# Millom Iron Line Drainage Strategy Report

Curtins Ref: 081617-CUR-01-ZZ-RP-C-92002 Revision: P01 Issue Date: 18 May 2023

Client Name: Cumberland Council Client Address: Site Address: The Iron Line, Millom, Cumbria

Curtins Consulting Limited Units 24 & 25 Riverside Place K Village Lound Road Kendal LA9 7FH Tel: 01539 724 823 Email: kendal@curtins.com www.curtins.com

CIVILS & STRUCTURES • TRANSPORT PLANNING • ENVIRONMENTAL • INFRASTRUCTURE • GEOTECHNICAL • CONSERVATION & HERITAGE • PRINCIPAL DESIGNE Birmingham • Bristol • Cambridge • Cardiff • Douglas • Dublin • Edinburgh • Glasgow • Kendal • Leeds • Liverpool • London • Manchester • Nottingham



# Curtins

# 081617-CUR-01-ZZ-RP-C-92002 Millom Iron Line

**Drainage Strategy Report** 



| Rev | Description  | Issued by | Checked | Date        |
|-----|--------------|-----------|---------|-------------|
| P01 | First issue. | CLN       | PT      | 18 May 2023 |
|     |              |           |         |             |
|     |              |           |         |             |

This report has been prepared for the sole benefit, use, and information for the client. The liability of Curtins Consulting Limited with respect to the information contained in the report will not extend to any third party.

| Author                                               | Signature | Date        |
|------------------------------------------------------|-----------|-------------|
| <b>Craig Noonan</b><br>BSc (Hons)<br>Senior Engineer |           | 18 May 2023 |

| Reviewed                                                           | Signature | Date        |
|--------------------------------------------------------------------|-----------|-------------|
| <b>Peter Thomas</b><br>MEng (Hons) CEng MICE<br>Principal Engineer |           | 18 May 2023 |



# Drainage Strategy Report

# **Table of Contents**

| 1.0                         | .0 Introduction |                                                      |   |  |  |
|-----------------------------|-----------------|------------------------------------------------------|---|--|--|
| 1.1                         | 1               | Project Background                                   | 1 |  |  |
| 1.2                         | 2               | Proposed Development                                 | 1 |  |  |
| 1.:                         | 3               | Future Developments                                  | 1 |  |  |
| 2.0                         | Su              | DS Guidance and Standards                            | 2 |  |  |
| 2.1                         | 1               | Introduction                                         | 2 |  |  |
| 2.2                         | 2               | National Planning Policy and Guidance                | 2 |  |  |
| 2.3                         | 3               | Climate Change                                       | 4 |  |  |
| 2.4                         | 4               | Stakeholder Engagement                               | 4 |  |  |
| 2.                          | 5               | Approach to Determining Appropriate Strategy         | 4 |  |  |
| 3.0                         | Stra            | ategic Surface Water Management (SWM) Objectives     | 5 |  |  |
| 4.0                         | Cor             | nceptual design                                      | 6 |  |  |
| 4.1                         | 1               | Site characterisation outcomes                       | 6 |  |  |
| 4.2                         | 2               | Development characterisation outcomes                | 7 |  |  |
| 4.3                         | 3               | SuDS Design Criteria                                 | 7 |  |  |
| 4.4                         | 4               | Feasible points of discharge                         | 8 |  |  |
| 4.                          | 5               | Surface water sub-catchments and flow routes         | 9 |  |  |
| 5.0                         | Out             | tline design1                                        | 1 |  |  |
| 5.1                         | 1               | Assessment of Pre- and Post-development Site Runoff1 | 1 |  |  |
| 5.2                         | 2               | Water Quantity 1                                     | 3 |  |  |
| 5.3                         | 3               | Designing for Local Drainage System Failure1         | 3 |  |  |
| 5.4 Water Quality Treatment |                 | 4                                                    |   |  |  |
| 6.0                         | Pro             | posed Foul Water Drainage Strategy1                  | 7 |  |  |
| 7.0                         | 0 Appendices    |                                                      |   |  |  |



# 1.0 Introduction

## 1.1 Project Background

Curtins were instructed by Layer Studio on behalf of Cumberland Council to develop a Drainage Strategy (DS) for the proposed development of a new Welcome Centre and associated car parking at Millom Iron Line, Millom, Cumbria. The purpose of the DS is to support the planning application. The site is centred on National Grid Ref: 317892mE 479009mN. The nearest site postcode is LA18 4LB.

There are also a number of discrete elements of work across the Iron Line site, including Hodbarrow Beacon and the former Windmill as well as isolated areas of landscaping. At the time of preparation of this report it is not envisaged that positive drainage will be provided to any of these elements, rather the existing hydraulic situation will be replicated by the use of porous materials wherever possible. As such, the following drainage strategy report focusses on the Welcome Building and associated hard landscaping only.

The report is based on currently available information at the time of writing.

# 1.2 Proposed Development

Full planning permission for the erection of a new Welcome Centre, access road, car parking and associated landscaping.

## **1.3 Future Developments**

The development is proposed to be built out in a single phase, with no further proposals or plans to extend the Welcome Centre once it is constructed.

If in the future it did expand, then the drainage network and attenuation features would need to be assessed at the time for capacity to meet the current guidelines at such time.



# 2.0 SuDS Guidance and Standards

## 2.1 Introduction

In July 2018, the Government made changes to the National Planning Policy Framework which made Sustainable Urban Drainage Systems<sup>1</sup> (SuDS) a requirement for the determination of planning applications for 'major' developments. The requirements of a sustainable drainage system are set out in the government's Non-statutory technical standards for sustainable drainage systems.

A Drainage Strategy will therefore be required as part of the Planning Application for the development, as the site is considered to be 'major' development by the Town and Country Planning Order 2015 as total floor space will exceed 1,000m<sup>2</sup>.

## 2.2 National Planning Policy and Guidance

National Planning Policy Guidance<sup>2</sup> (NPPF) states that:

Major developments should incorporate sustainable drainage systems unless there is clear evidence that this would be inappropriate. The systems used should:

- take account of advice from the lead local flood authority
- have appropriate proposed minimum operational standards
- have maintenance arrangements in place to ensure an acceptable standard of operation for the lifetime of the development; and
- where possible, provide multifunctional benefits.

Guidance on the design criteria for different site situations in the Non-Statutory Technical Standards for Sustainable Drainage state:-

#### **Peak Flow Control**

- Greenfield developments peak runoff rate from the development for the 1 in 1 year rainfall event and the 1 in 100 year rainfall event should never exceed the peak greenfield runoff rate for the same event.
- Brownfield developments peak runoff rate from the development for the 1 in 1 year rainfall event and the 1 in 100 year rainfall event must be as close as reasonably practicable to the Greenfield runoff rate from the development for the same rainfall event.

<sup>&</sup>lt;sup>1</sup> <u>https://www.gov.uk/government/publications/sustainable-drainage-systems-non-statutory-technical-standards</u>
<sup>2</sup> <u>https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment\_data/file/810197/NPPF\_Feb\_2019\_r</u>
<u>evised.pdf</u>

Drainage Strategy Report



#### **Volume Control**

- Greenfield developments Where reasonably practicable, the runoff volume from the development in the 1 in 100 year, 6 hour rainfall event should never exceed the Greenfield runoff volume for the same event.
- Brownfield developments Where reasonably practicable, the runoff volume from the development in the 1 in 100 year, 6 hour rainfall event must be constrained to a value as close as reasonably practicable to the greenfield runoff volume for the same event, but should never exceed the runoff volume from the development site prior to redevelopment for that event.
- Where it is not reasonably practicable to constrain the volume of runoff to any drain, sewer or surface water body in accordance with points above, the runoff volume must be discharged at a rate that does not adversely affect flood risk.

#### Flood Risk Within the Development

- The drainage system must be designed so that, unless an area is designated to hold and/or convey water as part of the design, flooding does not occur on any part of the site for a 1 in 30 year rainfall event.
- The drainage system must be designed so that, unless an area is designated to hold and/or convey water as part of the design, flooding does not occur during a 1 in 100 year rainfall event.
- The design of the site must ensure that, so far as is reasonably practicable, flows resulting from rainfall in excess of a 1 in 100 year rainfall event are managed in exceedance routes that minimise the risks to people and property.

#### Sustainable Drainage Hierarchy

Paragraph 056 of the NPPF Planning Practice Guidance (PPG Ref: 7-056-20220825) on Flood risk and coastal Change<sup>3</sup> states:

The types of sustainable drainage system which it may be appropriate to consider, will depend on the proposed development and its location, as well as any planning policies and guidance that apply locally. Where possible, preference should be given to multi-functional sustainable drainage systems, and to solutions that allow surface water to be discharged according to the following hierarchy of drainage options::

- into the ground (infiltration);
- to a surface water body;
- to a surface water sewer, highway drain, or another drainage system;
- to a combined sewer.

<sup>&</sup>lt;sup>3</sup> <u>https://www.gov.uk/guidance/flood-risk-and-coastal-change</u>



## 2.3 Climate Change

On 10<sup>th</sup> May 2022 the Environment Agency published revised climate change allowances<sup>4</sup> for peak rainfall intensities which should be applied to new developments, based on the River Management Catchment the development lies in, and development design life.

## 2.4 Stakeholder Engagement

Dialog with United Utilities is ongoing surrounding foul water, available connection points and capacity. Noting that the nearest public foul sewer is located a considerable distance from the development and would require pumping.

Extensive discussions have been held with the LLFA/LPA to discuss the development proposals, in particular the drainage strategy options.

Meetings with the ecologist to understand the ecological constraints.

Further details of the planning submission are set out in the accompanying Planning Statement.

### 2.5 Approach to Determining Appropriate Strategy

The following sections of this strategy follow the above guidance in

- Setting strategic surface water management objectives,
- Assessing the existing site characterisations,
- Setting the SuDS design criteria,
- Identifying suitable points of discharge,
- assessing Opportunities and Constraints and
- producing a drainage strategy appropriate for planning purposes

<sup>&</sup>lt;sup>4</sup> <u>https://www.gov.uk/guidance/flood-risk-assessments-climate-change-allowances#peak-rainfall-intensity-allowance</u>



# 3.0 Strategic Surface Water Management (SWM) Objectives

Following CIRIA C753 The SuDS Manual (C753) Section 7.4, the below objectives are considered by Curtins to be suitable for the surface water drainage design, based the output of Section 2.0.

| Торіс                            | Strategic objective                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Flood risk                       | Flood risk to the development to be managed and the development is not to increase flood risk for surrounding areas.                                                                                                                                                                                                                                                                                                                                                                    |
| Water quality                    | Surface water outfalls to the tidal lagoon to the west and former Redhills quarry<br>now naturally filled pond/pool to the north are viable. Treated foul water effluent<br>will discharge to a pond within Redhills Quarry which connects to the Duddon<br>Estuary before flowing out into the Irish Sea. Appropriate treatment of discharge<br>will be required.                                                                                                                      |
| Urban heating<br>& air pollution | The development is in a low-density suburban environment so urban cooling is<br>not a key driver. However, strategic objectives for flood risk, habitat and<br>biodiversity will contribute to climate resilience.                                                                                                                                                                                                                                                                      |
| Replenishing<br>groundwater      | Infiltration should be used where feasible.                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Biodiversity                     | Preserve and enhance existing habitat. Areas to the west of the development<br>are ideal for SuDS with biodiversity benefits such as ponds/swales, but the level<br>of disruption and mitigation is still important. It is advisable to keep habitat<br>areas clustered and fenced off to reduce the risk of wildlife and visitors getting<br>too close.                                                                                                                                |
| Water<br>resource                | There will be a requirement for water at the Welcome Centre. It is thought that this will be supplied from a reliable water source.                                                                                                                                                                                                                                                                                                                                                     |
| Low carbon<br>construction       | Selecting paving and drainage systems and materials which have a low<br>embodied carbon, limiting excavation, using systems which provide dual<br>purpose such as permeable sub-base for pavement sub-structure and<br>attenuation, and minimising the use of steel, cement and certain plastics, will all<br>be considered.                                                                                                                                                            |
| Amenity                          | The main opportunity for providing appropriate amenity value in the SuDS design is the proposed swales/ponds and the habitat on the west side of the site. With appropriate primary treatment, the ponds should not have a heavy pollution load, meaning its potential for amenity and biodiversity value are high. The main beneficiary will be building users who may wish to walk through the amenity areas during their free time, since site access restrictions will be in place. |
| Approval and adoption            | The local planning authority will be the approving body for the surface water management system. The site drainage will be entirely owned and operated by Cumberland Council so operation and maintenance design need only consider the needs of the client.                                                                                                                                                                                                                            |



# 4.0 Conceptual design

Following the guidance set out in C753 Section 7.5.1, the characterisations set out in the below relating to surface water management were established for the site.

## 4.1 Site characterisation outcomes

| Site topography<br>Existing flow<br>routes and<br>discharge points | Much of the site is sloped down towards the east. There is a sweeping embankment<br>from the east and around to the north of the site. To the west the levels also fall away<br>towards the tidal lagoon. The site levels vary from 16m down to 3m AOD.<br>Immediately North of the Welcome Building, a vertical rock face remains from the<br>former Redhills quarry, c. 10m in height.<br>Currently any overland flow will follow the sloping topography down to the east and<br>west. There will be some infiltration and some absorption from the vegetation which<br>will also slow any overland flows.<br>An existing tidal lagoon is located approximately 250m southwest that is a potential<br>surface water outfall.<br>Former Redhills quarry now naturally filled pond/pool to the north is located<br>approximately 70m from the site. |
|--------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Potential for<br>infiltration                                      | British Geological Survey and Soilscapes mapping information for the surrounding land<br>the site appears to be based on Devensian Till (loamey and clayey) and further away<br>Raised Marine Deposits (sand and gravel) classified as <i>'Naturally wet'</i> with <i>'impeded</i><br><i>infiltration potential'</i> suggest that infiltration techniques may not be possible (subject to<br>Phase 2 Ground Investigation reporting – yet to be commissioned).                                                                                                                                                                                                                                                                                                                                                                                      |
| Potential for<br>surface water<br>discharge                        | Runoff from the existing catchment is mainly drained to east where the lower lying<br>ground levels are. From here it would drain to the north as the ground levels drop<br>away slightly. This is where the quarry pool/pond is located and which would be the<br>natural flow path.<br>Runoff from the top part of the site would also drain to the south and west towards the<br>tidal lagoon following the sloping topography.<br>The proposed discharge points to these two locations will be restricted up to the 1:100<br>year rainfall to a 1:1year Greenfield runoff rate. Therefore, the change to a point<br>discharge is not considered to adversely impact the waterbodies.                                                                                                                                                            |
| Site flood risks                                                   | See the site-specific Flood Risk Assessment.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Existing site<br>land use                                          | The site was previously used as an Iron Mine. The Welcome Building site is coincident with a former reservoir which has since been back filled. The scope of demolition/site clearance following closure of the mine and quarry is not clear, however the majority of structures shown on historic maps are no longer present above ground                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Existing site<br>infrastructure                                    | The site is not believed to have any existing infrastructure.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Existing soils                                                     | British Geological Survey and Soilscapes mapping information for the surrounding land<br>the site appears to be based on Devensian Till (loamey and clayey) and further away<br>Raised Marine Deposits (sand and gravel) classified as <i>'Naturally wet'</i> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Local habitats<br>and biodiversity                                 | The site is considered to be of significant ecological importance. The vegetation and RSPB Reserve provides an important habitat for wildlife. Overlooking the Duddon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |





| Estuary boor and the more dampe bay and buddon Estuary of P        | , Hodbarrow reserve |
|--------------------------------------------------------------------|---------------------|
| comprises a freshwater lagoon within the seawall with rich flower  | and insect          |
| communities living on the limestone slag. Grasssland and scrub     | stretches inland to |
| provide a haven for insects and breeding songbirds. This coastal   | lagoon and          |
| grasslands, located on the site of a former iron mine, support bre | eding terns, ringed |
| plovers, redshanks and oystercatchers. Great crested grebes new    | sting on the island |
| too.                                                               | -                   |

| Proposed topography,<br>land use and<br>landscape<br>characteristics          | The site is to be plateaued where the Welcome Centre is located at around 13.70m AOD. There will be a top car park and a lower car park with a new access road linking the two and providing access to the existing Redhills Quarry Househole Waste Centre.<br>The site will be split into two catchments from a proposed drainage perspective.<br>This is considered the most sustainable strategy to avoid subtracting available volume from the fluvial flood path. This is discussed in section 5.0. |
|-------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Proposed flood risk<br>management strategy                                    | Rates of surface water discharge will be controlled, as outlined in section 5.0.                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Proposed site<br>infrastructure                                               | The proposed drainage system should be possible to install with minimal disruption to the Previously developed as part of the Iron Mine, since been revegetated.<br>Existing features including a mine shaft and derelict building located to the west of the new Welcome Centre are to remain without interference.                                                                                                                                                                                     |
| Proposed building style and form                                              | Steel rotunda at upper first floor level with cast in situ concrete buildings to the lower ground floor level, with retaining walls, tarmac access roads, permeable parking areas and open swales.                                                                                                                                                                                                                                                                                                       |
| Proposed adoption<br>and maintenance of<br>surface water<br>management system | The networks are to remain private ownership.                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

# 4.2 Development characterisation outcomes

# 4.3 SuDS Design Criteria

|                | Delivery of Design Criteria                                                                                                                                                                                                                                            |
|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Water quantity | All surface water discharge shall be restricted to the 1:1 year greenfield rate from each catchment.                                                                                                                                                                   |
|                | Runoff from the 1:30 year event should be attenuated below ground (i.e. not cause flooding) and the 1:100 year should be attenuated on site without posing a risk to people or property.                                                                               |
|                | The site lies in the Southwest Lakes Management Catchment, for the EA guidance <sup>5</sup> on peak rainfall allowances. Therefore, attenuation will be provided for the 1:30 year +35% climate change and the 1:100 year +35% events, based on a 60 year design life. |

<sup>&</sup>lt;sup>5</sup> <u>https://www.gov.uk/guidance/flood-risk-assessments-climate-change-allowances</u>

# 081617-CUR-01-ZZ-RP-C-92002 Millom Iron Line

Drainage Strategy Report



| Water quality | Surface Water runoff areas at risk from contamination should receive water quality treatment. The development land uses can be categorised as follows.                                                                                                                                                           |
|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|               | The simple index approach has been used from C753. The pollution hazard indices from Table 26.2 are:                                                                                                                                                                                                             |
|               | Building roofs = Low hazard, TSS: 0.3, metals: 0.2, HCs: 0.05                                                                                                                                                                                                                                                    |
|               | Car parking and site roads = Medium hazard, TSS: 0.7, metals: 0.6, HCs: 0.7                                                                                                                                                                                                                                      |
| Amenity       | Provide open SuDS which provide pleasant areas for visitors to look over from the centre and feel like they are in nature.                                                                                                                                                                                       |
| Biodiversity  | Design to minimise the adverse impact on existing biodiversity and ecology, and any open top SuDS features should maximise the biodiversity improvement, providing a net gain.                                                                                                                                   |
|               | Ponds/swales could provide habitats for Natterjack Toads.                                                                                                                                                                                                                                                        |
|               | • They should have gently sloping sides to ensure safe passage out of the pools for toadlets and hold water down to a maximum water depth of 50 - 70cm that will dry out in late summer in an average year. The use simple pipe sluices could be installed so that the pools can be drained down in late summer. |
|               | Vegetation within and surroundings should be kept low-cut                                                                                                                                                                                                                                                        |
|               | Fenced off from visitors                                                                                                                                                                                                                                                                                         |
|               | • Nearby sandy banks, stone walls, piles of stones that could act as hibernacula.                                                                                                                                                                                                                                |

# 4.4 Feasible points of discharge

| Surface Water<br>Disposal Method                     | Potential | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|------------------------------------------------------|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Infiltration                                         | ×         | British Geological Survey and Soilscapes mapping information for the surrounding land the site appears to be based on Devensian Till (loamey and clayey) and further away Raised Marine Deposits (sand and gravel) classified as <i>'Naturally wet'</i> with <i>'impeded infiltration potential'</i> suggest that infiltration techniques may not be possible (subject to Phase 2 Ground Investigation reporting).                                                                |
| Watercourse/<br>Waterbody                            | 1         | Tidal lagoon is approximately 250m to the southwest, a former Redhills<br>quarry now naturally filled pond/pool is located approximately 70m to the<br>north, an ordinary watercourse Crook Pool further to the east/ south east<br>approximately 500m from the site and the Duddon estuary (sea) to the<br>south, However due to the nature and importance of the habitat routes<br>careful consideration, discussions and design are required to achieve a<br>suitable outfall. |
| Existing Private<br>surface water<br>drainage system | X         | There is no formal positive surface water drainage on site.                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Surface Water<br>Sewer                               | X         | There are no surface water sewers within range of the site.                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Combined Water<br>Sewer                              | X         | The nearest combined sewer and potential outfall is chamber '4300' which lies on Mainsgate Road, Millom. This is a considerable distance away. Alternative means of foul water disposal are proposed in this report. However, dialogue with UU is being held to confirm capacity                                                                                                                                                                                                  |



| _ |  |                                                                  |
|---|--|------------------------------------------------------------------|
|   |  | within the combined sewer to accommodate unrestricted foul water |
|   |  | flows, if needs be.                                              |

### 4.5 Surface water sub-catchments and flow routes

The development catchments are as follows and are shown in detail on the Drainage Area Plan drawings 081617-CUR-01-ZZ-DR-C-92001 and 92002. An extract is shown below.

| Catchment Name                                      | Colour  | Treatment             |
|-----------------------------------------------------|---------|-----------------------|
| Welcome Centre and top car<br>park<br>(Catchment 1) | Magenta | SuDS scheme required. |
| Access road and lower car<br>park<br>(Catchment 2)  | Cyan    |                       |



The surface water catchment to the tidal lagoon which consists of the Welcome building and new hardscaping (as much as possible) is to fall towards the lagoon in the west via a gravity greenfield rate restriction. This will relieve some of the catchment draining to the quarry as explained in the next paragraphs. Noting that the lagoon is a SSSI and wildlife haven.

Therefore, the proposed surface water drainage and route to the outfall will consist of a mixture of permeable paving, proprietry treatment units where possible and a series of cascading swales/conveyance swales utilised. Swales are to incorporate biodiversity feature where possible i.e. shallower gradients and low flow channel. Ecologically sensitive areas are to be avoided due to protected grassland/plants. Closer to the lagoon is where the topography is the steepest and the



drainage route will most likely be piped. We have modelled the outfall as a surcharged outfall which will help to take any force out for the piped water flow and reduce any erosion.

The balance of surface water catchment from the access roads, parking area and remaining greenfield runoff from the vegetated area shall drain via a formalised route to the former Redhills Quarry pool/pond directly. An assessment of catchment and existing flows/rates has been undertaken to prove that the flows directed towards the quarry are no worse than the existing situation and offer a betterment by reallocating some of the catchment to the tidal lagoon where restrictions on flow rates and volumes are slightly less onerous.

Surface water treatment from this catchment is provided by stone filled filter trenches, permeable construction and propriety units where possible. The permeable construction provides the attenuation for this catchment to allow restriction back to the 1:1 year greenfield runoff rate for all storm up to and including the 1:100 year + climate change event. Connection to the quarry will be via a newly formed drain or open channel/swale adjacent to the access road.

For context, from discussions with the LLFA, EA and LPA, the former quarry pool/pond has a pumped outfall downstream of the Millom Wastewater Treatment Works (WwTW) further north. There are restrictions on discharge rates and volumes with the Environment Agency and the LLFA. According to the trade effluent permit in place and the outfall agreement with Cumbria County Council and United Utilities with the EA the receiving watercourse/outfall also has a permit/agreement. These are both back-to-back meaning the same flows out one end are expected at the out falling.

Note that there are significant restrictions on volumes and flow rates that Redhills Quarry needs to maintain, hence routing as much surface water as possible towards the tidal lagoon to help provide a betterment on the current situation.



# 5.0 Outline design

### 5.1 Assessment of Pre- and Post-development Site Runoff

#### Pre-development Site Runoff

The site should be considered to have a greenfield discharge in terms of its runoff response.

#### Post-development Site Runoff

The site wide catchment has been split into two catchments in order to assess the runoff from the overall site. Based on an assessment of catchment areas and constraints associated with the outfalls, namely the rates and volumes to the quarry pool, the catchments have been split and existing flows/rates have been calculated.

#### Catchment 1 - outfall to the Tidal Lagoon to the west

The post-development discharge rate will be restricted to 1:1 year Greenfield rate, calculated by the IH124 method below. The site will be divided into catchments to suit site constraints so that the total surface water discharge for catchment 1 does not exceed <u>4.00 l/s</u> (litres/second) for all storms up to and including the 1:100 year plus climate change event.

| Pre-development discharge |                              |        |      |         |     |  |
|---------------------------|------------------------------|--------|------|---------|-----|--|
| Site Makeup               | Site Makeup                  |        | eld  | ~       |     |  |
| Greenfield Method         |                              | IH124  |      | ~       |     |  |
| Positively Drained        | Positively Drained Area (ha) |        |      |         |     |  |
| SAAR (mm)                 | SAAR (mm)                    |        |      |         |     |  |
| Soil Index                |                              | 4      |      | ~       |     |  |
| SPR                       |                              | 0.47   |      |         |     |  |
| Region                    |                              | 10     |      | ~       |     |  |
| Betterment (%)            | Betterment (%)               |        | 0    |         |     |  |
|                           |                              |        | Calc |         |     |  |
| QBar (I/s)                |                              | 4.6    |      |         |     |  |
| Return Period<br>(years)  | Growth                       | Factor | C    | ຊ (I/s) |     |  |
| 1                         |                              | 0.87   |      |         | 4.0 |  |
| 2                         |                              | 0.93   |      |         | 4.2 |  |
| 30                        |                              | 1.70   |      |         | 7.8 |  |
| 100                       |                              | 2.08   |      | 9       | 9.5 |  |



#### Catchment 2 – outfall to the Quarry Pond to the north

The post-development discharge rate will be restricted to 1:1 year Greenfield rate, calculated by the IH124 method below. The site will be divided into catchments to suit site constraints so that the total surface water discharge for catchment 2 does not exceed <u>5.70 l/s</u> (litres/second) for all storms up to and including the 1:100 year plus climate change event.

| Pre-development discharge |           |        |      |         |      |  |
|---------------------------|-----------|--------|------|---------|------|--|
| Site Makeup               | Greenfie  | eld    |      | ~       |      |  |
| Greenfield Method         |           | IH124  |      |         | ~    |  |
| Positively Drained        | Area (ha) | 0.875  |      |         |      |  |
| SAAR (mm)                 |           | 1020   |      |         |      |  |
| Soil Index                |           | 4      |      |         | ~    |  |
| SPR                       |           | 0.47   | 0.47 |         |      |  |
| Region                    |           | 10     |      | ~       |      |  |
| Betterment (%)            |           | 0      |      |         |      |  |
|                           |           |        | Calc |         |      |  |
| QBar (I/s)                |           | 6.6    |      |         |      |  |
| Return Period<br>(years)  | Growth    | Factor |      | Q (I/s) |      |  |
| 1                         |           | 0.87   |      |         | 5.7  |  |
| 2                         |           | 0.93   |      |         | 6.1  |  |
| 30                        |           | 1.70   |      |         | 11.2 |  |
| 100                       |           | 2.08   |      |         | 13.7 |  |

Note that the proposed foul flows are to be treated as discussed in section 6.0 and also outfall to the quarry pool/pond. So, this flow also needs to be factored in. The combined rate of discharge to the pool/pond will not exceed the 1:1 year rate.



## Drainage Strategy Report

## 5.2 Water Quantity

The site is divided into the below catchments:

| Catchment Name | Area (ha) | Flow (I/s) | Attenuation (m <sup>3</sup> ) |
|----------------|-----------|------------|-------------------------------|
| Catchment 1    | 0.608     | 4.0        | 180                           |
| Catchment 2    | 0.875     | 5.7        | 130                           |

Note that the above catchment areas are subject to change through design development, which will affect the flow control allowances. Consult the latest drainage layout drawings and calculations. The above attenuation volumes were calculated using an outline hydraulic model and are subject to further refinement through a detailed hydraulic model which will account for available volumes in the wider surface water drainage system. The principles set out in sections 5.1 for the 1:1 year greenfield rates of 4.00 l/s and 5.70 l/s for design storms up to the 1:100 year and climate change allowances will be adhered to.

The bulk of the attenuation will be provided in below ground attenuation tanks and large diameter pipes. Flows will be pumped to the pond on the north side of the site and then discharged by gravity to the watercourse. The high energy flows from the rising main will be diffused and slowed by a break chamber and a flow diffusing channel before entering the pond. The proposed pond has limited capacity for attenuation as it will be receiving pumped flows from the site which will be difficult to calibrate so that the pond is not overused for attenuation. Instead, the pond will smooth the stop and start flows from the pump.

See document refs: 081617-CUR-01-ZZ-DC-C-00600 and 00601 for surface water drainage calculations.

The calculations include for a permanent surcharge to both outfalls to the lagoon and quarry pool/pond as a worst-case scenario that the drain is full to the crest level at the time of the design rainfall events. The water levels will be confirmed at detailed design stage and levels of the outfall amended as necessary to suit water levels in the tidal lagoon and former quarry pool/pond.

# 5.3 Designing for Local Drainage System Failure

In accordance with general principles discussed in CIRIA Report C635, Designing for Exceedance in Urban Drainage the proposed surface water drainage, where practical, should be designed to ensure no increased risk of flooding to buildings on the site or elsewhere because of extreme rainfall, lack of maintenance, blockages or other causes. Refer to drawings 081617-CUR-01-ZZ-DR-C-92001 & 92002 - Drainage Strategy Layouts.



#### Blockage

The site levels design will grade external surfaces away from buildings and into other hardstanding areas. There will be a degree of redundancy where water that cannot be drained by one blocked linear drain or gully will flow overground to the next available linear drain or gully. If blockages are so extensive that this is not possible, the levels will be designed to overland flows drain to the watercourse.

#### Exceedance

The site drainage has been designed to attenuate the 100-yr rainfall event, including an allowance for climate change. No flooding has been calculated in the worst case event.

Exceedance flows will be retained on site within the drainage system as far as practical however for rainfall events of a greater return period it may be necessary to pass forward more flow or to spill flow from the system. The site levels design will allow overland flows to discharge to the lower part of the site where the permeable parking is located. Additional storage is provided within the extents of the full height kerbs.

Parking areas should be designed to offer additional storage volume should the drainage system be exceeded. Where appropriate, kerb lines should be raised by half batter kerbs (0.1m) to help retain flood water and allow drainage back into the system through the permeable surface.

The drainage system also includes open SuDS features which have been designed to provide generally 300mm of freeboard above the 100-year plus climate change event. These areas can therefore accommodate a certain volume of exceedance runoff.

Following this and should the freeboard within the drainage system be used, flow from the site will occur.

#### **Drainage Contingency**

The proposed surface water drainage system has been designed to provide adequate storage volume against flooding, including an allowance for climate change in accordance with current best practice.

#### **Building Layout and Detail**

To meet accessibility requirements, new buildings tend to have level access and therefore, external levels will be set wherever possible to fall away from the buildings ensuring any flood water runs away from, rather than towards the building. Anywhere this is not possible thresholds will include drains.

## 5.4 Water Quality Treatment

The below proprietary treatment systems have also been considered, with the supplier quoted pollution mitigation indices, as of June 2022. While some products have a lower mitigation, they are



still appropriate for use when backed up with SuDS secondary treatment, such as the 'Downstream Defender Advanced Vortex', which would be appropriate when used with a swale and a pond.

| Proprietary System                                         | Pollution Mitigation Indices |        | ndices       |
|------------------------------------------------------------|------------------------------|--------|--------------|
|                                                            | TSS                          | Metals | Hydrocarbons |
| Hydro-International Downstream<br>Defender Advanced Vortex | 0.5                          | 0.4    | 0.5          |
| Klargester – AquaTreat                                     | 0.85                         | 0.64   | 0.99         |
| Marsh Hydroil Full retention separator                     | 0.8435                       | 0.6326 | 0.975        |
| ACO QuadraCeptor                                           | 0.8                          | 0.8    | 0.8          |

The below table summarises the total pollution mitigation indices for each land use category. These are based on the simple index approach from C753. The pollution mitigation indices are from Table 26.3, with the above Klargester – Aqua Treat proprietary system. Where two stages of treatment are required, the mitigation indices for the second stage of treatment have been factored by 0.5 to account for reduced performance due to lower inflows.

| Land Use       | Hazard Indices                   | Mitigation Indices                   |
|----------------|----------------------------------|--------------------------------------|
| Building roofs | Low hazard,                      | Pond/swale                           |
|                | TSS: 0.3, metals: 0.2, HCs: 0.05 | TSS: 0.7, metals: 0.7, HCs: 0.5 ✓    |
| Car parking    | Medium hazard,                   | Pervious paving                      |
|                | TSS: 0.7, metals: 0.6, HCs: 0.7  | TSS: 0.7, metals: 0.6, HCs: 0.7 ✓    |
| Site roads     | Medium hazard,                   | Proprietary treatment & a pond/swale |
|                | TSS: 0.7, metals: 0.6, HCs: 0.7  | TSS: 0.99, metals: 0.84, HCs: 0.99 ✓ |

Flows from the site roads have a medium pollution hazard so require two stages of treatment. This is recommended to be a proprietary treatment system followed by a 'polishing' open SuDS system, such as a pond or swale. The choice of proprietary system will affect the type and scale of the open SuDS system. Other methods of initial treatment include the use of Trapped Gullies and Catchpit chambers, which may be used to filter out high volumes of sediment and aid maintenance. Runoff from roofs can be effectively treated by any one SuDS feature.

Permeable paving, a downstream defender and series of cascading swales are proposed as a final stage of treatment for catchment 1 and filter drains and permeable paving are proposed for Catchment 2.



The type(s) of mitigation proposed may be further considered as the site design is finalised i.e. paving surfaces etc. The proposals for pollution protection should be agreed with the lead local flood authority (LLFA).



# 6.0 Proposed Foul Water Drainage Strategy

A separate foul water drainage system is proposed for the site. This is to drain via a gravity system and through a suitable package treatment plant to the east before it connects to the proposed surface water outfall. From here it will drain out to the former quarry pool/pond. Effectively a treated combined water outfall to the waterbody.

We expect the development runoff to be circa 0.2 l/s (British Water Foul Flows and Loads – Code of Practice). The flow rate from the foul has been factored into the overall allowable 1:1 year greenfield discharge rate and the surface water rate reduced to accommodate the foul flow.

We have held meetings and had discussions with the LLFA during the pre-app advice period and agreed the drainage philosophy in principle.



Drainage Strategy Report

# 7.0 Appendices

- Appendix A Proposed site plan
- Appendix B C753 The SuDS Manual Ponds and wetlands checklist
- Appendix C Proposed Drainage Drawings
- Appendix D Drainage Calculations

081617-CUR-01-ZZ-RP-C-92002 Millom Iron Line Drainage Strategy Report



Appendix A Proposed Site Plan



![](_page_23_Picture_1.jpeg)

Appendix B C753 The SuDS Manual – Ponds and wetlands checklist

Appendix B: Ponds and wetlands checklist

![](_page_24_Picture_2.jpeg)

| Table B.20 Minimum design requirements: ponds/wetlands     |                                    |  |  |  |  |
|------------------------------------------------------------|------------------------------------|--|--|--|--|
| Parameter                                                  | Minimum design requirements (MDRs) |  |  |  |  |
| Length to width ratio                                      | > 3:1                              |  |  |  |  |
| Maximum depth of permanent water                           | 2 m                                |  |  |  |  |
| Maximum side slopes                                        | 1 in 3                             |  |  |  |  |
| Maximum depth of aquatic bench below permanent water level | 400 mm                             |  |  |  |  |
| Size of permanent pool                                     | ≥ treatment volume, V              |  |  |  |  |
|                                                            |                                    |  |  |  |  |

Appendix B: Ponds and wetlands checklist

![](_page_25_Picture_2.jpeg)

| Table B.21 Minimum design requirements: ponds/wetlands |                     |                            |  |  |  |  |
|--------------------------------------------------------|---------------------|----------------------------|--|--|--|--|
| General information                                    |                     |                            |  |  |  |  |
| Site ID                                                |                     |                            |  |  |  |  |
| Asset ID(s)                                            |                     |                            |  |  |  |  |
| Pond/wetland location(s) and co-ordinates              |                     | Drawing reference(s)       |  |  |  |  |
| Date of assessment                                     |                     | Specification reference(s) |  |  |  |  |
| Primary function(s) of pond/wetland                    | Attenuation/treatme | ent                        |  |  |  |  |

| Check                                                                                                                  | MDR          | Summary details <sup>1</sup> | Acceptable<br>(Y/N) | Comments/<br>remedial actions |
|------------------------------------------------------------------------------------------------------------------------|--------------|------------------------------|---------------------|-------------------------------|
| Dimensions (Section 23.2)                                                                                              |              |                              |                     |                               |
| Length (m)                                                                                                             |              |                              |                     |                               |
| Maximum and minimum width – at permanent water level (m)                                                               |              |                              |                     |                               |
| Length: maximum width ratio                                                                                            | ~            |                              |                     |                               |
| Top surface area (m <sup>2</sup> )                                                                                     |              |                              |                     |                               |
| Side slopes (1 in ?)                                                                                                   | $\checkmark$ |                              |                     |                               |
| Depth of permanent water – maximum and minimum (m)                                                                     | $\checkmark$ |                              |                     |                               |
| Freeboard (m)                                                                                                          |              |                              |                     |                               |
| Aquatic bench width and slope (m, 1 in ?)                                                                              | $\checkmark$ |                              |                     |                               |
| Safety bench width and slope (m, 1 in ?)                                                                               | $\checkmark$ |                              |                     |                               |
| Inflows (Section 23.8.1)                                                                                               |              |                              |                     |                               |
| Provide a description of the contributing catchment land use and its size (m2)                                         |              |                              |                     |                               |
| Does the design include suitable silt<br>Interception upstream of system?                                              |              |                              |                     |                               |
| <ul><li>Does the design include:</li><li>a suitable inlet design</li><li>appropriate energy dissipation?</li></ul>     |              |                              |                     |                               |
| Outfall arrangements (Section 23.8.                                                                                    | .2)          |                              |                     |                               |
| Provide details of any flow control<br>systems, overflow arrangements and<br>limiting discharge rate from pond/wetland |              |                              |                     |                               |
| Is a geomembrane required to prevent infiltration? If yes, give reason                                                 |              |                              |                     |                               |
| Depth to maximum likely groundwater level (m)                                                                          |              |                              |                     |                               |
| Storage (Section 23.4)                                                                                                 |              |                              |                     |                               |
| Design event return period(s) (years)                                                                                  |              |                              |                     |                               |
| Maximum rise in water level(s) for the design event(s) (mm)                                                            | ~            |                              |                     |                               |
| Maximum water depth(s) at design event conditions (m)                                                                  |              |                              |                     |                               |

Appendix B: Ponds and wetlands checklist

| Check                                                                                                                                                                  | MDR                   | Summary details <sup>1</sup> | Acceptable<br>(Y/N) | Comments/<br>remedial actions |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|------------------------------|---------------------|-------------------------------|
| Maximum design storage volume(s) (m3)                                                                                                                                  |                       |                              |                     |                               |
| Levels around the edge of the pond/<br>wetland appropriate to contain design<br>depths of water?                                                                       |                       |                              |                     |                               |
| Water quality treatment (Section 23                                                                                                                                    | .5)                   |                              |                     |                               |
| For the 1 year, 30 min event confirm:                                                                                                                                  |                       |                              |                     |                               |
| Permanent pool volume is sufficient for<br>effective treatment<br>Or<br>Flow velocity is acceptable for effective<br>treatment                                         | <ul> <li>✓</li> </ul> |                              |                     |                               |
| Landscape/biodiversity (Sections 2                                                                                                                                     | 3.6, 23.7             | and 23.10)                   |                     |                               |
| Is there sufficient treatment upstream of<br>the pond to allow design amenity and<br>biodiversity objectives to be delivered?<br>Does the variation in permanent water |                       |                              |                     |                               |
| depth have the potential to create biodiverse habitats?                                                                                                                |                       |                              |                     |                               |
| Does the design of the pond fulfil<br>objectives of availability of different<br>habitats including:<br>deep water<br>marginal<br>dry/damp<br>other                    |                       |                              |                     |                               |
| A planting schedule is provided, showing<br>species and planting preferences. Is the<br>planting demonstrated appropriate for the<br>habitat specified?                |                       |                              |                     |                               |
| Will plantings be established or rely on natural colonisation?                                                                                                         |                       |                              |                     |                               |
| Have locally appropriate native plant species been used?                                                                                                               |                       |                              |                     |                               |
| Indicate the number of different plant species used (not a monoculture)                                                                                                |                       |                              |                     |                               |
| Is the proposed pond/wetland planting<br>appropriate to the location, and with<br>respect to access and maintenance?                                                   |                       |                              |                     |                               |
| Where relevant, confirm planting design<br>does not adversely impact highway<br>visibility and safety requirements (check<br>with highway authority)                   |                       |                              |                     |                               |
| sustain the proposed plant species?                                                                                                                                    |                       |                              |                     |                               |
| Critical materials and product spec                                                                                                                                    | ification             | s (Section 23.9)             |                     |                               |
| Geomembrane                                                                                                                                                            |                       |                              |                     |                               |
| Geotextile (non-woven)                                                                                                                                                 |                       |                              |                     |                               |

![](_page_26_Picture_4.jpeg)

![](_page_27_Picture_1.jpeg)

Appendix B: Ponds and wetlands checklist

| Check                                                                                                                             | MDR                             | Summary details <sup>1</sup>            | Acceptable<br>(Y/N) | Comments/<br>remedial actions |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------|---------------------------------|-----------------------------------------|---------------------|-------------------------------|--|--|
| Topsoil                                                                                                                           |                                 |                                         |                     |                               |  |  |
| Other (including proprietary systems)                                                                                             |                                 |                                         |                     |                               |  |  |
| Constructability (Section 23.11)                                                                                                  |                                 |                                         |                     |                               |  |  |
| Are there any identifiable construction<br>risks? If yes, state and confirm acceptable<br>risk management measures are proposed   |                                 |                                         |                     |                               |  |  |
| Maintainability (Section 23.12)                                                                                                   | Maintainability (Section 23.12) |                                         |                     |                               |  |  |
| Confirm that access for maintenance is acceptable and summarise details                                                           |                                 |                                         |                     |                               |  |  |
| Are there specific features that are likely<br>to pose maintenance difficulties? If yes,<br>identify mitigation measures required |                                 |                                         |                     |                               |  |  |
| Pond/wetland design acceptability                                                                                                 | Summa<br>any cha                | ary details including<br>anges required | Acceptable<br>(Y/N) | Date changes made             |  |  |
| Acceptable:<br>Minor changes required:<br>Major changes required/redesign:                                                        |                                 |                                         |                     |                               |  |  |

Note

1 If there is an MDR (as indicated) confirm whether or not this is met and provide details of any variations.

081617-CUR-01-ZZ-RP-C-92002 Millom Iron Line Drainage Strategy Report

![](_page_28_Picture_1.jpeg)

Appendix C Proposed Drainage Drawings

![](_page_29_Figure_0.jpeg)

![](_page_30_Figure_0.jpeg)

081617-CUR-01-ZZ-RP-C-92002 Millom Iron Line Drainage Strategy Report

![](_page_31_Picture_1.jpeg)

Appendix D Drainage Calculations

![](_page_32_Picture_0.jpeg)

#### Design Settings

| Rainfall Methodology  | FSR               | Maximum Time of Concentration (mins) | 30.00         |
|-----------------------|-------------------|--------------------------------------|---------------|
| Return Period (years) | 2                 | Maximum Rainfall (mm/hr)             | 50.0          |
| Additional Flow (%)   | 0                 | Minimum Velocity (m/s)               | 1.00          |
| FSR Region            | England and Wales | Connection Type                      | Level Soffits |
| M5-60 (mm)            | 17.000            | Minimum Backdrop Height (m)          | 0.200         |
| Ratio-R               | 0.300             | Preferred Cover Depth (m)            | 1.200         |
| CV                    | 0.750             | Include Intermediate Ground          | $\checkmark$  |
| Time of Entry (mins)  | 5.00              | Enforce best practice design rules   | $\checkmark$  |

#### <u>Nodes</u>

| Name        | Area<br>(ha) | T of E<br>(mins) | Cover<br>Level<br>(m) | Diameter<br>(mm) | Sump<br>(m) | Depth<br>(m) |
|-------------|--------------|------------------|-----------------------|------------------|-------------|--------------|
| SW1         | 0.062        | 5.00             | 13.900                | 1200             | 0.300       | 2.500        |
| SW2         | 0.027        | 5.00             | 13.900                | 1200             | 0.300       | 2.600        |
| SW3         | 0.025        | 5.00             | 13.500                | 1200             |             | 0.700        |
| SW4         | 0.025        | 5.00             | 13.500                | 1200             |             | 0.850        |
| SW5 FC      | 0.059        | 5.00             | 15.900                | 1200             | 0.300       | 1.700        |
| SW6         | 0.011        | 5.00             | 15.600                | 1200             |             | 1.400        |
| SW7         | 0.016        | 5.00             | 15.300                | 1200             |             | 1.350        |
| SW8         | 0.012        | 5.00             | 14.000                | 1200             | 0.300       | 2.900        |
| HW1         |              |                  | 13.600                | 1200             |             | 2.400        |
| HW2         |              |                  | 11.600                | 1200             |             | 0.490        |
| HW3         |              |                  | 11.600                | 1200             |             | 0.510        |
| HW4         |              |                  | 11.600                | 1200             |             | 0.600        |
| SW9 FC      |              |                  | 11.500                | 1500             |             | 1.200        |
| SW10        |              |                  | 11.000                | 1200             |             | 1.700        |
| SW11        |              |                  | 8.000                 | 1200             |             | 1.200        |
| SW12        |              |                  | 7.000                 | 1200             |             | 3.900        |
| HW5 OUTFALL |              |                  | 6.800                 | 1200             |             | 3.800        |

#### **Pipeline Schedule**

| Link  | Length<br>(m) | Slope<br>(1:X) | Dia<br>(mm) | US CL<br>(m) | US IL<br>(m) | US Depth<br>(m) | DS CL<br>(m) | DS IL<br>(m) | DS Depth<br>(m) |
|-------|---------------|----------------|-------------|--------------|--------------|-----------------|--------------|--------------|-----------------|
| 1.000 | 12.608        | 126.1          | 225         | 13.900       | 11.700       | 1.975           | 13.900       | 11.600       | 2.075           |
| 1.001 | 27.401        | 137.0          | 225         | 13.900       | 11.600       | 2.075           | 14.000       | 11.400       | 2.375           |
| 2.000 | 14.423        | 96.2           | 150         | 13.500       | 12.800       | 0.550           | 13.500       | 12.650       | 0.700           |
| 2.001 | 41.120        | 34.3           | 150         | 13.500       | 12.650       | 0.700           | 14.000       | 11.450       | 2.400           |
| 3.000 | 14.263        | 47.5           | 150         | 15.900       | 14.500       | 1.250           | 15.600       | 14.200       | 1.250           |
| 3.001 | 10.508        | 42.0           | 150         | 15.600       | 14.200       | 1.250           | 15.300       | 13.950       | 1.200           |
| 3.002 | 33.276        | 13.0           | 150         | 15.300       | 13.950       | 1.200           | 14.000       | 11.400       | 2.450           |
| 1.002 | 7.904         | 39.5           | 225         | 14.000       | 11.400       | 2.375           | 13.600       | 11.200       | 2.175           |
| 1.003 | 38.900        | 432.2          | 150         | 13.600       | 11.200       | 2.250           | 11.600       | 11.110       | 0.340           |
| 1.004 | 8.100         | 405.0          | 150         | 11.600       | 11.110       | 0.340           | 11.600       | 11.090       | 0.360           |
| 1.005 | 38.900        | 432.2          | 150         | 11.600       | 11.090       | 0.360           | 11.600       | 11.000       | 0.450           |

| Link  | US     | Dia  | Sump  | Node    | MH           | DS   | Dia  | Sump  | Node    | MH           |
|-------|--------|------|-------|---------|--------------|------|------|-------|---------|--------------|
|       | Node   | (mm) | (m)   | Туре    | Туре         | Node | (mm) | (m)   | Туре    | Туре         |
| 1.000 | SW1    | 1200 | 0.300 | Manhole | HCD Catchpit | SW2  | 1200 | 0.300 | Manhole | HCD Catchpit |
| 1.001 | SW2    | 1200 | 0.300 | Manhole | HCD Catchpit | SW8  | 1200 | 0.300 | Manhole | HCD Catchpit |
| 2.000 | SW3    | 1200 |       | Manhole | HCD Manhole  | SW4  | 1200 |       | Manhole | HCD Manhole  |
| 2.001 | SW4    | 1200 |       | Manhole | HCD Manhole  | SW8  | 1200 | 0.300 | Manhole | HCD Catchpit |
| 3.000 | SW5 FC | 1200 | 0.300 | Manhole | HCD Catchpit | SW6  | 1200 |       | Manhole | HCD Manhole  |
| 3.001 | SW6    | 1200 |       | Manhole | HCD Manhole  | SW7  | 1200 |       | Manhole | HCD Manhole  |
| 3.002 | SW7    | 1200 |       | Manhole | HCD Manhole  | SW8  | 1200 | 0.300 | Manhole | HCD Catchpit |
| 1.002 | SW8    | 1200 | 0.300 | Manhole | HCD Catchpit | HW1  | 1200 |       | Manhole | Headwall     |
| 1.003 | HW1    | 1200 |       | Manhole | Headwall     | HW2  | 1200 |       | Manhole | HCD Manhole  |
| 1.004 | HW2    | 1200 |       | Manhole | HCD Manhole  | HW3  | 1200 |       | Manhole | HCD Manhole  |
| 1.005 | HW3    | 1200 |       | Manhole | HCD Manhole  | HW4  | 1200 |       | Manhole | HCD Manhole  |

| Courtins                                                                                                                                                                                                                                                                                                            | Curtins Consulting Limited<br>Units 24-25 Riverside Place<br>K Village, Lound Road<br>Kendal, LA9 7FH    | File: Storm to La<br>Network: Storm<br>Craig Noonan<br>16/05/2023                                                                                                                                                                                               | agoon.pfd<br>I Network                                                                                                                                                   | Page 2<br>Millon Iron Line<br>SW Calcs - Network 1<br>081617-CUR-01-ZZ-DC-C-00600                     |                      |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|----------------------|--|--|
|                                                                                                                                                                                                                                                                                                                     | Ē                                                                                                        | Pipeline Schedule                                                                                                                                                                                                                                               |                                                                                                                                                                          |                                                                                                       |                      |  |  |
| Link Le<br>1.006 10<br>1.007 50<br>1.008 41<br>1.009 46<br>1.010 5                                                                                                                                                                                                                                                  | IngthSlopeDiaUS (<br>(mm))0.40014.915011.60.30450.315011.51.20116.515011.05.33012.51508.05.70057.01507.0 | US IL         US Depth           (m)         (m)           00         11.000         0.450           00         10.300         1.050           00         9.300         1.550           00         6.800         1.050           00         3.100         3.750 | DS CLDS IL(m)(m)11.50010.30011.0009.3008.0006.8007.0003.1006.8003.000                                                                                                    | DS Depth<br>(m)<br>1.050<br>1.550<br>1.050<br>3.750<br>3.650                                          |                      |  |  |
| LinkUSDiaNode(mm)1.006HW412001.007SW9 FC15001.008SW1012001.009SW1112001.010SW121200                                                                                                                                                                                                                                 | SumpNodeM(m)TypeTyManholeHCD MManholeHCD MManholeHCD MManholeHCD MManholeHCD M                           | IthDSypeNode1anholeSW9 FC1anholeSW101anholeSW111anholeSW121anholeHW5 OUTFALL                                                                                                                                                                                    | Dia         Sump           (mm)         (m)           1500         1           1200         1           1200         1           1200         1           1200         1 | NodeMHTypeTypeManholeHCD ManholeManholeHCD ManholeManholeHCD ManholeManholeHCD ManholeManholeHeadwall |                      |  |  |
|                                                                                                                                                                                                                                                                                                                     | Si                                                                                                       | mulation Settings                                                                                                                                                                                                                                               |                                                                                                                                                                          |                                                                                                       |                      |  |  |
| Rainfall MethodologyFSRDrain Down Time (mins)240FSR RegionEngland and WalesAdditional Storage (m³/ha)0.0M5-60 (mm)17.000Check Discharge Rate(s)Ratio-R0.3001 year (l/s)4.0Summer CV0.7502 year (l/s)4.2Winter CV0.84030 year (l/s)7.8Analysis SpeedNormal100 year (l/s)9.5Skip Steady StatexCheck Discharge Volumex |                                                                                                          |                                                                                                                                                                                                                                                                 |                                                                                                                                                                          |                                                                                                       |                      |  |  |
| 15 30                                                                                                                                                                                                                                                                                                               | 60 120 180 2                                                                                             | Storm Durations240360480                                                                                                                                                                                                                                        | 600 720                                                                                                                                                                  | 960 1440                                                                                              |                      |  |  |
| Return PeriodClimate Change(years)(CC %)1020                                                                                                                                                                                                                                                                        | Additional Area Additional<br>(A %) (Q %)<br>0<br>0                                                      | Flow Return Period<br>(years)<br>0 30<br>0 100                                                                                                                                                                                                                  | Climate Change<br>(CC %)<br>0<br>35                                                                                                                                      | Additional Area Additional F<br>(A %) (Q %)<br>0<br>0                                                 | <b>low</b><br>0<br>0 |  |  |
|                                                                                                                                                                                                                                                                                                                     | Pre-deve                                                                                                 | elopment Discharge Rate                                                                                                                                                                                                                                         |                                                                                                                                                                          |                                                                                                       |                      |  |  |
| Green<br>Positively Drair                                                                                                                                                                                                                                                                                           | Site Makeup Greenfield<br>field Method IH124<br>ned Area (ha) 0.608<br>SAAR (mm) 1020<br>Soil Index 4    | SP<br>Region<br>Growth Factor 1 yea<br>Growth Factor 30 yea<br>Growth Factor 100 yea                                                                                                                                                                            | R 0.47 Better<br>n 10<br>r 0.85 Q 1<br>r 1.95 Q 30<br>r 2.48 Q 100                                                                                                       | ment (%) 0<br>QBar 4.6<br>year (I/s)<br>year (I/s)<br>year (I/s)                                      |                      |  |  |
|                                                                                                                                                                                                                                                                                                                     | Node SW9 FC                                                                                              | Online Hydro-Brake <sup>®</sup> Co                                                                                                                                                                                                                              | <u>ntrol</u>                                                                                                                                                             |                                                                                                       |                      |  |  |
| Replaces Dow<br>Inv<br>Desig<br>Desi                                                                                                                                                                                                                                                                                | Flap Valve x<br>nstream Link x<br>ert Level (m) 10.300<br>gn Depth (m) 1.010<br>ign Flow (I/s) 4.0 M     | Objective<br>Sump Available<br>Product Number<br>Min Outlet Diameter (m)<br>Iin Node Diameter (mm)                                                                                                                                                              | (HE) Minimise up:<br>✓<br>CTL-SHE-0095-400<br>0.150<br>1200                                                                                                              | stream storage<br>00-1010-4000                                                                        |                      |  |  |
|                                                                                                                                                                                                                                                                                                                     | Node SW!                                                                                                 | 5 FC Online Orifice Contro                                                                                                                                                                                                                                      | <u>bl</u>                                                                                                                                                                |                                                                                                       |                      |  |  |
| Replaces Dow<br>Inv                                                                                                                                                                                                                                                                                                 | Flap Valve x C<br>nstream Link √<br>ert Level (m) 14.500                                                 | esign Depth (m) 1.270<br>Design Flow (l/s) 1.0<br>Diameter (m) 0.020                                                                                                                                                                                            | Discharge Coef                                                                                                                                                           | ficient 0.600                                                                                         |                      |  |  |
|                                                                                                                                                                                                                                                                                                                     |                                                                                                          |                                                                                                                                                                                                                                                                 |                                                                                                                                                                          |                                                                                                       |                      |  |  |

![](_page_34_Picture_0.jpeg)

Page 3 Millon Iron Line SW Calcs - Network 1 081617-CUR-01-ZZ-DC-C-00600

#### Node SW5 FC Carpark Storage Structure

| Base Inf Coefficient (m/hr) | 0.00000 | Invert Level (m)          | 15.400 | Slope (1:X)   | 500.0 |
|-----------------------------|---------|---------------------------|--------|---------------|-------|
| Side Inf Coefficient (m/hr) | 0.00000 | Time to half empty (mins) | 200    | Depth (m)     | 0.350 |
| Safety Factor               | 2.0     | Width (m)                 | 16.000 | Inf Depth (m) |       |
| Porosity                    | 0.30    | Length (m)                | 37.000 |               |       |

#### Node HW1 Depth/Area Storage Structure

|              | Base Inf<br>Side Inf | Coefficient (<br>Coefficient ( | m/hr) 0.0<br>m/hr) 0.0 | 00000<br>00000 | Safety Fa<br>Porc | ctor 2.0<br>osity 1.00 | ) Ti         | Inve<br>me to half er | rt Level (m<br>npty (mins | i) 10.7<br>5) 0 | 00               |
|--------------|----------------------|--------------------------------|------------------------|----------------|-------------------|------------------------|--------------|-----------------------|---------------------------|-----------------|------------------|
| Depth<br>(m) | Area<br>(m²)         | Inf Area<br>(m²)               | Depth<br>(m)           | Area<br>(m²)   | Inf Area<br>(m²)  | Depth<br>(m)           | Area<br>(m²) | Inf Area<br>(m²)      | Depth<br>(m)              | Area<br>(m²)    | Inf Area<br>(m²) |
| 0.000        | 46.0                 | 0.0                            | 0.300                  | 136.0          | 0.0               | 0.600                  | 226.0        | 0.0                   | 0.900                     | 316.0           | 0.0              |
| 0.100        | 76.0                 | 0.0                            | 0.400                  | 166.0          | 0.0               | 0.700                  | 256.0        | 0.0                   | 1.000                     | 345.0           | 0.0              |
| 0.200        | 106.0                | 0.0                            | 0.500                  | 196.0          | 0.0               | 0.800                  | 286.0        | 0.0                   |                           |                 |                  |

#### Node HW3 Depth/Area Storage Structure

| Base Inf Coefficient (m/hr) | 0.00000 | Safety Factor | 2.0  | Invert Level (m)          | 10.600 |
|-----------------------------|---------|---------------|------|---------------------------|--------|
| Side Inf Coefficient (m/hr) | 0.00000 | Porosity      | 1.00 | Time to half empty (mins) |        |

| Depth<br>(m) | Area<br>(m²) | Inf Area<br>(m²) |
|--------------|--------------|------------------|--------------|--------------|------------------|--------------|--------------|------------------|--------------|--------------|------------------|
| 0.000        | 46.0         | 0.0              | 0.300        | 136.0        | 0.0              | 0.600        | 226.0        | 0.0              | 0.900        | 316.0        | 0.0              |
| 0.100        | 76.0         | 0.0              | 0.400        | 166.0        | 0.0              | 0.700        | 256.0        | 0.0              | 1.000        | 345.0        | 0.0              |
| 0.200        | 106.0        | 0.0              | 0.500        | 196.0        | 0.0              | 0.800        | 286.0        | 0.0              |              |              |                  |

![](_page_35_Picture_0.jpeg)

| Curtins Consulting Limited  | File: Storm to Lagoon.pfd | Pa |
|-----------------------------|---------------------------|----|
| Units 24-25 Riverside Place | Network: Storm Network    | M  |
| K Village, Lound Road       | Craig Noonan              | S٧ |
| Kendal, LA9 7FH             | 16/05/2023                | 08 |

Page 4 Millon Iron Line SW Calcs - Network 1 081617-CUR-01-ZZ-DC-C-00600

#### Results for 1 year Critical Storm Duration. Lowest mass balance: 92.50%

| Node Event        | US<br>Node  | Peak<br>(mins) | Level<br>(m) | Depth<br>(m) | Inflow<br>(I/s) | Node<br>Vol (m³) | Flood<br>(m³) | Status     |
|-------------------|-------------|----------------|--------------|--------------|-----------------|------------------|---------------|------------|
| 15 minute winter  | SW1         | 10             | 11.760       | 0.060        | 6.7             | 0.0677           | 0.0000        | ОК         |
| 15 minute winter  | SW2         | 10             | 11.671       | 0.071        | 9.5             | 0.0803           | 0.0000        | ОК         |
| 15 minute winter  | SW3         | 10             | 12.840       | 0.040        | 2.7             | 0.0447           | 0.0000        | ОК         |
| 15 minute winter  | SW4         | 11             | 12.693       | 0.043        | 5.4             | 0.0484           | 0.0000        | ОК         |
| 60 minute winter  | SW5 FC      | 49             | 15.442       | 0.942        | 3.6             | 3.1997           | 0.0000        | SURCHARGED |
| 15 minute winter  | SW6         | 10             | 14.228       | 0.028        | 2.0             | 0.0315           | 0.0000        | ОК         |
| 15 minute winter  | SW7         | 10             | 13.978       | 0.028        | 3.7             | 0.0311           | 0.0000        | ОК         |
| 15 minute winter  | SW8         | 11             | 11.482       | 0.082        | 19.5            | 0.0925           | 0.0000        | ОК         |
| 120 minute winter | HW1         | 82             | 11.260       | 0.060        | 7.9             | 12.2159          | 0.0000        | ОК         |
| 120 minute winter | HW2         | 82             | 11.189       | 0.079        | 4.7             | 0.0890           | 0.0000        | ОК         |
| 240 minute winter | HW3         | 184            | 11.143       | 0.053        | 4.4             | 10.6924          | 0.0000        | ОК         |
| 240 minute winter | HW4         | 184            | 11.027       | 0.027        | 3.3             | 0.0308           | 0.0000        | ОК         |
| 240 minute winter | SW9 FC      | 184            | 10.450       | 0.150        | 3.3             | 0.2643           | 0.0000        | ОК         |
| 240 minute winter | SW10        | 184            | 9.329        | 0.029        | 3.3             | 0.0323           | 0.0000        | ОК         |
| 240 minute winter | SW11        | 188            | 6.826        | 0.026        | 3.3             | 0.0296           | 0.0000        | ОК         |
| 120 minute winter | SW12        | 102            | 3.707        | 0.607        | 2.8             | 0.6867           | 0.0000        | SURCHARGED |
| 15 minute summer  | HW5 OUTFALL | 1              | 3.700        | 0.700        | 1.1             | 0.0000           | 0.0000        | ОК         |

| Link Event        | US     | Link    | DS          | Outflow | Velocity | Flow/Cap | Link     | Discharge |
|-------------------|--------|---------|-------------|---------|----------|----------|----------|-----------|
| (Upstream Depth)  | Node   |         | Node        | (I/s)   | (m/s)    |          | Vol (m³) | Vol (m³)  |
| 15 minute winter  | SW1    | 1.000   | SW2         | 6.6     | 0.692    | 0.143    | 0.1208   |           |
| 15 minute winter  | SW2    | 1.001   | SW8         | 9.4     | 0.799    | 0.211    | 0.3237   |           |
| 15 minute winter  | SW3    | 2.000   | SW4         | 2.7     | 0.687    | 0.148    | 0.0562   |           |
| 15 minute winter  | SW4    | 2.001   | SW8         | 5.3     | 1.290    | 0.173    | 0.1687   |           |
| 60 minute winter  | SW5 FC | Orifice | SW6         | 0.8     |          |          |          |           |
| 15 minute winter  | SW6    | 3.001   | SW7         | 2.0     | 0.885    | 0.072    | 0.0234   |           |
| 15 minute winter  | SW7    | 3.002   | SW8         | 3.6     | 0.913    | 0.073    | 0.1997   |           |
| 15 minute winter  | SW8    | 1.002   | HW1         | 19.6    | 1.607    | 0.236    | 0.0964   |           |
| 120 minute winter | HW1    | 1.003   | HW2         | 4.7     | 0.595    | 0.452    | 0.3092   |           |
| 120 minute winter | HW2    | 1.004   | HW3         | 4.7     | 0.580    | 0.542    | 0.0660   |           |
| 240 minute winter | HW3    | 1.005   | HW4         | 3.3     | 0.875    | 0.318    | 0.1516   |           |
| 240 minute winter | HW4    | 1.006   | SW9 FC      | 3.3     | 0.317    | 0.072    | 0.1028   |           |
| 240 minute winter | SW9 FC | 1.007   | SW10        | 3.3     | 1.124    | 0.132    | 0.1499   |           |
| 240 minute winter | SW10   | 1.008   | SW11        | 3.3     | 1.520    | 0.076    | 0.0902   |           |
| 240 minute winter | SW11   | 1.009   | SW12        | 3.3     | 0.310    | 0.066    | 0.4553   |           |
| 120 minute winter | SW12   | 1.010   | HW5 OUTFALL | 2.8     | 0.159    | 0.118    | 0.1003   | 20.7      |

![](_page_36_Picture_0.jpeg)

| Curtins Consulting Limited  | File: Storm to Lagoon.pfd |
|-----------------------------|---------------------------|
| Units 24-25 Riverside Place | Network: Storm Network    |
| K Village, Lound Road       | Craig Noonan              |
| Kendal, LA9 7FH             | 16/05/2023                |

Page 5 Millon Iron Line SW Calcs - Network 1 081617-CUR-01-ZZ-DC-C-00600

#### Results for 2 year Critical Storm Duration. Lowest mass balance: 92.50%

| Node Event        | US<br>Node  | Peak<br>(mins) | Level<br>(m) | Depth<br>(m) | Inflow<br>(I/s) | Node<br>Vol (m³) | Flood<br>(m³) | Status     |
|-------------------|-------------|----------------|--------------|--------------|-----------------|------------------|---------------|------------|
| 15 minute winter  | SW1         | 10             | 11.769       | 0.069        | 8.7             | 0.0784           | 0.0000        | ОК         |
| 15 minute winter  | SW2         | 10             | 11.682       | 0.082        | 12.4            | 0.0929           | 0.0000        | ОК         |
| 15 minute winter  | SW3         | 10             | 12.845       | 0.045        | 3.5             | 0.0513           | 0.0000        | ОК         |
| 15 minute winter  | SW4         | 11             | 12.699       | 0.049        | 7.0             | 0.0551           | 0.0000        | ОК         |
| 120 minute winter | SW5 FC      | 92             | 15.454       | 0.954        | 3.0             | 4.5433           | 0.0000        | SURCHARGED |
| 15 minute winter  | SW6         | 11             | 14.230       | 0.030        | 2.3             | 0.0339           | 0.0000        | ОК         |
| 15 minute winter  | SW7         | 10             | 13.981       | 0.031        | 4.5             | 0.0345           | 0.0000        | ОК         |
| 15 minute winter  | SW8         | 11             | 11.495       | 0.095        | 25.0            | 0.1073           | 0.0000        | ОК         |
| 120 minute winter | HW1         | 80             | 11.269       | 0.069        | 10.0            | 14.3027          | 0.0000        | ОК         |
| 120 minute winter | HW2         | 82             | 11.201       | 0.091        | 6.0             | 0.1026           | 0.0000        | ОК         |
| 240 minute winter | HW3         | 176            | 11.150       | 0.060        | 5.3             | 12.1354          | 0.0000        | ОК         |
| 240 minute winter | HW4         | 176            | 11.031       | 0.031        | 4.2             | 0.0345           | 0.0000        | ОК         |
| 240 minute winter | SW9 FC      | 192            | 10.645       | 0.345        | 4.2             | 0.6093           | 0.0000        | SURCHARGED |
| 240 minute winter | SW10        | 196            | 9.331        | 0.031        | 4.0             | 0.0354           | 0.0000        | ОК         |
| 240 minute winter | SW11        | 192            | 6.829        | 0.029        | 4.0             | 0.0323           | 0.0000        | ОК         |
| 60 minute summer  | SW12        | 75             | 3.707        | 0.607        | 2.3             | 0.6861           | 0.0000        | SURCHARGED |
| 15 minute summer  | HW5 OUTFALL | 1              | 3.700        | 0.700        | 1.0             | 0.0000           | 0.0000        | ОК         |

| Link Event        | US     | Link    | DS          | Outflow | Velocity | Flow/Cap | Link     | Discharge |
|-------------------|--------|---------|-------------|---------|----------|----------|----------|-----------|
| (Upstream Depth)  | Node   |         | Node        | (I/s)   | (m/s)    |          | Vol (m³) | Vol (m³)  |
| 15 minute winter  | SW1    | 1.000   | SW2         | 8.6     | 0.735    | 0.186    | 0.1479   |           |
| 15 minute winter  | SW2    | 1.001   | SW8         | 12.2    | 0.851    | 0.275    | 0.3943   |           |
| 15 minute winter  | SW3    | 2.000   | SW4         | 3.5     | 0.735    | 0.191    | 0.0678   |           |
| 15 minute winter  | SW4    | 2.001   | SW8         | 6.8     | 1.382    | 0.223    | 0.2020   |           |
| 120 minute winter | SW5 FC | Orifice | SW6         | 0.8     |          |          |          |           |
| 15 minute winter  | SW6    | 3.001   | SW7         | 2.3     | 0.913    | 0.084    | 0.0266   |           |
| 15 minute winter  | SW7    | 3.002   | SW8         | 4.5     | 0.916    | 0.090    | 0.2376   |           |
| 15 minute winter  | SW8    | 1.002   | HW1         | 25.2    | 1.708    | 0.304    | 0.1166   |           |
| 120 minute winter | HW1    | 1.003   | HW2         | 6.0     | 0.633    | 0.578    | 0.3712   |           |
| 120 minute winter | HW2    | 1.004   | HW3         | 6.0     | 0.624    | 0.694    | 0.0784   |           |
| 240 minute winter | HW3    | 1.005   | HW4         | 4.2     | 0.935    | 0.401    | 0.1783   |           |
| 240 minute winter | HW4    | 1.006   | SW9 FC      | 4.2     | 0.345    | 0.090    | 0.1049   |           |
| 240 minute winter | SW9 FC | 1.007   | SW10        | 4.0     | 1.184    | 0.159    | 0.1710   |           |
| 240 minute winter | SW10   | 1.008   | SW11        | 4.0     | 1.605    | 0.091    | 0.1028   |           |
| 240 minute winter | SW11   | 1.009   | SW12        | 4.0     | 0.335    | 0.079    | 0.4619   |           |
| 60 minute summer  | SW12   | 1.010   | HW5 OUTFALL | 2.3     | 0.133    | 0.099    | 0.1003   | 16.6      |

![](_page_37_Picture_0.jpeg)

| Curtins Consulting Limited  | File: Storm to Lagoon.pfd |
|-----------------------------|---------------------------|
| Units 24-25 Riverside Place | Network: Storm Network    |
| K Village, Lound Road       | Craig Noonan              |
| Kendal, LA9 7FH             | 16/05/2023                |

Page 6 Millon Iron Line SW Calcs - Network 1 081617-CUR-01-ZZ-DC-C-00600

#### Results for 30 year Critical Storm Duration. Lowest mass balance: 92.50%

to Lagoon.pfd

| Node Event        | US<br>Node  | Peak<br>(mins) | Level<br>(m) | Depth<br>(m) | Inflow<br>(I/s) | Node<br>Vol (m³) | Flood<br>(m³) | Status     |
|-------------------|-------------|----------------|--------------|--------------|-----------------|------------------|---------------|------------|
| 15 minute winter  | SW1         | 10             | 11.800       | 0.100        | 16.4            | 0.1131           | 0.0000        | ОК         |
| 15 minute winter  | SW2         | 10             | 11.719       | 0.119        | 23.3            | 0.1349           | 0.0000        | ОК         |
| 15 minute winter  | SW3         | 10             | 12.865       | 0.065        | 6.6             | 0.0730           | 0.0000        | ОК         |
| 15 minute winter  | SW4         | 10             | 12.718       | 0.068        | 13.1            | 0.0771           | 0.0000        | ОК         |
| 180 minute winter | SW5 FC      | 148            | 15.496       | 0.996        | 4.4             | 11.5193          | 0.0000        | SURCHARGED |
| 15 minute winter  | SW6         | 10             | 14.238       | 0.038        | 3.7             | 0.0428           | 0.0000        | ОК         |
| 15 minute winter  | SW7         | 10             | 13.990       | 0.040        | 7.9             | 0.0456           | 0.0000        | ОК         |
| 15 minute winter  | SW8         | 11             | 11.541       | 0.141        | 46.9            | 0.1595           | 0.0000        | ОК         |
| 60 minute winter  | HW1         | 45             | 11.313       | 0.113        | 27.3            | 24.1480          | 0.0000        | ОК         |
| 60 minute winter  | HW2         | 46             | 11.249       | 0.139        | 11.5            | 0.1574           | 0.0000        | ОК         |
| 240 minute winter | HW3         | 220            | 11.228       | 0.138        | 9.5             | 29.5192          | 0.0000        | ОК         |
| 240 minute winter | HW4         | 220            | 11.221       | 0.221        | 6.3             | 0.2494           | 0.0000        | SURCHARGED |
| 240 minute winter | SW9 FC      | 220            | 11.214       | 0.914        | 6.2             | 1.6158           | 0.0000        | FLOOD RISK |
| 960 minute summer | SW10        | 495            | 9.331        | 0.031        | 4.0             | 0.0354           | 0.0000        | ОК         |
| 30 minute winter  | SW11        | 56             | 6.829        | 0.029        | 4.0             | 0.0323           | 0.0000        | ОК         |
| 60 minute winter  | SW12        | 56             | 3.712        | 0.612        | 4.0             | 0.6919           | 0.0000        | SURCHARGED |
| 15 minute summer  | HW5 OUTFALL | 1              | 3.700        | 0.700        | 2.8             | 0.0000           | 0.0000        | ОК         |

| Link Event        | US     | Link    | DS          | Outflow | Velocity | Flow/Cap | Link     | Discharge |
|-------------------|--------|---------|-------------|---------|----------|----------|----------|-----------|
| (Upstream Depth)  | Node   |         | Node        | (I/s)   | (m/s)    |          | Vol (m³) | Vol (m³)  |
| 15 minute winter  | SW1    | 1.000   | SW2         | 16.2    | 0.846    | 0.351    | 0.2420   |           |
| 15 minute winter  | SW2    | 1.001   | SW8         | 23.0    | 0.973    | 0.519    | 0.6474   |           |
| 15 minute winter  | SW3    | 2.000   | SW4         | 6.5     | 0.867    | 0.360    | 0.1084   |           |
| 15 minute winter  | SW4    | 2.001   | SW8         | 12.9    | 1.465    | 0.423    | 0.3875   |           |
| 180 minute winter | SW5 FC | Orifice | SW6         | 0.8     |          |          |          |           |
| 15 minute winter  | SW6    | 3.001   | SW7         | 3.7     | 1.008    | 0.134    | 0.0383   |           |
| 15 minute winter  | SW7    | 3.002   | SW8         | 7.8     | 0.921    | 0.157    | 0.3480   |           |
| 15 minute winter  | SW8    | 1.002   | HW1         | 46.7    | 1.958    | 0.563    | 0.1885   |           |
| 60 minute winter  | HW1    | 1.003   | HW2         | 11.5    | 0.725    | 1.095    | 0.6089   |           |
| 60 minute winter  | HW2    | 1.004   | HW3         | 11.4    | 0.763    | 1.313    | 0.1191   |           |
| 240 minute winter | HW3    | 1.005   | HW4         | 6.3     | 1.043    | 0.598    | 0.6719   |           |
| 240 minute winter | HW4    | 1.006   | SW9 FC      | 6.2     | 0.488    | 0.133    | 0.1831   |           |
| 240 minute winter | SW9 FC | 1.007   | SW10        | 4.0     | 1.183    | 0.159    | 0.1705   |           |
| 960 minute summer | SW10   | 1.008   | SW11        | 4.0     | 1.605    | 0.091    | 0.1028   |           |
| 30 minute winter  | SW11   | 1.009   | SW12        | 4.0     | 0.988    | 0.079    | 0.4619   |           |
| 60 minute winter  | SW12   | 1.010   | HW5 OUTFALL | 5.2     | 0.293    | 0.219    | 0.1003   | 40.1      |

![](_page_38_Picture_0.jpeg)

Page 7 Millon Iron Line SW Calcs - Network 1 081617-CUR-01-ZZ-DC-C-00600

#### Results for 100 year +35% CC Critical Storm Duration. Lowest mass balance: 92.50%

| Node Event        | US<br>Node  | Peak<br>(mins) | Level<br>(m) | Depth<br>(m) | Inflow<br>(I/s) | Node<br>Vol (m³) | Flood<br>(m³) | Status     |
|-------------------|-------------|----------------|--------------|--------------|-----------------|------------------|---------------|------------|
| 15 minute winter  | SW1         | 11             | 11.846       | 0.146        | 28.4            | 0.1649           | 0.0000        | ОК         |
| 15 minute winter  | SW2         | 11             | 11.823       | 0.223        | 40.5            | 0.2524           | 0.0000        | ОК         |
| 15 minute winter  | SW3         | 10             | 12.891       | 0.091        | 11.4            | 0.1031           | 0.0000        | ОК         |
| 15 minute winter  | SW4         | 10             | 12.746       | 0.096        | 22.7            | 0.1081           | 0.0000        | ОК         |
| 240 minute winter | SW5 FC      | 232            | 15.574       | 1.073        | 6.4             | 25.4595          | 0.0000        | SURCHARGED |
| 15 minute winter  | SW6         | 10             | 14.248       | 0.048        | 5.8             | 0.0543           | 0.0000        | ОК         |
| 15 minute winter  | SW7         | 10             | 14.002       | 0.052        | 13.1            | 0.0593           | 0.0000        | ОК         |
| 15 minute winter  | SW8         | 11             | 11.662       | 0.262        | 79.9            | 0.2959           | 0.0000        | SURCHARGED |
| 60 minute winter  | HW1         | 48             | 11.397       | 0.197        | 47.8            | 44.4362          | 0.0000        | SURCHARGED |
| 240 minute winter | HW2         | 232            | 11.326       | 0.216        | 12.7            | 0.2446           | 0.0000        | FLOOD RISK |
| 360 minute winter | HW3         | 320            | 11.320       | 0.230        | 11.6            | 52.4823          | 0.0000        | FLOOD RISK |
| 360 minute winter | HW4         | 320            | 11.311       | 0.311        | 6.1             | 0.3520           | 0.0000        | FLOOD RISK |
| 360 minute winter | SW9 FC      | 320            | 11.305       | 1.005        | 5.1             | 1.7750           | 0.0000        | FLOOD RISK |
| 15 minute summer  | SW10        | 40             | 9.331        | 0.031        | 4.0             | 0.0354           | 0.0000        | ОК         |
| 15 minute summer  | SW11        | 41             | 6.829        | 0.029        | 4.0             | 0.0323           | 0.0000        | ОК         |
| 60 minute summer  | SW12        | 51             | 3.713        | 0.613        | 4.0             | 0.6929           | 0.0000        | SURCHARGED |
| 15 minute summer  | HW5 OUTFALL | 1              | 3.700        | 0.700        | 5.3             | 0.0000           | 0.0000        | ОК         |

| Link Event        | US     | Link    | DS          | Outflow | Velocity | Flow/Cap | Link     | Discharge |
|-------------------|--------|---------|-------------|---------|----------|----------|----------|-----------|
| (Upstream Depth)  | Node   |         | Node        | (I/s)   | (m/s)    |          | Vol (m³) | Vol (m³)  |
| 15 minute winter  | SW1    | 1.000   | SW2         | 28.1    | 0.924    | 0.608    | 0.4219   |           |
| 15 minute winter  | SW2    | 1.001   | SW8         | 39.1    | 1.056    | 0.881    | 1.0889   |           |
| 15 minute winter  | SW3    | 2.000   | SW4         | 11.3    | 0.979    | 0.623    | 0.1662   |           |
| 15 minute winter  | SW4    | 2.001   | SW8         | 22.4    | 1.497    | 0.735    | 0.6054   |           |
| 240 minute winter | SW5 FC | Orifice | SW6         | 0.9     |          |          |          |           |
| 15 minute winter  | SW6    | 3.001   | SW7         | 5.8     | 1.117    | 0.210    | 0.0543   |           |
| 15 minute winter  | SW7    | 3.002   | SW8         | 13.0    | 0.949    | 0.262    | 0.3841   |           |
| 15 minute winter  | SW8    | 1.002   | HW1         | 76.7    | 2.092    | 0.925    | 0.2835   |           |
| 60 minute winter  | HW1    | 1.003   | HW2         | 14.3    | 0.811    | 1.365    | 0.6848   |           |
| 240 minute winter | HW2    | 1.004   | HW3         | 12.7    | 0.787    | 1.452    | 0.1426   |           |
| 360 minute winter | HW3    | 1.005   | HW4         | 6.1     | 1.014    | 0.579    | 0.6848   |           |
| 360 minute winter | HW4    | 1.006   | SW9 FC      | 5.1     | 0.409    | 0.109    | 0.1831   |           |
| 360 minute winter | SW9 FC | 1.007   | SW10        | 4.0     | 1.184    | 0.159    | 0.1710   |           |
| 15 minute summer  | SW10   | 1.008   | SW11        | 4.0     | 1.605    | 0.091    | 0.1028   |           |
| 15 minute summer  | SW11   | 1.009   | SW12        | 4.0     | 1.044    | 0.079    | 0.4619   |           |
| 60 minute summer  | SW12   | 1.010   | HW5 OUTFALL | 3.9     | 0.224    | 0.167    | 0.1003   | 55.4      |

|          | Curtins Consulting Limited  | File: Storm to Quarry.pfd | Page 1                      |  |
|----------|-----------------------------|---------------------------|-----------------------------|--|
| Acurting | Units 24-25 Riverside Place | Network: Storm Network    | Millon Iron Line            |  |
|          | K Village, Lound Road       | Craig Noonan              | SW Calcs - Network 2        |  |
|          | Kendal, LA9 7FH             | 16/05/2023                | 081617-CUR-01-ZZ-DC-C-00601 |  |

#### Design Settings

| Rainfall Methodology  | FSR               | Maximum Time of Concentration (mins) | 30.00         |
|-----------------------|-------------------|--------------------------------------|---------------|
| Return Period (years) | 2                 | Maximum Rainfall (mm/hr)             | 50.0          |
| Additional Flow (%)   | 0                 | Minimum Velocity (m/s)               | 1.00          |
| FSR Region            | England and Wales | Connection Type                      | Level Soffits |
| M5-60 (mm)            | 17.000            | Minimum Backdrop Height (m)          | 0.200         |
| Ratio-R               | 0.300             | Preferred Cover Depth (m)            | 1.200         |
| CV                    | 0.750             | Include Intermediate Ground          | $\checkmark$  |
| Time of Entry (mins)  | 5.00              | Enforce best practice design rules   | $\checkmark$  |
|                       |                   |                                      |               |

#### <u>Nodes</u>

| Name    | Area<br>(ha) | T of E<br>(mins) | Add<br>Inflow<br>(I/s) | Cover<br>Level<br>(m) | Diameter<br>(mm) | Depth<br>(m) |
|---------|--------------|------------------|------------------------|-----------------------|------------------|--------------|
| SW13    | 0.063        | 5.00             |                        | 4.100                 | 1200             | 1.000        |
| SW14    | 0.020        | 5.00             |                        | 3.300                 | 1200             | 1.000        |
| SW15    |              | 5.00             | 4.2                    | 4.100                 | 1200             | 1.500        |
| SW16    | 0.084        | 5.00             |                        | 3.100                 | 1200             | 1.000        |
| SW17 FC |              |                  |                        | 3.250                 | 1500             | 1.350        |
| CW1     |              |                  |                        | 3.130                 | 1200             | 1.280        |
| CW2     |              |                  |                        | 3.100                 | 1200             | 1.400        |
| CW3     |              |                  |                        | 3.000                 | 1200             | 1.580        |
| HW1     |              |                  |                        | 2.500                 | 1200             | 1.300        |
|         |              |                  |                        |                       |                  |              |

#### **Pipeline Schedule**

| Link  | Length<br>(m) | Slope<br>(1:X) | Dia<br>(mm) | US CL<br>(m) | US IL<br>(m) | US Depth<br>(m) | DS CL<br>(m) | DS IL<br>(m) | DS Depth<br>(m) |
|-------|---------------|----------------|-------------|--------------|--------------|-----------------|--------------|--------------|-----------------|
| 1.000 | 7.920         | 9.9            | 150         | 4.100        | 3.100        | 0.850           | 3.300        | 2.300        | 0.850           |
| 1.002 | 7.240         | 36.2           | 150         | 3.300        | 2.300        | 0.850           | 3.100        | 2.100        | 0.850           |
| 2.000 | 12.600        | 25.2           | 150         | 4.100        | 2.600        | 1.350           | 3.100        | 2.100        | 0.850           |
| 1.004 | 12.820        | 64.1           | 150         | 3.100        | 2.100        | 0.850           | 3.250        | 1.900        | 1.200           |
| 1.005 | 4.610         | 92.2           | 150         | 3.250        | 1.900        | 1.200           | 3.130        | 1.850        | 1.130           |
| 1.006 | 22.140        | 147.6          | 150         | 3.130        | 1.850        | 1.130           | 3.100        | 1.700        | 1.250           |
| 1.007 | 41.740        | 149.1          | 150         | 3.100        | 1.700        | 1.250           | 3.000        | 1.420        | 1.430           |
| 1.008 | 33.110        | 150.5          | 150         | 3.000        | 1.420        | 1.430           | 2.500        | 1.200        | 1.150           |

| Link  | US      | Dia  | Node    | МН           | DS      | Dia  | Node    | МН           |
|-------|---------|------|---------|--------------|---------|------|---------|--------------|
|       | Node    | (mm) | Туре    | Туре         | Node    | (mm) | Туре    | Туре         |
| 1.000 | SW13    | 1200 | Manhole | HCD Manhole  | SW14    | 1200 | Manhole | HCD Catchpit |
| 1.002 | SW14    | 1200 | Manhole | HCD Catchpit | SW16    | 1200 | Manhole | HCD Catchpit |
| 2.000 | SW15    | 1200 | Manhole | HCD Manhole  | SW16    | 1200 | Manhole | HCD Catchpit |
| 1.004 | SW16    | 1200 | Manhole | HCD Catchpit | SW17 FC | 1500 | Manhole | HCD Manhole  |
| 1.005 | SW17 FC | 1500 | Manhole | HCD Manhole  | CW1     | 1200 | Manhole | HCD Manhole  |
| 1.006 | CW1     | 1200 | Manhole | HCD Manhole  | CW2     | 1200 | Manhole | HCD Manhole  |
| 1.007 | CW2     | 1200 | Manhole | HCD Manhole  | CW3     | 1200 | Manhole | HCD Manhole  |
| 1.008 | CW3     | 1200 | Manhole | HCD Manhole  | HW1     | 1200 | Manhole | Headwall     |

#### Simulation Settings

| Rainfall Methodology | FSR               | Drain Down Time (mins)     | 240          |
|----------------------|-------------------|----------------------------|--------------|
| FSR Region           | England and Wales | Additional Storage (m³/ha) | 0.0          |
| M5-60 (mm)           | 17.000            | Check Discharge Rate(s)    | $\checkmark$ |
| Ratio-R              | 0.300             | 1 year (l/s)               | 5.6          |
| Summer CV            | 0.750             | 2 year (l/s)               | 6.1          |
| Winter CV            | 0.840             | 30 year (l/s)              | 12.8         |
| Analysis Speed       | Normal            | 100 year (I/s)             | 16.3         |
| Skip Steady State    | х                 | Check Discharge Volume     | х            |
|                      |                   |                            |              |

#### Storm Durations

| 15 | 30 | 60 | 120 | 180 | 240 | 360 | 480 | 600 | 720 | 960 | 1440 |
|----|----|----|-----|-----|-----|-----|-----|-----|-----|-----|------|
|    |    |    |     |     |     |     |     |     |     |     |      |

|               |                 | Curtins Cons     | ulting Limi   | ted          | File: Storm to Qu           | uarry.pfd    |            | Page 2     |             |              |      |
|---------------|-----------------|------------------|---------------|--------------|-----------------------------|--------------|------------|------------|-------------|--------------|------|
|               | urtine          | Units 24-25      | Riverside P   | lace         | Network: Storm              | Network      |            | Millon II  | ron Line    |              |      |
|               |                 | K Village, Lo    | und Road      |              | Craig Noonan                |              |            | SW Calc    | s - Netwo   | ork 2        |      |
|               |                 | Kendal, LA9      | 7FH           |              | 16/05/2023                  |              |            | 081617-    | CUR-01-2    | ZZ-DC-C-0060 | 1    |
|               |                 |                  |               |              |                             |              |            |            |             |              |      |
| Return Period | Climate Change  | Additional Are   | ea Additi     | onal Flow    | Return Period               | Climate      | e Change   | Addition   | nal Area    | Additional   | Flow |
| (years)       | (CC %)          | (A %)            | (             | Q %)         | (years)                     | (C)          | C %)       | (A)        | %)          | (Q %)        |      |
| 1             | 0               |                  | 0             | 0            | 30                          |              | 0          |            | 0           |              | 0    |
| 2             | 0               |                  | 0             | 0            | 100                         |              | 35         |            | 0           |              | 0    |
|               |                 |                  | Pre-          | developmen   | t Discharge Rate            |              |            |            |             |              |      |
|               |                 |                  |               |              |                             |              |            |            |             |              |      |
|               |                 | Site Makeup      | Greenfiel     | d            | Region                      | 10           |            | QBar       | 6.6         |              |      |
|               | Green           | field Method     | IH124         | Gro          | wth Factor 1 year           | 0.85         | Q1         | year (I/s) | 5.6         |              |      |
|               | Positively Drai | ned Area (na)    | 0.875         | Gro          | wth Factor 2 year           | 0.93         | Q 2        | year (I/s) | 6.1<br>12.0 |              |      |
|               |                 | SAAR (mm)        | 1020          | Growt        | th Factor 30 year           | 1.95         | Q 30       | year (I/s) | 12.8        |              |      |
|               |                 |                  | 4             | Growt        | .n Factor 100 year          | 2.48         | Q 100      | year (i/s) | 10.3        |              |      |
|               |                 | 354              | 0.47          |              | Bellennent (%)              | 0            |            |            |             |              |      |
|               |                 |                  | Node SW       | 17 FC Online | Hydro-Brake <sup>®</sup> Co | <u>ntrol</u> |            |            |             |              |      |
|               |                 | Flan Valve       | x             |              | Ohiective                   | (HF) Mir     | imise uns  | tream sto  | rage        |              |      |
|               | Replaces Do     | wnstream Link    | ,<br>√        |              | Sump Available              | √<br>√       | innise ups |            | 1050        |              |      |
|               | lr              | nvert Level (m)  | 1.900         | F            | Product Number              | CTL-SHE      | -0113-550  | 0-0800-5   | 500         |              |      |
|               | Des             | sign Depth (m)   | 0.800         | Min Outl     | et Diameter (m)             | 0.150        |            |            |             |              |      |
|               | De              | esign Flow (l/s) | 5.5           | Min Node     | Diameter (mm)               | 1200         |            |            |             |              |      |
|               |                 |                  |               |              |                             |              |            |            |             |              |      |
|               |                 |                  | <u>Node S</u> | W16 Carpar   | k Storage Structu           | <u>re</u>    |            |            |             |              |      |
|               | Base Inf Coeffi | cient (m/hr)     | 0.00000       |              | Invert Level (m)            | 2.100        | Slo        | oe (1:X)   | 500.0       |              |      |
|               | Side Inf Coeffi | cient (m/hr)     | 0.00000       | Time to h    | alf empty (mins)            |              | De         | pth (m)    | 0.600       |              |      |
|               | S               | afety Factor     | 2.0           |              | Width (m)                   | 16.000       | Inf De     | pth (m)    |             |              |      |
|               |                 | Porosity         | 0.30          |              | Length (m)                  | 45.000       |            |            |             |              |      |
|               |                 |                  |               |              |                             |              |            |            |             |              |      |
|               |                 |                  |               |              |                             |              |            |            |             |              |      |
|               |                 |                  |               |              |                             |              |            |            |             |              |      |

![](_page_41_Picture_0.jpeg)

Page 3 Millon Iron Line SW Calcs - Network 2 081617-CUR-01-ZZ-DC-C-00601

#### Results for 1 year Critical Storm Duration. Lowest mass balance: 99.78%

| Node Event        | US<br>Node | Peak<br>(mins) | Level<br>(m) | Depth<br>(m) | Inflow<br>(I/s) | Node<br>Vol (m³) | Flood<br>(m³) | Status     |
|-------------------|------------|----------------|--------------|--------------|-----------------|------------------|---------------|------------|
| 15 minute winter  | SW13       | 10             | 3.135        | 0.035        | 6.8             | 0.0396           | 0.0000        | ОК         |
| 15 minute winter  | SW14       | 10             | 2.360        | 0.060        | 9.0             | 0.0684           | 0.0000        | ОК         |
| 60 minute winter  | SW15       | 1              | 2.644        | 0.044        | 4.2             | 0.0499           | 0.0000        | ОК         |
| 180 minute winter | SW16       | 140            | 2.210        | 0.110        | 9.5             | 14.1228          | 0.0000        | ОК         |
| 180 minute winter | SW17 FC    | 140            | 2.199        | 0.299        | 5.8             | 0.5280           | 0.0000        | SURCHARGED |
| 15 minute winter  | CW1        | 11             | 1.915        | 0.065        | 5.5             | 0.0739           | 0.0000        | ОК         |
| 15 minute winter  | CW2        | 12             | 1.765        | 0.065        | 5.5             | 0.0732           | 0.0000        | ОК         |
| 15 minute summer  | CW3        | 15             | 1.485        | 0.065        | 5.5             | 0.0737           | 0.0000        | ОК         |
| 15 minute summer  | HW1        | 15             | 1.264        | 0.064        | 5.5             | 0.0000           | 0.0000        | ОК         |

| Link Event        | US      | Link         | DS      | Outflow | Velocity | Flow/Cap | Link     | Discharge |
|-------------------|---------|--------------|---------|---------|----------|----------|----------|-----------|
| (Upstream Depth)  | Node    |              | Node    | (I/s)   | (m/s)    |          | Vol (m³) | Vol (m³)  |
| 15 minute winter  | SW13    | 1.000        | SW14    | 6.8     | 1.407    | 0.119    | 0.0386   |           |
| 15 minute winter  | SW14    | 1.002        | SW16    | 8.9     | 1.331    | 0.300    | 0.0502   |           |
| 60 minute winter  | SW15    | 2.000        | SW16    | 4.4     | 1.987    | 0.124    | 0.1003   |           |
| 180 minute winter | SW16    | 1.004        | SW17 FC | 5.8     | 0.490    | 0.260    | 0.2014   |           |
| 180 minute winter | SW17 FC | Hydro-Brake® | CW1     | 5.5     |          |          |          |           |
| 15 minute winter  | CW1     | 1.006        | CW2     | 5.5     | 0.753    | 0.376    | 0.1619   |           |
| 15 minute winter  | CW2     | 1.007        | CW3     | 5.5     | 0.762    | 0.379    | 0.3043   |           |
| 15 minute summer  | CW3     | 1.008        | HW1     | 5.5     | 0.758    | 0.380    | 0.2397   | 68.2      |

![](_page_42_Picture_0.jpeg)

Page 4 Millon Iron Line SW Calcs - Network 2 081617-CUR-01-ZZ-DC-C-00601

#### Results for 2 year Critical Storm Duration. Lowest mass balance: 99.78%

| Node Event        | US<br>Node | Peak<br>(mins) | Level<br>(m) | Depth<br>(m) | Inflow<br>(I/s) | Node<br>Vol (m³) | Flood<br>(m³) | Status     |
|-------------------|------------|----------------|--------------|--------------|-----------------|------------------|---------------|------------|
| 15 minute winter  | SW13       | 10             | 3.140        | 0.040        | 8.8             | 0.0451           | 0.0000        | ОК         |
| 15 minute winter  | SW14       | 10             | 2.371        | 0.071        | 11.6            | 0.0801           | 0.0000        | ОК         |
| 60 minute winter  | SW15       | 1              | 2.644        | 0.044        | 4.2             | 0.0499           | 0.0000        | ОК         |
| 240 minute winter | SW16       | 188            | 2.230        | 0.130        | 9.8             | 18.6146          | 0.0000        | ОК         |
| 240 minute winter | SW17 FC    | 188            | 2.218        | 0.318        | 5.8             | 0.5616           | 0.0000        | SURCHARGED |
| 15 minute summer  | CW1        | 11             | 1.915        | 0.065        | 5.5             | 0.0739           | 0.0000        | ОК         |
| 15 minute winter  | CW2        | 11             | 1.765        | 0.065        | 5.5             | 0.0732           | 0.0000        | ОК         |
| 15 minute summer  | CW3        | 78             | 1.485        | 0.065        | 5.5             | 0.0737           | 0.0000        | ОК         |
| 30 minute winter  | HW1        | 149            | 1.264        | 0.064        | 5.5             | 0.0000           | 0.0000        | ОК         |

| Link Event        | US      | Link         | DS      | Outflow | Velocity | Flow/Cap | Link     | Discharge |
|-------------------|---------|--------------|---------|---------|----------|----------|----------|-----------|
| (Upstream Depth)  | Node    |              | Node    | (I/s)   | (m/s)    |          | Vol (m³) | Vol (m³)  |
| 15 minute winter  | SW13    | 1.000        | SW14    | 8.8     | 1.486    | 0.154    | 0.0472   |           |
| 15 minute winter  | SW14    | 1.002        | SW16    | 11.5    | 1.463    | 0.387    | 0.0600   |           |
| 60 minute winter  | SW15    | 2.000        | SW16    | 4.4     | 1.987    | 0.124    | 0.1150   |           |
| 240 minute winter | SW16    | 1.004        | SW17 FC | 5.8     | 0.490    | 0.259    | 0.2171   |           |
| 240 minute winter | SW17 FC | Hydro-Brake® | CW1     | 5.5     |          |          |          |           |
| 15 minute summer  | CW1     | 1.006        | CW2     | 5.5     | 0.754    | 0.376    | 0.1619   |           |
| 15 minute winter  | CW2     | 1.007        | CW3     | 5.5     | 0.766    | 0.379    | 0.3043   |           |
| 15 minute summer  | CW3     | 1.008        | HW1     | 5.5     | 0.758    | 0.380    | 0.2397   | 70.4      |

![](_page_43_Picture_0.jpeg)

| Curtins Consulting Limited  | File: Storm to Quarry.pfd |
|-----------------------------|---------------------------|
| Units 24-25 Riverside Place | Network: Storm Network    |
| K Village, Lound Road       | Craig Noonan              |
| Kendal IA9 7FH              | 16/05/2023                |

Page 5 Millon Iron Line SW Calcs - Network 2 081617-CUR-01-ZZ-DC-C-00601

#### Results for 30 year Critical Storm Duration. Lowest mass balance: 99.78%

| Node Event        | US<br>Node | Peak<br>(mins) | Level<br>(m) | Depth<br>(m) | Inflow<br>(I/s) | Node<br>Vol (m³) | Flood<br>(m³) | Status     |
|-------------------|------------|----------------|--------------|--------------|-----------------|------------------|---------------|------------|
| 15 minute winter  | SW13       | 10             | 3.155        | 0.055        | 16.6            | 0.0627           | 0.0000        | ОК         |
| 15 minute winter  | SW14       | 10             | 2.410        | 0.110        | 21.9            | 0.1250           | 0.0000        | ОК         |
| 60 minute winter  | SW15       | 1              | 2.644        | 0.044        | 4.2             | 0.0499           | 0.0000        | ОК         |
| 360 minute winter | SW16       | 344            | 2.348        | 0.248        | 11.9            | 44.1352          | 0.0000        | SURCHARGED |
| 360 minute winter | SW17 FC    | 344            | 2.334        | 0.434        | 5.6             | 0.7664           | 0.0000        | SURCHARGED |
| 60 minute winter  | CW1        | 18             | 1.915        | 0.065        | 5.5             | 0.0739           | 0.0000        | ОК         |
| 15 minute winter  | CW2        | 10             | 1.765        | 0.065        | 5.5             | 0.0733           | 0.0000        | ОК         |
| 15 minute summer  | CW3        | 186            | 1.485        | 0.065        | 5.5             | 0.0737           | 0.0000        | ОК         |
| 15 minute winter  | HW1        | 215            | 1.264        | 0.064        | 5.5             | 0.0000           | 0.0000        | ОК         |

| Link Event        | US      | Link         | DS      | Outflow | Velocity | Flow/Cap | Link     | Discharge |
|-------------------|---------|--------------|---------|---------|----------|----------|----------|-----------|
| (Upstream Depth)  | Node    |              | Node    | (I/s)   | (m/s)    |          | Vol (m³) | Vol (m³)  |
| 15 minute winter  | SW13    | 1.000        | SW14    | 16.6    | 1.657    | 0.291    | 0.0785   |           |
| 15 minute winter  | SW14    | 1.002        | SW16    | 21.7    | 1.780    | 0.732    | 0.0941   |           |
| 60 minute winter  | SW15    | 2.000        | SW16    | 4.4     | 1.987    | 0.124    | 0.1304   |           |
| 360 minute winter | SW16    | 1.004        | SW17 FC | 5.6     | 0.485    | 0.251    | 0.2257   |           |
| 360 minute winter | SW17 FC | Hydro-Brake® | CW1     | 5.5     |          |          |          |           |
| 60 minute winter  | CW1     | 1.006        | CW2     | 5.5     | 0.751    | 0.376    | 0.1617   |           |
| 15 minute winter  | CW2     | 1.007        | CW3     | 5.5     | 0.782    | 0.380    | 0.3043   |           |
| 15 minute summer  | CW3     | 1.008        | HW1     | 5.5     | 0.758    | 0.380    | 0.2397   | 78.9      |

![](_page_44_Picture_0.jpeg)

Page 6 Millon Iron Line SW Calcs - Network 2 081617-CUR-01-ZZ-DC-C-00601

#### Results for 100 year +35% CC Critical Storm Duration. Lowest mass balance: 99.78%

| Node Event        | US<br>Node | Peak<br>(mins) | Level<br>(m) | Depth<br>(m) | Inflow<br>(I/s) | Node<br>Vol (m³) | Flood<br>(m³) | Status     |
|-------------------|------------|----------------|--------------|--------------|-----------------|------------------|---------------|------------|
| 15 minute winter  | SW13       | 10             | 3.184        | 0.084        | 28.8            | 0.0956           | 0.0000        | ОК         |
| 15 minute winter  | SW14       | 11             | 2.673        | 0.373        | 37.8            | 0.4213           | 0.0000        | SURCHARGED |
| 60 minute winter  | SW15       | 1              | 2.644        | 0.044        | 4.2             | 0.0499           | 0.0000        | ОК         |
| 720 minute winter | SW16       | 705            | 2.599        | 0.499        | 12.2            | 98.6494          | 0.0000        | SURCHARGED |
| 720 minute winter | SW17 FC    | 705            | 2.586        | 0.686        | 5.5             | 1.2116           | 0.0000        | SURCHARGED |
| 30 minute summer  | CW1        | 11             | 1.915        | 0.065        | 5.5             | 0.0739           | 0.0000        | ОК         |
| 15 minute winter  | CW2        | 8              | 1.765        | 0.065        | 5.5             | 0.0738           | 0.0000        | ОК         |
| 480 minute winter | CW3        | 96             | 1.485        | 0.065        | 5.5             | 0.0737           | 0.0000        | ОК         |
| 480 minute winter | HW1        | 96             | 1.264        | 0.064        | 5.5             | 0.0000           | 0.0000        | ОК         |

| Link Event        | US      | Link         | DS      | Outflow | Velocity | Flow/Cap | Link     | Discharge |
|-------------------|---------|--------------|---------|---------|----------|----------|----------|-----------|
| (Upstream Depth)  | Node    |              | Node    | (I/s)   | (m/s)    |          | Vol (m³) | Vol (m³)  |
| 15 minute winter  | SW13    | 1.000        | SW14    | 28.6    | 1.825    | 0.502    | 0.1102   |           |
| 15 minute winter  | SW14    | 1.002        | SW16    | 36.6    | 2.090    | 1.235    | 0.1275   |           |
| 60 minute winter  | SW15    | 2.000        | SW16    | 4.4     | 1.987    | 0.124    | 0.1304   |           |
| 720 minute winter | SW16    | 1.004        | SW17 FC | 5.5     | 0.477    | 0.250    | 0.2257   |           |
| 720 minute winter | SW17 FC | Hydro-Brake® | CW1     | 5.5     |          |          |          |           |
| 30 minute summer  | CW1     | 1.006        | CW2     | 5.5     | 0.751    | 0.376    | 0.1617   |           |
| 15 minute winter  | CW2     | 1.007        | CW3     | 5.5     | 0.811    | 0.381    | 0.3041   |           |
| 480 minute winter | CW3     | 1.008        | HW1     | 5.5     | 0.758    | 0.380    | 0.2397   | 216.0     |

# **Our Locations**

Birmingham 2 The Wharf Bridge Street Birmingham B1 2JS T. 0121 643 4694 birmingham@curtins.com

Bristol Quayside 40-58 Hotwell Road Bristol BS8 4UQ T. 0117 302 7560 bristol@curtins.com

Cambridge 50 Cambridge Place Cambridge CB2 1NS T. 01223 631 799 cambridge@curtins.com

Cardiff 3 Cwrt-y-Parc Earlswood Road Cardiff CF14 5GH T. 029 2068 0900 cardiff@curtins.com

Douglas Varley House 29-31 Duke Street Douglas Isle of Man IM1 2AZ T. 01624 624 585 douglas@curtins.com

Dublin 11 Pembroke Lane Dublin 2 D02 CX82 Ireland T. +353 1 507 9447 dublin@curtins.com

Edinburgh 1a Belford Road Edinburgh EH4 3BL T. 0131 225 2175 edinburgh@curtins.com Glasgow Queens House 29 St Vincent Place Glasgow G1 2DT T. 0141 319 8777 glasgow@curtins.com

Kendal Units 24 & 25 Riverside Place K Village Lound Road Kendal LA9 7FH T. 01539 724 823 kendal@curtins.com

Leeds Ground Floor Rose Wharf 78-80 East Street Leeds LS9 8EE T. 0113 274 8509 leeds@curtins.com

Liverpool 51-55 Tithebarn Street Liverpool L2 2SB T. 0151 726 2000 liverpool@curtins.com

London 40 Compton Street London EC1V 0BD T. 020 7324 2240 Iondon@curtins.com

Manchester Merchant Exchange 17-19 Whitworth Street West Manchester M1 5WG T. 0161 236 2394 manchester@curtins.com

Nottingham 56 The Ropewalk Nottingham NG1 5DW T. 0115 941 5551 nottingham@curtins.com

![](_page_45_Picture_15.jpeg)