

DOCUMENT CONTROL SHEET

Issued by	Hydrock Consultants Limited 2 Esh Plaza Sir Bobby Robson Way Great Park Newcastle Upon Tyne NE20 ODS	Tel: 0191 2302993 www.hydrock.com	
Client	Aldi Stores Ltd		
Project name	Preston Street, Whitehaven		
Title	Flood Risk and Drainage Assessment		
Doc ref	P18-351-HYD-XX-XX-RP-C-0500		
Project no.	P18-351		
Status	S4 - For Approval		
Date	20/10/2023		

Document Production Record		
Issue Number	P01	Name
Prepared by		Gary Spence
Checked by		Andrew Wallace
Approved by		Martin Pearse

Document Revision Record			
Issue Number	Status	Date	Revision Details
P01	S4	20/10/23	First Issue - For comment

Hydrock Consultants Limited has prepared this report in accordance with the instructions of the above-named client for their sole and specific use. Any third parties who may use the information contained herein do so at their own risk.

CONTENTS

1.	INTRODUCTION	1
2.	SITE INFORMATION	2
2.1	Location and Setting	2
2.2	Topography	3
2.3	Current Site	3
2.4	Proposed Development	3
3.	SOURCES OF FLOOD RISK	4
3.1	Fluvial Flooding	4
3.2	Historic Fluvial Flooding	5
3.3	Tidal Flooding	5
3.4	Surface Water Flooding	5
3.5	Ground Water Flooding	6
3.6	Sewers and Artificial Infrastructure Flooding	6
4.	NATIONAL PLANNING POLICY FRAMEWORK	7
4.1	Sequential Test	7
4.2	Exception Test	7
5.	SURFACE WATER DRAINAGE	8
5.1	Existing Surface Water Drainage	8
5.2	Proposed Surface Water Drainage	8
5.3	Proposed Surface Water Discharge Rates.	8
5.4	Proposed Surface Water Treatment	9
5.5	Surface Water Attenuation	10
5.6	Surface Water Maintenance	11
6.	FOUL WATER DRAINAGE	11
6.1	Existing Foul Water Drainage	11
6.2	Proposed Foul Water Drainage	11
7.	CONCLUSIONS	11

Appendices

Appendix A - Topographical Survey

Appendix B - Proposed Site Layout

Appendix C - Environment Agency Data

Appendix D - Proposed Drainage Layout

Appendix E - Proposed Drainage Calculations

Appendix F - United Utilities Correspondence

Appendix G - Surface Water Maintenance Plan

1. INTRODUCTION

This report has been prepared by Hydrock Consultants Limited (Hydrock) on behalf of our client Aldi Stores Ltd in support of a Planning Application to be submitted for a development at Preston Street, Whitehaven.

Local Planning Authority are advised by the Government's National Planning policy Framework (NPPF) to consult the Environment Agency (EA) and the Lead Local Flood Authority (LLFA) on development proposals in areas at risk of flooding. For a development of this nature the EA and the LLFA normally require a Flood Risk Assessment and drainage strategy to be submitted in support of such an application. The report has been prepared to consider the requirements of NPPF through:

- Assessing whether the proposed development is likely to be affected by flooding;
- Assessing whether the proposed development is appropriate in the suggested location and
- Detailed measures necessary to mitigate any flood risk identified, to ensure that the proposed development and occupants would be safe and that flood risk would not be increased elsewhere.

The report considered the requirements for undertaking a Flood Risk Assessment as stipulated in NPPF Technical Guidance. Only those requirements that are appropriate to a development of this nature have been considered in the compilation of this report.

This report has been prepared in accordance with current EA policy.

The drainage strategy within this report has been produced in accordance with the Non-Statutory Technical Standards for Sustainable Drainage Systems (March 2015), Building Regulations Approved Document H: drainage and waste disposal, Sewers for Adoption requirements and the Cumbria County Councils Local Standards for Sustainable Drainage.

This report is based on the following information;

- Topographical survey
- Ground Investigation Report dated Jan 2022 undertaken by 3E Consulting Engineers Ltd
- United Utilities Sewer Records

This report presents the factual information available during the time of appraisal, interpretation of the data obtained and recommendations relevant to the scope of works. It has been assumed in the production of this report that the site is to be developed for a Food Retail Unit with associated parking.

This report has been prepared for the sole use of Aldi Stores Ltd and their appointed design team. No other third party may rely upon or reproduce the contents of this report without the written approval of Hydrock Consultants Limited. If any unauthorised third party comes into the possession of this report, they rely on it entirely at their own risk and Hydrock do not owe them any Duty of Care or Skill.

2. SITE INFORMATION

2.1 Location and Setting

The site is located to the east of Preston Street, in Whitehaven. The site is currently an area of car parking in the northern part and derelict land to the south with concrete slabs and vegetation. An existing Home Bargains store is situated to the north, with an existing Asda store to the west. To the east is a derelict site.

The site location is shown in Figure 1, with the full address and Ordnance Survey grid reference provided in Table 1.

Table 1: Site Referencing Information

Site Referenci	ing Information
Site Address	Back Ginns, Kells, Whitehaven, Cumberland, England, CA28 9BT
Grid Reference	NX 97318 17514 297318E , 517514N

Figure 1: Site Location

2.2 Topography

A site-specific topographical survey has been undertaken for the site. The site is shown to fall from west to east from a highest level of 12.40mAOD in the south west to a lowest level of 8.07mAOD in the east.

A copy of the topographical survey is provided in Appendix A

2.3 Current Site

The northern area of the site is currently a car park with an impermeable tarmac surface.

The area to the south is a derelict area formerly housing industrial units with remains of concrete floor slabs and vegetation.

A large brick boundary wall borders the parking area to all boundaries.

2.4 Proposed Development

The proposed development comprises of a new Aldi store with dedicated parking area to the north of the store and a loading bay area to the south east of the site.

A copy of the proposed development plan is provided in Appendix B.

SOURCES OF FLOOD RISK

3.1 Fluvial Flooding

The Pow Beck is culverted directly below the site, situated near the eastern boundary it runs from south to north at a depth of around 5m.

The EA flood maps have been assessed to determine the extent of fluvial flood risk from the Pow Beck, as per the extract below, the site is shown to sit wholly within Flood Zone 1.

Product 4 Data has been obtained from the EA due to the Pow Beck being located within the site boundary. This shows that the highest modelled flood level directly adjacent to the site is located to the east of the proposed store just outside of the site boundary. The modelled level is shown to be 7.37mAOD for the 0.1% AEP Undefended Scenario.

For reference to the proposed site, the FFL of the proposed building is 9.42mAOD which means there is over 2m freeboard from the worst-case scenario modelled flood event.

Modelled data for the 1% AEP +20%CC shows that no flooding occurs within the vicinity of the site. The nearest modelled Node location is to the south at the point the Pow Beck intersects Coach Road, with an estimated flood level of 7.79mAOD. This location is around 100m south of the site boundary and the FFL of 9.42mAOD has a freeboard of 1.62m.

Therefore, it is considered the site is at low risk of fluvial flooding.

A copy of the EA Product 4 Data is contained within Appendix C.

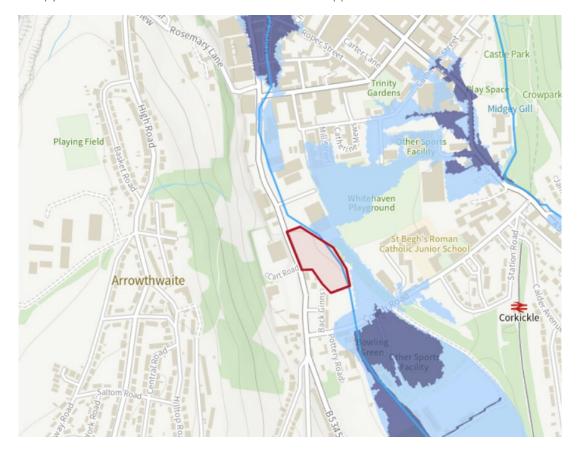


Figure 2: Extract of EA Flood Zone Map

For Reference the Environment Agency Flood Zones are defined as follows:

- Flood Zone 1 (Low Risk) comprises land assessed as having a <0.1% Annual Exceedance Probability (AEP) of fluvial or tidal flooding in any given year, equivalent to the >1000 year return period flood event.
- Flood Zone 2 (Medium Risk) comprises land assessed as having a 0.1%-1% AEP of fluvial flooding or 0.1-0.5% AEP of tidal flooding in any given year, equivalent to the 1000-100 year or 1,000-200 year return period flood event.
- Flood Zone 3a (High Risk) comprises land assessed as having a > 1% AEP of fluvial or tidal flooding in any given year or a .0.5% AEP of tidal flooding in any given year, equivalent to the <100 year or <200 year return period flood event.
- Flood Zone 3b(Functional Flood Plain) comprises land where water from rivers or the sea has to flow or be stored in times of flood. The identification of functional flood plain should take account of local circumstances and be defined solely on rigid probability parameters. Functional flood plain will normally comprise:
 - » Land having a 3.3% (1 in 30 year) or greater annual probability of flooding, with any existing flood risk management infrastructure operating effectively; or
 - » Land that is designed to flood (such as a flood attenuation scheme), even if it would only flood in more extreme events (such as 0.1% annual probability of flooding).

3.2 Historic Fluvial Flooding

As part of the Product 4 data provided the EA have confirmed that there are no recorded flood events affecting the site.

This does not mean that flooding has never occurred, only that the EA hold no records of any such event occurring.

3.3 Tidal Flooding

It should be noted that the EA Flood Zone Mapping does not distinguish between fluvial and tidal flood risk, however, given the inland geographical location and the distance from any tidally influenced waterbodies, the risk of tidal flooding at the site is concluded to be 'low'.

3.4 Surface Water Flooding

Surface water flooding occurs as the result of inability of intense rainfall to infiltrate the ground. This often happens when the maximum soil infiltration rate or storage capacity is reached. Flows generated by such events either enter existing land drainage features or follow the general topography which can concentrate flows and lead to localised ponding/flooding.

The EA Surface Water Flood Risk Maps (Figure 3) shows the majority of the site to be classified as 'Very Low' Risk.

Figure 3: Extract of EA Surface Water Flood Risk Map

3.5 Ground Water Flooding

A site investigation was undertaken by 3E Consulting Engineers dated Jan 2022. This shows that groundwater was encountered within the mini percussive boreholes at depths of between 1.30m and 3.00m which is considered to be attributable to water contained within the upper superficial deposits below the site. It should be noted that groundwater levels vary seasonally and that a higher water table than recorded could occur.

No recorded flood events have been recorded at the site as a result of ground water flooding. It should be noted that whilst groundwater flooding is considered to be low on the site, due to the boreholes identifying groundwater to be near surface there is a potential for there to be interaction with ground water at construction phase but it is not expected to cause a risk of flooding during the operation of the development.

3.6 Sewers and Artificial Infrastructure Flooding

A 600mm X 800mm brick egg public combined water sewer is shown to flow from south to north beyond the site boundary to the north. The sewer is shown to be around 5m deep with no flood risk highlighted by United Utilities as part of the pre planning response.

The sewer will be subject to UU maintenance with a 10m sewer easement provided for access.

If flooding was to occur, flows would exit the 2No public manholes located within the service road to the east of the store. The levels of the road fall to the eastern boundary away from the building and would not pose a risk to the store.

The online EA Reservoir Failure Extents mapping has been reviewed and shows that the site is not at risk of flooding of this kind.

4. NATIONAL PLANNING POLICY FRAMEWORK

4.1 Sequential Test

The NPPF Sequential Test requires that a sequential approach is followed to steer new development to areas with the lowest probability of flooding (i.e., Flood Zone 1, then zone 2, then zone 3).

This assessment has demonstrated that the site is on land designated as Flood Zone 1.

4.2 Exception Test

The proposed development is for a supermarket which falls under the category of 'less vulnerable' development in accordance with Table 2 of the Flood Risk and Coastal Change National Planning Practice Guidance (NPPG).

Table 2 (taken from Table 2, Paragraph 079 of NPPG) shows that less vulnerable developments in flood zone 1 do not require an Exception test to be undertaken and no mitigation measures will be required.

Table 2:Flood Risk Vulnerability and Flood Zone 'incompatibility'

Flood Risk	Essential	Water	Highly	More	Less
Vulnerability	Infrastructure	Compatible	Vulnerable	Vulnerable	Vulnerable
Classification					
Flood Zone 1	✓	✓	✓	✓	✓
Flood Zone 2	✓	✓	Exception Test	✓	✓
			Required		
Flood Zone 3a	Exception Test	✓	Χ	Exception Test	✓
	Required			Required	
Flood Zone 3b	Exception Test	✓	Χ	Χ	Χ
	Required				

Where ✓ means development is appropriate and X means development should not be permitted.

SURFACE WATER DRAINAGE

5.1 Existing Surface Water Drainage

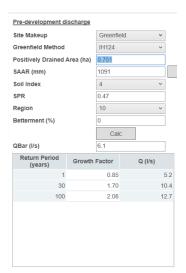
There are no existing surface water details for the derelict land in the southern part of the site.

Existing surface water from the car park area in the north is expected to discharge flows at an unrestricted rate into the adjacent brick egg combined sewer.

A copy of the United utilities Sewer Records are included in Appendix F.

5.2 Proposed Surface Water Drainage

In line with the National Planning Policy Framework (NPPF) and Cumbria County Council's current Policy, the aim should be to discharge surface water run-off from the site in line with the order of priority within the surface water drainage hierarchy;


- 1. Into the ground (infiltration)
- 2. To a surface water body
- 3. To a surface water sewer, highway drain or another drainage system
- 4. A combined water sewer.

A site investigation has been undertaken which confirms the site is underlain by stiff clay deposits which were identified from depths of between 2.90m and 3.60m up to a maximum recorded depth of 4.45m, with grey clay deposits also noted within rotary boreholes from depths of between 3.70m and 6.30m. Varying ground water levels have also been recorded which would preclude the use of infiltration at the site.

The Pow Beck is culverted directly below the site and a 1700mm culvert runs to the north, along the eastern boundary. It is therefore proposed that surface water will be discharged into the Pow Beck, subject to the approval of EA & LLFA.

5.3 Proposed Surface Water Discharge Rates

The proposed development will have an impermeable area of approximately 0.751ha. The predevelopment discharge calculation tool within Causeway Flow has been utilised to obtain the Qbar greenfield flow rate. The extract below shows the results.

It is therefore proposed to restrict flows to a maximum discharge rate of 6.1l/s, through the use of a Hydrobrake chamber, as detailed on the Proposed Drainage Layout provided in Appendix D.

5.4 Proposed Surface Water Treatment

Sustainable Drainage Systems (SuDS) should also be used wherever possible to mimic as far as practicable the natural run off regime, improve water quality, reduce run-off volume and attenuate peak flows. These should be designed in accordance with the current guidance, The SuDS Manual (CIRIA C753) and should meet the required treatment indices levels in line with this guidance.

The following SuDS options have been reviewed for the proposed development.

Table 3: Suitability of SuDS Features

SuDS Feature	Incorporated within design	Reasoning
Green Roofs / Blue Roofs	No	Not suitable for use on this scheme
Pond/Basin	No	No space to facilitate a basin/pond
Rainwater Harvesting	No	Rainwater harvesting has not been considered within the development due to future maintenance and lack of demand
Infiltration Methods	No	Due to the underlying strata infiltration methods have not been considered
Raingardens/Bio-retention areas	No	Ground levels and open spaces are not suitable for raingardens
Filter strips and swales	Yes	Filter drains provide to the rear of kerbs wherever possible.
Permeable Paving	No	Permeable paving is considered unsuitable by the client due to the many issues experienced in stores including H&S risks to customer.
Below ground attenuation systems / Oversized Pipework	Yes	Below ground attenuation will be provided to provide attenuation to reduce the peak flows from the development. This will be in the form of cellular storage. A SPEL ESR unit will also be used prior to discharge from the site to meet the SuDS manual treatment indices requirements.

Parking Bays

The parking bays within the car park have been classified as a medium pollution hazard in line with Table 26.2 of the SuDS Manual (C753) 'non residential car parking with frequent change'. This states the pollution hazard indices as follows:

Table 4 Extract of Table 26.2 C753

Pollution Hazard	Total Suspended Solids(TSS)	Metals	Hydrocarbons
Medium	0.7	0.6	0.7

It is proposed for the parking bays to be treated by Filter Drains followed by a SPEL ESR proprietary unit prior to discharge to the culvert, which provide the following mitigation indices.

Table 5 Extract of Table 26.3 C753

SuDS Component	Total Suspended Solids(TSS)	Metals	Hydrocarbons
Filter Drain	0.4	0.4	0.4
SPEL ESR UNIT	0.8/2	0.6/2	0.9/2
Total	0.8	0.7	0.85

These indices provide greater indices than that required within the SuDS Manual therefore providing sufficient treatment of surface water flows from these areas.

Roof Areas

The roof areas have been classified as a Low pollution hazard in line with Table 26.2 of the SuDS Manual (C753) 'commercial roof'. This states the pollution hazard indices as follows:

Table 6 Extract of Table 26.2 C753

Pollution Hazard	Total Suspended Solids(TSS)	Metals	Hydrocarbons
Low	0.3	0.2	005

It is proposed for the roof are to utilised filter drains for treatment prior to discharge from the site.

Table 7 Green Roof

SuDS Component	Total Suspended Solids(TSS)	Metals	Hydrocarbons
Filter Drain	0.4	0.4	0.4

These unit indices are greater than that required within the SuDS Manual therefore providing sufficient treatment of surface water flows required from these areas.

5.5 Surface Water Attenuation

All proposed surface water systems should be designed to accommodate the worst case 1 in 30 year storm event without flooding. Furthermore, the worst case 1 in 100 year plus climate change storm event should also be retained on site in an area that will not cause flooding to any existing or proposed buildings. In accordance with the updated NPPF Technical Guidance a climate change uplift of 45% and an urban creep uplift of 10% should be considered in the design. Due to the nature of the development and the limited space to accommodate an increase due to urban creep the additional 10% increase has not been considered within the design.

Drainage calculations have been undertaken utilising Flow Drainage Design Software based on a proposed impermeable area of 0.715ha (excludes a 10% increase due to potential urban creep). Surface water is proposed to be attenuated utilising cellular storage which is to be located within the open area of car parking and will accommodate the worst case 1 in 100-year + 45%cc storm event.

The proposed drainage has been designed to ensure the maximum water level in the drainage system is 9.020mAOD which is greater than 300mm below the proposed finished floor level of the building.

Calculations are provided in Appendix E.

The Proposed drainage layout is provided in Appendix D.

5.6 Surface Water Maintenance

Failures or blockages within the drainage network can cause flooding if not adequately maintained. To enable the water treatment process to continue as intended and to reduce the risk of flooding the drainage network will require regular maintenance.

Maintenance and inspection of SuDS features will comply with the requirements of the SuDS Manual (CIRIA C753).

A copy of the proposed surface water drainage management plan is provided in Appendix G detailing the required frequency of works for each particular drainage element and who is responsible to undertake these works

6. FOUL WATER DRAINAGE

6.1 Existing Foul Water Drainage

United Utilities sewer records have been obtained and these indicate there are existing combined sewers within the site.

As the site is currently a car park there is no existing private foul water discharge from the site.

6.2 Proposed Foul Water Drainage

New foul drainage will be provided within the site which will discharge into the existing combined 800x600 brick egg sewer, located to the east of the proposed building.

7. CONCLUSIONS

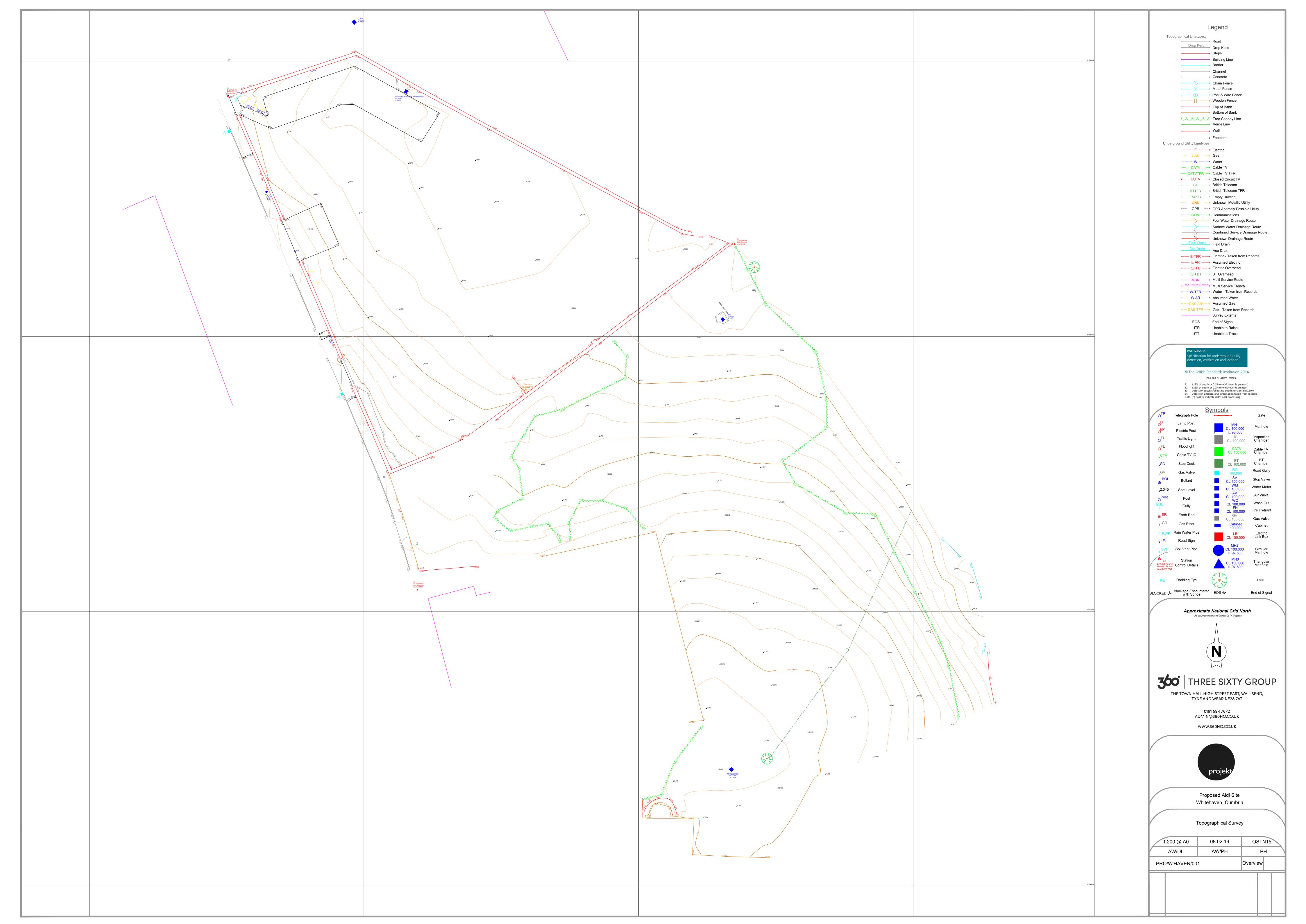
This Flood Risk and Drainage Assessment Report has been prepared by Hydrock on behalf of Aldi Stores Ltd in support of a planning application for a proposed food retail store on Preston Street, Whitehaven.

A detailed assessment has identified that the site is located in Flood Zone 1 (Low Risk) in accordance with the EA Flood Zone Mapping. Hydraulic flood model data provided by the EA and recorded River levels on the Pow Beck have been used as the best available data to inform flood risk at the site.

The proposed surface water drainage system will be restricted to a maximum discharge of 6.1 l/s into the culvert watercourse (Pow Beck), to the eastern boundary of the site.

SuDs options have been considered for the site will be in the form of Filter Drains and an underground proprietary SPEL ESR unit will be utilised in the drainage system to provide treatment of surface water flows prior to discharge to the Pow Beck.

Foul water flows will discharge into the existing combined 800x600 brick egg sewer, located to the east of the proposed building.


The proposed drainage system has been designed to accommodate a 1 in 100 year+45% climate change storm event. Attenuation will be provided within the site in the form of underground cellular storage tank.

Hydrock Consultants Limited

Appendix A - Topographical Survey

Reference	Title
PRO/W'HAVEN/001	Topographical Survey

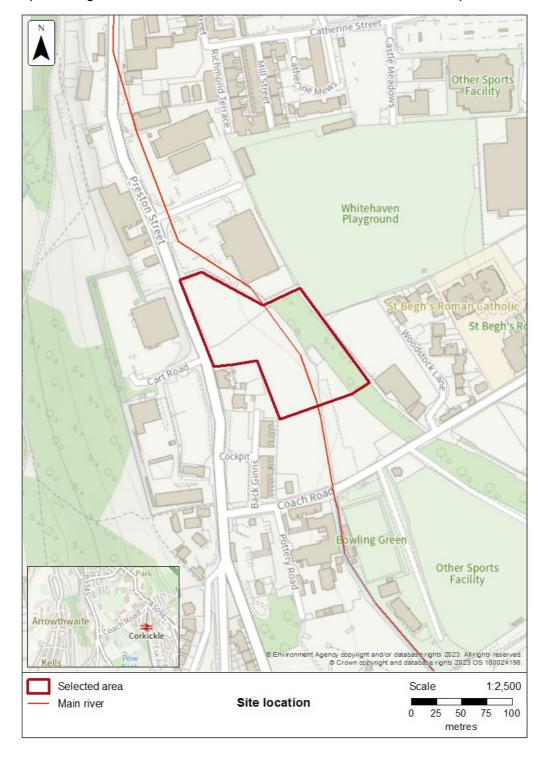
Appendix B - Proposed Site Layout

Reference	Title
0470-PA-XX-00-DR-A-PM_00_10_00- 0002_P03	Proposed Site Plan

Appendix C - Environment Agency Data

Reference	Title
9E2TFJWN4T26	Product 4 Flood Risk Asessment Data

Flood risk assessment data


Location of site: 297319 / 517529 (shown as easting and northing coordinates)

Document created on: 31 January 2023

This information was previously known as a product 4.

Customer reference number: 9E2TFJWN4T26

Map showing the location that flood risk assessment data has been requested for.

How to use this information

You can use this information as part of a flood risk assessment for a planning application. To do this, you should include it in the appendix of your flood risk assessment.

We recommend that you work with a flood risk consultant to get your flood risk assessment.

Included in this document

In this document you'll find:

- how to find information about surface water and other sources of flooding
- information on the models used
- definitions for the terminology used throughout
- flood map for planning (rivers and the sea)
- historic flooding
- flood defences and attributes
- information to help you assess if there is a reduced flood risk from rivers and the sea because of defences
- modelled data
- climate change modelled data
- information about strategic flood risk assessments
- information about this data
- information about flood risk activity permits
- help and advice

Not included in this document

This document does not include a Flood Defence Breach Hazard Map.

If your location has a reduced flood risk from rivers and sea because of defences, you need to request a Flood Defence Breach Hazard Map and information about the level of flood protection offered at your location from the Cumbria and Lancashire Environment Agency team at inforequests.cmblnc@environment-agency.gov.uk. This information will only be available if modelling has been carried out for breach scenarios.

Include a site location map in your request.

Surface water and other sources of flooding

Use the <u>long term flood risk service</u> to find out about the risk of flooding from:

- surface water
- ordinary watercourses
- reservoirs

For information about sewer flooding, contact the relevant water company for the area.

About the models used

Model name: Pow Beck 2012

Scenario(s): Defended fluvial, defences removed fluvial, defended climate change fluvial,

defences removed climate change fluvial

Date: 5 March 2013

Model name: Whitehaven_Tidal 2012

Scenario(s): Defended tidal, defences removed tidal, defended climate change tidal,

defences removed climate change tidal

Date: 1 July 2013

These models contain the most relevant data for your area of interest.

Terminology used

Annual exceedance probability (AEP)

This refers to the probability of a flood event occurring in any year. The probability is expressed as a percentage. For example, a large flood which is calculated to have a 1% chance of occurring in any one year, is described as 1% AEP.

Metres above ordnance datum (mAOD)

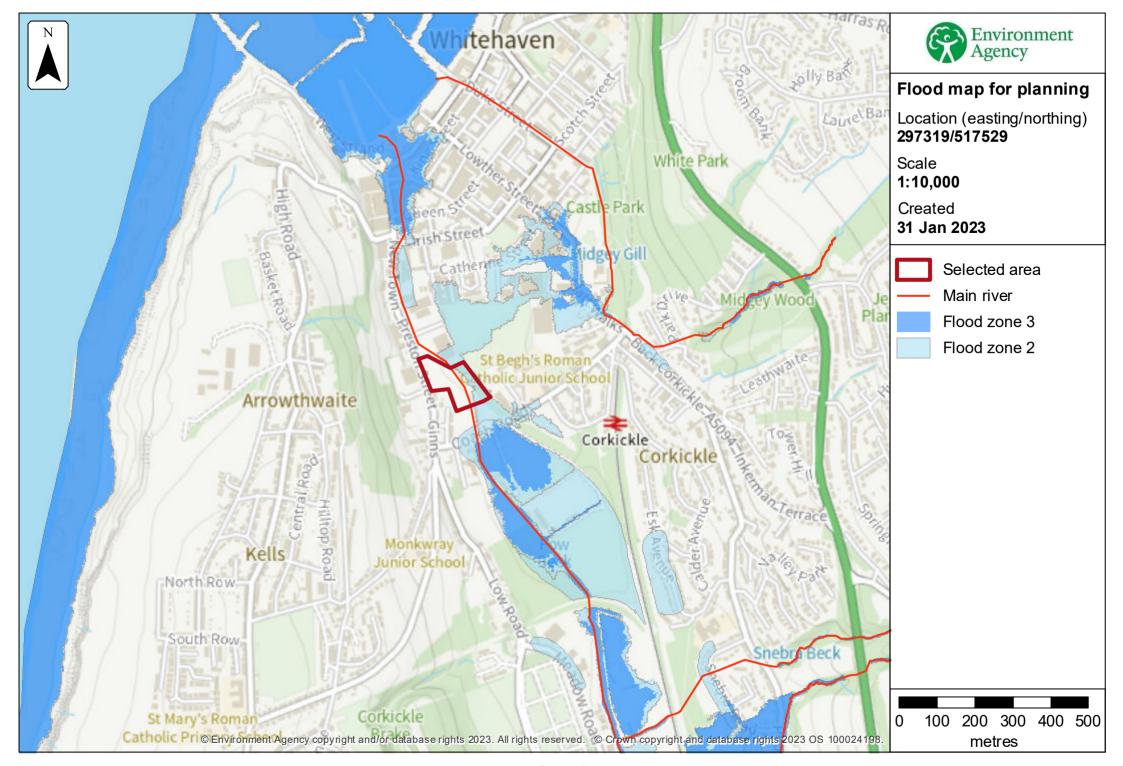
All flood levels are given in metres above ordnance datum which is defined as the mean sea level at Newlyn, Cornwall.

Flood map for planning (rivers and the sea)

Your selected location is in flood zone 2.

Flood zone 3 shows the area at risk of flooding for an undefended flood event with a:

- 0.5% or greater probability of occurring in any year for flooding from the sea
- 1% or greater probability of occurring in any year for fluvial (river) flooding


Flood zone 2 shows the area at risk of flooding for an undefended flood event with:

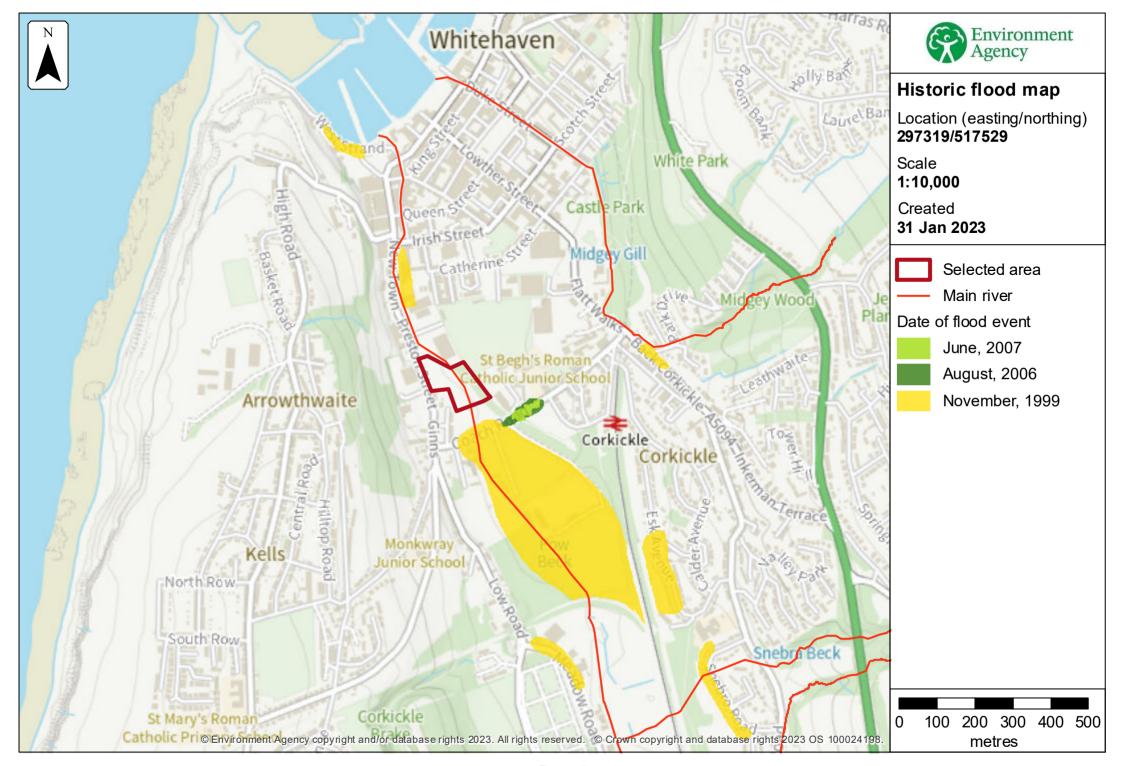
- between a 0.1% and 0.5% probability of occurring in any year for flooding from the sea
- between a 0.1% and 1% probability of occurring in any year for fluvial (river) flooding

It's important to remember that the flood zones on this map:

- refer to the land at risk of flooding and do not refer to individual properties
- refer to the probability of river and sea flooding, ignoring the presence of defences
- · do not take into account potential impacts of climate change

This data is updated on a quarterly basis as better data becomes available.

Page 5


Historic flooding

This map is an indicative outline of areas that have previously flooded. Remember that:

- our records are incomplete, so the information here is based on the best available data
- it is possible not all properties within this area will have flooded
- other flooding may have occurred that we do not have records for
- flooding can come from a range of different sources we can only supply flood risk data relating to flooding from rivers or the sea

You can also contact your Lead Local Flood Authority or Internal Drainage Board to see if they have other relevant local flood information. Please note that some areas do not have an Internal Drainage Board.

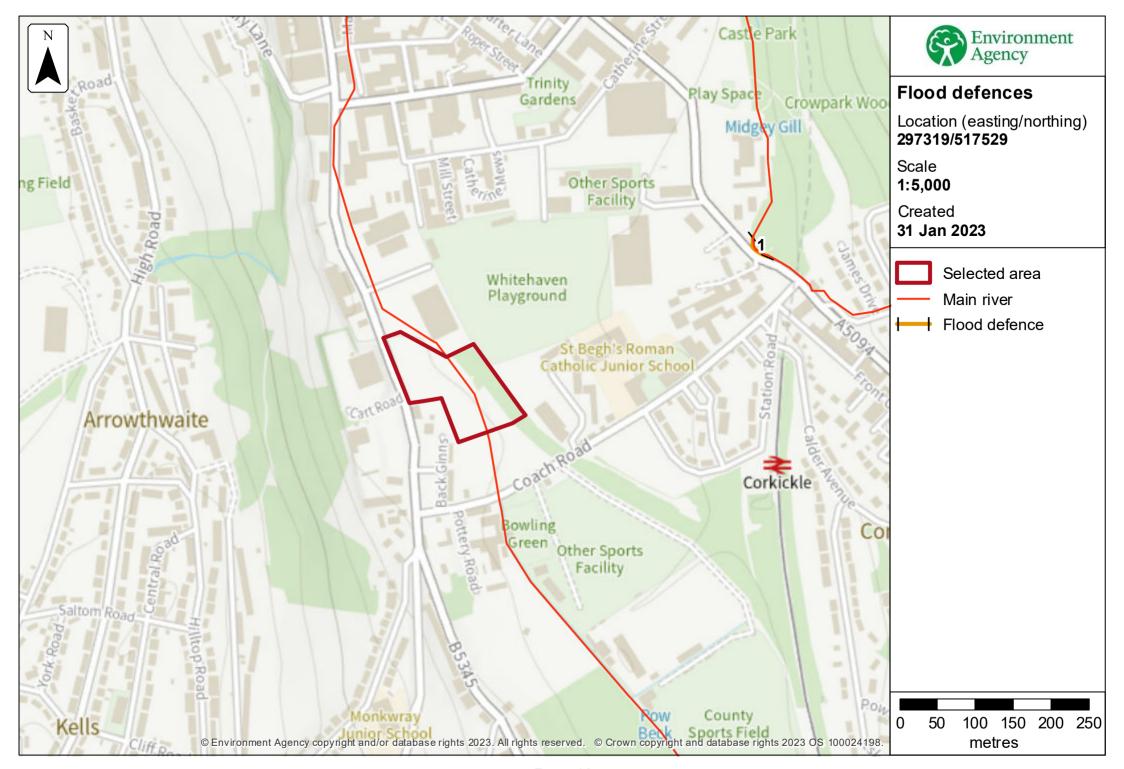
Download recorded flood outlines in GIS format

Page 7

Historic flood event data

Start date	End date	Source of flood	Cause of flood	Affects location	
12 June 2007	12 June 2007	drainage	local drainage/surface water	No	
11 August 2006	11 August 2006 main river		unknown	No	
5 November 1999	5 November 1999	main river	channel capacity exceeded (no raised defences)	No	

Flood defences and attributes


The flood defences map shows the location of the flood defences present.

The flood defences data table shows the type of defences, their condition and the standard of protection. It shows the height above sea level of the top of the flood defence (crest level). The height is In mAOD which is the metres above the mean sea level at Newlyn, Cornwall.

It's important to remember that flood defence data may not be updated on a regular basis. The information here is based on the best available data.

Use this information:

- to help you assess if there is a reduced flood risk for this location because of defences
- with any information in the modelled data section to find out the impact of defences on flood risk

Page 10

Flood defences data

La	ibel	Asset ID	Asset Type	Standard of protection (years)	Current condition	Downstream actual crest level (mAOD)	Upstream actual crest level (mAOD)	Effective crest level (mAOD)	
1		94578	Wall	20	Fair	17.58	18.54	17.58	

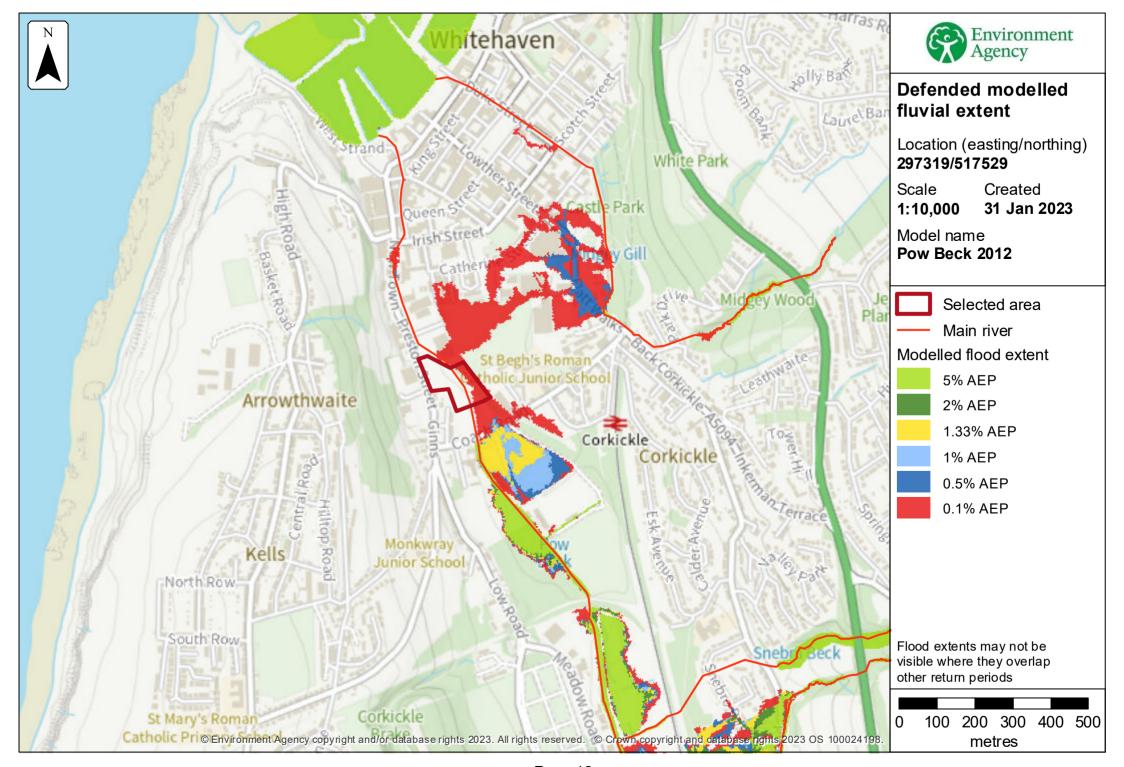
Any blank cells show where a particular value has not been recorded for an asset.

Modelled data

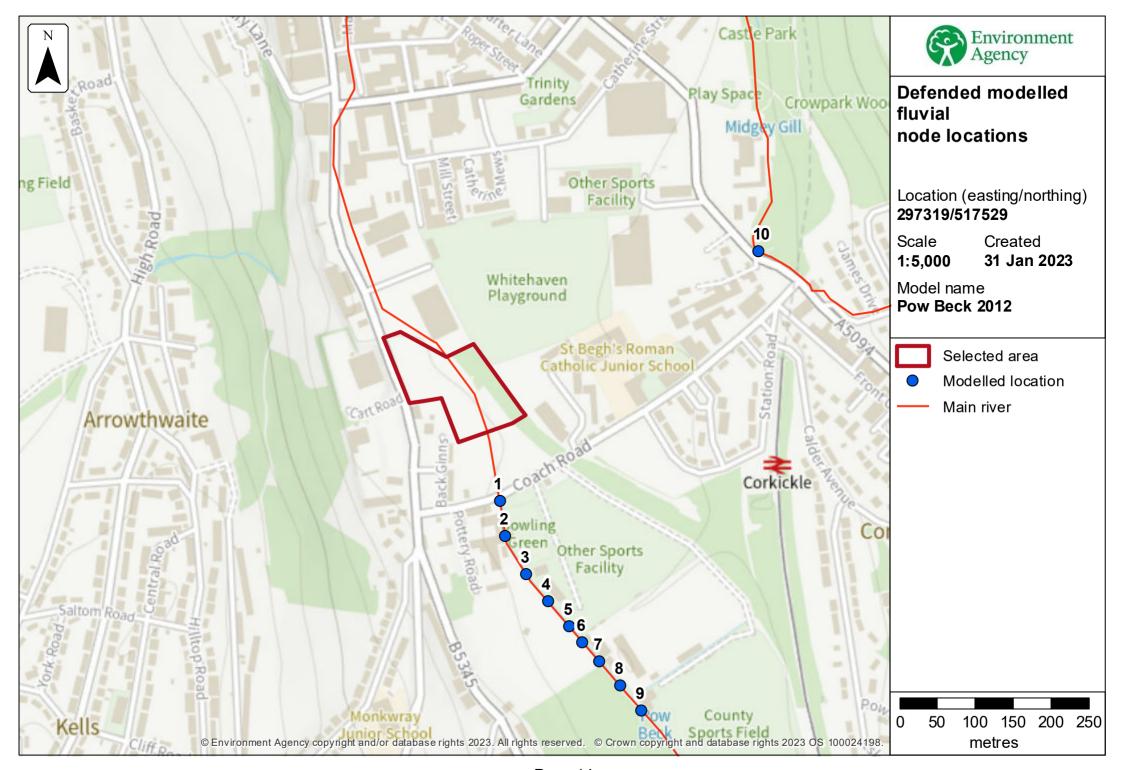
This section provides details of different scenarios we have modelled and includes the following (where available):

- outline maps showing the area at risk from flooding in different modelled scenarios
- modelled node point map(s) showing the points used to get the data to model the scenarios and table(s) providing details of the flood risk for different return periods
- map(s) showing the approximate water levels for the return period with the largest flood extent for a scenario and table(s) of sample points providing details of the flood risk for different return periods

Climate change


The climate change data included in the models may not include the latest <u>flood risk</u> <u>assessment climate change allowances</u>. Where the new allowances are not available you will need to consider this data and factor in the new allowances to demonstrate the development will be safe from flooding.

The Environment Agency will incorporate the new allowances into future modelling studies. For now, it's your responsibility to demonstrate that new developments will be safe in flood risk terms for their lifetime.


Modelled scenarios

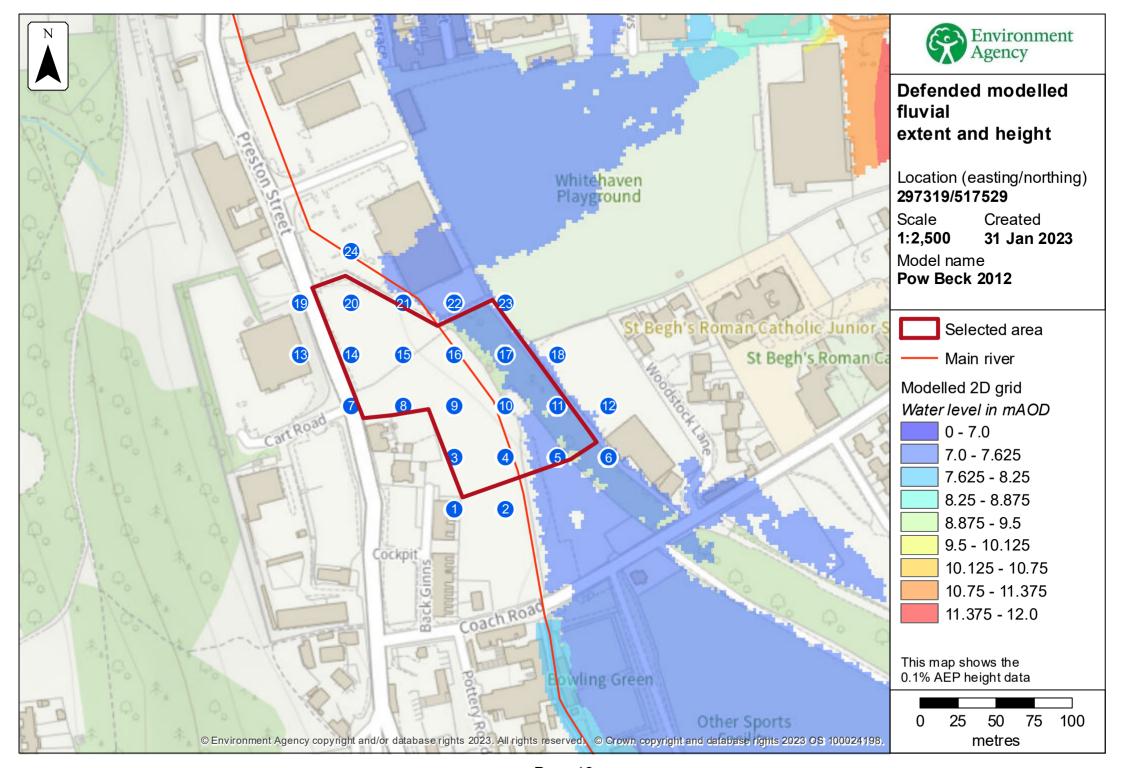
The following scenarios are included:

- Defended modelled fluvial: risk of flooding from rivers where there are flood defences
- Defences removed modelled fluvial: risk of flooding from rivers where flood defences have been removed
- Defended modelled tidal: risk of flooding from the sea where there are flood defences
- Defences removed modelled tidal: risk of flooding from the sea where flood defences have been removed
- Defended climate change modelled fluvial: risk of flooding from rivers where there are flood defences, including estimated impact of climate change
- Defences removed climate change modelled fluvial: risk of flooding from rivers where flood defences have been removed, including estimated impact of climate change
- Defended climate change modelled tidal: risk of flooding from the sea where there are flood defences, including estimated impact of climate change
- Defences removed climate change modelled tidal: risk of flooding from the sea where flood defences have been removed, including estimated impact of climate change

Page 13

Page 14

Modelled node locations data


Defended

Label	Modelled location ID	Easting	Northing	5% AEF	•	2% AEP 1.33% AEP		ÆΡ	1% AEP		0.5% AEP		0.1% AEP		
				Level	Flow	Level	Flow	Level	Flow	Level	Flow	Level	Flow	Level	Flow
1	83652	297380	517376	7.21	4.89	7.39	5.48	7.63	5.83	7.69	5.89	7.76	6.02	7.92	6.18
2	79441	297387	517331	7.41	4.89	7.56	5.47	7.74	5.81	7.78	5.87	7.83	6.0	7.92	6.18
3	150387	297414	517280	7.66	4.89	7.79	5.46	7.89	5.95	7.90	6.27	7.92	7.01	7.93	8.68
4	45652	297443	517244	7.80	4.88	7.93	5.27	8.03	5.48	8.05	5.71	8.09	6.14	8.21	6.96
5	163974	297471	517211	7.86	4.30	7.99	4.34	8.08	4.45	8.11	4.50	8.16	4.47	8.28	4.71
6	297896	297489	517190	7.88	4.32	8.0	4.37	8.09	4.52	8.11	4.53	8.17	4.59	8.29	4.92
7	157061	297511	517165	7.97	3.90	8.05	4.04	8.12	4.15	8.15	4.09	8.19	4.78	8.31	5.10
8	267850	297539	517133	7.97	4.69	8.05	5.0	8.12	5.37	8.15	5.48	8.19	5.75	8.31	7.17
9	335533	297567	517100	7.99	4.08	8.06	4.17	8.13	4.33	8.15	4.33	8.20	4.53	8.31	4.95
10	130766	297722	517706	17.21	0.88	17.32	1.08	17.37	1.19	17.41	1.27	17.51	1.50	17.55	1.92

Data in this table comes from the Pow Beck 2012 model.

Level values are shown in mAOD, and flow values are shown in cubic metres per second.

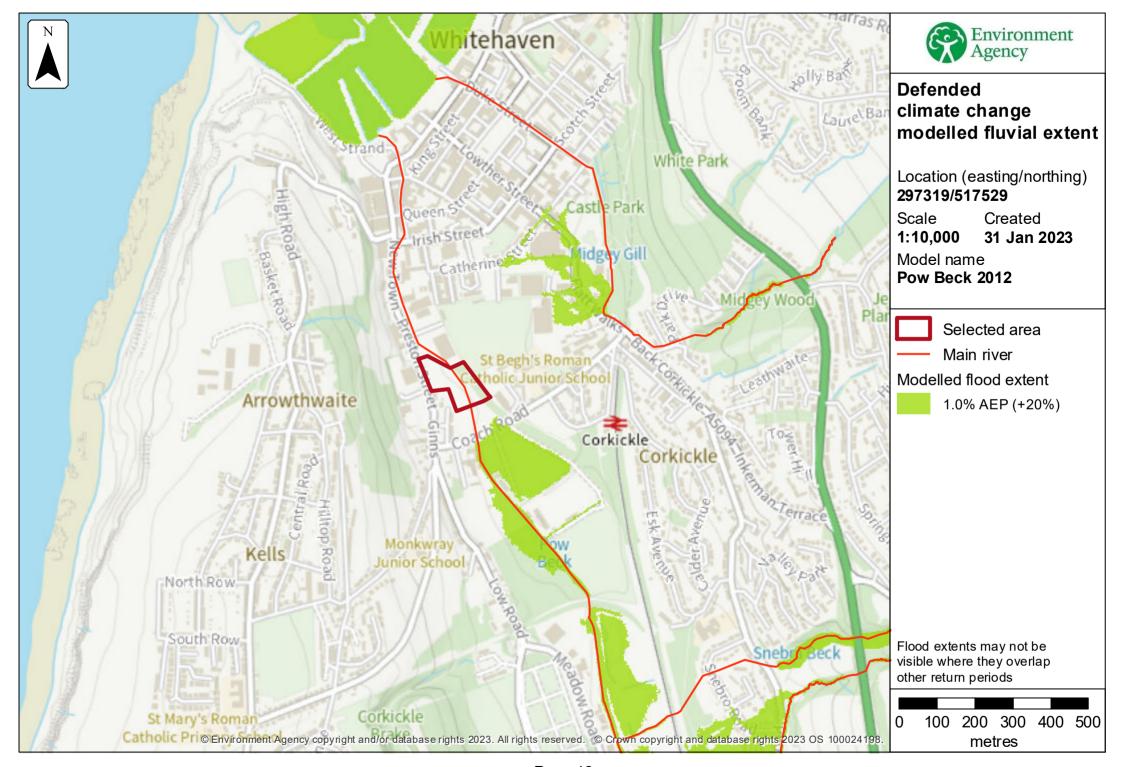
Any blank cells show where a particular scenario has not been modelled for this location.

Page 16

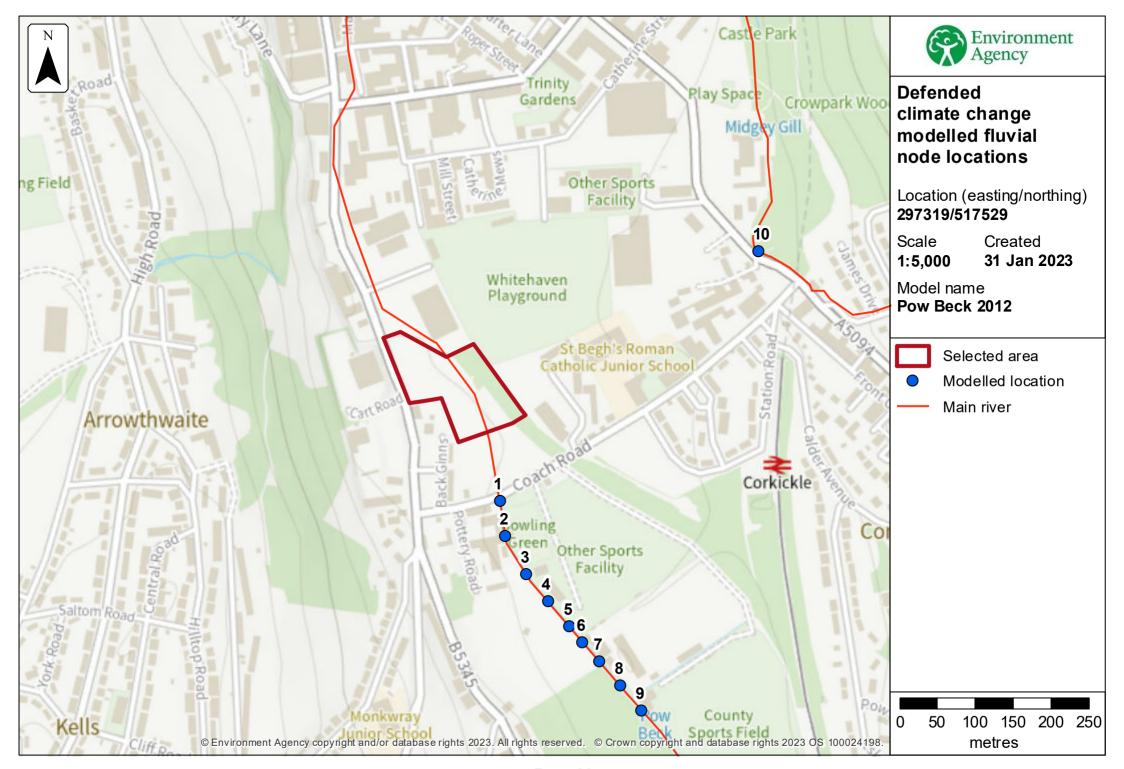
Sample point data

Defended

Label	Easting	Northing	5% AEP		2% AEP		1.33% AE	Р	1% AEP		0.5% AEP)	0.1% AEP	
			Depth	Height	Depth	Height	Depth	Height	Depth	Height	Depth	Height	Depth	Height
1	297320	517447	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData
2	297354	517447	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData
3	297320	517481	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData
4	297354	517481	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData
5	297388	517481	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData	0.08	7.60
6	297422	517481	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData	0.19	7.40
7	297252	517515	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData
8	297286	517515	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData
9	297320	517515	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData
10	297354	517515	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData
11	297388	517515	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData	0.37	7.40
12	297422	517515	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData
13	297218	517549	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData
14	297252	517549	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData
15	297286	517549	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData
16	297320	517549	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData


Label	Easting	Northing	5% AEP		2% AEP		1.33% AE	Р	1% AEP		0.5% AEP)	0.1% AEP	
			Depth	Height	Depth	Height	Depth	Height	Depth	Height	Depth	Height	Depth	Height
17	297354	517549	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData	0.21	7.39
18	297388	517549	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData
19	297218	517583	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData
20	297252	517583	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData
21	297286	517583	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData
22	297320	517583	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData	0.27	7.37
23	297354	517583	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData
24	297252	517617	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData

Data in this table comes from the Pow Beck 2012 model.


Height values are shown in mAOD, and depth values are shown in metres.

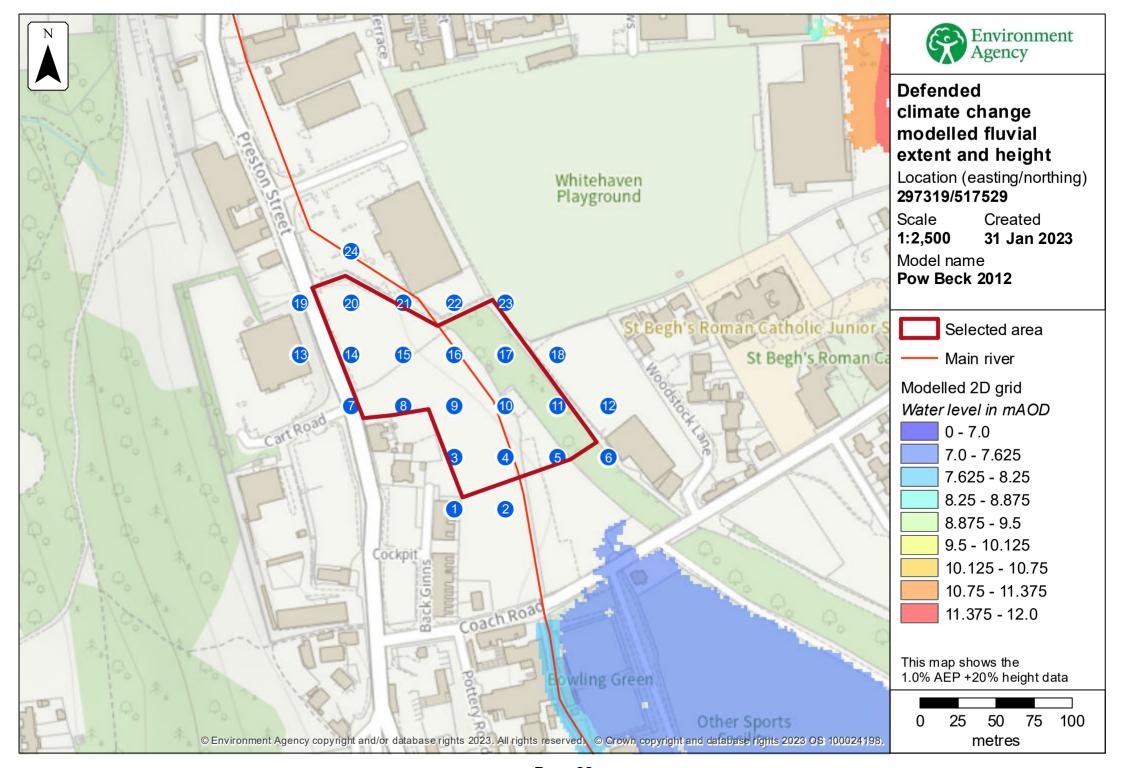
Any blank cells show where a particular scenario has not been modelled for this location.

Cells which contain text 'NoData' for a scenario show that return period has been modelled but there is no flood risk for that return period for that location.

Page 19

Page 20

Modelled node locations data


Defended climate change

Label	Modelled location ID		Northing	1.0% AEP (+20%)	
				Level	Flow
1	83652	297380	517376	7.79	6.07
2	79441	297387	517331	7.85	6.06
3	150387	297414	517280	7.92	7.38
4	45652	297443	517244	8.12	6.31
5	163974	297471	517211	8.19	4.70
6	297896	297489	517190	8.19	4.75
7	157061	297511	517165	8.22	4.42
8	267850	297539	517133	8.22	6.02
9	335533	297567	517100	8.22	4.69
10	130766	297722	517706	17.52	1.64

Data in this table comes from the Pow Beck 2012 model.

Level values are shown in mAOD, and flow values are shown in cubic metres per second.

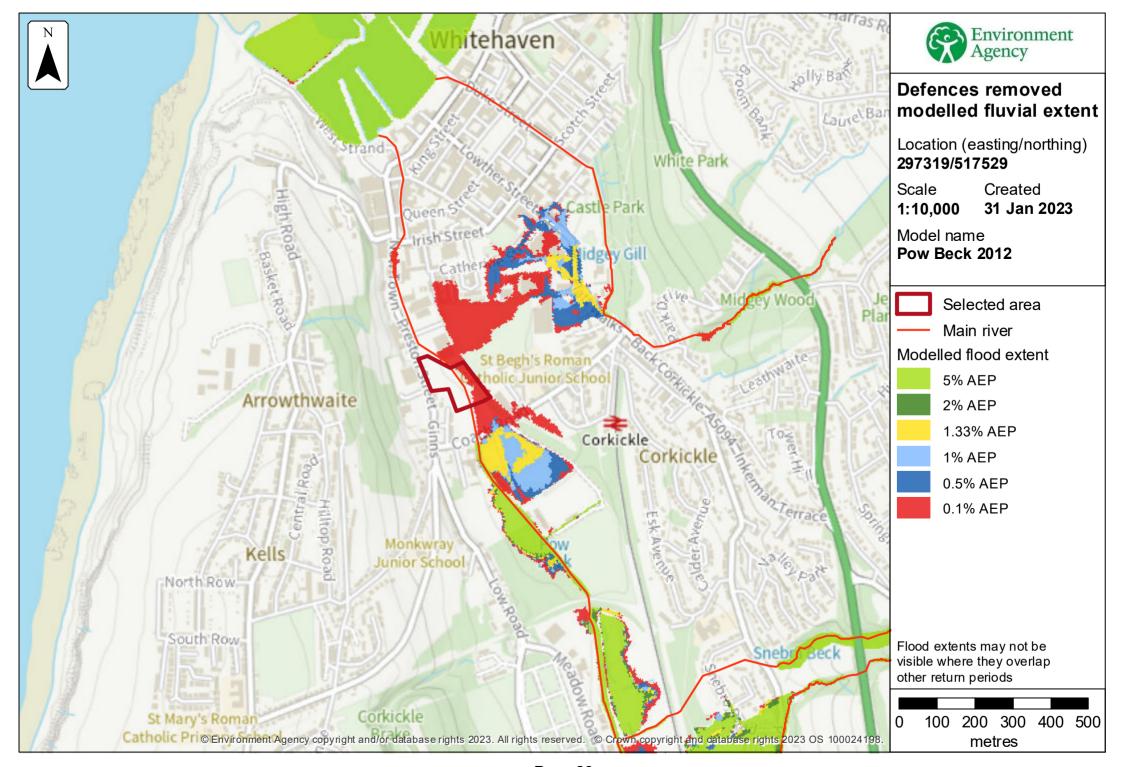
Any blank cells show where a particular scenario has not been modelled for this location.

Page 22

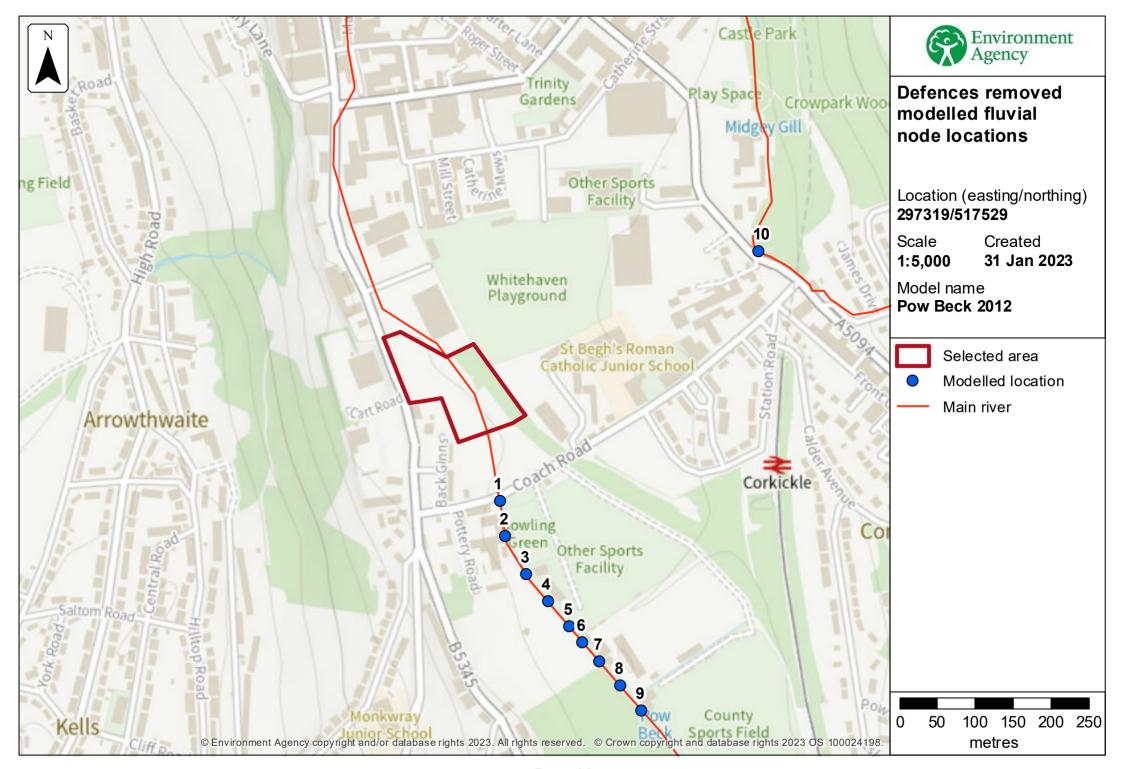
Sample point data

Defended climate change

Label	Easting	Northing	1% AEP (+20%)	
			Depth	Height
1	297320	517447	NoData	NoData
2	297354	517447	NoData	NoData
3	297320	517481	NoData	NoData
4	297354	517481	NoData	NoData
5	297388	517481	NoData	NoData
6	297422	517481	NoData	NoData
7	297252	517515	NoData	NoData
8	297286	517515	NoData	NoData
9	297320	517515	NoData	NoData
10	297354	517515	NoData	NoData
11	297388	517515	NoData	NoData
12	297422	517515	NoData	NoData
13	297218	517549	NoData	NoData
14	297252	517549	NoData	NoData
15	297286	517549	NoData	NoData
16	297320	517549	NoData	NoData


Label	Easting	Northing	1% AEP (+20%)	
			Depth	Height
17	297354	517549	NoData	NoData
18	297388	517549	NoData	NoData
19	297218	517583	NoData	NoData
20	297252	517583	NoData	NoData
21	297286	517583	NoData	NoData
22	297320	517583	NoData	NoData
23	297354	517583	NoData	NoData
24	297252	517617	NoData	NoData

Data in this table comes from the Pow Beck 2012 model.


Height values are shown in mAOD, and depth values are shown in metres.

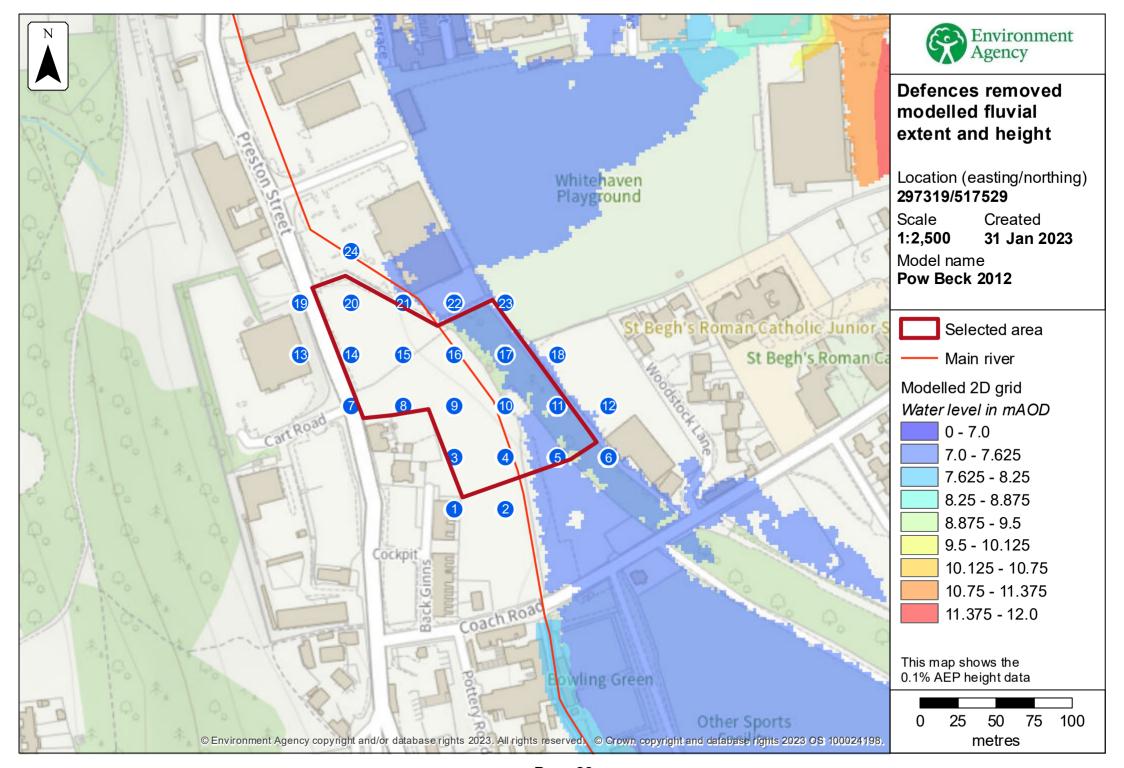
Any blank cells show where a particular scenario has not been modelled for this location.

Cells which contain text 'NoData' for a scenario show that return period has been modelled but there is no flood risk for that return period for that location.

Page 28

Page 26

Modelled node locations data


Defences removed

Label	Modelled location ID	Easting	Northing	5% AEF	•	2% AEF	•	1.33% A	ÆΡ	1% AEF		0.5% AE	P	0.1% Al	ΞP
				Level	Flow	Level	Flow	Level	Flow	Level	Flow	Level	Flow	Level	Flow
1	83652	297380	517376	7.20	4.85	7.37	5.41	7.63	5.81	7.69	5.87	7.76	5.99	7.91	6.18
2	79441	297387	517331	7.40	4.85	7.54	5.41	7.74	5.78	7.78	5.84	7.83	5.98	7.93	6.18
3	150387	297414	517280	7.65	4.84	7.78	5.41	7.89	5.89	7.90	6.23	7.91	6.96	7.93	8.67
4	45652	297443	517244	7.79	4.84	7.91	5.23	8.02	5.44	8.04	5.66	8.09	6.12	8.21	6.88
5	163974	297471	517211	7.86	4.29	7.98	4.34	8.08	4.45	8.11	4.49	8.16	4.49	8.28	4.95
6	297896	297489	517190	7.87	4.32	7.99	4.37	8.09	4.52	8.11	4.53	8.16	4.59	8.28	5.0
7	157061	297511	517165	7.96	3.90	8.04	4.04	8.12	4.15	8.14	4.09	8.19	4.78	8.30	5.11
8	267850	297539	517133	7.96	4.68	8.04	5.0	8.12	5.37	8.14	5.48	8.19	5.78	8.31	7.16
9	335533	297567	517100	7.98	4.03	8.05	4.13	8.13	4.30	8.15	4.30	8.20	4.44	8.31	4.94
10	130766	297722	517706	17.21	0.88	17.32	1.08	17.37	1.19	17.38	1.27	17.40	1.50	17.48	1.91

Data in this table comes from the Pow Beck 2012 model.

Level values are shown in mAOD, and flow values are shown in cubic metres per second.

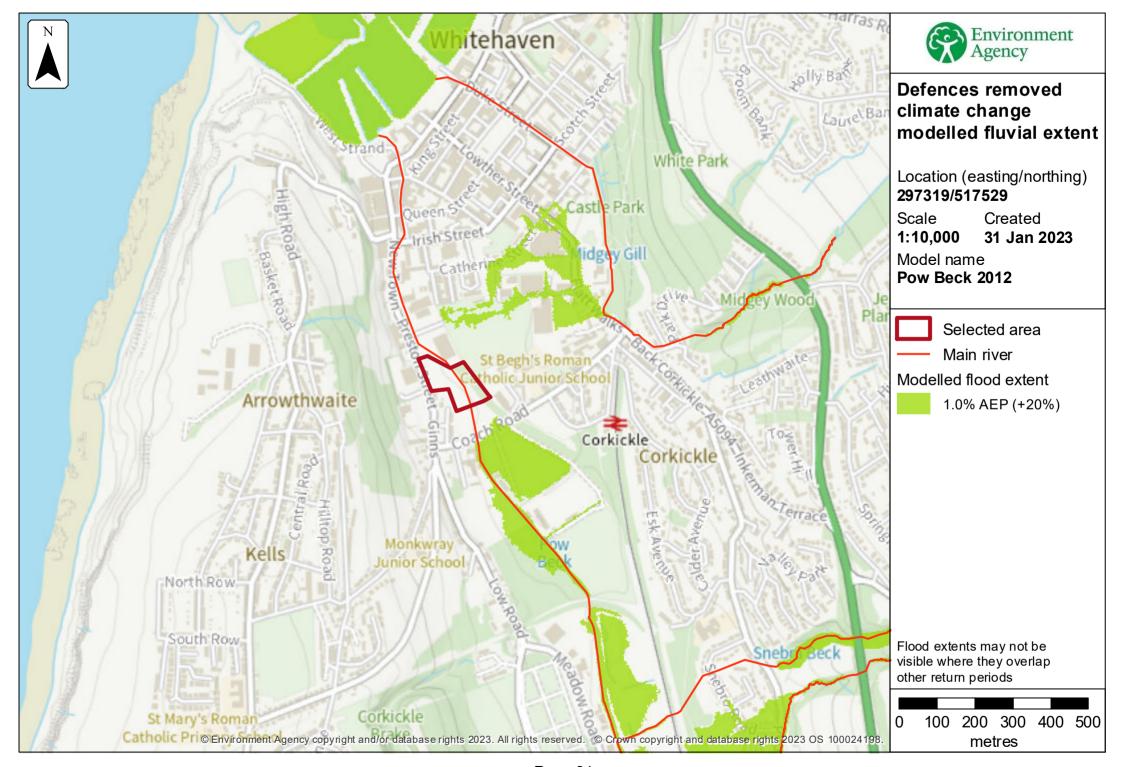
Any blank cells show where a particular scenario has not been modelled for this location.

Page 28

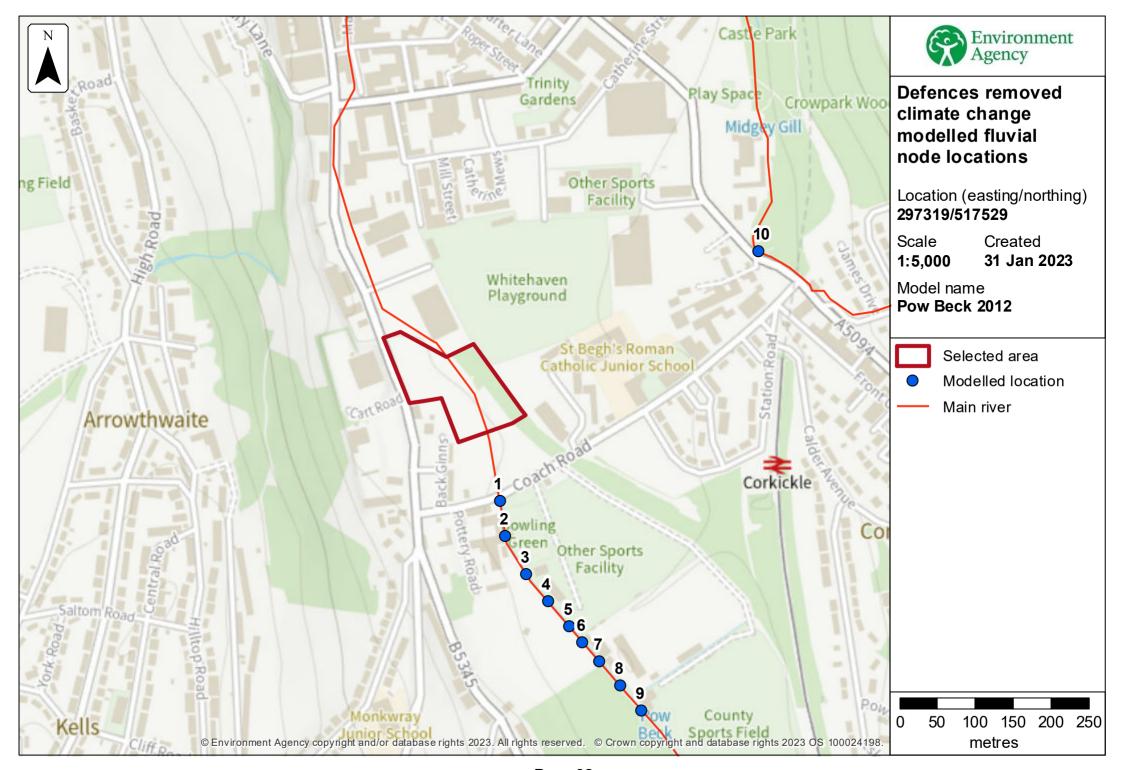
Sample point data

Defences removed

Label	Easting	Northing	5% AEP		2% AEP		1.33% AE	P	1% AEP		0.5% AEP)	0.1% AEP	
			Depth	Height	Depth	Height	Depth	Height	Depth	Height	Depth	Height	Depth	Height
1	297320	517447	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData
2	297354	517447	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData
3	297320	517481	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData
4	297354	517481	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData
5	297388	517481	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData	0.08	7.60
6	297422	517481	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData	0.18	7.39
7	297252	517515	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData
8	297286	517515	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData
9	297320	517515	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData
10	297354	517515	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData
11	297388	517515	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData	0.35	7.38
12	297422	517515	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData
13	297218	517549	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData
14	297252	517549	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData
15	297286	517549	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData
16	297320	517549	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData


Label	Easting	Northing	5% AEP		2% AEP		1.33% AE	Р	1% AEP		0.5% AEP)	0.1% AEP	
			Depth	Height	Depth	Height	Depth	Height	Depth	Height	Depth	Height	Depth	Height
17	297354	517549	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData	0.20	7.37
18	297388	517549	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData
19	297218	517583	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData
20	297252	517583	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData
21	297286	517583	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData
22	297320	517583	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData	0.26	7.36
23	297354	517583	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData
24	297252	517617	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData	NoData

Data in this table comes from the Pow Beck 2012 model.


Height values are shown in mAOD, and depth values are shown in metres.

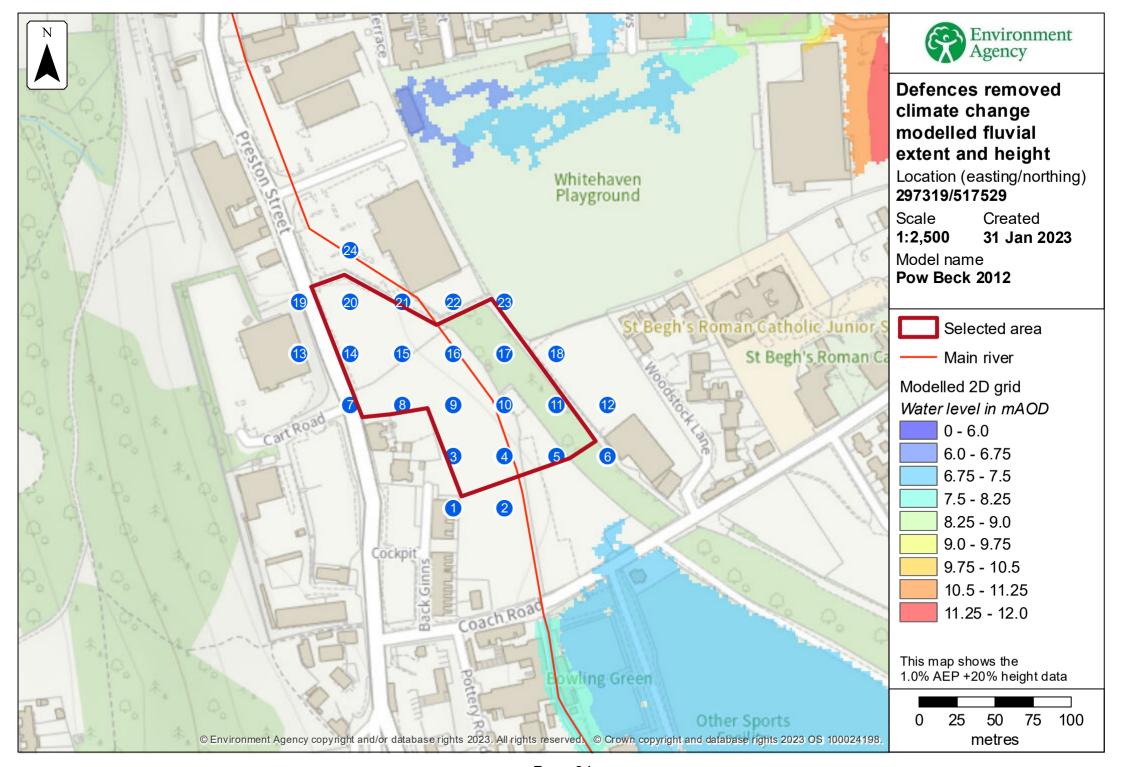
Any blank cells show where a particular scenario has not been modelled for this location.

Cells which contain text 'NoData' for a scenario show that return period has been modelled but there is no flood risk for that return period for that location.

Page 31

Page 32

Modelled node locations data


Defences removed climate change

Label	Modelled location ID	Easting	Northing	1.0% AEP (+20%)	
				Level	Flow
1	83652	297380	517376	7.79	6.05
2	79441	297387	517331	7.85	6.04
3	150387	297414	517280	7.92	7.37
4	45652	297443	517244	8.12	6.30
5	163974	297471	517211	8.19	4.70
6	297896	297489	517190	8.19	4.74
7	157061	297511	517165	8.22	4.42
8	267850	297539	517133	8.22	6.02
9	335533	297567	517100	8.22	4.60
10	130766	297722	517706	17.42	1.64

Data in this table comes from the Pow Beck 2012 model.

Level values are shown in mAOD, and flow values are shown in cubic metres per second.

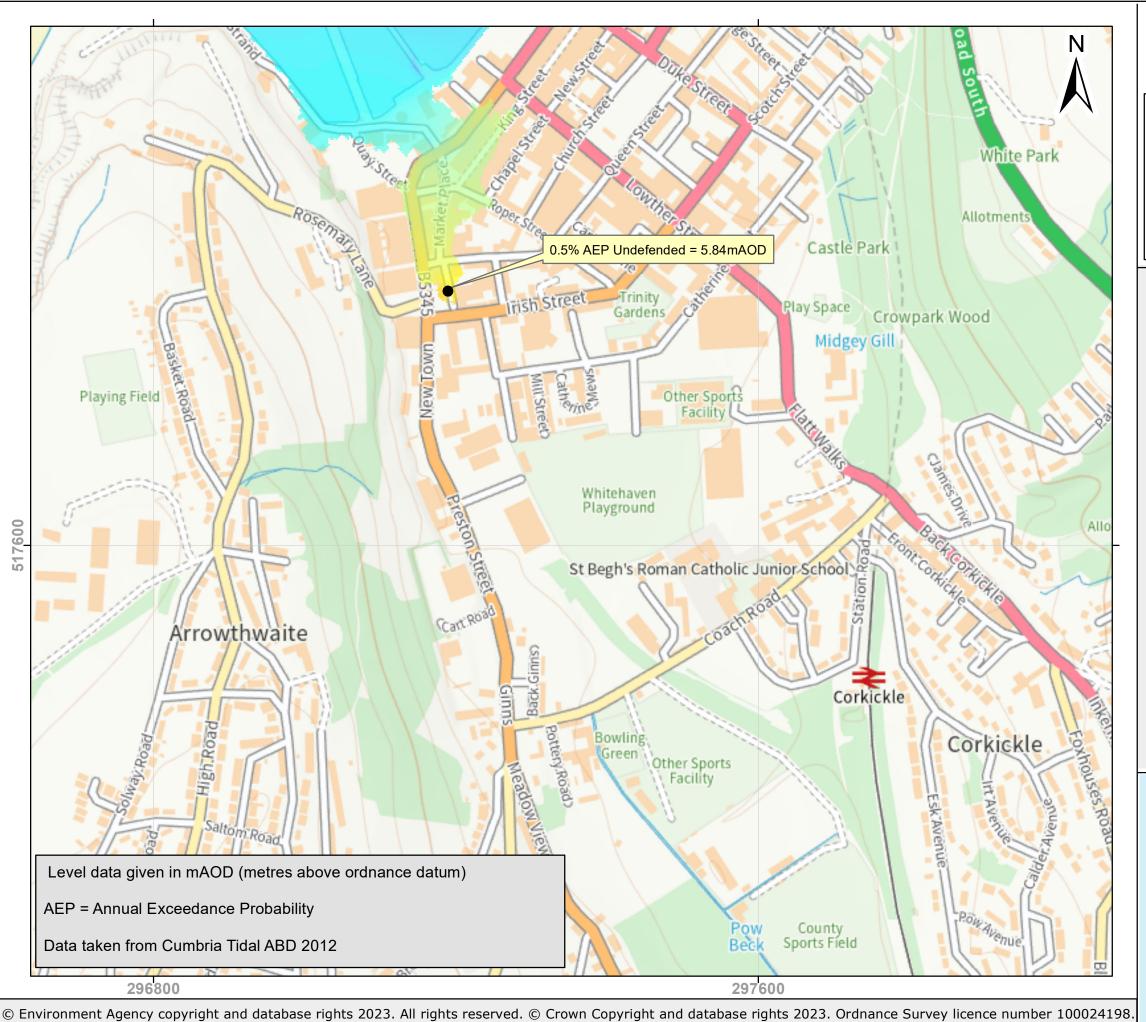
Any blank cells show where a particular scenario has not been modelled for this location.

Page 34

Sample point data

Defences removed climate change

Label	Easting	Northing	1% AEP (+20%)	
			Depth	Height
1	297320	517447	NoData	NoData
2	297354	517447	NoData	NoData
3	297320	517481	NoData	NoData
4	297354	517481	NoData	NoData
5	297388	517481	NoData	NoData
6	297422	517481	NoData	NoData
7	297252	517515	NoData	NoData
8	297286	517515	NoData	NoData
9	297320	517515	NoData	NoData
10	297354	517515	NoData	NoData
11	297388	517515	NoData	NoData
12	297422	517515	NoData	NoData
13	297218	517549	NoData	NoData
14	297252	517549	NoData	NoData
15	297286	517549	NoData	NoData
16	297320	517549	NoData	NoData


Label	Easting	Northing	1% AEP (+20%)	
			Depth	Height
17	297354	517549	NoData	NoData
18	297388	517549	NoData	NoData
19	297218	517583	NoData	NoData
20	297252	517583	NoData	NoData
21	297286	517583	NoData	NoData
22	297320	517583	NoData	NoData
23	297354	517583	NoData	NoData
24	297252	517617	NoData	NoData

Data in this table comes from the Pow Beck 2012 model.

Height values are shown in mAOD, and depth values are shown in metres.

Any blank cells show where a particular scenario has not been modelled for this location.

Cells which contain text 'NoData' for a scenario show that return period has been modelled but there is no flood risk for that return period for that location.

Modelled 2d Data Map: Preston Street, Whitehaven

Produced: 2/2/2023

Our Ref: CL291634

NGR: NX 97294 17548 Whitehaven Tidal 2012

Key

0.5% AEP Undefended

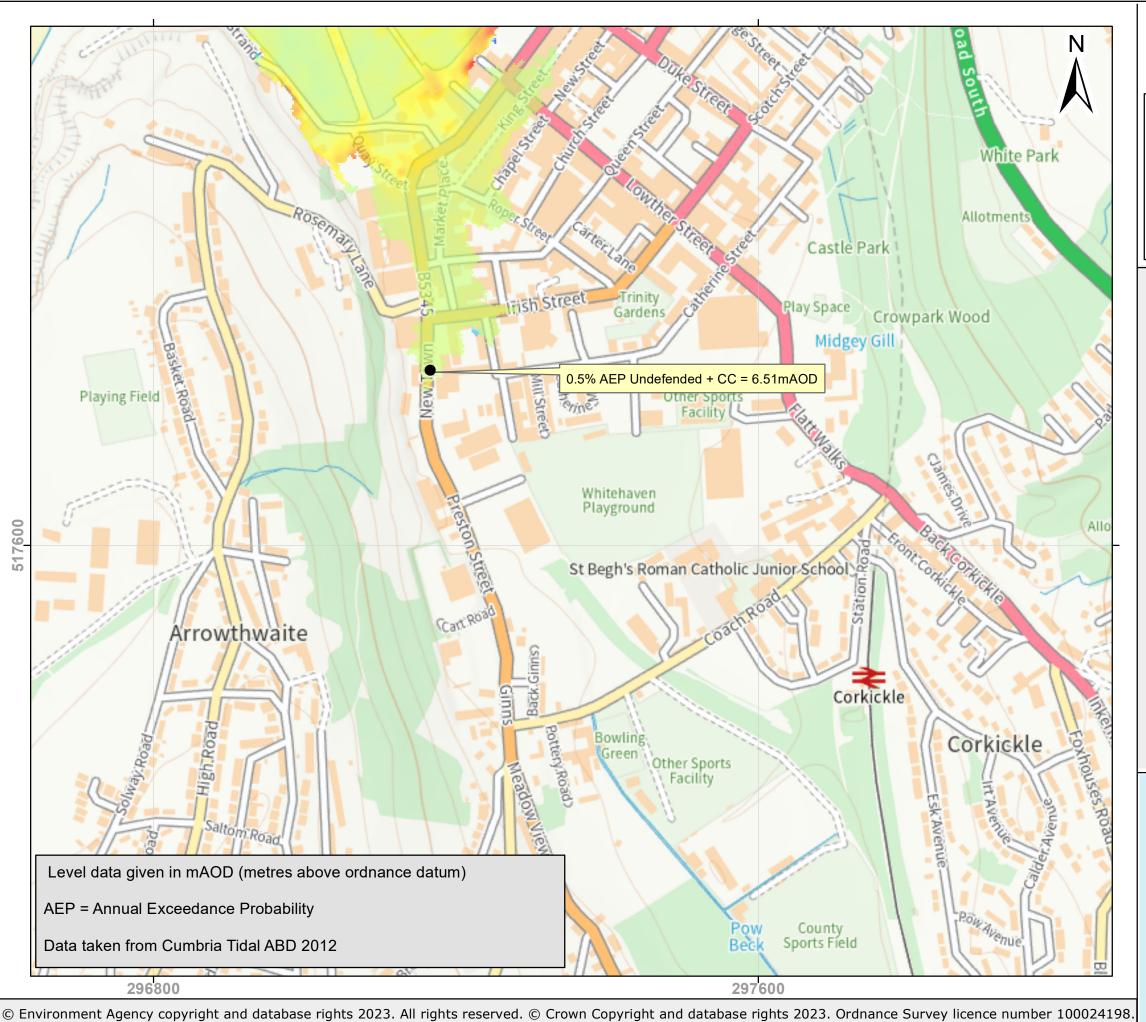
mAOD

High: 10.00

riigir i ro.

Low: 0

Whitehaven


Sandwith Cleator Moor

Cleator Scale

St

Rees

© Environment Agency copyright and database rights 2023. All rights reserved. © Crown Copyright and database rights 2023. Ordnance Survey licence number 100024198. **Contact Us:** National Customer Contact Centre, PO Box 544, Rotherham, S60 1BY. Tel: 03708 506 506 (Mon-Fri 8-6). Email: enquiries@environment-agency.gov.uk

Modelled 2d Data Map: Preston Street, Whitehaven

Produced: 2/2/2023

Our Ref: CL291634 NGR: NX 97294 17548

Whitehaven Tidal 2012

Key

0.5% Undefended + CC (600mm SLR)

mAOD

High: 10.0

Low:0

Whitehaven

Sandwith

Cleator

St

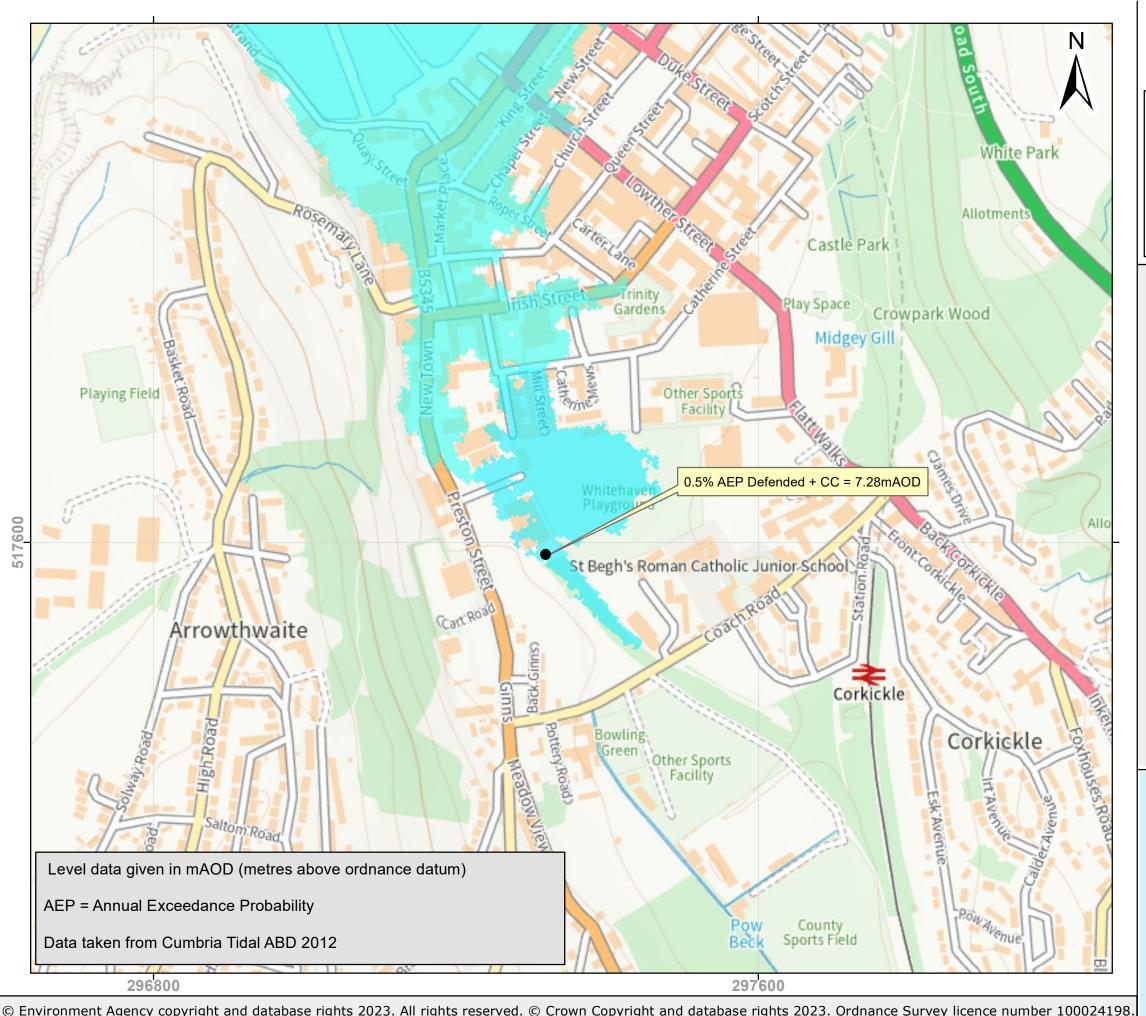
Rees

Gilgarran

Arlecd

Frizington

Cleator Moor


Cleator

St

Rees

© Environment Agency copyright and database rights 2023. All rights reserved. © Crown Copyright and database rights 2023. Ordnance Survey licence number 100024198

Contact Us: National Customer Contact Centre, PO Box 544, Rotherham, S60 1BY. Tel: 03708 506 506 (Mon-Fri 8-6). Email: enquiries@environment-agency.gov.uk

Modelled 2d Data Map: Preston Street, Whitehaven

Produced: 2/2/2023

Our Ref: CL291634 NGR: NX 97294 17548

Whitehaven Tidal 2012

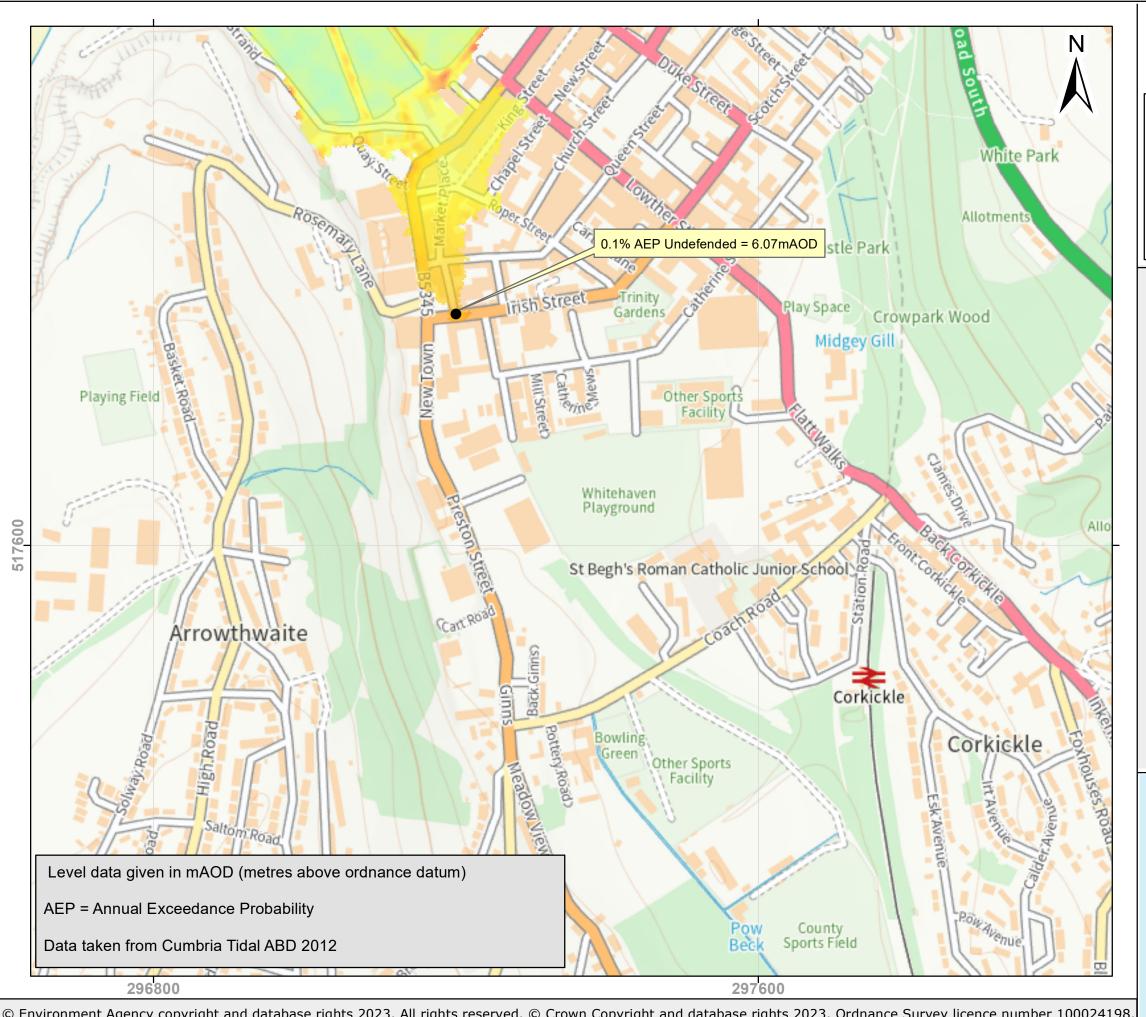
Key

0.5% AEP Defended + CC (600mm SLR)

mAOD

High: 10.0

Low : 0


Whitehaven

Sandwith Cleator Moor

Cleator Scale

St. Rees.

© Environment Agency copyright and database rights 2023. All rights reserved. © Crown Copyright and database rights 2023. Ordnance Survey licence number 100024198. **Contact Us:** National Customer Contact Centre, PO Box 544, Rotherham, S60 1BY. Tel: 03708 506 506 (Mon-Fri 8-6). Email: enquiries@environment-agency.gov.uk

Modelled 2d Data Map: Preston Street, Whitehaven

Produced: 2/2/2023

Our Ref: CL291634 NGR: NX 97294 17548

Whitehaven Tidal 2012

Key

0.1% AEP Undefended

mAOD

High: 10.0

Low:0

© Environment Agency copyright and database rights 2023. All rights reserved. © Crown Copyright and database rights 2023. Ordnance Survey licence number 100024198. **Contact Us:** National Customer Contact Centre, PO Box 544, Rotherham, S60 1BY. Tel: 03708 506 506 (Mon-Fri 8-6). Email: enquiries@environment-agency.gov.uk

Strategic flood risk assessments

We recommend that you check the relevant local authority's strategic flood risk assessment (SFRA) as part of your work to prepare a site specific flood risk assessment.

This should give you information about:

- the potential impacts of climate change in this catchment
- areas defined as functional floodplain
- flooding from other sources, such as surface water, ground water and reservoirs

About this data

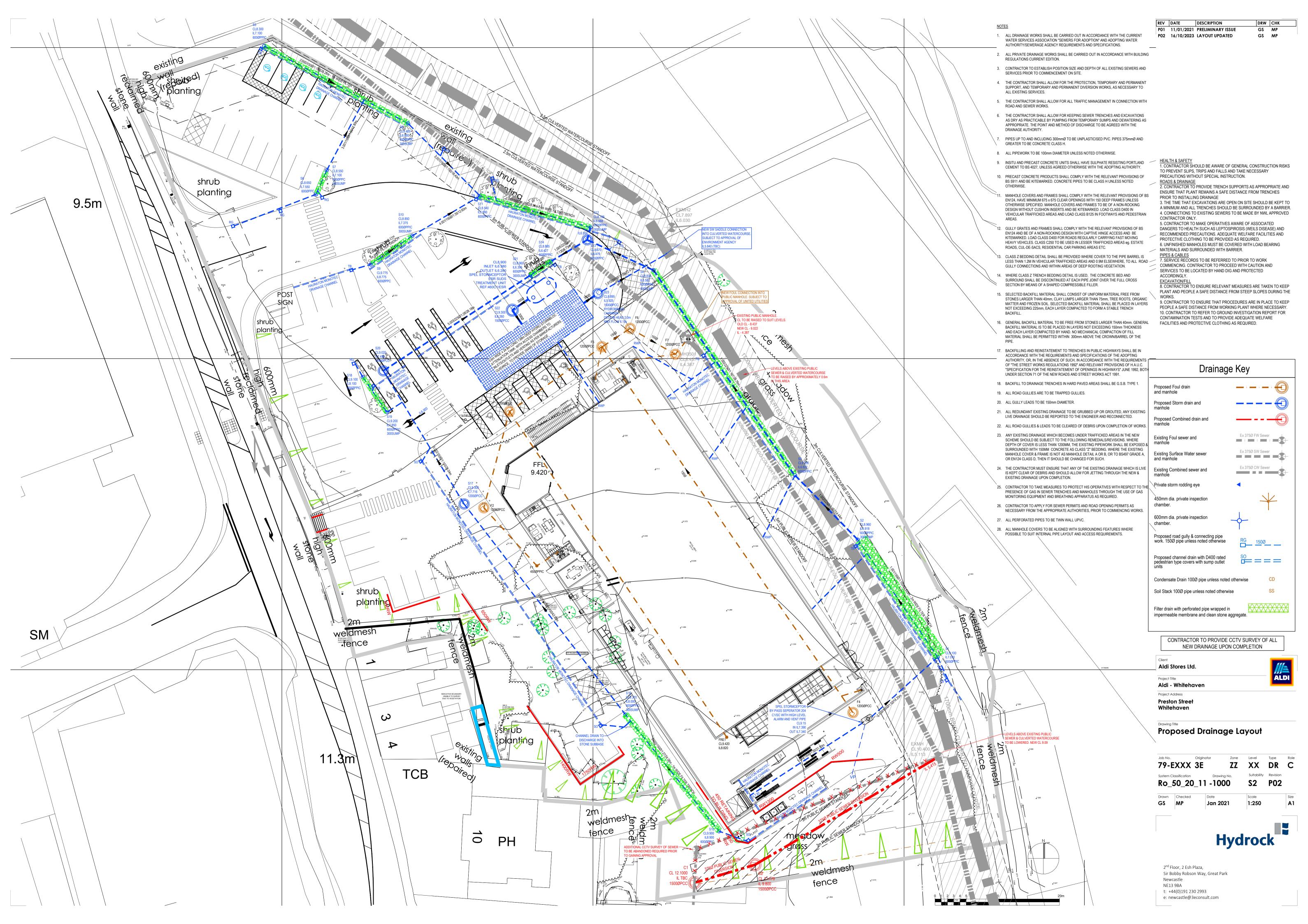
This data has been generated by strategic scale flood models and is not intended for use at the individual property scale. If you're intending to use this data as part of a flood risk assessment, please include an appropriate modelling tolerance as part of your assessment. The Environment Agency regularly updates its modelling. We recommend that you check the data provided is the most recent, before submitting your flood risk assessment.

Flood risk activity permits

Under the Environmental Permitting (England and Wales) Regulations 2016 some developments may require an environmental permit for flood risk activities from the Environment Agency. This includes any permanent or temporary works that are in, over, under, or nearby a designated main river or flood defence structure.

Find out more about flood risk activity permits

Help and advice


Contact the Cumbria and Lancashire Environment Agency team at inforequests.cmblnc@environment-agency.gov.uk for:

- more information about getting a product 5, 6, 7 or 8
- general help and advice about the site you're requesting data for

Appendix D - Proposed Drainage Details

Reference	Title
79-EXXXX-3E-ZZ-XX-DR-C-Ro-50-20-11-1000-S2-P02	Existing Drainage Layout Plan

Appendix E - Proposed Drainage Calculations

Reference	Title
	Causeway Flow Drainage Model Results

File: SW CALCS.pfd Network: Storm Network **Gary Spence**

12/10/2023

Page 1

Design Settings

Rainfall Methodology FSR Return Period (years) 1 Additional Flow (%) 0

FSR Region England and Wales

M5-60 (mm) 17.000 Ratio-R 0.300

CV 0.750 Time of Entry (mins) 5.00

Maximum Time of Concentration (mins) 30.00 Maximum Rainfall (mm/hr) 50.0 Minimum Velocity (m/s) 1.00 Connection Type **Level Soffits** Minimum Backdrop Height (m) 0.200 Preferred Cover Depth (m) 1.200 Include Intermediate Ground ✓

Enforce best practice design rules ✓

Nodes

Name	Area (ha)	T of E (mins)	Cover Level (m)	Diameter (mm)	Easting (m)	Northing (m)	Depth (m)
LB	0.021	5.00	8.120	150	297325.211	517479.748	0.300
S1	0.042	5.00	9.100	600	297355.406	517502.017	2.030
S2	0.093	5.00	8.960	600	297342.571	517520.892	2.042
S3	0.045	5.00	9.250	600	297332.495	517531.237	2.428
S4	0.123	5.00	8.835	600	297309.749	517564.203	2.253
S5	0.063	5.00	8.300	600	297247.139	517600.239	1.200
S6	0.030	5.00	8.650	600	297255.495	517576.410	1.100
S 7	0.000		8.550	600	297257.223	517580.279	1.450
S8	0.000		8.400	600	297270.285	517587.802	1.600
S9	0.028		9.775	600	297264.290	517565.139	
S10	0.023		8.850	600	297270.966	517569.748	
S11	0.018	5.00	8.540	600	297281.847	517576.151	1.849
S12	0.000		8.728	600	297299.612	517571.071	2.160
S13	0.034	5.00	8.670	1200	297299.093	517569.084	2.191
S14	0.000		8.850	600	297293.286	517565.662	2.423
S15	0.007	5.00	9.900	600	297321.999	517474.029	1.000
S16	0.040	5.00	9.370	600	297305.209	517492.798	1.370
S17	0.000		9.300	1200	297279.293	517526.633	1.584
S18	0.015	5.00	9.100	600	297262.999	517547.041	1.000
S19	0.021	5.00	9.200	600	297266.889	517541.393	1.350
S20	0.055	5.00	9.020	1200	297266.297	517548.039	1.530
S21	0.000		8.960	600	297289.933	517563.389	2.565
S22			8.980	1500	297287.037	517557.786	2.720
TANK	0.000		8.885	600	297287.037	517557.786	2.945
S23	0.000		8.895	1500	297300.793	517560.462	2.970

File: SW CALCS.pfd Network: Storm Network

Gary Spence 12/10/2023

Page 2

<u>Links</u>

Name	US	DS	Length	ks (mm) /	US IL	DS IL	Fall	Slope	Dia	T of C	Rain
	Node	Node	(m)	n	(m)	(m)	(m)	(1:X)	(mm)	(mins)	(mm/hr)
1.000	LB	S1	37.519	0.600	7.820	7.070	0.750	50.0	150	5.44	39.0
1.001	S1	S2	22.825	0.600	7.070	6.918	0.152	150.0	150	5.90	37.7
1.002	S2	S3	14.441	0.600	6.918	6.822	0.096	150.0	225	6.13	37.1
1.003	S3	S4	40.052	0.600	6.822	6.582	0.240	167.0	225	6.79	35.5
1.004	S4	S13	11.721	0.600	6.582	6.479	0.103	113.8	225	6.95	35.1
2.000	S5	S8	26.276	0.600	7.100	6.925	0.175	150.0	150	5.54	38.7
3.000	S6	S7	4.237	0.600	7.550	7.100	0.450	9.4	150	5.02	40.3
3.001	S7	S8	15.074	0.600	7.100	6.800	0.300	50.2	150	5.20	39.7
2.001	S8	S11	16.414	0.600	6.800	6.691	0.109	150.0	150	5.87	37.8
2.002	S11	S12	18.477	0.600	6.691	6.568	0.123	150.0	150	6.25	36.8
2.003	S12	S13	2.054	0.600	6.568	6.554	0.014	150.0	150	6.29	36.7
1.005	S13	S14	6.740	0.600	6.479	6.427	0.052	129.6	225	7.05	34.9
1.006	S14	S21	4.051	0.600	6.427	6.396	0.031	130.7	225	7.11	34.8
5.000	S15	S16	25.183	0.600	8.900	8.000	0.900	28.0	150	5.22	39.7
5.001	S16	S17	42.620	0.600	8.000	7.716	0.284	150.0	150	6.09	37.2
5.002	S17	S20	25.042	0.600	7.716	7.490	0.226	110.8	150	6.53	36.1
6.000	S18	S19	6.858	0.600	8.100	7.850	0.250	27.4	150	5.06	40.2
6.001	S19	S20	6.672	0.600	7.850	7.783	0.067	99.6	150	5.17	39.8
5.003	S20	S21	28.183	0.600	7.490	6.395	1.095	25.7	150	6.76	35.6
1.007	S21	S22	6.307	0.600	6.395	6.260	0.135	46.7	300	7.15	34.7
1.008	S22	TANK	2.750	0.600	6.260	6.240	0.020	137.5	300	7.19	34.6
1.009	TANK	S23	2.750	0.600	5.940	5.925	0.015	183.3	300	7.23	34.5

Name	Vel	Cap	Flow	US	DS	Σ Area	Σ Add	Pro	Pro
	(m/s)	(I/s)	(I/s)	Depth	Depth	(ha)	Inflow	Depth	Velocity
				(m)	(m)		(I/s)	(mm)	(m/s)
1.000	1.426	25.2	2.2	0.150	1.880	0.021	0.0	30	0.883
1.001	0.818	14.5	6.4	1.880	1.892	0.063	0.0	70	0.794
1.002	1.065	42.3	15.7	1.817	2.203	0.156	0.0	94	0.986
1.003	1.009	40.1	19.3	2.203	2.028	0.201	0.0	110	1.000
1.004	1.225	48.7	30.9	2.028	1.966	0.324	0.0	131	1.295
2.000	0.818	14.5	6.6	1.050	1.325	0.063	0.0	71	0.800
3.000	3.303	58.4	3.3	0.950	1.300	0.030	0.0	24	1.799
3.001	1.422	25.1	3.2	1.300	1.450	0.030	0.0	36	0.978
2.001	0.818	14.5	9.5	1.450	1.699	0.093	0.0	89	0.872
2.002	0.818	14.5	11.1	1.699	2.010	0.111	0.0	99	0.901
2.003	0.818	14.5	11.0	2.010	1.966	0.111	0.0	98	0.899
1.005	1.147	45.6	44.4	1.966	2.198	0.469	0.0	180	1.301
1.006	1.142	45.4	44.2	2.198	2.339	0.469	0.0	181	1.295
5.000	1.910	33.8	0.8	0.850	1.220	0.007	0.0	16	0.780
5.001	0.818	14.5	4.7	1.220	1.434	0.047	0.0	59	0.732
5.002	0.954	16.9	4.6	1.434	1.380	0.047	0.0	54	0.814
6.000	1.930	34.1	1.6	0.850	1.200	0.015	0.0	23	1.001
6.001	1.007	17.8	3.9	1.200	1.087	0.036	0.0	48	0.809
5.003	1.992	35.2	13.3	1.380	2.415	0.138	0.0	64	1.852
1.007	2.306	163.0	57.1	2.265	2.420	0.607	0.0	122	2.107
1.008	1.339	94.6	57.0	2.420	2.345	0.607	0.0	168	1.398
1.009	1.158	81.8	56.8	2.645	2.670	0.607	0.0	184	1.247

File: SW CALCS.pfd Network: Storm Network

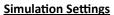
Gary Spence 12/10/2023

Page 3

Pipeline Schedule

Link	Length	Slope	Dia	Link	US CL	US IL	US Depth	DS CL	DS IL	DS Depth
	(m)	(1:X)	(mm)	Type	(m)	(m)	(m)	(m)	(m)	(m)
1.000	37.519	50.0	150	Circular	8.120	7.820	0.150	9.100	7.070	1.880
1.001	22.825	150.0	150	Circular	9.100	7.070	1.880	8.960	6.918	1.892
1.002	14.441	150.0	225	Circular	8.960	6.918	1.817	9.250	6.822	2.203
1.003	40.052	167.0	225	Circular	9.250	6.822	2.203	8.835	6.582	2.028
1.004	11.721	113.8	225	Circular	8.835	6.582	2.028	8.670	6.479	1.966
2.000	26.276	150.0	150	Circular	8.300	7.100	1.050	8.400	6.925	1.325
3.000	4.237	9.4	150	Circular	8.650	7.550	0.950	8.550	7.100	1.300
3.001	15.074	50.2	150	Circular	8.550	7.100	1.300	8.400	6.800	1.450
2.001	16.414	150.0	150	Circular	8.400	6.800	1.450	8.540	6.691	1.699
2.002	18.477	150.0	150	Circular	8.540	6.691	1.699	8.728	6.568	2.010
2.003	2.054	150.0	150	Circular	8.728	6.568	2.010	8.670	6.554	1.966
1.005	6.740	129.6	225	Circular	8.670	6.479	1.966	8.850	6.427	2.198
1.006	4.051	130.7	225	Circular	8.850	6.427	2.198	8.960	6.396	2.339
5.000	25.183	28.0	150	Circular	9.900	8.900	0.850	9.370	8.000	1.220
5.001	42.620	150.0	150	Circular	9.370	8.000	1.220	9.300	7.716	1.434
5.002	25.042	110.8	150	Circular	9.300	7.716	1.434	9.020	7.490	1.380
6.000	6.858	27.4	150	Circular	9.100	8.100	0.850	9.200	7.850	1.200
6.001	6.672	99.6	150	Circular	9.200	7.850	1.200	9.020	7.783	1.087
5.003	28.183	25.7	150	Circular	9.020	7.490	1.380	8.960	6.395	2.415
1.007	6.307	46.7	300	Circular	8.960	6.395	2.265	8.980	6.260	2.420
1.008	2.750	137.5	300	Circular	8.980	6.260	2.420	8.885	6.240	2.345
1.009	2.750	183.3	300	Circular	8.885	5.940	2.645	8.895	5.925	2.670

Link	US	Dia	Node	МН	DS	Dia	Node	МН
	Node	(mm)	Type	Туре	Node	(mm)	Type	Type
1.000	LB	150	Manhole	Adoptable	S1	600	Manhole	Adoptable
1.001	S1	600	Manhole	Adoptable	S2	600	Manhole	Adoptable
1.002	S2	600	Manhole	Adoptable	S3	600	Manhole	Adoptable
1.003	S3	600	Manhole	Adoptable	S4	600	Manhole	Adoptable
1.004	S4	600	Manhole	Adoptable	S13	1200	Manhole	Adoptable
2.000	S5	600	Manhole	Adoptable	S8	600	Manhole	Adoptable
3.000	S6	600	Manhole	Adoptable	S7	600	Manhole	Adoptable
3.001	S7	600	Manhole	Adoptable	S8	600	Manhole	Adoptable
2.001	S8	600	Manhole	Adoptable	S11	600	Manhole	Adoptable
2.002	S11	600	Manhole	Adoptable	S12	600	Manhole	Adoptable
2.003	S12	600	Manhole	Adoptable	S13	1200	Manhole	Adoptable
1.005	S13	1200	Manhole	Adoptable	S14	600	Manhole	Adoptable
1.006	S14	600	Manhole	Adoptable	S21	600	Manhole	Adoptable
5.000	S15	600	Manhole	Adoptable	S16	600	Manhole	Adoptable
5.001	S16	600	Manhole	Adoptable	S17	1200	Manhole	Adoptable
5.002	S17	1200	Manhole	Adoptable	S20	1200	Manhole	Adoptable
6.000	S18	600	Manhole	Adoptable	S19	600	Manhole	Adoptable
6.001	S19	600	Manhole	Adoptable	S20	1200	Manhole	Adoptable
5.003	S20	1200	Manhole	Adoptable	S21	600	Manhole	Adoptable
1.007	S21	600	Manhole	Adoptable	S22	1500	Manhole	Adoptable
1.008	S22	1500	Manhole	Adoptable	TANK	600	Manhole	Adoptable
1.009	TANK	600	Manhole	Adoptable	S23	1500	Manhole	Adoptable


Node	Easting (m)	Northing (m)	CL (m)	Depth (m)	Dia (mm)	Connections	Link	IL (m)	Dia (mm)
LB	297325.211	517479.748	8.120	0.300	150			(,	(,
						0	1.000	7.820	150
S1	297355.406	517502.017	9.100	2.030	600	1	1.000	7.070	150
						0	1.001	7.070	150
S2	297342.571	517520.892	8.960	2.042	600	1	1.001	6.918	150
						1 0	1.002	6.918	225
S3	297332.495	517531.237	9.250	2.428	600		1.002	6.822	225
						1 0	1.003	6.822	225
S4	297309.749	517564.203	8.835	2.253	600	0	1.003	6.582	225
						1 0	1.004	6.582	225
S5	297247.139	517600.239	8.300	1.200	600	Q, 0	2.000	7.100	150
S6	297255.495	517576.410	8.650	1.100	600	0	2.000	7.100	150
30	237233.433	317370.410	0.030	1.100	000	ð	2,000	7.550	150
S7	297257.223	517580.279	8.550	1.450	600	0	3.000	7.550 7.100	150 150
37	237237.223	317360.273	8.330	1.430	000	7 °			
S8	297270.285	517587.802	8.400	1.600	600	1 0	3.001	7.100 6.800	150 150
30	237270.263	317307.002	8.400	1.000	000	2 2		6.925	150
						0 0	2.001	6.800	150
S9	297264.290	517565.139	9.775		600				
S10	297270.966	517569.748	8.850		600				
S11	297281.847	517576.151	8.540	1.849	600	1 1	2.001	6.691	150
						0	2.002	6.691	150
S12	297299.612	517571.071	8.728	2.160	600	1	2.002	6.568	150
						0	2.003	6.568	150

Node	Easting (m)	Northing (m)	CL (m)	Depth (m)	Dia (mm)	Connections	5	Link	IL (m)	Dia (mm)
S13	297299.093	517569.084	8.670	2.191	1200	1	1	2.003	6.554	150
313	237233.033	317303.004	0.070	2.131	1200		2	1.004	6.479	225
						,	0	1.005	6.479	225
S14	297293.286	517565.662	8.850	2.423	600		1	1.005	6.427	225
						0 -	0	1.006	6.427	225
S15	297321.999	517474.029	9.900	1.000	600	0				
							0	5.000	8.900	150
S16	297305.209	517492.798	9.370	1.370	600		1	5.000	8.000	150
						1	0	5.001	8.000	150
S17	297279.293	517526.633	9.300	1.584	1200		1	5.001	7.716	150
						ì	0	5.002	7.716	150
S18	297262.999	517547.041	9.100	1.000	600	Q				
						0	0	6.000	8.100	150
S19	297266.889	517541.393	9.200	1.350	600	1 0	1	6.000	7.850	150
							0	6.001	7.850	150
S20	297266.297	517548.039	9.020	1.530	1200		1	6.001	7.783	150
							2	5.002	7.490	150
<u></u>	207200 022	F47F62 200	0.000	2.565	600	1 2	0	5.003	7.490	150
S21	297289.933	517563.389	8.960	2.565	600	2	1 2	5.003 1.006	6.395 6.396	150 225
						0	0	1.007	6.395	300
S22	297287.037	517557.786	8.980	2.720	1500	¹ →0	1	1.007	6.260	300
							0	1.008	6.260	300
TANK	297287.037	517557.786	8.885	2.945	600	\	1	1.008	6.240	300
							0	1.009	5.940	300
S23	297300.793	517560.462	8.895	2.970	1500	1-0	1	1.009	5.925	300

File: SW CALCS.pfd Network: Storm Network

Gary Spence 12/10/2023 Page 6

Rainfall Methodology	FSR	Analysis Speed	Detailed
FSR Region	England and Wales	Skip Steady State	Х
M5-60 (mm)	17.000	Drain Down Time (mins)	240
Ratio-R	0.300	Additional Storage (m³/ha)	20.0
Summer CV	0.750	Check Discharge Rate(s)	Х
Winter CV	0.840	Check Discharge Volume	x

Storm Durations

15	30	60	120	180	240	360	480	600	720	960	1440

Return Period (years)	Climate Change (CC %)	Additional Area (A %)	Additional Flow (Q %)
1	0	0	0
30	0	0	0
100	0	0	0
100	30	0	0
100	45	0	0

Node S23 Online Hydro-Brake® Control

Flap Valve	Х	Objective	(HE) Minimise upstream storage
Replaces Downstream Link	\checkmark	Sump Available	\checkmark
Invert Level (m)	5.925	Product Number	CTL-SHE-0099-6100-2200-6100
Design Depth (m)	2.200	Min Outlet Diameter (m)	0.150
Design Flow (I/s)	6.1	Min Node Diameter (mm)	1200

Node TANK Depth/Area Storage Structure

Base Inf Coefficient (m/hr)	0.00000	Safety Factor	2.0	Invert Level (m)	5.940
Side Inf Coefficient (m/hr)	0.00000	Porosity	0.96	Time to half empty (mins)	

•	_	Inf Area (m²)	Depth		Inf Area (m²)			Inf Area
(111)	(1111)	(111)	(111)	(111)	(111)	(111)	(111)	(111)
0.000	138.9	0.0	1.980	138.9	0.0	1.981	0.0	0.0

Node S2 Carpark Storage Structure

Base Inf Coefficient (m/hr)	0.00000	Invert Level (m)	6.918	Slope (1:X)	150.0
Side Inf Coefficient (m/hr)	0.00000	Time to half empty (mins)	120	Depth (m)	
Safety Factor	2.0	Width (m)	2.000	Inf Depth (m)	
Porosity	0.30	Length (m)	22.800		

Node S4 Carpark Storage Structure

Base Inf Coefficient (m/hr)	0.00000	Invert Level (m)	6.582	Slope (1:X)	167.0
Side Inf Coefficient (m/hr)	0.00000	Time to half empty (mins)	248	Depth (m)	
Safety Factor	2.0	Width (m)	1.000	Inf Depth (m)	
Porosity	0.30	Length (m)	39.800		

Node S12 Carpark Storage Structure

Base Inf Coefficient (m/hr)	0.00000	Invert Level (m)	6.568	Slope (1:X)	150.0
Side Inf Coefficient (m/hr)	0.00000	Time to half empty (mins)		Depth (m)	
Safety Factor	2.0	Width (m)	1.000	Inf Depth (m)	
Porosity	0.30	Length (m)	18.500		

Hydrock Consultants Ltd

File: SW CALCS.pfd Network: Storm Network

Gary Spence 12/10/2023 Page 7

Node S8 Carpark Storage Structure

Base Inf Coefficient (m/hr)	0.00000	Invert Level (m)	6.800	Slope (1:X)	150.0
Side Inf Coefficient (m/hr)	0.00000	Time to half empty (mins)		Depth (m)	
Safety Factor	2.0	Width (m)	1.000	Inf Depth (m)	
Porosity	0.30	Length (m)	26.300		

Node S7 Carpark Storage Structure

Base Inf Coefficient (m/hr)	0.00000	Invert Level (m)	7.100	Slope (1:X)	20.0
Side Inf Coefficient (m/hr)	0.00000	Time to half empty (mins)	184	Depth (m)	
Safety Factor	2.0	Width (m)	1.000	Inf Depth (m)	
Porosity	0.30	Length (m)	4.000		

File: SW CALCS.pfd Network: Storm Network

Gary Spence 12/10/2023

Page 8

Results for 1 year Critical Storm Duration. Lowest mass balance: 98.97%

Node Event	US	Peak	Level	Depth	Inflow	Node	Flood	Status
	Node	(mins)	(m)	(m)	(I/s)	Vol (m³)	(m³)	
15 minute winter	LB	10	7.850	0.030	2.3	0.0426	0.0000	OK
15 minute winter	S1	11	7.141	0.071	6.8	0.0493	0.0000	OK
15 minute winter	S2	11	7.021	0.103	16.5	0.6053	0.0000	OK
15 minute winter	S3	11	6.934	0.112	20.6	0.0734	0.0000	OK
15 minute winter	S4	12	6.745	0.163	33.0	0.8997	0.0000	OK
15 minute winter	S5	10	7.173	0.073	6.8	0.0969	0.0000	OK
15 minute winter	S6	10	7.574	0.024	3.3	0.0201	0.0000	OK
15 minute winter	S7	10	7.136	0.036	3.3	0.0176	0.0000	OK
15 minute winter	S8	11	6.894	0.094	9.8	0.2333	0.0000	OK
	S9							
	S10							
15 minute winter	S11	11	6.794	0.103	11.4	0.0490	0.0000	OK
15 minute winter	S12	12	6.725	0.157	11.4	0.5813	0.0000	SURCHARGED
15 minute winter	S13	12	6.709	0.230	43.0	0.3320	0.0000	SURCHARGED
15 minute winter	S14	12	6.636	0.209	42.9	0.0591	0.0000	OK
15 minute winter	S15	10	8.916	0.016	8.0	0.0066	0.0000	OK
15 minute winter	S16	11	8.062	0.062	5.1	0.0538	0.0000	OK
15 minute winter	S17	11	7.771	0.055	5.0	0.0620	0.0000	OK
15 minute winter	S18	10	8.122	0.022	1.6	0.0129	0.0000	OK
15 minute winter	S19	10	7.900	0.050	3.9	0.0297	0.0000	OK
15 minute winter	S20	11	7.556	0.066	14.1	0.1226	0.0000	OK
15 minute winter	S21	12	6.552	0.157	55.9	0.0443	0.0000	OK
15 minute winter	S22	12	6.455	0.195	55.9	0.3442	0.0000	OK
240 minute winter	TANK	180	6.308	0.368	16.2	49.1871	0.0000	SURCHARGED
240 minute winter	S23	180	6.308	0.383	5.0	0.6766	0.0000	OK

Link Event (Outflow)	US Node	Link	DS Node	Outflow (I/s)	Velocity (m/s)	Flow/Cap	Link Vol (m³)	Discharge Vol (m³)
15 minute winter	LB	1.000	S1	2.2	0.431	0.088	0.1996	
15 minute winter	S1	1.001	S2	6.6	0.629	0.456	0.2401	
15 minute winter	S2	1.002	S3	16.0	0.853	0.377	0.2706	
15 minute winter	S3	1.003	S4	20.4	0.832	0.508	1.0040	
15 minute winter	S4	1.004	S13	30.2	0.883	0.620	0.4135	
15 minute winter	S5	2.000	S8	6.6	0.793	0.455	0.2179	
15 minute winter	S6	3.000	S7	3.3	1.294	0.056	0.0109	
15 minute winter	S7	3.001	S8	3.2	0.473	0.129	0.1121	
15 minute winter	S8	2.001	S11	9.6	0.786	0.666	0.2011	
15 minute winter	S11	2.002	S12	11.4	0.785	0.789	0.2787	
15 minute winter	S12	2.003	S13	11.1	0.756	0.769	0.0362	
15 minute winter	S13	1.005	S14	42.9	1.085	0.940	0.2637	
15 minute winter	S14	1.006	S21	42.7	1.196	0.941	0.1435	
15 minute winter	S15	5.000	S16	0.8	0.212	0.022	0.0984	
15 minute winter	S16	5.001	S17	5.0	0.787	0.343	0.2705	
15 minute winter	S17	5.002	S20	4.8	0.742	0.286	0.1668	
15 minute winter	S18	6.000	S19	1.6	0.488	0.046	0.0231	
15 minute winter	S19	6.001	S20	3.8	0.771	0.213	0.0328	
15 minute winter	S20	5.003	S21	14.2	1.049	0.403	0.3538	
15 minute winter	S21	1.007	S22	55.9	1.305	0.343	0.2700	
15 minute winter	S22	1.008	TANK	56.0	1.275	0.592	0.1207	
30 minute winter	TANK	1.009	S23	5.1	0.378	0.063	0.1793	
240 minute winter	S23	Hydro-Brake®		5.0				90.5

File: SW CALCS.pfd

Network: Storm Network

Gary Spence 12/10/2023

Results for 30 year Critical Storm Duration. Lowest mass balance: 98.97%

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
15 minute winter	LB	10	7.867	0.047	5.5	0.0669	0.0000	ОК
15 minute winter	S1	12	7.397	0.327	16.5	0.2276	0.0000	SURCHARGED
15 minute winter	S2	13	7.295	0.377	36.6	4.5719	0.0000	SURCHARGED
15 minute winter	S3	13	7.257	0.435	40.6	0.2838	0.0000	SURCHARGED
15 minute winter	S4	13	7.109	0.527	62.4	5.5967	0.0000	SURCHARGED
15 minute winter	S5	12	7.367	0.267	16.6	0.3565	0.0000	SURCHARGED
15 minute winter	S6	10	7.587	0.037	7.9	0.0309	0.0000	OK
15 minute winter	S7	14	7.248	0.148	7.9	0.1174	0.0000	OK
15 minute winter	S8	14	7.242	0.442	23.2	2.9284	0.0000	SURCHARGED
	S9							
	S10							
15 minute winter	S11	13	7.145	0.454	16.6	0.2165	0.0000	SURCHARGED
360 minute winter	S12	336	6.999	0.431	5.1	2.1758	0.0000	SURCHARGED
360 minute winter	S13	336	6.999	0.520	21.6	0.7497	0.0000	SURCHARGED
360 minute winter	S14	336	6.999	0.572	21.5	0.1618	0.0000	SURCHARGED
15 minute winter	S15	10	8.923	0.023	1.8	0.0099	0.0000	OK
15 minute winter	S16	11	8.108	0.108	12.4	0.0932	0.0000	OK
15 minute winter	S17	11	7.809	0.093	12.0	0.1046	0.0000	OK
15 minute winter	S18	10	8.135	0.035	4.0	0.0202	0.0000	OK
15 minute winter	S19	10	7.935	0.085	9.5	0.0503	0.0000	OK
15 minute winter	S20	12	7.663	0.173	34.8	0.3201	0.0000	SURCHARGED
360 minute winter	S21	336	6.998	0.603	27.6	0.1708	0.0000	SURCHARGED
360 minute winter	S22	336	6.998	0.738	26.9	1.3044	0.0000	SURCHARGED
360 minute winter	TANK	336	6.998	1.058	26.5	141.3822	0.0000	SURCHARGED
360 minute winter	S23	336	6.998	1.073	5.3	1.8958	0.0000	OK

Link Event (Outflow)	US Node	Link	DS Node	Outflow (I/s)	Velocity (m/s)	Flow/Cap	Link Vol (m³)	Discharge Vol (m³)
15 minute winter	LB	1.000	S1	5.4	0.502	0.214	0.4191	
15 minute winter	S1	1.001	S2	13.1	0.773	0.907	0.4018	
15 minute winter	S2	1.002	S3	29.4	0.915	0.694	0.5743	
15 minute summer	S3	1.003	S4	33.8	0.893	0.844	1.5929	
15 minute winter	S4	1.004	S13	47.8	1.201	0.981	0.4662	
15 minute winter	S5	2.000	S8	15.4	0.931	1.063	0.4626	
15 minute winter	S6	3.000	S7	7.9	1.655	0.135	0.0419	
15 minute winter	S7	3.001	S8	7.8	0.564	0.311	0.2652	
15 minute winter	S8	2.001	S11	12.9	0.787	0.896	0.2890	
15 minute winter	S11	2.002	S12	14.5	0.822	1.001	0.3253	
15 minute winter	S12	2.003	S13	17.1	0.970	1.182	0.0362	
15 minute winter	S13	1.005	S14	67.6	1.700	1.482	0.2681	
15 minute winter	S14	1.006	S21	67.9	1.708	1.496	0.1611	
15 minute winter	S15	5.000	S16	1.8	0.243	0.052	0.1919	
15 minute winter	S16	5.001	S17	12.0	0.968	0.830	0.5309	
15 minute winter	S17	5.002	S20	11.9	0.872	0.705	0.3590	
15 minute winter	S18	6.000	S19	4.0	0.608	0.116	0.0457	
15 minute winter	S19	6.001	S20	9.3	0.965	0.524	0.0645	
15 minute winter	S20	5.003	S21	33.4	1.919	0.948	0.4962	
15 minute winter	S21	1.007	S22	97.1	1.407	0.596	0.4233	
15 minute winter	S22	1.008	TANK	97.7	1.435	1.032	0.1807	
15 minute winter	TANK	1.009	S23	6.2	0.480	0.076	0.1937	
15 minute summer	S23	Hydro-Brake®		5.0				61.1

File: SW CALCS.pfd Network: Storm Network

Gary Spence 12/10/2023

Results for 100 year Critical Storm Duration. Lowest mass balance: 98.97%

Node Event	US	Peak	Level	Depth	Inflow	Node	Flood	Status
	Node	(mins)	(m)	(m)	(I/s)	Vol (m³)	(m³)	
15 minute winter	LB	10	7.874	0.054	7.1	0.0765	0.0000	OK
15 minute winter	S1	13	7.676	0.606	21.2	0.4225	0.0000	SURCHARGED
15 minute winter	S2	14	7.528	0.610	46.8	8.0442	0.0000	SURCHARGED
15 minute winter	S3	14	7.476	0.654	40.5	0.4268	0.0000	SURCHARGED
360 minute winter	S4	344	7.327	0.745	19.4	8.4957	0.0000	SURCHARGED
15 minute winter	S5	12	7.634	0.534	21.4	0.7118	0.0000	SURCHARGED
15 minute winter	S6	10	7.592	0.042	10.2	0.0351	0.0000	OK
30 minute winter	S7	23	7.466	0.366	8.3	0.4326	0.0000	SURCHARGED
30 minute winter	S8	23	7.456	0.656	21.6	4.6724	0.0000	SURCHARGED
	S9							
	S10							
30 minute winter	S11	23	7.335	0.644	16.6	0.3074	0.0000	SURCHARGED
360 minute winter	S12	344	7.326	0.758	6.3	4.0784	0.0000	SURCHARGED
360 minute winter	S13	344	7.326	0.847	25.4	1.2206	0.0000	SURCHARGED
360 minute winter	S14	344	7.325	0.898	25.2	0.2542	0.0000	SURCHARGED
15 minute winter	S15	10	8.927	0.027	2.4	0.0114	0.0000	OK
15 minute winter	S16	12	8.304	0.304	15.9	0.2639	0.0000	SURCHARGED
15 minute winter	S17	12	8.096	0.380	15.2	0.4299	0.0000	SURCHARGED
15 minute winter	S18	10	8.139	0.039	5.1	0.0228	0.0000	OK
15 minute winter	S19	12	8.007	0.157	12.2	0.0934	0.0000	SURCHARGED
15 minute winter	S20	12	7.980	0.490	40.3	0.9058	0.0000	SURCHARGED
360 minute winter	S21	344	7.325	0.930	32.4	0.2631	0.0000	SURCHARGED
360 minute winter	S22	344	7.325	1.065	31.6	1.8811	0.0000	SURCHARGED
360 minute winter	TANK	344	7.324	1.384	31.1	184.9847	0.0000	SURCHARGED
360 minute winter	S23	344	7.324	1.399	5.3	2.4723	0.0000	OK

Link Event (Outflow)	US Node	Link	DS Node	Outflow (I/s)	Velocity (m/s)	Flow/Cap	Link Vol (m³)	Discharge Vol (m³)
15 minute winter	LB	1.000	S1	7.0	0.514	0.277	0.4372	
15 minute winter	S1	1.001	S2	16.0	0.907	1.105	0.4018	
15 minute winter	S2	1.002	S3	28.6	0.933	0.676	0.5743	
15 minute winter	S3	1.003	S4	33.3	0.892	0.831	1.5929	
15 minute winter	S4	1.004	S13	53.4	1.344	1.097	0.4662	
15 minute winter	S 5	2.000	S8	18.3	1.038	1.264	0.4626	
15 minute winter	S6	3.000	S7	10.2	1.742	0.174	0.0456	
15 minute winter	S7	3.001	S8	9.3	0.645	0.368	0.2654	
30 minute winter	S8	2.001	S11	14.1	0.801	0.975	0.2890	
30 minute winter	S11	2.002	S12	16.2	0.921	1.122	0.3253	
15 minute winter	S12	2.003	S13	20.3	1.156	1.407	0.0362	
30 minute winter	S13	1.005	S14	76.1	1.913	1.668	0.2681	
30 minute winter	S14	1.006	S21	76.7	1.929	1.690	0.1611	
15 minute winter	S15	5.000	S16	2.4	0.257	0.070	0.2477	
15 minute winter	S16	5.001	S17	15.2	0.992	1.053	0.7503	
15 minute winter	S17	5.002	S20	16.0	0.981	0.952	0.4409	
15 minute winter	S18	6.000	S19	5.1	0.633	0.149	0.0711	
15 minute winter	S19	6.001	S20	12.0	1.020	0.675	0.1175	
15 minute winter	S20	5.003	S21	34.9	1.984	0.992	0.4962	
15 minute winter	S21	1.007	S22	107.1	1.521	0.657	0.4441	
15 minute winter	S22	1.008	TANK	107.0	1.532	1.131	0.1937	
15 minute winter	TANK	1.009	S23	6.3	0.532	0.078	0.1937	
15 minute summer	S23	Hydro-Brake®		5.0				70.8

File: SW CALCS.pfd Network: Storm Network

Gary Spence 12/10/2023

Page 11

Results for 100 year +30% CC Critical Storm Duration. Lowest mass balance: 98.97%

Node Event	US	Peak	Level	Depth	Inflow	Node	Flood	Status
	Node	(mins)	(m)	(m)	(I/s)	Vol (m³)	(m³)	
15 minute winter	LB	13	8.083	0.263	9.3	0.3730	0.0000	FLOOD RISK
15 minute winter	S1	13	8.042	0.972	27.6	0.6774	0.0000	SURCHARGED
30 minute winter	S2	23	7.877	0.959	50.8	13.2283	0.0000	SURCHARGED
30 minute winter	S3	23	7.811	0.989	38.0	0.6457	0.0000	SURCHARGED
480 minute winter	S4	456	7.771	1.189	18.9	14.4055	0.0000	SURCHARGED
15 minute winter	S5	12	8.052	0.952	27.8	1.2696	0.0000	FLOOD RISK
30 minute winter	S6	23	7.797	0.247	10.8	0.2041	0.0000	SURCHARGED
30 minute winter	S7	23	7.791	0.691	10.8	0.9151	0.0000	SURCHARGED
30 minute winter	S8	23	7.778	0.978	27.5	7.3000	0.0000	SURCHARGED
	S9							
	S10							
480 minute winter	S11	456	7.771	1.080	6.2	0.5153	0.0000	SURCHARGED
480 minute winter	S12	456	7.770	1.202	5.7	6.6653	0.0000	SURCHARGED
480 minute winter	S13	456	7.770	1.291	23.1	1.8606	0.0000	SURCHARGED
480 minute winter	S14	456	7.769	1.342	22.5	0.3799	0.0000	SURCHARGED
15 minute winter	S15	10	8.931	0.031	3.1	0.0129	0.0000	OK
15 minute winter	S16	13	8.814	0.814	20.7	0.7058	0.0000	SURCHARGED
15 minute winter	S17	13	8.551	0.835	13.6	0.9439	0.0000	SURCHARGED
15 minute winter	S18	13	8.421	0.321	6.6	0.1874	0.0000	SURCHARGED
15 minute winter	S19	13	8.415	0.565	15.7	0.3356	0.0000	SURCHARGED
15 minute winter	S20	13	8.381	0.891	43.5	1.6477	0.0000	SURCHARGED
480 minute winter	S21	456	7.769	1.374	30.1	0.3888	0.0000	SURCHARGED
480 minute winter	S22	456	7.768	1.508	29.7	2.6653	0.0000	SURCHARGED
480 minute winter	TANK	456	7.768	1.828	29.4	244.2841	0.0000	SURCHARGED
480 minute winter	S23	456	7.768	1.843	5.6	3.2563	0.0000	OK

Link Event (Outflow)	US Node	Link	DS Node	Outflow (I/s)	Velocity (m/s)	Flow/Cap	Link Vol (m³)	Discharge Vol (m³)
15 minute winter	LB	1.000	S1	9.1	0.638	0.363	0.6605	
15 minute summer	S1	1.001	S2	19.1	1.083	1.318	0.4018	
15 minute winter	S2	1.002	S3	32.6	0.934	0.770	0.5743	
30 minute winter	S3	1.003	S4	37.9	0.954	0.946	1.5929	
30 minute winter	S4	1.004	S13	61.9	1.556	1.271	0.4662	
15 minute winter	S 5	2.000	S8	23.2	1.318	1.605	0.4626	
15 minute winter	S6	3.000	S7	13.0	1.776	0.223	0.0746	
15 minute summer	S7	3.001	S8	11.0	0.735	0.437	0.2654	
30 minute winter	S8	2.001	S11	15.7	0.889	1.083	0.2890	
30 minute winter	S11	2.002	S12	18.5	1.049	1.277	0.3253	
15 minute winter	S12	2.003	S13	22.9	1.303	1.587	0.0362	
30 minute winter	S13	1.005	S14	85.4	2.147	1.872	0.2681	
30 minute winter	S14	1.006	S21	85.3	2.144	1.878	0.1611	
15 minute winter	S15	5.000	S16	3.1	0.259	0.091	0.2540	
15 minute summer	S16	5.001	S17	15.3	0.988	1.058	0.7503	
30 minute summer	S17	5.002	S20	16.8	0.982	0.995	0.4409	
15 minute winter	S18	6.000	S19	6.4	0.650	0.188	0.1207	
15 minute winter	S19	6.001	S20	13.9	1.004	0.783	0.1175	
15 minute winter	S20	5.003	S21	39.1	2.224	1.112	0.4962	
15 minute winter	S21	1.007	S22	122.3	1.736	0.750	0.4441	
15 minute winter	S22	1.008	TANK	122.3	1.739	1.293	0.1937	
15 minute winter	TANK	1.009	S23	6.5	0.520	0.080	0.1937	
480 minute winter	S23	Hydro-Brake®		5.6				205.2

File: SW CALCS.pfd

Network: Storm Network

Gary Spence 12/10/2023

Page 12

Results for 100 year +45% CC Critical Storm Duration. Lowest mass balance: 98.97%

Node Event	US	Peak	Level	Depth	Inflow	Node	Flood	Status
	Node	(mins)	(m)	(m)	(I/s)	Vol (m³)	(m³)	
30 minute winter	LB	20	8.120	0.300	8.4	0.4254	1.1435	FLOOD
15 minute winter	S1	12	8.125	1.055	28.7	0.7353	0.0000	SURCHARGED
480 minute winter	S2	448	8.121	1.203	10.6	16.8678	0.0000	SURCHARGED
480 minute winter	S3	448	8.121	1.299	13.0	0.8485	0.0000	SURCHARGED
480 minute winter	S4	448	8.121	1.539	19.9	19.0679	0.0000	SURCHARGED
15 minute winter	S5	12	8.276	1.176	31.0	1.5678	0.0000	FLOOD RISK
480 minute winter	S6	448	8.123	0.573	2.1	0.4743	0.0000	SURCHARGED
480 minute winter	S7	448	8.123	1.023	2.1	1.4069	0.0000	SURCHARGED
480 minute winter	S8	448	8.123	1.323	6.3	10.1179	0.0000	FLOOD RISK
	S9							
	S10							
480 minute winter	S11	448	8.122	1.431	6.4	0.6826	0.0000	SURCHARGED
480 minute winter	S12	448	8.121	1.553	5.9	8.7080	0.0000	SURCHARGED
480 minute winter	S13	448	8.121	1.642	23.3	2.3656	0.0000	SURCHARGED
480 minute winter	S14	448	8.120	1.693	22.9	0.4791	0.0000	SURCHARGED
15 minute winter	S15	13	9.017	0.117	5.6	0.0496	0.0000	OK
15 minute winter	S16	13	9.028	1.028	23.1	0.8909	0.0000	SURCHARGED
15 minute winter	S17	13	8.760	1.044	14.5	1.1805	0.0000	SURCHARGED
15 minute winter	S18	13	8.648	0.548	7.4	0.3196	0.0000	SURCHARGED
15 minute winter	S19	13	8.640	0.790	16.5	0.4695	0.0000	SURCHARGED
15 minute winter	S20	13	8.599	1.109	45.9	2.0511	0.0000	SURCHARGED
480 minute winter	S21	448	8.119	1.724	31.9	0.4880	0.0000	SURCHARGED
480 minute winter	S22	448	8.119	1.859	31.5	3.2845	0.0000	SURCHARGED
480 minute winter	TANK	448	8.119	2.179	31.2	264.7043	0.0000	SURCHARGED
480 minute winter	S23	448	8.118	2.193	6.1	3.8755	0.0000	OK

Link Event (Outflow)	US Node	Link	DS Node	Outflow (I/s)	Velocity (m/s)	Flow/Cap	Link Vol (m³)	Discharge Vol (m³)
15 minute winter	LB	1.000	S1	9.3	0.647	0.369	0.6605	
15 minute winter	S1	1.001	S2	20.2	1.148	1.397	0.4018	
15 minute winter	S2	1.002	S3	33.4	0.932	0.789	0.5743	
30 minute winter	S3	1.003	S4	39.1	0.983	0.975	1.5929	
30 minute winter	S4	1.004	S13	65.9	1.658	1.354	0.4662	
15 minute winter	S5	2.000	S8	25.6	1.456	1.774	0.4626	
15 minute winter	S6	3.000	S7	14.5	1.821	0.248	0.0746	
15 minute winter	S7	3.001	S8	10.9	0.741	0.435	0.2654	
30 minute winter	S8	2.001	S11	16.5	0.936	1.140	0.2890	
30 minute winter	S11	2.002	S12	19.5	1.109	1.351	0.3253	
15 minute winter	S12	2.003	S13	23.1	1.313	1.599	0.0362	
30 minute winter	S13	1.005	S14	90.7	2.282	1.990	0.2681	
30 minute winter	S14	1.006	S21	90.6	2.277	1.995	0.1611	
15 minute winter	S15	5.000	S16	3.9	0.274	0.115	0.4077	
30 minute summer	S16	5.001	S17	15.7	0.989	1.086	0.7503	
15 minute winter	S17	5.002	S20	16.2	1.230	0.963	0.4409	
15 minute winter	S18	6.000	S19	6.8	0.655	0.200	0.1207	
15 minute summer	S19	6.001	S20	14.7	1.006	0.825	0.1175	
15 minute winter	S20	5.003	S21	41.3	2.346	1.173	0.4962	
30 minute winter	S21	1.007	S22	129.7	1.842	0.796	0.4441	
15 minute winter	S22	1.008	TANK	129.4	1.840	1.368	0.1937	
15 minute winter	TANK	1.009	S23	6.6	0.489	0.081	0.1937	
480 minute winter	S23	Hydro-Brake®		6.1				216.1

Appendix F - United Utilities Records

Reference	Title
	UU Sewer Records

 Refmo
 Cover Func

 0001
 74.7
 CO

 0002
 76.12
 CO

 0005
 CO
 CO

 0007
 CO
 CO

 0008
 CO
 CO

 0009
 CO
 CO

 0011
 72.96
 CO

 0201
 72.92
 CO

 0202
 CO
 81.9
 CO

 0201
 83.4
 CO

 0301
 73.57
 CO

 0302
 78.98
 CO

 0303
 79.52
 CO

 0304
 79.62
 CO

 0305
 79.52
 CO

 0306
 79.51
 CO

 0307
 79.47
 CO

 0308
 80.41
 CO

 0401
 77.74
 CO

 0403
 78.69
 CO

 2101
 46.29
 CO

 2102
 27.74
 CO

 2403
 31.84
 CO

 2201
 Invert Size.x Size.y Shape Matl Length Grad Refno Cover Func Invert Size.xSize.yShape Matl Length Grad 72.25 300 CI VC 96.42 0 300 CI VC 35.9 0 100 CI VC 20.62 17.55 600 800 EG BR 41.3 21.13 150 CI VC 14.32 0 150 CI VC 2.83 0 375 CI CO 5 10.52 150 CI VC 9 4.93 800 600 EG BR 78.23 782 0 900 CI CO 21.26 0 1000 CI CO 17.49 4.93 1000 CI CO 18.36 0 800 CI VC 18.38 0 800 CI VC 18.97 0 225 CI VC 35.01 0 225 CI VC 20.03 BR 519.98

Scale: 1: 1250 Date: 10/10/2016

Surface Combined Overflow Manhole, Side Entry Highway Drain, Private Foul Surface Combined WW Site Termination Sludge Main, Public — 느 - Sludge Main, Private — 🛰 — Sludge Main, S104 Non Return Valve **ABANDONED PIPE** Extent of Survey → MainSewer Rising Main → - - Highway Drain Sludge Main Hydrobrake / Vortex Inspection Chamber Bifurcation Contaminated Surface Water ▲ ▲ WW Pumping Station Sludge Pumping Station → Sewer Overflow 🗂 🛅 🔼 T Junction/Saddle Valve Chamber Washout Chamber DropShaft WW Treatment Works ST Septic Tank Vent Column Network Storage Tank Orifice Plate Penstock Chamber Blind Manhole 0 0 0 Foul Surface Combined Overflow Screen Chamber CK Control Kiosk Discharge Point Unspecified → ← → Outfall **LEGEND** MANHOLE FUNCTION FO Foul SW Surface Water CO Combined OV Overflow **SEWER SHAPE** TR Trapezoidal Cl Circular EG Egg OV Oval FT Flat Top HO HorseShoe UN Unspecified RE Rectangular SQ Square SEWER MATERIAL DI Ductile Iron Reinforced Plastic Matrix CO Concrete CSB Concrete Segment Bolted CSU Concrete Segment Unbolted Pitch Fibre CC Concrete Box Culverted PSC Plastic/Steel Composite MAC Masonry, Coursed GRC Glass Reinforced Concrete MAR Masonry, Random GRP Glass Reinforced Plastic The position of underground apparatus shown on this plan is approximate only and is given in accordance with the best information currently available. The actual positions may be different from those shown on the plan and private pipes, sewers or drains may not be recorded. United Utilities will not accept any liability for any damage caused by the actual positions being different from those shown. United Utilities Water Limited 2014. The plan is based upon the Ordnance Survey Map with the sanction of the Controller of H.M. Stationery Office. Crown and United Utilities copyrights are reserved. Unauthorised reproduction will infringe these copyrights. OS Sheet No: NX9717SW Scale: 1: 1250 Date: 10/10/2016

138 Nodes

United

Utilities

Sheet 1 of 1

"ping life flow smoothly

SEWER RECORDS

WASTE WATER SYMBOLOGY

 Refno
 Cover Func

 0504
 71.62
 CO

 0601
 71.4
 CO

 1601
 7.94
 CO

 1707
 CO
 1900
 5.42
 CO

 1901
 6.02
 CO
 1902
 5.94
 CO

 1903
 5.61
 CO
 1903
 5.61
 CO

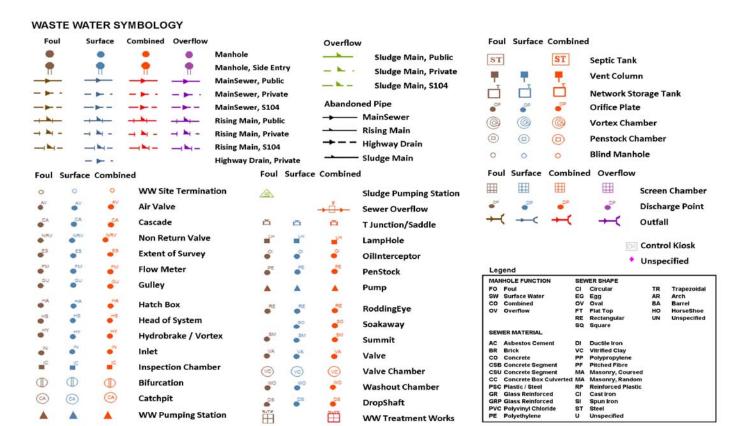
 1908
 5.62
 CO
 1909
 10.44
 CO
 1910
 5.66
 CO

 1913
 5.66
 CO
 1913
 SW
 CO
 1913
 SW
 W
 1917
 CO
 2501
 10.69
 CO
 2501
 10.69
 CO
 2501
 10.69
 CO
 2701
 CO
 2501
 10.69
 CO
 2701
 CO
 2704
 7.17
 CO
 2707
 CO
 2709
 6.98
 CO
 2701
 CO
 2808
 CO
 2701
 2709
 6.98
 CO
 2701
 2709
 6.98
 CO
 2701
 2702
 6.98
 CO Refno Cover Func Invert Size.xSize.yShape Matl Length Grad 6.19 600 CI CO 14.14 5.33 800 600 EG BR 117.15 45 4512 FO
4513 FO
4514 FO
4515 FO
4516 FO
4517 FO
4701 FO
4801 7.49 CO
4807 0 FO
4901 7.3 CO
4902 7.99 CO
4903 7.92 CO
4907 CO
1914 CO
1919 CO
1920 SW
1921 CO
1927 CO
2705 CO
2802 CO
2802 CO
2802 CO
2802 CO
2806 CO
2803 CO
2806 CO
3504 SW
3808 CO
3809 CO
3910 CC
4905 CC
1912 SV
1921 CC
1912 SV
1922 CC
2705 CO
2802 CO
2806 CO
2807 CO
2808 CO
2808 CO
2808 CO
2808 CO
2808 CO
2808 CO
3909 CO
3910 CC
4905 CC
1911 CC
1912 SV
1922 CC
1926 CC
2708 CC
2 0 800 600 EG BR 93.93 0 800 600 EG BR 10.63 100 CI VC 0.73 0 375 CI VC 13.34 0 800 600 EG BR 46.3 0 800 600 EG BR 37.23

OS Sheet No: NX9717NW

Printed By: Property Searches

Scale: 1: 1250 Date: 10/10/2016


WASTE WATER SYMBOLOGY Surface Combined Overflow Manhole, Side Entry Highway Drain, Private Foul Surface Combined WW Site Termination Sludge Main, Public — 느 - Sludge Main, Private — 🛰 — Sludge Main, S104 Non Return Valve **ABANDONED PIPE** Extent of Survey → MainSewer Rising Main → - - Highway Drain Sludge Main Hydrobrake / Vortex Inspection Chamber Bifurcation Contaminated Surface Water ▲ ▲ WW Pumping Station Sludge Pumping Station → Sewer Overflow 🗂 🛅 🔼 T Junction/Saddle Valve Chamber Washout Chamber DropShaft WW Treatment Works ST Septic Tank Vent Column Network Storage Tank Orifice Plate Penstock Chamber 0 0 0 Blind Manhole Foul Surface Combined Overflow Screen Chamber CK Control Kiosk Discharge Point Unspecified → ← → Outfall **LEGEND** MANHOLE FUNCTION FO Foul SW Surface Water CO Combined OV Overflow **SEWER SHAPE** TR Trapezoidal Cl Circular EG Egg OV Oval BA Barrel FT Flat Top HO HorseShoe RE Rectangular UN Unspecified SQ Square SEWER MATERIAL DI Ductile Iron PVC Polyvinyl Chloride Reinforced Plastic Matrix CO Concrete CSB Concrete Segment Bolted CSU Concrete Segment Unbolted Polypropylene Pitch Fibre CC Concrete Box Culverted PSC Plastic/Steel Composite MAC Masonry, Coursed GRC Glass Reinforced Concrete MAR Masonry, Random GRP Glass Reinforced Plastic U Unspecified The position of underground apparatus shown on this plan is approximate only and is given in accordance with the best information currently available. The actual positions may be different from those shown on the plan and private pipes, sewers or drains may not be recorded. United Utilities will not accept any liability for any damage caused by the actual positions being different from those shown. United Utilities Water Limited 2014. The plan is based upon the Ordnance Survey Map with the sanction of the Controller of H.M. Stationery Office. Crown and United Utilities copyrights are reserved. Unauthorised reproduction will infringe these copyrights. OS Sheet No: NX9717NW Scale: 1: 1250 Date: 10/10/2016 138 Nodes Sheet 1 of 1 United

Utilities

"ping life flow smoothly

SEWER RECORDS

Valve Chamber

DropShaft

Washout Chamber

WW Treatment Works

Masonry, Randon Reinforced Plastic Cast Iron

RP CI SI ST U

CLEAN WATER SYMBOLOGY

1

(CA)

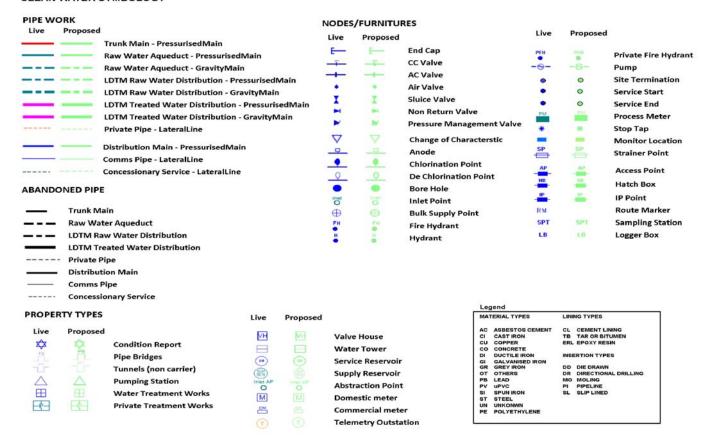
1

(CA)

1

(CA)

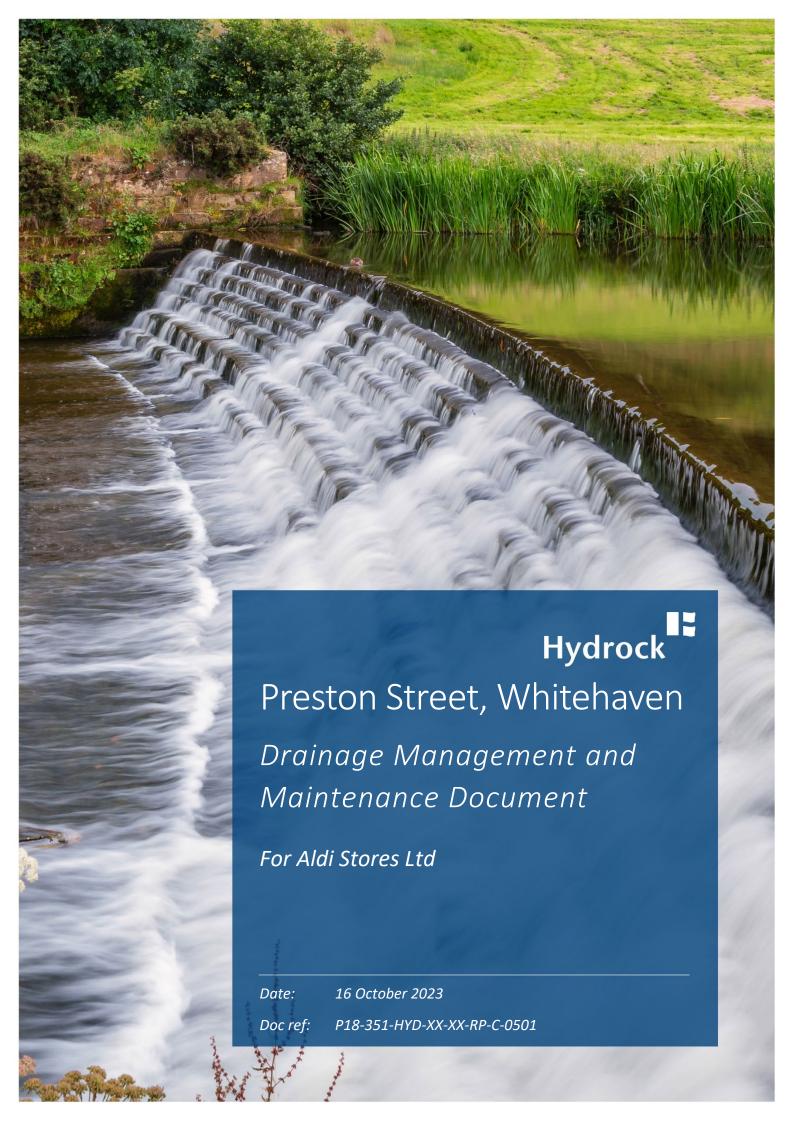
Inspection Chamber


WW Pumping Station

Bifurcation

Catchpit

(VC)


WO

Appendix G - Drainage Maintenance Plan

Reference	Title
P18-351-HYD-XX-XX-DR-C-0051 Rev P01	Proposed Drainage Maintenance Plan

DOCUMENT CONTROL SHEET

Issued by	Hydrock Consultants Limited 2 Esh Plaza Sir Bobby Robson Way Great Park Newcastle upon Tyne NE13 9BA Tel: 0191 2302993 www.hydrock.com						
Client	Aldi Stores Ltd	Aldi Stores Ltd					
Project name	Preston Street, Whitehaven						
Title	Drainage Management and Maintenance Document						
Doc ref	P18-351-HYD-XX-XX-RP-C-0501	P18-351-HYD-XX-XX-RP-C-0501					
Project no.	P18-351						
Status	S2 - For Information						
Date	16/10/2023	16/10/2023					

Issue Number	P01	Name		
Prepared by		Gary Spence		
Checked by		Andrew Wallace		
Approved by		Martin Pearse		

Issue Number	Status	Date	Revision Details			
P01	S2	16/10/2023	First Issue			

Hydrock Consultants Limited has prepared this report in accordance with the instructions of the above-named client for their sole and specific use. Any third parties who may use the information contained herein do so at their own risk.

CONTENTS

P:	18-351	1-HYD-XX-XX-RP-C-0501	
1.		INTRODUCTION	. 1
		OPERATION AND MAINTENANCE REQUIREMENTS	
		rietary Treatment Systems	
		Filter Strips	
	2.2	Filter Drains	.6

1. INTRODUCTION

This Drainage Management and Maintenance Plan has been prepared by Hydrock Consultants Limited (Hydrock) on behalf of our client Aldi Stores Ltd as a guide to the implementation, management, and maintenance of the drainage system for Preston Street, Whitehaven.

This document should be read in conjunction with Hydrock's Proposed Drainage Layout drawing 79-EXXX-3E-ZZ-XX-DR-C-Ro-50-20-11-1000.

2. OPERATION AND MAINTENANCE REQUIREMENTS

Proprietary Treatment Systems

The responsibility for this maintenance will be placed with Aldi Stores Ltd.

Proprietary treatment systems will require routine maintenance to ensure continuing operation to design performance standards.

Many proprietary systems are beneath the ground, and malfunctioning is not easy to detect, and it is therefore often ignored unless alarms are provided or the system is designed to cause localised surface ponding if full. If systems lead to other surface features, early warning of maintenance being required may be easily observed at the inlet to the feature which should be designed to prevent it entering the main part of the component.

Lack of routine maintenance is more likely to cause poor outflow water quality than with other SuDS due to resuspension of solids and anaerobic conditions developing within the device. For example, anaerobic conditions can develop in deep sumps and catchpits that result in nutrients and metals being released from captured sediments.

During the first few months after installation, subsurface treatment units should be visually inspected after rainfall events, and the amount of deposition measured to give the operator an idea of the expected rate of sediment and oil deposition. After this initial period, systems should be inspected every six months to verify the appropriate level of maintenance. During these inspections, the floating debris and any floating oils should normally be removed. This may be done using a van-mounted system, without the need for a large tanker.

Silt should be removed when it reaches 75% of the capacity of the sump. In most situations, the units should be fully cleaned out at least annually. If there is a significant spill of oil (or other pollutant) the system should be cleaned immediately.

Proper disposal of oil, solids and floating debris removed from components must be ensured, and the environmental regulator should be approached for advice where there are any doubts concerning disposal options. A small portion of water will be removed along with the pollutants during the clean-out process, which should be considered when costing sediment disposal processes.

Harmful vapours may develop in subsurface filtration or hydrodynamic separation units, as hydrocarbons may remain there for extended periods of time. Appropriate testing for harmful vapours and venting should be undertaken whenever access for maintenance is required. Removal of oil, silt and other pollutants must be in accordance with the appropriate waste management legislation.

Table 14.2 of The CIRIA SuDS Manual provides guidance on the type of operation and maintenance schedule that may be appropriate for a proprietary treatment system. The list of actions is not exhaustive and some actions may not always be required

CIRIA SuDS Manual Table 14.2 - An Example of Operation and Maintenance Requirements for a Proprietary Treatment System

Maintenance Schedule Required Action		Typical Frequency
	Remove litter and debris and inspect for sediment, oil and grease accumulation	Six monthly
	Change the filter media	As recommended by manufacturer
Routine Maintenance	Remove sediment, oil, grease and floatables	As necessary – indicated by system inspections o immediately following significant spill
Remedial Actions	Replace malfunctioning parts or structures	As required
	Inspect for evidence of poor operation	Six monthly
Monitoring	Inspect filter media and establish appropriate replacement frequencies	Six monthly
Worldoning	Inspect sediment accumulation rates and establish appropriate removal frequencies	Monthly during first half year of operation, then every six months

2.1 Filter Strips

The responsibility for this maintenance will be placed with Aldi Stores Ltd.

Filter strips will require regular maintenance to ensure continuing operation to design performance standards.

The treatment performance of filter strips is dependent on maintenance, and robust management plans will be required to ensure that maintenance is carried out in the long term.

Maintenance of filter strips is relatively straightforward for landscape contractors and typically there should only be a small amount of extra work (if any) required for a filter strip over and above what is necessary for standard public open space. Providing landscape management is already required at site, filter strip maintenance should therefore have marginal cost implications. However, regular inspection and maintenance is important for the effective operation of filter strips as designed. Maintenance responsibility for a filter strip should always be placed with an appropriate organisation. If filter strips are implemented within private property, owners should be educated on their routine maintenance needs, and should understand the long-term Maintenance Plan and any legally binding maintenance agreement.

Access for maintenance vehicles should always be available. However, this is not usually a constraint due to the likely location of the filter strip adjacent to impermeable areas. Litter and debris removal should be undertaken as part of general landscape maintenance for the site and before any other SuDS management task. All litter should be removed from site.

The major maintenance requirement for filter strips is mowing. This should ideally retain grass lengths of 75-150mm across the main "treatment" surface to assist in filtering pollutants and retaining sediments and to reduce the risk of flattening during runoff events. However, longer vegetation lengths, where appropriate, are not considered to pose a significant risk to functionality.

Grass clippings should be disposed of either off site or outside the area of the filter strip to remove nutrients and pollutants. All vegetation management activities should take account of the need to maximise biosecurity and prevent the spread of invasive species.

Occasionally, sediment will need to be removed (e.g. once deposits exceed 25mm in depth), although this can be minimised by ensuring that upstream areas are fully stabilised in advance. Sediments excavated from a filter strip that receives runoff from residential or standard road and roof areas are generally not of toxic or hazardous material and can therefore be safely disposed of by either land application or landfilling. However, consultation should take place with the environmental regulator to confirm appropriate protocols. Sediment testing may be required before sediment excavation to determine its classification and appropriate disposal methods.)or runoff from streets with high vehicle traffic, sediment testing will be essential. In the majority of cases, it will be acceptable to distribute the sediment on site if there is an appropriate safe and acceptable location to do so.

Any damage due to sediment removal or erosion should be repaired and immediately reseeded or planted.

Table 15.1 of The CIRIA SuDS Manual provides guidance on the type of operational and maintenance requirements that may be appropriate. The list of actions is not exhaustive and some actions may not always be required.

CIRIA SuDS Manual Table 15.1 - Operation and Maintenance Requirements for Filter Strips

Maintenance Schedule	Required Action	Typical Frequency
	Remove litter and debris	Monthly (or as required)
	Cut the grass – to retain grass height within specified design range	Monthly (during growing season), or as required
	Manage other vegetation and remove nuisance plants	Monthly (at start, the as required)
Regular Maintenance	Inspect filter strip surface to identify evidence of erosion, poor vegetation growth, compaction, ponding, sedimentation and contamination (e.g. oils)	Monthly (at start, then half yearly)
	Check flow spreader and filter strip surface for even gradients	Monthly (at start, then half yearly)
	Inspect gravel flow spreader upstream of filter strip for clogging	Monthly (at start, then half yearly)
	Inspect silt accumulation rates and establish appropriate removal frequencies	Monthly (at start, then half yearly)
Occasional Maintenance	Reseed areas of poor vegetation growth; alter plant types to better suit conditions, if required	As required or if bare soil is exposed over > 10% of the filter strip area
	Repair erosion or other damage by re-turfing or reseeding	As required
	Relevel uneven surfaces and reinstate design levels	As required
Remedial Actions	Scarify and spike topsoil layer to improve infiltration performance, break up silt deposits and prevent compaction of the soil surface	As required
	Remove build-up of sediment on upstream gravel trench, flow spreader or at top of filter strip	As required
	Remove and dispose of oils or petrol residues using safe standard practice	As required

2.2 Filter Drains

The responsibility for this maintenance will be placed with Aldi Stores Ltd.

Filter drains will require regular maintenance to ensure continuing operation to design performance standards. The treatment performance of filter drains is dependent on maintenance, and robust management plans will be required to ensure that maintenance is carried out in the long term.

Regular inspection and maintenance is important for the effective operation of filter drains as designed. Maintenance responsibility for a filter drain should always be placed with an appropriate organisation. Adequate access should always be provided to the filter drain for inspection and maintenance. If filter drains are implemented within private property, owners should be educated on their routine maintenance needs, and should understand the long-term Maintenance Plan and any legally binding maintenance agreement.

Litter (including leaf litter) and debris removal should be undertaken as part of general landscape maintenance for the site and before any other 6u'6 management task. All litter should be removed from site.

Table 16.1 of The CIRIA SuDS Manual provides guidance on the type of operational and maintenance requirements that may be appropriate. The list of actions is not exhaustive and some actions may not always be required.

Sediments excavated from upstream pre-treatment devices that receive runoff from residential or standard road and roof areas are generally not toxic or hazardous material and can therefore be safely disposed of by either land application or landfilling. However, consultation should take place with the environmental regulator to confirm appropriate waste management protocols and compliance with legislation. Sediment testing may be required before sediment excavation to determine its classification and appropriate disposal methods. For industrial site runoff, sediment testing will be essential. In the majority of cases, it will be acceptable to distribute the sediment on site, if there is an appropriate safe and acceptable location to do so. Any damage due to sediment removal or erosion should be repaired and immediately reseeded or planted.

CIRIA SuDS Manual Table 16.1 - Operation and Maintenance Requirements for Filter Drains

Maintenance Schedule	ance Schedule Required Action	
	Remove litter (including leaf litter) and debris from filter drain surface, access chambers and pre-treatment devices	Monthly (or as required)
Regular Maintenance	Inspect filter drain surface, inlet/outlet pipework and control systems for blockages, clogging, standing water and structural damage	Monthly
	Inspect pre-treatment systems, inlets and perforated pipework for silt accumulation, and establish appropriate silt removal frequencies	Six monthly
	Remove sediment from pre-treatment devices	Six monthly, or as required
Occasional	Remove or control tree roots where they are encroaching the sides of the filter drain, using recommended methods (e.g. NJUG, 2007 or BS 3998:2010)	As required
Maintenance	At locations with high pollution loads, remove surface geotextile and replace, and wash or replace overlying filter medium	Five yearly, or as required
	Clear perforated pipework of blockages	As required