivers around the site. This includes the Stoup Dub Cut adjacent to the eastern boundary, and Haverigg Pool, approx 150m north of the site.

There are a number of other minor watercourses present which drain to the main rivers, some of which are identified on mapping, and it is considered that the developed / reclaimed nature of the ground around the site, these are man made.

Extract from DEFRA Magic Map

We consider that the drainage around the site including main rivers and minor watercourses are hydrologically connected to both the wider drainage network which shall be influenced by the coastal flooding, therefore, we consider the risk associated with flooding from rivers and watercourses to be **MODERATE to HIGH**.

Flooding from Reservoirs

Not applicable.

Flooding from the Sea

Not applicable.

Flooding from the Land

The area around the site is in part developed and areas around the site discharge to the engineered drainage around the site, therefore we consider the risk associated with flooding from the land to be **LOW**.

Flooding from Groundwater

The site has been developed over a number of years and any affect on groundwater would be negligible. Therefore, we consider the flood risk associated with groundwater to be LOW.

Flooding from Sewers

Sewers are located a significant distance from the site and therefore we consider that the flood risk to be LOW.

Summary

Report

The following table indicates a summary of the risks and control measures required:

Source of Flooding	Risk	Control Measures
Rivers / Watercourses	Med / High	Mitigation measures regarding the construction of the facility
Reservoirs	n/a	
Sea	n/a	
Land	Low	As above
Groundwater	Low	As above
Sewers	Low	As above

Increase to Off Site Flooding

The proposed development is not within the flood areas and therefore there would be no impact to the areas of flooding water displaced by the development.

Flood Risk Vulnerability

Assessment

The vulnerability of the proposed development is assessed in accordance with the Technical Guidance to the National Planning Policy Framework published by the Ministry of Housing, Communities and Local Government published on 27 March 2012 and updated on 19 February 2019.

The proposed development is for a replacement warehouse facility and therefore classified as 'Minor Development'. From the NPPF, it considers that minor developments are unlikely to raise significant flood risk issues unless:

- They would have an adverse effect on a watercourse, floodplain or its flood defences;
- They would impede access to flood defence and management facilities, or;
- Where the cumulative impact of such developments would have a significant effect on local flood storage capacity or flood flows.

We consider that the proposed development would have no effect on the existing flood risk to the site and the wider area around the site.

Mitigation Measures

We consider that the development should consider the following mitigation measures associated with the management of the residual flood risk on the site.

- Flood resilience and resistance
- Emergency Access

Flood Resilience and Resistance

It would be anticipated that the detailed design of the proposed structure would include flood resilience and resistance measures. These may include :

- Management of potential pathways for water
- Raising of critical services and infrastructure
- Incorporation of suitable building materials and details.

Guidance published by CIRIA¹ should be adopted alongside the requirements to meet the Building Regulations associated with the adaption of the existing structure.

In addition, it is proposed that the floor levels of the new structure would be at 6.3m AOD, thus limiting the effect of water present within the building to approx 1.6m (based on the 1:200Y event incl calculated climate change).

Emergency Access

An emergency access plan should be adopted for the site and include the following procedures for the site.

- Roles and responsibilities
- Safe shut down of critical services

1

https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/fi le/7730/flood_performance.pdf

- Safe evacuation of the site for staff and visitors
- Process for site attendance post flood

Proposed Drainage Strategy

Surface Water

It is proposed that the surface water on the site is to be attenuated on each plot and released to the existing watercourses present on the site. Each plot shall restrict individual flows to a central surface water drain on the site and this will in turn discharge to the main drainage servicing the local area.

Soakways can be considered for each individual property but as the sites are limited in size, and it is proposed that foul drainage soakaways are proposed for each plot, it would be impractical to achieve compliance with the Building Regulations and achieve two soakways within the rear gardens of the properties.

Surface Water Runoff Rates and Volumes

The surface water run off rates have been calculated using the Modified Rational Method and the IH124 Greenfield Runoff method. The rainfall catchment characteristics have been selected using tools available on UKSUDS.

In considering the requirements of the Cumbria County Council Design Guide², all surface water runoff should mimic the greenfield runoff rates for the development, the following table presents a summary of the sites, considering the site as two areas.

Area	Plots	Area [Ha}	Greenfield Runoff {l/sec]	Greenfield Volume [cuM]
Area A	6, 7 & 8	0.2952	0.90	53
Area B	1, 2, 3, 4 & 5	0.5162	1.5	93
		TOTAL	2.40	146

We have reviewed the surface water runoff rates from the site using UK SUDS, and the following

² https://cumbria.gov.uk/elibrary/Content/Internet/544/3887/43115144751.PDF

Project Proposed Residential Development, North Lane, Haverigg

table presents a summary of the peak flow rates from the site.

Sustainable Urban Drainage [SUDS]

The requirements for Sustainable Urban Drainage shall be include :

The following recommendations are considered appropriate for the site :

Rainwater Harvesting - Considered suitable for use on site from rooves. Harvested rainwater may be suitable for use in toilet flushing.

Permeable Paving - Suitable for parking areas, and would allow storage within the depth of the paving prior to discharge to the surface water system.

Sub Surface Storage - Suitable on site with appropriate management arrangements for maintenance.

Rooves

It is proposed that the rooves discharge to the surface water network installed on the site. Calculations for the roof areas of each plot entering the surface water network shall be calculated and used in a detailed model to be produced for the site.

All roof drainage and arrangements shall be constructed in accordance with the Building Regulations.

Parking and Paved Surfaces

It is proposed that paved surfaces on the site including parking areas, footways and roads shall have formal drainage present and discharge via the surface water network. An overall reduction in the areas of paved surfaces from the present areas of the site shall be achieved with incorporation of amenity areas on the site.

Gardens

It is proposed that amenity areas on the site shall be created including planting and landscaping.

These areas replace former areas of hardstanding or at locations of buildings. It is proposed that these areas will discharge naturally to the underlying ground conditions.

Project Proposed Residential Development, North Lane, Haverigg

Foul Drainage

Due to the complex nature of the existing public sewers and achieving a connection to them at the end of North Lane, it is proposed that each property shall adopt its own packaged treatment plant and discharge via a soakaway to the rear of the properties.

Hydraulic Design

Foul Drainage

A preliminary scheme for the foul drainage at each plot has been performed considering a 4 bedroom property.

It would be proposed that the following be adopted for each plot.

Packaged Treatment Plant	Marsh Ensign 8P or similar
Soakaway Field Size	7m length - 600mm wide trench

Soakaway calculations are based on an average percolation value of 2.1 sec/mm obtained from percolation testing undertaken on the site. The percolation test results and calculations for the above field size are enclosed with this report.

The final position of the packaged plant and soakaway shall be in accordance with the requirements of the Building Regulations which include distances from habitable rooms, boundaries and distance between access and the tank.

Drawing 22-111 DWG001 indicates provisional locations for tanks and soakaways for each plot.

Surface Water Drainage

Principally the surface water drainage has been calculated on the impermeable areas of the development and it is proposed that outline modelling shall consider the two areas separately with individual design for each plot being undertaken once final plot design has been undertaken.

Modelling has been conducted on the following rainfall events:

- 1 in 10 years
- 1 in 30 years
- 1 in 100 years plus 50 % increase due to climate change over a 6 hour period

An assessment of the proposed network has been undertaken to identify the requirements of each property and requirements for the attenuation of water on each plot to ensure that runoff from the site does not exceed the limits of Qbar (approx 1 in 2 year rainfall event) based on the ratio of impermeable areas of each site and the overall area.

The following parameters were adopted in the analysis. These were obtained from UK SUDS based on the site location and data held by HR Wallingford.

Area A and B

Simulation Settings

Rainfall Methodology FSR Region M5-60 (mm)	FSR England and Wal 17.000	es Additiona	own Time (mins) I Storage (m³/ha) Discharge Rate(s)	240 0.0 √	
Ratio-R	0.400		10 year (l/s)	1.3	
Summer CV	0.750		30 year (l/s)	1.7	
Winter CV	0.840		100 year (l/s)	2.2	
Analysis Speed	Normal	Check D	ischarge Volume	\checkmark	
Skip Steady State	х	100 year	360 minute (m³)	53	
15 30 60 120	Storm D 180 240	urations 360 480	600 720	960	1440
Return Period	Climate Change	Additional Area	Additional Flow		
(years)	(CC %)	(A %)	(Q %)		
10	0	0	0		
30	0	0	0		
100	50	0	0		

The following rates and volumes have been calculated for the predevelopment discharge and volumes from the site.

Area A

Pre-development Discharge Rate

Site Makeup	Greenfield	Growth Factor 30 year	1.99
Greenfield Method	IH124	Growth Factor 100 year	2.57
Positively Drained Area (ha)	0.295	Betterment (%)	0
SAAR (mm)	1048	QBar	0.9
Soil Index	2	Q 10 year (l/s)	1.3
SPR	0.30	Q 30 year (l/s)	1.7
Region	4	Q 100 year (l/s)	2.2
Growth Factor 10 year	1.49		

Pre-development Discharge Volume

Site Makeup	Greenfield	Return Period (years)	100
Greenfield Method	FSR/FEH	Climate Change (%)	0
Positively Drained Area (ha)	0.295	Storm Duration (mins)	360
Soil Index	2	Betterment (%)	0
SPR	0.30	PR	0.329
CWI	125.120	Runoff Volume (m³)	53

Area B

Pre-development Discharge Rate

Site Makeup	Greenfield	Growth Factor 30 year	1.99
Greenfield Method	IH124	Growth Factor 100 year	2.57
Positively Drained Area (ha)	0.516	Betterment (%)	0
SAAR (mm)	1048	QBar	1.5
Soil Index	2	Q 10 year (l/s)	2.2
SPR	0.30	Q 30 year (l/s)	3.0
Region	4	Q 100 year (l/s)	3.9
Growth Factor 10 year	1.49		

Pre-development Discharge Volume

Site Makeup	Greenfield	Return Period (years)	100
Greenfield Method	FSR/FEH	Climate Change (%)	0
Positively Drained Area (ha)	0.516	Storm Duration (mins)	360
Soil Index	2	Betterment (%)	0
SPR	0.30	PR	0.329
CWI	125.120	Runoff Volume (m³)	93

Detailed Engineering

The detailed model presented in this report adopts the following engineering aspects specific to the areas of the site.

Area A

Impermeable Areas

The following table presents a summary of the plot areas and the ratio of each area to be used in the storage calculations.

Plot	House Area [sqM]	Uplift 50%	Total	% Ratio of Impermeable Areas
6	250	125	375	37%
7	225	112.5	337.5	33%
8	200	100	300	30%
		Total Area A	1012.5	

Attenuation

A total attenuation of 192 cuM is required for Area A. In consideration of the above ratio, we have calculated the following attenuation and flow rates required on each plot to achieve a controlled greenfield runoff rate of 0.9 l/sec for Area A.

Plot	Attenuation [cuM]	Flow Rate [l/s]
6	71.04	0.333
7	63.36	0.297
8	57.6	0.27

Each plot shall attenuate individually and release via a hydrobrake to the main drainage servicing the site.

Area B

Impermeable Areas

The following table presents a summary of the plot areas and the ratio of each area to be used in the storage calculations.

Plot	House Area [sqM]	Uplift 50%	Total	% Ratio
1	250	125	375	21%
2	225	112.5	337.5	19%
3	225	112.5	337.5	19%
4	225	112.5	337.5	19%
5	270	135	405	23%
		Total Area B	1792.5	

Attenuation

A total attenuation of 360 cuM is required for Area B. In consideration of the above ratio, we have calculated the following attenuation and flow rates required on each plot to achieve a controlled greenfield runoff rate of 1.5 l/sec for Area A.

Plot	Attenuation [cuM]	Flow Rate [l/s]
1	75	0.315
2	72	0.285
3	72	0.285
4	72	0.285
5	82.8	0.345

Each plot shall attenuate individually and release via a hydrobrake to the main drainage servicing the site.

Maintenance of Drainage

Operation and Maintenance Requirements

As with all traditional drainage systems, SuDS need to be inspected and maintained regularly to ensure that they operate correctly and efficiently. If SuDS are not properly maintained then there is a risk that the systems will become overloaded during periods of prolonged heavy rainfall, potentially resulting in localised flooding of the development. Recommendations for the SuDS maintenance activities for the privately maintained areas are detailed below.

All maintenance activities should be detailed in the Health and Safety Plan and a risk assessment should be undertaken in accordance with CDM regulations.

Inlets, Outlets, Controls and Inspection Chambers

- Inlets and outlets structures may be surface structures or conveyance pipes with guards or headwalls. They must be free from obstruction at all times.
- SuDS flow control structures can be protected orifices, slots weirs or other controls at or near the surface to be accessible and easy to maintain. They may be in baskets, in small chambers or in the open.
- Inspection Chambers and rodding eyes are used on bends or where pipes come together and allow cleaning of the system if necessary. They should be designed out of the system where possible.

Inlets, Outlets, Controls and Inspection Chambers	Frequency
Regular Maintenance	Monthly
 Inspect surface structures removing obstructions and silt as necessary. Check there is no physical damage. Strim vegetation 1m min. surround structures and keep hard aprons free from silt and debris. Remove cover and inspect ensuring water is flowing freely and that the exit route for water is unobstructed. Remove debris and silt. Undertake inspection after leaf fall in autumn 	

Occasional Tasks	Annual
Check topsoil levels are 20mm above edges of manholes and chambers to avoid mower damage	
Remedial Works	As Required
Monitor effectiveness of the system and advise / inspect / clean and test if water is standing in the system. This may require specialist cleaning.	

Appendices

Percolation Test Results

PERCOLATION TESTS

Project : North Lane, Haverigg

Project No : 22-111

Test Date : 15/3/22

Weather: Damp following period of wet weather.

Equipment

Auger / Hand Dug

250 mm

							TIME 75-25	Volume	Area	Infiltration Rate	Percolation
Hole No.	Test	Depth (mm)	Fill Time	TIME @ 75%	TIME @ 25%	Finish	(sec)	m3	m2	m/sec	Rate (sec/mm)
1	1	1250					1380	3.07E-02	5.40E-01	4.12E-05	2.2
1	2	1250					1020	3.07E-02	5.40E-01	5.57E-05	1.6
1	3	1250					1260	3.07E-02	5.40E-01	4.51E-05	2.0
2	1	1250					1250	3.07E-02	5.40E-01	4.55E-05	2.0
2	2	1250					1400	3.07E-02	5.40E-01	4.06E-05	2.2
2	3	1250					1350	3.07E-02	5.40E-01	4.21E-05	2.2

Detailed Foul Water Calculations

SOAKAWAY SIZES - FOUL

Project :	North Lane, Haverigg	
Project No :	22-111	
Date	15/3/22	
Description	Soakaway discharge for individual 4 Bed Units from packaged treatment plan	t

No of Properties :

Occupancy	Bedrooms Oci		me (litres er day)
Typical Plot	4	8	1200
	TOTALS	8	1200 litres
Percolation Value (Secs/mm)	2.1 sec /	mm	
Soakaway Area	4.2 m2		
SOAKAWAY LENGTH			
with 300mm TRENCH	14 metr	es	
with 600mm TRENCH	7 metr	es	
with 900mm TRENCH	5 metr	es	

Detailed Surface Water Calculations

Kingmoor Consulting Ltd Suite 4, Atlantic House Parkhouse Business Park Carlisle, CA3 0LJ

Design Settings

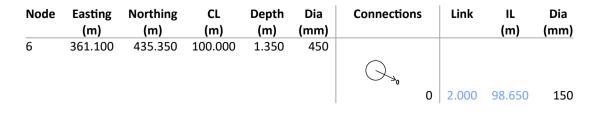
Rainfall Methodology	FSR	Maximum Time of Concentration (mins)	30.00
Return Period (years)	100	Maximum Rainfall (mm/hr)	50.0
Additional Flow (%)	50	Minimum Velocity (m/s)	1.00
FSR Region	England and Wales	Connection Type	Level Soffits
M5-60 (mm)	17.000	Minimum Backdrop Height (m)	0.200
Ratio-R	0.400	Preferred Cover Depth (m)	1.200
CV	0.750	Include Intermediate Ground	\checkmark
Time of Entry (mins)	4.00	Enforce best practice design rules	\checkmark

<u>Nodes</u>

Name	Area (ha)	T of E (mins)	Cover Level (m)	Diameter (mm)	Easting (m)	Northing (m)	Depth (m)
6	0.038	4.00	100.000	450	361.100	435.350	1.350
7	0.034	4.00	100.000	450	377.080	427.740	1.571
8	0.030	4.00	100.000	450	391.013	421.540	1.837
OUTFALL_A			100.000	1200	404.230	413.800	2.028
1	0.038	4.00	101.000	450	245.370	484.300	1.425
2	0.034	4.00	101.000	450	270.930	472.900	1.590
3	0.034	4.00	101.000	450	290.870	464.000	1.719
4	0.034	4.00	100.500	450	309.880	455.500	1.425
5	0.041	4.00	100.000	450	327.600	447.600	1.425
OUTFALL_B			100.000	1200	333.600	444.900	1.464

<u>Links</u>

Name	US Node	DS Node	Length (m)	ks (mm) / n	US IL (m)	DS IL (m)	Fall (m)	Slope (1:X)	Dia (mm)	T of C (mins)	Rain (mm/hr)
2.000	6	7	17.700	0.600	98.650	98.429	0.221	80.0	150	4.26	50.0
2.001	7	8	15.250	0.600	98.429	98.238	0.191	80.0	150	4.49	50.0
2.002	8	OUTFALL_A	15.317	0.600	98.163	97.972	0.191	80.0	225	4.66	50.0
1.000	1	2	27.987	0.600	99.575	99.410	0.165	169.6	225	4.47	50.0
1.001	2	3	21.836	0.600	99.410	99.281	0.129	169.3	225	4.83	50.0
1.002	3	4	20.824	0.600	99.281	99.075	0.206	101.1	225	5.10	50.0
1.003	4	5	19.401	0.600	99.075	98.575	0.500	38.8	225	5.25	50.0
1.004	5	OUTFALL_B	6.580	0.600	98.575	98.536	0.039	168.7	225	5.36	50.0


Name	Vel (m/s)	Cap (I/s)	Flow (I/s)	US Depth	DS Depth	Σ Area (ha)	Σ Add Inflow	Pro Depth	Pro Velocity
	(<i>)</i> - <i>)</i>	()-)	()-)	(m)	(m)		(I/s)	(mm)	(m/s)
2.000	1.125	19.9	7.7	1.200	1.421	0.038	0.0	65	1.054
2.001	1.125	19.9	14.6	1.421	1.612	0.072	0.0	96	1.228
2.002	1.463	58.2	20.7	1.612	1.803	0.102	0.0	93	1.343
1.000	1.001	39.8	7.7	1.200	1.365	0.038	0.0	67	0.780
1.001	1.002	39.8	14.6	1.365	1.494	0.072	0.0	94	0.928
1.002	1.300	51.7	21.5	1.494	1.200	0.106	0.0	102	1.244
1.003	2.106	83.7	28.5	1.200	1.200	0.140	0.0	90	1.908
1.004	1.004	39.9	36.8	1.200	1.239	0.181	0.0	171	1.134

Pipeline Schedule

Link	Length (m)	Slope (1:X)	Dia (mm)	Link Type	US CL (m)	US IL (m)	US Depth (m)	DS CL (m)	DS IL (m)	DS Depth (m)
2.000	17.700	80.0	150	Circular	100.000	98.650	1.200	100.000	98.429	1.421
2.001	15.250	80.0	150	Circular	100.000	98.429	1.421	100.000	98.238	1.612
2.002	15.317	80.0	225	Circular	100.000	98.163	1.612	100.000	97.972	1.803
1.000	27.987	169.6	225	Circular	101.000	99.575	1.200	101.000	99.410	1.365
1.001	21.836	169.3	225	Circular	101.000	99.410	1.365	101.000	99.281	1.494
1.002	20.824	101.1	225	Circular	101.000	99.281	1.494	100.500	99.075	1.200
1.003	19.401	38.8	225	Circular	100.500	99.075	1.200	100.000	98.575	1.200
1.004	6.580	168.7	225	Circular	100.000	98.575	1.200	100.000	98.536	1.239

Link	US	Dia	Node	MH	DS	Dia	Node	МН
	Node	(mm)	Туре	Туре	Node	(mm)	Туре	Туре
2.000	6	450	Manhole	Adoptable	7	450	Manhole	Adoptable
2.001	7	450	Manhole	Adoptable	8	450	Manhole	Adoptable
2.002	8	450	Manhole	Adoptable	OUTFALL_A	1200	Manhole	Adoptable
1.000	1	450	Manhole	Adoptable	2	450	Manhole	Adoptable
1.001	2	450	Manhole	Adoptable	3	450	Manhole	Adoptable
1.002	3	450	Manhole	Adoptable	4	450	Manhole	Adoptable
1.003	4	450	Manhole	Adoptable	5	450	Manhole	Adoptable
1.004	5	450	Manhole	Adoptable	OUTFALL_B	1200	Manhole	Adoptable

Manhole Schedule

Kingmoor Consulting Ltd Suite 4, Atlantic House Parkhouse Business Park Carlisle, CA3 OLJ

				M	lanhole S	chedule					
	Node	Easting (m)	Northing (m)	CL (m)	Depth (m)	Dia (mm)	Connections	Link	IL (m)	Dia (mm)	
	7	377.080	427.740	100.000	1.571	450		1 2.000	98.429	150	
								0 2.001	98.429	150	
	8	391.013	421.540	100.000	1.837	450		1 2.001	98.238	150	
							$\bigtriangledown_{\bullet}$				
	OUTFALL_A	404.230	413.800	100.000	2.028	1200		0 2.002 1 2.002	98.163 97.972	225 225	
	_										
	1	245.370	484.300	101.000	1.425	450					
							Q.				
								0 1.000	99.575	225	
	2	270.930	472.900	101.000	1.590	450	1 -	1 1.000	99.410	225	
	2	200.070	464.000	101 000	1 710	450		0 1.001	99.410	225	
	3	290.870	464.000	101.000	1.719	450	1	1 1.001	99.281	225	
									00.201	225	
	4	309.880	455.500	100.500	1.425	450		01.00211.002	99.281 99.075	225 225	
							1				
	_				4 495	450		0 1.003	99.075	225	
	5	327.600	447.600	100.000	1.425	450		1 1.003	98.575	225	
	OUTFALL_B	333.600	444.900	100.000	1.464	1200		01.00411.004	98.575 98.536	225 225	
	_						1				
							I	I			
				<u>Si</u>	mulation	Settings	_				
Rainf	all Methodolog					nalysis Sp				/ear (l/s)	1.7
	FSR Regio M5-60 (mn	-	id and Wales)		Skip ain Down	Steady S Time (m		Check	100 y Discharge	/ear (l/s) Volume	2.2 √
	Ratio-	R 0.400		Addi	tional Sto	prage (m ^a	∛ha) 0.0		ar 360 min		53
	Summer C Winter C			Ch	eck Disch	harge Rat 10 year					
	tunici c	0.040		I		-					
	15 30	60	120		Storm Du 40 3		480 600	720	960 1	440	
	Climate Change			Additional		Return		e Change	Addition		Additional Flow
(years) 10	(CC %)	A)	. %) 0	(Q %)	0	(yea	ars) (Co 100	C %) 50	(A 9	%) 0	(Q %) 0
30)	0		0		100	55		Ŭ	Ū
				<u>Pre-deve</u>	lopment	Dischar	ge Rate				
	Site Makeu	n Croonf	iold			2	_	or 20 year	. 105	0.10	$v_{0,0,r}(1/c)$

Site Makeup	Greenfield	Soil Index	2	Growth Factor 30 year	1.95	Q 10 year (l/s)
Greenfield Method	IH124	SPR	0.30	Growth Factor 100 year	2.48	Q 30 year (I/s)
Positively Drained Area (ha)	0.295	Region	4	Betterment (%)	0	Q 100 year (l/s)
SAAR (mm)	1048	Growth Factor 10 year	1.49	QBar	0.9	

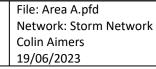
Pre-development Discharge Volume

Site Makeup	Greenfield	Soil Index	2	Return Period (years)	100	Betterment (%)	0
Greenfield Method	FSR/FEH	SPR	0.30	Climate Change (%)	0	PR	0.329
Positively Drained Area (ha)	0.295	CWI	125.120	Storm Duration (mins)	360	Runoff Volume (m³)	53

Node OUTFALL_A Online Hydro-Brake® Control

Flap Valve	х	Objective	(HE) Minimise upstream storage
Replaces Downstream Link	\checkmark	Sump Available	\checkmark
Invert Level (m)	97.972	Product Number	CTL-SHE-0042-9000-1200-9000
Design Depth (m)	1.200	Min Outlet Diameter (m)	0.075
Design Flow (I/s)	0.9	Min Node Diameter (mm)	1200

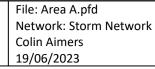
Node OUTFALL_B Online Hydro-Brake[®] Control


Flap Valve	х	Objective	(HE) Minimise upstream storage
Replaces Downstream Link	\checkmark	Sump Available	\checkmark
Invert Level (m)	98.536	Product Number	CTL-SHE-0055-1500-1200-1500
Design Depth (m)	1.200	Min Outlet Diameter (m)	0.075
Design Flow (I/s)	1.5	Min Node Diameter (mm)	1200

Kingmoor Consulting Ltd		Fi	le: Area A.pfd			Page 3
KINCMOOD Suite 4, Atlantic House		N	etwork: Storm Netv	work		
NINGPIOUR Parkhouse Business Park		C	olin Aimers			
CONSULTING Carlisle, CA3 OLJ		1	9/06/2023			
	Node	OUTFALL_A	Soakaway Storage	<u>Structure</u>		
Base Inf Coefficient (m/hr) 0.0000)	Р	orosity 1.00	Pit Wid	th (m) 20.000	Inf Depth (m)
Side Inf Coefficient (m/hr) 0.0000)	Invert Le	vel (m) 97.972	Pit Leng	th (m) 8.000	Number Required 1
Safety Factor 1.0	Time t	to half empty	(mins)	Dep	th (m) 1.200	
	Node	<u>e OUTFALL_B</u>	Soakaway Storage	<u>Structure</u>		
Base Inf Coefficient (m/hr) 0.00000)	Р	orosity 1.00	Pit Wid	th (m) 30.000	Inf Depth (m)
Side Inf Coefficient (m/hr) 0.0000)	Invert Le	vel (m) 98.536	Pit Leng	th (m) 10.000	Number Required 1
Safety Factor 1.0	Time t	to half empty	(mins)	Dep	th (m) 1.200	
		<u>Ot</u>	her (defaults)			
Entry Loss (manhole) Exit Loss (manhole)	0.250 0.250	Entry Loss (ju Exit Loss (ju		Apply Re	ecommended Losses Flood Risk (m)	
		<u>Apr</u>	proval Settings			
Node Size 🗸		Maximur	n Cover Depth (m)	3.000	Su	rcharged Depth 🗸
Node Losses 🗸			Backdrops	\checkmark		n Period (years)
Link Size √			ckdrop Height (m)		Maximum Surcha	
Minimum Diameter (mm) 150		Maximum Ba	ckdrop Height (m)	1.500		Flooding √
Link Length $$		in inclusion Full f	Full Bore Velocity	\checkmark		n Period (years) 30
Maximum Length (m) 100.000			Bore Velocity (m/s)	2 000		e to Half Empty x
Coordinates √ Accuracy (m) 1.000	IVIa		Bore Velocity (m/s)	3.000 √		Discharge Rates ✓ scharge Volume ✓
Crossings √			turn Period (years)	v		$500 \text{ minute } (\text{m}^3)$
Clossings √ Cover Depth √	Minim		onal Velocity (m/s)	0.750	TOO AGU 2	
Minimum Cover Depth (m)		•	onal Velocity (m/s)	3.000		
			<u>Rainfall</u>			
Event	Peak	Average		Event	Pe	eak Average
	Intensity	Intensity				nsity Intensity
	(mm/hr)	(mm/hr)				n/hr) (mm/hr)
10 year 15 minute summer	179.310	50.739	30 year 360 min			5.939 6.932
10 year 15 minute winter	125.832	50.739	30 year 360 min			7.511 6.932
10 year 30 minute summer	115.897	32.795	30 year 480 min			0.981 5.545
10 year 30 minute winter	81.331	32.795	30 year 480 min			3.940 5.545
10 year 60 minute summer	77.042	20.360	30 year 600 min			7.039 4.661
10 year 60 minute winter	51.185 46.688	20.360	30 year 600 min			1.642 4.661 5.093 4.045
						5 0 9 7 0 1 5

	Event	Peak	Average	Event	Peak	Average
		Intensity	Intensity		Intensity	Intensity
10	15	(mm/hr)	(mm/hr)	20	(mm/hr)	(mm/hr)
	year 15 minute summer	179.310	50.739	30 year 360 minute summer	26.939	6.932
	year 15 minute winter	125.832	50.739	30 year 360 minute winter	17.511	6.932
	year 30 minute summer	115.897	32.795	30 year 480 minute summer	20.981	5.545
	year 30 minute winter	81.331	32.795	30 year 480 minute winter	13.940	5.545
	year 60 minute summer	77.042	20.360	30 year 600 minute summer	17.039	4.661
	year 60 minute winter	51.185	20.360	30 year 600 minute winter	11.642	4.661
	year 120 minute summer	46.688	12.338	30 year 720 minute summer	15.093	4.045
	year 120 minute winter	31.019	12.338	30 year 720 minute winter	10.143	4.045
	year 180 minute summer	35.513	9.139	30 year 960 minute summer	12.278	3.233
	year 180 minute winter	23.084	9.139	30 year 960 minute winter	8.133	3.233
	year 240 minute summer	27.879	7.368	30 year 1440 minute summer	8.788	2.355
	year 240 minute winter	18.522	7.368	30 year 1440 minute winter	5.906	2.355
	year 360 minute summer	21.070	5.422	100 year +50% CC 15 minute summer	437.649	123.840
	year 360 minute winter	13.696	5.422	100 year +50% CC 15 minute winter	307.122	123.840
	year 480 minute summer	16.473	4.353	100 year +50% CC 30 minute summer	287.973	81.486
	year 480 minute winter	10.944	4.353	100 year +50% CC 30 minute winter	202.086	81.486
	year 600 minute summer	13.418	3.670	100 year +50% CC 60 minute summer	193.879	51.237
	year 600 minute winter	9.168	3.670	100 year +50% CC 60 minute winter	128.809	51.237
	year 720 minute summer	11.912	3.193	100 year +50% CC 120 minute summer	118.253	31.251
10	year 720 minute winter	8.006	3.193	100 year +50% CC 120 minute winter	78.565	31.251
	year 960 minute summer	9.726	2.561	100 year +50% CC 180 minute summer	89.949	23.147
	year 960 minute winter	6.442	2.561	100 year +50% CC 180 minute winter	58.469	23.147
	year 1440 minute summer	6.999	1.876	100 year +50% CC 240 minute summer	70.463	18.621
	year 1440 minute winter	4.704	1.876	100 year +50% CC 240 minute winter	46.814	18.621
	year 15 minute summer	226.195	64.005	100 year +50% CC 360 minute summer	52.896	13.612
30	year 15 minute winter	158.733	64.005	100 year +50% CC 360 minute winter	34.384	13.612
30	year 30 minute summer	147.452	41.724	100 year +50% CC 480 minute summer	41.026	10.842
	year 30 minute winter	103.475	41.724	100 year +50% CC 480 minute winter	27.256	10.842
	year 60 minute summer	98.615	26.061	100 year +50% CC 600 minute summer	33.206	9.083
	year 60 minute winter	65.517	26.061	100 year +50% CC 600 minute winter	22.688	9.083
30	year 120 minute summer	59.946	15.842	100 year +50% CC 720 minute summer	29.343	7.864
30	year 120 minute winter	39.827	15.842	100 year +50% CC 720 minute winter	19.720	7.864
	year 180 minute summer	45.598	11.734	100 year +50% CC 960 minute summer	23.777	6.261
30	year 180 minute winter	29.640	11.734	100 year +50% CC 960 minute winter	15.750	6.261
30	year 240 minute summer	35.759	9.450	100 year +50% CC 1440 minute summer	16.917	4.534
30	year 240 minute winter	23.758	9.450	100 year +50% CC 1440 minute winter	11.369	4.534

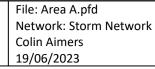
Kingmoor Consulting Ltd Suite 4, Atlantic House Parkhouse Business Park Carlisle, CA3 OLJ


Results for 10 year Critical Storm Duration. Lowest mass balance: 99.00%

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
15 minute winter	6	10	98.722	0.072	9.3	0.0114	0.0000	ОК
15 minute winter	7	10	98.548	0.119	17.6	0.0189	0.0000	ОК
15 minute winter	8	6	98.348	0.185	24.8	0.0294	0.0000	ОК
480 minute winter	OUTFALL_A	368	98.094	0.122	2.7	19.5833	0.0000	ОК
15 minute winter	1	10	99.648	0.073	9.3	0.0117	0.0000	ОК
15 minute summer	2	10	99.518	0.108	17.6	0.0172	0.0000	ОК
15 minute winter	3	9	99.413	0.132	25.4	0.0209	0.0000	ОК
15 minute winter	4	9	99.372	0.297	37.5	0.0472	0.0000	SURCHARGED
15 minute summer	5	9	99.288	0.713	50.5	0.1134	0.0000	SURCHARGED
480 minute winter	OUTFALL_B	368	98.655	0.119	4.7	35.8335	0.0000	ОК

Link Event	US	Link	DS	Outflow	Velocity	Flow/Cap	Link	Discharge
(Upstream Depth)	Node		Node	(I/s)	(m/s)		Vol (m³)	Vol (m³)
15 minute winter	6	2.000	7	9.3	0.802	0.468	0.2063	
15 minute winter	7	2.001	8	17.5	1.222	0.882	0.2184	
15 minute winter	8	2.002	OUTFALL_A	25.1	1.999	0.432	0.2686	
480 minute winter	OUTFALL_A	Hydro-Brake®		0.6				20.0
15 minute winter	1	1.000	2	9.3	0.624	0.233	0.4186	
15 minute summer	2	1.001	3	17.6	0.886	0.441	0.4633	
15 minute winter	3	1.002	4	29.2	1.286	0.565	0.6653	
15 minute winter	4	1.003	5	41.1	1.126	0.490	0.7716	
15 minute summer	5	1.004	OUTFALL_B	57.4	2.235	1.438	0.1408	
480 minute winter	OUTFALL_B	Hydro-Brake [®]		1.1				34.5

Kingmoor Consulting Ltd Suite 4, Atlantic House Parkhouse Business Park Carlisle, CA3 OLJ


Results for 30 year Critical Storm Duration. Lowest mass balance: 99.00%

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
15 minute summer	6	10	98.733	0.083	11.7	0.0131	0.0000	ОК
15 minute winter	7	10	98.624	0.195	22.2	0.0310	0.0000	SURCHARGED
15 minute winter	8	6	98.383	0.220	30.6	0.0350	0.0000	ОК
360 minute winter	OUTFALL_A	344	98.134	0.162	4.2	26.1794	0.0000	ОК
15 minute winter	1	10	99.658	0.083	11.7	0.0132	0.0000	ОК
15 minute winter	2	10	99.555	0.145	22.2	0.0230	0.0000	ОК
15 minute winter	3	9	99.527	0.246	34.1	0.0391	0.0000	SURCHARGED
15 minute winter	4	9	99.454	0.379	47.0	0.0602	0.0000	SURCHARGED
15 minute winter	5	8	99.353	0.778	63.6	0.1237	0.0000	SURCHARGED
360 minute winter	OUTFALL_B	336	98.692	0.156	7.5	47.0798	0.0000	ОК

Link Event (Upstream Depth)	US Node	Link	DS Node	Outflow (I/s)	Velocity (m/s)	Flow/Cap	Link Vol (m³)	Discharge Vol (m³)
15 minute summer	6	2.000	7	11.7	0.825	0.589	0.2437	vor (m)
15 minute summer	0	2.000	/	11./				
15 minute winter	7	2.001	8	21.4	1.244	1.075	0.2598	
15 minute winter	8	2.002	OUTFALL_A	30.7	2.054	0.528	0.3044	
360 minute winter	OUTFALL_A	Hydro-Brake®		0.7				18.3
15 minute winter	1	1.000	2	11.7	0.652	0.294	0.5631	
15 minute winter	2	1.001	3	23.6	0.874	0.592	0.7289	
15 minute winter	3	1.002	4	38.1	1.345	0.737	0.8282	
15 minute winter	4	1.003	5	52.8	1.327	0.630	0.7716	
15 minute winter	5	1.004	OUTFALL_B	66.0	2.443	1.654	0.1551	
360 minute winter	OUTFALL_B	Hydro-Brake®		1.2				32.4

Kingmoor Consulting Ltd Suite 4, Atlantic House Parkhouse Business Park Garlisle, CA3 0LJ

Page 6

Results for 100 year +50% CC Critical Storm Duration. Lowest mass balance: 99.00%

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
15 minute winter	6	11	99.530	0.880	22.6	0.1399	0.0000	SURCHARGED
15 minute winter	7	11	99.243	0.814	40.1	0.1295	0.0000	SURCHARGED
15 minute winter	8	5	98.485	0.322	55.9	0.0512	0.0000	SURCHARGED
600 minute winter	OUTFALL_A	585	98.347	0.375	5.4	60.4681	0.0000	ОК
15 minute winter	1	10	100.576	1.001	22.6	0.1591	0.0000	SURCHARGED
15 minute winter	2	10	100.522	1.112	40.5	0.1768	0.0000	SURCHARGED
15 minute winter	3	10	100.369	1.088	58.7	0.1731	0.0000	SURCHARGED
15 minute winter	4	10	100.049	0.974	78.5	0.1548	0.0000	SURCHARGED
15 minute winter	5	9	99.562	0.987	102.0	0.1569	0.0000	SURCHARGED
600 minute winter	OUTFALL_B	585	98.888	0.352	9.5	106.0201	0.0000	ОК

Link Event (Upstream Depth)	US Node	Link	DS Node	Outflow (I/s)	Velocity (m/s)	Flow/Cap	Link Vol (m³)	Discharge Vol (m³)
15 minute winter	6	2.000	7	20.5	1.162	1.029	0.3116	
15 minute winter	7	2.001	8	38.7	2.199	1.947	0.2658	
15 minute winter	8	2.002	OUTFALL_A	55.8	2.138	0.959	0.4045	
600 minute winter	OUTFALL_A	Hydro-Brake [®]		0.7				25.1
15 minute winter	1	1.000	2	21.7	0.622	0.545	1.1131	
15 minute winter	2	1.001	3	41.4	1.040	1.039	0.8684	
15 minute winter	3	1.002	4	61.2	1.538	1.183	0.8282	
15 minute winter	4	1.003	5	81.1	2.040	0.969	0.7716	
15 minute winter	5	1.004	OUTFALL_B	105.5	3.615	2.645	0.2082	
600 minute winter	OUTFALL_B	Hydro-Brake®		1.2				49.0

Drawings

Kingmoor Consulting Ltd Suite 4 Atlantic House Parkhouse, Carlisle Cumbria, CA3 OLJ T: 01228 915900 E: hello@kinamoorconsultina.co.uk