

Millom Iron Line

Drainage Strategy Report

Curtins Ref: 081617-CUR-ZZ-ZZ-T-C-92002

Revision: P03 Issue Date: 07 April 2025

Client Name: Cumberland Council via Story Contracting

Client Address: Parkhouse Building, Kingmoor Business Park, Carlisle, Cumbria CA6 4SJ

Site Address: Hodbarrow Nature Reserve, Millom, Cumbria

Control Sheet

Rev	Description	Checked	Issued	Date
P01	First Issue	CLN	PT	18 May 2023
P02	Update to clarify existing pumping situation	GW	GW	29 November 2023
P03	Document ref. no. change, rework of boundaries and Visitors Centre proposals	GW/PT	GW	07 April 2025

This report has been prepared for the sole benefit, use, and information for the client. The liability of Curtins Consulting Limited with respect to the information contained in the report will not extend to any third party.

Author	Signature	Date
Glen Watson BSc (Hons)	Guran	07/04/2025
Principal Civil Engineer	0	

Reviewed	Signature	Date
Glen Watson BSc (Hons) Principal Civil Engineer	Guran	07/04/2025

Authorised	Signature	Date
Peter Thomas MEng (Hons) CEng MICE	Peter Arany	07/04/2025
Design Director	1eee (

CUR Millom Iron Line

Drainage Strategy Report

Curtins

Contents

1.0	Executive Summary	5
2.0	Introduction	6
2.1	Project Background	6
2.2	Proposed Development	6
2.3	Future Developments	7
3.0	SuDS Guidance and Standards	8
3.1	Introduction	8
3.2	National Planning Policy and Guidance	8
3.3	Climate Change	10
3.4	Stakeholder Engagement	10
3.5	Approach to Determining Appropriate Strategy	11
4.0	Strategic Surface Water Management (SWM) Objectives	12
5.0	Conceptual design	13
5.1	Site characterisation outcomes	13
5.2	Development characterisation outcomes	14
5.3	SuDS Design Criteria	15
5.4	Feasible points of discharge	16
5.5	Surface water sub-catchments and flow routes	17
5.6	Selection of SuDS components for the management train	18
6.0	Outline SW Design	19
6.1	Design Proposals	19
6.2	Assessment of Pre- and Post-development Site Runoff	19
6.3	Water Quantity	21
6.4	Designing for Local Drainage System Failure	21
6.5	Water Quality Treatment	22
7.0	Proposed Foul Water Drainage Strategy	25
7.1	Design Proposals	25
7.2	Design Detail	25
8.0	Appendices	26

CUR Millom Iron Line

Drainage Strategy Report

Curtins

Figures

Figure 1-1: Location of landmarks and key spaces	7
Figure 2-1: South West Lakes Management Catchi	nent peak rainfall allowances10
Figure 4-1: Existing/Proposed Catchment Area ext	ract17
Figure 5-1: Pre-dev. Lagoon Catchment Analysis	Figure 5-2: Pre-dev. Redhill Quarry Catchment
Analysis	19
Figure 5-3: Post Development Catchment Design/s	Simulation Criteria20

Tables

Table 1: Strategic Surface Water Management (SWM) Objectives Table	12
Table 2: Site Characterisation outcomes table	14
Table 3: Development characterisation outcomes table	15
Table 4: Preferred Delivery of SuDs Design Criteria table	15
Table 5: Feasible points of discharge table	16
Table 6: Sub Catchments	17
Table 7: SuDS components for the management train	18
Table 8: Proposed catchment area, restriction/flow and attenuation/storage	21
Table 9: C753, Table 26.3 Indicative SuDs mitigation indices for discharges to surface waters	23
Table 10: C753, Table 26.3 Proprietary treatment pollution mitigation Indices examples	23
Table 11: Pollution hazard indices and mitigation indices/measures	23
Table 12 British Water Foul Flows and Loads Code of Practice	25

Appendices

- Appendix A Proposed Site Plan
- Appendix B Proposed Drainage Drawings
- Appendix C Drainage Calculations
- Appendix D Water Quality Assessment

1.0 Executive Summary

Full planning permission sought for the erection of a new Visitors Centre, access road, car parking and associated landscaping at Millom Iron Line, Millom, Cumbria, nearest site postcode is LA18 4LB.

The General Arrangement Site Masterplan, drawing 289-LYR-XX-ZZ-DWG-L-1000 by Layer Studio is provided in Appendix A.

The overall proposed development comprises:

Erection of visitors centre with café/shop, group room, staff/volunteer, toilet facilities and car park; consolidation, repair and installation of interpretive sculpture to Towsey Hole Windmill; refurbishment of existing Tern Island hide; new bird hides, pathways, gateway features and street furniture; enhancement of wildlife habitats; associated landscaping and drainage infrastructure; and maintenance of byway with restricted vehicular access.

The drainage strategy follows English national standards. SuDS (Sustainable Drainage Systems) will be used to treat surface water runoff. The proposal includes:

- Pervious paving which filter flows through the pavement surface and attenuate below ground.
- Filter and fin drains which collect runoff.
- Proprietary vortex separators which spin out suspended solids (e.g. silt), metals and oils, such as ACO Quadrceptor and/or Hydro International Downstream Defender.

Alternative SuDS elements are proposed in the 'Water Quality Assessment' document, noting that certain SuDS elements are restricted/prohibited by land ownership boundaries.

The lifespan of the development is assumed to be 60 years, ending in 2085. The EA guidance states that for a 'development with a lifetime between 2061 and 2100 take the same approach but use the central allowance for the 2070s epoch (2061 to 2125).'

Therefore, the climate change allowances should be 35% for the 1:30 year and 1:100 year event.

SuDs hierarchy feasibility for surface water (SW) and foul water (FW) disposal:

- Infiltration SW & FW Not viable
- Watercourse/Waterbody SW Lagoon outfall discounted as land locked/no route available. Redhills Quarry pond viable restricted to existing greenfield rates. FW too ecologically sensitive & contractually difficult.
- Existing Private surface water drainage system Not viable
- Surface Water Sewer SW & FW Not viable
- Combined Water Sewer SW not viable, FW main drainage option (pumped solution required)

2.0 Introduction

2.1 Project Background

Curtins were instructed by Cumberland Council via Story Contracting to develop a Drainage Strategy (DS) for the proposed development of a new Visitors Centre and associated access/car parking at Millom Iron Line, Millom, Cumbria. The purpose of the DS is to support the planning application. The nearest site postcode is LA18 4LB and the site is centred on National Grid Reference (NGR) 317429mE 478489mN. What3Words reference: rebounder.named.graphic.

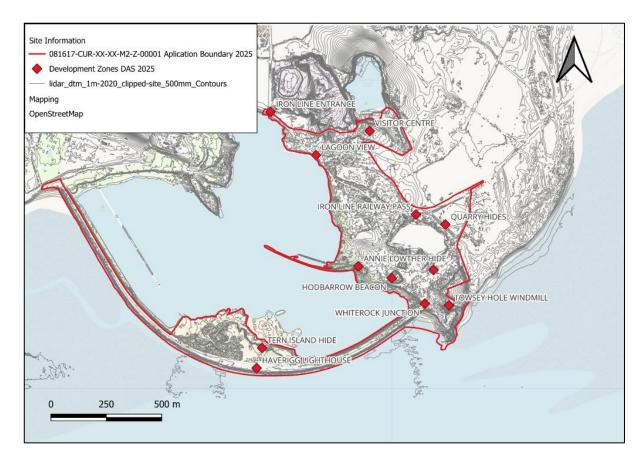
There are also a number of discrete remote elements of work across the Iron Line site, including Hodbarrow Beacon and the former Windmill as well as isolated areas of landscaping. At the time of preparation of this report it is not envisaged that positive drainage will be provided to any of these elements, rather the existing hydraulic situation will be replicated by the use of porous materials wherever possible. As such, the following drainage strategy report focusses on the Visitors Centre and associated hard landscaping only (where contributing areas dictate a positive outfall).

The report provides information with regards to the proposed drainage elements relating to the proposed development and is based on currently available information at the time of writing.

2.2 Proposed Development

Full planning permission for the erection of a new Visitors Centre, access road, car parking and associated landscaping.

The General Arrangement Site Masterplan, drawing 289-LYR-XX-ZZ-DWG-L-1000 by Layer Studio is provided in Appendix A.


The overall proposed development comprises:

Erection of visitors centre with café/shop, group room, staff/volunteer, toilet facilities and car park; consolidation, repair and installation of interpretive sculpture to Towsey Hole Windmill; refurbishment of existing Tern Island hide; new bird hides, pathways, gateway features and street furniture; enhancement of wildlife habitats; associated landscaping and drainage infrastructure; and maintenance of byway with restricted vehicular access.

CUR Millom Iron Line

Drainage Strategy Report

Curtins

Figure 2-1: Location of landmarks and key spaces

In respect to the Visitors Centre, the approximate building footprint has been measured from the Architect's Plan as 380m². The Finished Floor Level (FFL) is proposed at **14.50mAOD**, allowing for a shallow ramped access from existing ground levels in the northeast quadrant. Car parking to the west and northwest quadrants is to be tiered in concentric arc, rising away from the building, rising from 14.50mAOD to 16.60AOD.

In respect to the other elements of the development, no significant changes to existing ground levels are envisaged by the proposals.

2.3 Future Developments

The development is proposed to be built out in a single phase, with no further proposals or plans to extend the Visitors Centre once it is constructed. Remote small upgrades may be possible but will have little impact on existing drainage philosophies.

If in the future it did expand, then the drainage network and attenuation features would need to be assessed at the time for capacity to meet the current guidelines at such time.

Curtins

3.0 SuDS Guidance and Standards

3.1 Introduction

In July 2018, the Government made changes to the National Planning Policy Framework which made Sustainable Urban Drainage Systems ¹ (SuDS) a requirement for the determination of planning applications for 'major' developments. The requirements of a sustainable drainage system are set out in the government's Non-statutory technical standards for sustainable drainage systems.

A Drainage Strategy will therefore be required as part of the Planning Application for the development, as the site is considered to be 'major' development by the Town and Country Planning Order 2015 as total floor space will exceed 1,000m2.

3.2 National Planning Policy and Guidance

3.2.1 National Planning Policy Guidance² (NPPF) states that:

3.2.2 Major developments should incorporate sustainable drainage systems unless there is clear evidence that this would be inappropriate. The systems used should:

- take account of advice from the lead local flood authority
- have appropriate proposed minimum operational standards
- have maintenance arrangements in place to ensure an acceptable standard of operation for the lifetime of the development; and
- where possible, provide multifunctional benefits.

3.2.3 Guidance on the design criteria for different site situations in the Non-Statutory Technical Standards for Sustainable Drainage state:

Peak Flow Control

- Greenfield developments peak runoff rate from the development for the 1 in 1 year rainfall event and the 1 in 100 year rainfall event should never exceed the peak greenfield runoff rate for the same event.
- Brownfield developments peak runoff rate from the development for the 1 in 1 year rainfall event and the 1 in 100 year rainfall event must be as close as reasonably practicable to the Greenfield runoff rate from the development for the same rainfall event.

¹ <u>https://www.gov.uk/government/publications/sustainable-drainage-systems-non-statutory-technical-standards</u>
² <u>https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/810197/NPPF_Feb_2019_r</u>
<u>evised.pdf</u>

Volume Control

- Greenfield developments Where reasonably practicable, the runoff volume from the development in the 1 in 100 year, 6 hour rainfall event should never exceed the Greenfield runoff volume for the same event.
- Brownfield developments Where reasonably practicable, the runoff volume from the development in the 1 in 100 year, 6 hour rainfall event must be constrained to a value as close as reasonably practicable to the greenfield runoff volume for the same event, but should never exceed the runoff volume from the development site prior to redevelopment for that event.
- Where it is not reasonably practicable to constrain the volume of runoff to any drain, sewer or surface water body in accordance with points above, the runoff volume must be discharged at a rate that does not adversely affect flood risk.

Flood Risk Within the Development

- The drainage system must be designed so that, unless an area is designated to hold and/or convey water as part of the design, flooding does not occur on any part of the site for a 1 in 30 year rainfall event.
- The drainage system must be designed so that, unless an area is designated to hold and/or convey water as part of the design, flooding does not occur during a 1 in 100 year rainfall event.
- The design of the site must ensure that, so far as is reasonably practicable, flows resulting from rainfall in excess of a 1 in 100 year rainfall event are managed in exceedance routes that minimise the risks to people and property.

Sustainable Drainage Hierarchy

Paragraph 056 of the NPPF Planning Practice Guidance (PPG Ref: 7-056-20220825) on Flood risk and coastal Change³ states:

The types of sustainable drainage system which it may be appropriate to consider, will depend on the proposed development and its location, as well as any planning policies and guidance that apply locally. Where possible, preference should be given to multi-functional sustainable drainage systems, and to solutions that allow surface water to be discharged according to the following hierarchy of drainage options:

- into the ground (infiltration);
- to a surface water body;
- to a surface water sewer, highway drain, or another drainage system;
- to a combined sewer.

³ <u>https://www.gov.uk/guidance/flood-risk-and-coastal-change</u>

3.3 Climate Change

On 10th May 2022 the Environment Agency published revised climate change allowances⁴ for peak rainfall intensities which should be applied to new developments, based on the River Management Catchment the development lies in, and development design life.

South West Lakes Management Catchment peak rainfall allowances		
3.3% a event	nnual exceedar	nce rainfall
Epoch		
	Central allowance	Upper end allowance
2050s	25%	40%
2070s	35%	45%
20100	nual exceedanc	
	iluai exceedanc	e rainan
1% ani event	ilual exceedanc	c rainiai

The lifespan of the development is assumed to be 60 years, ending in 2085. The EA guidance states that for a 'development with a lifetime between 2061 and 2100 take the same approach but use the central allowance for the 2070s epoch (2061 to 2125).'

Therefore, the climate change allowances should be 35% for the 1:30 year and 1:100 year event.

*Use '2050s' for development with a lifetime up 2060 and use the 2070s epoch for development with a lifetime between 2061 and 2125.

30%

35%

This map contains information generated by Met Office Hadley Centre (2019): UKCP Local Projections on a 5km grid over the UK for 1980-2080. Centre for Environmental Data Analysis. 2022

Figure 3-1: South West Lakes Management Catchment peak rainfall allowances

3.4 Stakeholder Engagement

2050s

2070s

Dialog with United Utilities is ongoing surrounding foul water, available connection points and capacity. Noting that the nearest public foul sewer is located a considerable distance (Mainsgate Road, Millom) from the development and would require pumping.

45%

50%

Extensive discussions have been held with the LLFA/LPA to discuss the development proposals, in particular the drainage strategy options.

Meetings with the ecologist to understand the ecological constraints.

Further details of the planning submission are set out in the accompanying Planning Statement.

⁴ <u>https://www.gov.uk/guidance/flood-risk-assessments-climate-change-allowances#peak-rainfall-intensity-allowance</u>

3.5 Approach to Determining Appropriate Strategy

The following sections of this strategy follow the above guidance in

- Setting strategic surface water management objectives,
- Assessing the existing site characterisations,
- Setting the SuDS design criteria,
- Identifying suitable points of discharge,
- assessing Opportunities and Constraints and
- producing a drainage strategy appropriate for planning purposes

4.0 Strategic Surface Water Management (SWM) Objectives

Following CIRIA C753 The SuDS Manual (C753) Section 7.4, the below objectives are considered by Curtins to be suitable for the surface water drainage design, based the output of Section 3.0.

Торіс	Strategic objective
Flood risk	Flood risk to the development to be managed and the development is not to increase flood risk for surrounding areas. A separate Flood Risk Assessment is available which reviews all existing and potential sources of flooding.
Water quality	Surface water outfalls to the former Redhills Quarry (now naturally filled pond/lagoon) to the north are potentially viable. Appropriate treatment of discharge will be required.
	Foul water – treated effluent cannot be viably treated and discharge to ground and/or waterbodies.
Urban heating & air pollution	The development is in a low-density suburban environment so urban cooling is not a key driver. However, strategic objectives for flood risk, habitat and biodiversity will contribute to climate resilience.
Replenishing groundwater	Infiltration should be used where feasible. Existing infiltration rates are unknown. Site is contaminated and mostly made ground – infiltration techniques unlikely viable.
Biodiversity	Preserve and enhance existing habitat. Incorporating green SuDs should create habitat where possible. Areas to the west of the development are ideal for SuDS (noting limiting land boundaries) with biodiversity benefits such as ponds/swales, but the level of disruption and mitigation is still important. It is advisable to keep habitat areas clustered and fenced off to reduce the risk of wildlife and visitors getting too close.
Water resource	There will be a requirement for potable water at the Visitors Centre. It is thought that this will be supplied from a reliable water source. Use rainwater to irrigate soft landscaping areas where possible passively.
Low carbon construction	Selecting paving and drainage systems and materials which have a low embodied carbon, limiting excavation, using systems which provide dual purpose such as permeable sub-base for pavement sub-structure and attenuation, and minimising the use of steel, cement and certain plastics, will all be considered.
Amenity	The main opportunity for providing appropriate amenity value in the SuDS design is the proposed swales/ponds within the habitat on the west side of the site (noting limiting land boundaries). With appropriate primary treatment, any SuDs ponds should not have a heavy pollution load, meaning its potential for amenity and biodiversity value are high. The main beneficiary will be building users who may wish to walk through the amenity areas.
Climate Change	The surface water proposals should include allowances for appropriate anticipated climate change based on recognised EA/LLFA guidance. The climate change allowances should be 35% for the 1:30 year and 1:100 year event.
Approval and adoption	The local planning authority will be the approving body for the surface water management system. Noting separate Environment Agency permit potential. The site drainage will be entirely owned and operated by Cumberland Council so operation and maintenance design need only consider the needs of the client.

Table 1: Strategic Surface Water Management (SWM) Objectives Table

5.0 Conceptual design

Following the guidance set out in C753 Section 7.5.1, the characterisations set out in the below relating to surface water management were established for the site.

5.1 Site characterisation outcomes

Site topography	Much of the site is sloped down towards the east. There is a sweeping embankment from the east and around to the north of the site. To the west the levels also fall away towards the lagoon. The site levels vary from 16m down to 3m AOD. Immediately North of the Visitors Centre, a vertical rock face remains from the former Redhills quarry, c. 10m in height.
Existing flow routes and discharge points	Currently any overland flow will follow the sloping topography down to the east and west. There will be some infiltration and some absorption from the adjacent vegetation which will also slow any overland flows. An existing lagoon is located approximately 250m southwest that being a potential surface water outfall. It is understood that the lagoon has a pumped control to ensure water levels are consistent for the adjacent caravan/holiday development immediately on its north shore. The lagoon is ecologically sensitive being the centre of the RSPB reserve. Former Redhills quarry now naturally filled pond/pool to the north is located approximately 70m from the site, that also being a potential surface water outfall. It is understood that the lagoon has a pumped control and methane stripping treatment plant. Water levels are anticipated to remain fairly consistent. For context and note; from discussions with the Lead Local Flood Authority (LLFA), Environment Agency (EA), Local Planning Authority (LPA) and Cumberland Council (CC) as client, the former quarry pond has a pumped outfall to a methane treatment plant before outfalling via the downstream end of the Millom Wastewater Treatment Works (WwTW) effluent discharge pipe further north, out to the estuary. There are restrictions on discharge quality, rates and volumes with the Environment Agency and the LLFA. According to the trade effluent permit in place and the outfall agreement with Cumberland Council (formerly Cumbria Council) (as owner/operator of the Waste Recycling Centre and quarry pond), and United Utilities (as owner of the receiving WwTW outfall/discharge pipework) and with the EA (as receiving watercourse/outfall) permit/agreement for discharge is in place already. These are both back-to-back meaning the same flows from one end are expected at the other end. Note that there are significant restrictions on volumes and flow rates that Redhills Quarry needs to be maintained, as such restricting all new impermeable areas to greenfield rate will be required
Potential for infiltration	Reviewing British Geological Survey and Soilscapes mapping information for the surrounding land the site appears to be based on Devensian Till (loamey and clayey) and further away Raised Marine Deposits (sand and gravel) classified as <i>'Naturally wet'</i> with <i>'impeded infiltration</i> <i>potential'</i> suggesting that infiltration techniques may not be possible. Invasive Phase 2 Ground Investigations suggest Made Ground was encountered onsite. Infiltrations techniques are deemed unfeasible due to depth of said Made Ground and contamination risk.
Potential for surface water discharge	Runoff from the existing Visitors Centre catchment is mainly drained to the east where the lower lying ground levels are. From here it would drain to the north as the ground levels drop away slightly. This is where the former Redhills quarry pool/pond is located, and that being the natural flow path. Runoff from the highest part of the site would also drain to the south and west towards the lagoon following the sloping topography. Access to the west is though restricted by land ownership boundaries and as such no formal drainage routes can pass. Therefore, the change to a point discharge is not considered to adversely impact the waterbodies. There is also an ordinary watercourse, Crook Pool, further to the east/ south east approximately 500m from the site and the Duddon estuary (sea) to the south.

CUR Millom Iron Line

Drainage Strategy Report

\frown		•
CL	I II	ins
	••••	

	However due to the nature and importance of the habitat routes careful consideration, discussions and design are required to achieve a suitable outfall.
Site flood risks	See the site-specific Flood Risk Assessment. The bulk of the flood risk is associated to the drainage for the redevelopment with very few other risk anticipated.
Existing site land use	The site was previously used as an Iron Mine. The Visitors Centre site is coincident with a former reservoir which has since been back filled. The scope of demolition/site clearance following closure of the mine and quarry is not clear, however the majority of structures shown on historic maps are no longer present above ground.
Existing site infrastructure	The Visitors Centre site is not believed to have any existing infrastructure. Some field type drains are evident feeding into the lagoon at much lower elevations. Lower portion of the HWRC access appear to have limited drainage direct for the former Redhills quarry. The nearest combined sewer and potential outfall is United Utilities chamber '4300' which lies on Mainsgate Road, Millom. This is a considerable distance away. Alternative 'non main drainage' means of foul water disposal have been explored but discounted.
Existing soils	British Geological Survey and Soilscapes mapping information for the surrounding land the site appears to be based on Devensian Till (loamey and clayey) and further away Raised Marine Deposits (sand and gravel) classified as <i>'Naturally wet'</i> .
Local habitats and biodiversity	The whole site is considered to be of significant ecological importance. The vegetation and RSPB Reserve provides an important habitat for wildlife. Overlooking the Duddon Estuary SSSI and the Morecambe Bay and Duddon Estuary SPA, Hodbarrow reserve comprises a freshwater lagoon within the seawall with rich flower and insect communities living on the limestone slag. Grasssland and scrub stretches inland to provide a haven for insects and breeding songbirds. This coastal lagoon and grasslands, located on the site of a former iron mine, support breeding terns, ringed plovers, redshanks and oystercatchers. Great crested grebes nesting on the island too. See the site-specific Ecological assessment/reports. These facts limit the available space for drainage components, potentially reducing the possible open top features and their use./placement.

Table 2: Site Characterisation outcomes table

5.2 Development characterisation outcomes

Proposed topography, land use and landscape characteristics	The site is to be plateaued where the Visitors Centre is located with an FFL at around 14.5m AOD. Levels will largely remain as existing, except the Visitors Centre first floor/roof which will reach higher than the local surroundings to provide better vista. There will be a tiered car park, terraced up the hill radially out from the Visitors Centre. The car park access will be via the existing access to the existing Redhills Quarry Household Waste Centre. Some widening of the access roads will be necessary to facilitate the safe passing fo vehicles/vehicle management onsite.
Proposed flood risk management strategy	Rates of surface water discharge will be controlled and restricted for event up to and including the 1:100 year rainfall (plus climate change allowances) to the existing 1:1 year equivalent Greenfield runoff rate. As outlined in section 5.0.
Proposed site infrastructure	The proposed drainage system should be possible to install with minimal disruption to the previously developed part of the Hodbarrow reserve and former Iron Line, which has since revegetated. Existing features including a mine shaft and derelict building located to the west of the new Visitors Centre are to remain without interference. Minor footway rerouting may be necessary.

Drainage Strategy Report

	The whole Visitors Centre site will be routed towards the north/Redhills quarry pond, from a proposed drainage catchment perspective.
Proposed building style and form	Passivhaus circular building split over two floors with a balcony to the upper floor. Wall will appear stone faced filled gabions with exposed steelwork structure. Floors will be cast in-situ concrete to the ground floor. Gabion basket retaining walls, tarmac access roads, permeable parking areas are anticipated.
Proposed adoption and maintenance of surface water management system	The SW network(s) are to remain in private ownership.

Table 3: Development characterisation outcomes table

5.3 SuDS Design Criteria

	Preferred Delivery of SuDs Design Criteria					
Water quantity	All surface water discharge shall be restricted to the 1:1 year greenfield rate from each catchment i.e existing greenfield rate.					
	Runoff from the 1:30 year event should be attenuated below ground (i.e. not cause flooding) and the 1:100 year should be attenuated on site without posing a risk to people or property.					
	The site lies in the Southwest Lakes Management Catchment, for the EA guidance ⁵ on peak rainfall allowances. Therefore, attenuation will be provided for the 1:30 year +35% climate change and the 1:100 year +35% events, based on a 60 year design life.					
Water quality	Surface Water runoff areas at risk from contamination should receive water quality treatment. The development land uses can be categorised as follows.					
	The simple index approach has been used from C753. The pollution hazard indices from Table 26.2 are (Total suspended solids (TSS), Metals and Hydrocarbons (HC):					
	 Commercial Building roofs = Low hazard, TSS: 0.3, metals: 0.2, HCs: 0.05 					
	 Non-residential Car parking and site roads = Medium hazard, TSS: 0.7, metals: 0.6, HCs: 0.7 					
	 Site with heavy pollution, eg highly frequented lorry approaches to waste sites, site where chemicals and fuels are delivered, handled, stored or used = High TSS: 0.8, metals: 0.8, HCs: 0.9 					
Amenity	Provide open SuDS, where possible, which provide pleasant areas for visitors to look over from the centre and feel like they are in nature.					
Biodiversity	Design to minimise the adverse impact on existing biodiversity and ecology, and any open top SuDS features should maximise the biodiversity improvement, providing a net gain.					
	Ponds/swales could provide habitats for Natterjack Toads.					
	They should have gently sloping sides to ensure safe passage out of the pools for toadlets and hold water down to a maximum water depth of 50 - 70cm that will dry out in late summer in an average year. The use simple pipe sluices could be installed so that the pools can be drained down in late summer.					
	Vegetation within and surroundings should be kept low-cut					
	Fenced off from visitors					
	Nearby sandy banks, stone walls, piles of stones that could act as hibernacula.					

 Table 4: Preferred Delivery of SuDs Design Criteria table

⁵ <u>https://www.gov.uk/guidance/flood-risk-assessments-climate-change-allowances</u>

5.4 Feasible points of discharge

Surface Water Disposal Method	Potential	Description
Infiltration	×	British Geological Survey and Soilscapes mapping information for the surrounding land the site appears to be based on Devensian Till (loamey and clayey) and further away Raised Marine Deposits (sand and gravel) classified as <i>'Naturally wet'</i> with <i>'impeded infiltration potential'</i> suggest that infiltration techniques may not be possible. Invasive Phase 2 Ground Investigations suggest Made Ground was encountered onsite. Infiltrations techniques are deemed unfeasible due to depth of said Made Ground and contamination risk.
Watercourse/ Waterbody	~	A lagoon is approximately 250m to the southwest – although restricted by land ownership boundaries and as such no formal drainage routes can pass – outfall discounted. The former Redhills quarry now naturally filled pond/pool is located approximately 70m to the north. Runoff from the existing catchment is mainly drained to the east where the lower lying ground levels are. From here it would drain to the north as the ground levels drop away slightly. This is where the former Redhills quarry pool/pond is located, and that being the natural flow path. The proposed discharge point for the Visitor Centre site will be towards to the north east and restricted up to the 1:100 year rainfall (plus climate change allowances) to the existing 1:1 year equivalent Greenfield runoff rate. It is anticipated a new headwall/reuse of an existing headwall onto the Redhills Quarry will be necessary. Therefore, the change to a point discharge is not considered to adversely impact the waterbodies.
Existing Private surface water drainage system	X	There is no formal positive surface water drainage on site. Some field type drains are evident feeding into the lagoon and the former Redhill Quarry at much lower elevations. There is potential to reuse some of the outfall pipework/spill way to suit the drainage system (subject to further investigations).
Surface Water Sewer	X	There are no surface water sewers within range of the site.
Combined Water Sewer	×	Not viable as a surface water disposal method. FW – viable The nearest combined sewer and potential outfall is United Utilities chamber '4300' which lies on Mainsgate Road, Millom. This is a considerable distance away. Alternative 'non main drainage' means of foul water disposal have been explored but discounted. Dialogue with UU must be held to confirm capacity within the combined sewer to accommodate unrestricted foul water flows.

Table 5: Feasible points of discharge table

5.5 Surface water sub-catchments and flow routes

Existing drainage areas will be retained, except for the western most upper level part of the Visitors Centre parking/access with it now forming part of the eastern catchment. Essentially all discharge to the Redhill quarry will be restricted to existing greenfield equivalent rates with appropriate flood control and attenuation provided upstream.

Wider periphery areas of redevelopment will remain as per existing catchments.

Catchment Name	Colour	Treatment
Welcome Centre and top car park (Lagoon Catchment)	Magenta	SuDS scheme required.
Visitors Centre, car park and immediate access road/parking (Redhills Quarry Catchment)	Cyan	SuDS scheme required.

Table 6: Sub Catchments

The development catchment is as follows and are shown in detail on the Proposed Drainage Plan drawings 081617-CUR-01-ZZ-DR-C-92001 and 92002. An extract is shown below.

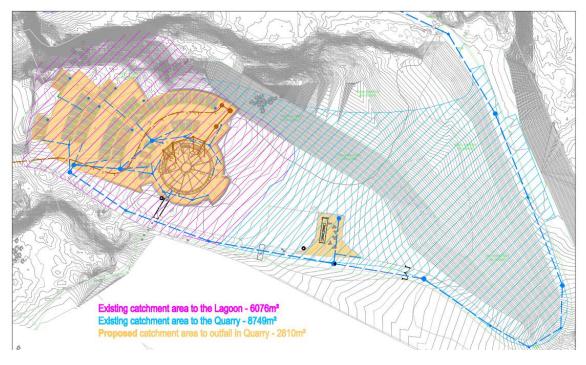


Figure 5-1: Existing/Proposed Catchment Area extract

The Visitors Centre surface water catchment from the access roads, parking area and roof shall drain via a formalised route to the former Redhills Quarry pool/pond directly. An assessment of catchment and existing flows/rates has been undertaken to prove that the flows directed towards the quarry are no worse than the existing situation.

5.6 Selection of SuDS components for the management train

Water quantity	Runoff collection mechanism	Standard roof downpipes from roofs. External areas drain to permeable paving. Where this is not possible, gullies and channel drains shall be used.		
	Interception mechanism	No interception currently proposed. Rainwater harvesting is to be explored at detailed design stage. Infiltration not feasible, as noted previously.		
	Storage	The majority of attenuation will be provided by below ground storage attenuation tanks, with some provided by permeable construction.		
	Conveyance	Piped conveyance to downstream components.		
	Exceedance	See section 5.3.		
Water quality	Discharges to surface waters and Surface water protection measures	Suitable protection measures for this development are identified in 081617-CUR-ZZ-XX-T-C-92701 - Water Quality Assessment in Error! Reference source not found. D. Most areas will be treated by pervious pavements. Vortex separator(s, for example ACO Quadrceptor) will be provided to treat runoff from all other areas.		
Amenity	Trees and planters provide cooling ar If a bioretention system can be provid			
Biodiversity	Trees and planters provide biodiversit	y.		

Table 7: SuDS components for the management train

6.0 Outline SW Design

6.1 Design Proposals

Refer to the following plans/calculations:

- 081617-CUR-01-ZZ-DR-C-92001-P02 Drainage Strategy Sheet 1,
- 081617-CUR-01-ZZ-DR-C-92002-P02 Drainage Strategy Sheet 2 and
- 081617-CUR-01-ZZ-DR-C-92003-P01 Drainage Strategy Sheet 3.
- 081617-CUR-XX-XX-D-C-92200-P02 Drainage Details Sheet 1
- 081617-CUR-XX-XX-D-C-92201-P02 Drainage Details Sheet 2
- 081617-CUR-XX-XX-T-C-00001-P01 Surface water drainage calculations
- 081617-CUR-ZZ-XX-T-C-92701-P01 Water Quality Assessment.

6.2 Assessment of Pre- and Post-development Site Runoff

Pre-development Site Runoff

The site should be considered to have a greenfield discharge in terms of its runoff response. The existing Visitor Centre site catchment is split into two following the existing topography: Lagoon Catchment and Redhills Quarry Catchment. The highest/western side falling towards the lagoon in the south west, while the lower/eastern side falling towards the north east and Redhills Quarry.

Pre-development di	scharge				Pre-development d	<u>ischarge</u>			
Site Makeup		Greenfield v		Site Makeup		Greenfield v		~	
Greenfield Method		IH124		~	Greenfield Method		IH124 v		~
Positively Drained A	Area (ha)	0.608		Positively Drained Area (ha)		0.875			
SAAR (mm)		1020			SAAR (mm)		1020		, .
Soil Index		4		~	Soil Index		4		~
SPR		0.47			SPR		0.47		
Region		10 ~		Region		10 ~		~	
Betterment (%)		0		Betterment (%)		0			
		Calc				Calc	:		
QBar (I/s)		4.6			QBar (I/s)		6.6		
Return Period (years)	Growth	Factor	Q (I/s)		Return Period (years)	Growth	Factor	Q (I/s)	
1		0.87		4.0	1		0.87		5.7
2		0.93		4.2	2		0.93		6.1
30		1.70		7.8	30		1.70		11.2
100		2.08		9.5	100		2.08		13.7

Figure 6-1: Pre-dev. Lagoon Catchment Analysis

Figure 6-2: Pre-dev. Redhill Quarry Catchment Analysis

Post-development Site Runoff - Visitors Centre

Based on an assessment of catchment areas and constraints associated with the outfalls, namely the rates and volumes to the quarry pool, the catchments have been split and existing/proposed flows/rates have been calculated.

Lagoon Catchment - outfall to the Lagoon to the west

Due to being land locked by third party ownership boundaries, a route through to the lagoon is no longer viable. Consequently, flows have been combined with the Redhill Quarry catchment but restricted back to existing greenfield discharge rates.

Redhills Quarry Catchment - outfall to the Quarry Pond to the north

The post-development discharge rate will be restricted to 1:1 year Greenfield rate, calculated by the IH124 method below. The site will be divided into catchments to suit site constraints so that the total surface water discharge for the catchment does not exceed <u>5.70 l/s</u> (litres/second) for all storms up to and including the 1:100 year plus climate change event.

Simulation Settings

Rainfall Methodology Rainfall Events	FSR Singular		240 0.0
FSR Region	England and Wales	Starting Level (m)	
M5-60 (mm)	17.000	Check Discharge Rate(s)	\checkmark
Ratio-R	0.300	1 year (l/s)	5.7
Summer CV	0.750	30 year (l/s)	5.7
Winter CV	0.840	100 year (l/s)	5.7
Analysis Speed	Normal	Check Discharge Volume	\checkmark
Skip Steady State	x	100 year +35% 360 minute (m ³)	123

Figure 6-3: Post Development Catchment Design/Simulation Criteria

For context and note; from discussions with the Lead Local Flood Authority (LLFA), Environment Agency (EA), Local Planning Authority (LPA) and Cumberland Council (CC) as client, the former quarry pond has a pumped outfall to a methane treatment plant before outfalling via the downstream end of the Millom Wastewater Treatment Works (WwTW) effluent discharge pipe further north, out to the estuary. There are restrictions on discharge quality, rates and volumes with the Environment Agency and the LLFA. According to the trade effluent permit in place and the outfall agreement with Cumberland Council (formerly Cumbria County Council) (as owner/operator of the Waste Recycling Centre and quarry pond), and United Utilities (as owner of the receiving WwTW outfall/discharge pipework) and with the EA (as receiving watercourse/outfall) permit/agreement for discharge is in place already. These are both back-to-back meaning the same flows from one end are expected at the other end.

Note that there are significant restrictions on volumes and flow rates that Redhills Quarry needs to be maintained, hence restricting all new impermeable areas to greenfield rate.

6.3 Water Quantity

Catchment Name	Area (ha)	Flow (I/s)	Attenuation (m ³)
Proposed Visitor Centre impermeable area	0.2870	5.7 (wider Redhills catchment)	114-183 (160m3 provided through refined model/ design)

Table 8: Proposed catchment area, restriction/flow and attenuation/storage

Note that the above catchment areas are subject to change through design development, which will affect the flow control and attenuation volumes. The above attenuation volumes were calculated using an outline hydraulic model and are subject to further refinement through a detailed hydraulic model which will account for available volumes in the wider surface water drainage system. The principles set out in sections 6.1 i.e. the 1:1 year greenfield rate for the existing catchment at 5.70 l/s for design storms up to the 1:100 year and 35% climate change allowances.

The bulk of the attenuation will be provided in a combination of permeable paving, below ground attenuation tanks and/or large diameter pipes.

The final calculations should include for a permanent surcharge to the quarry pool/pond as a worstcase scenario that the drain is full to the crest level at the time of the design rainfall events. The water levels will need to be confirmed prior to detailed design stage and levels of the outfall amended as necessary to suit actual water levels in the former quarry pool/pond.

6.4 Designing for Local Drainage System Failure

In accordance with general principles discussed in CIRIA Report C635, Designing for Exceedance in Urban Drainage the proposed surface water drainage, where practical, should be designed to ensure no increased risk of flooding to buildings on the site or elsewhere because of extreme rainfall, lack of maintenance, blockages or other causes.

Blockage

The site levels design will grade external surfaces away from buildings and into other hardstanding areas. There will be a degree of redundancy where water that cannot be drained by one blocked linear drain or gully will flow overground to the next available linear drain or gully. If blockages are so extensive that this is not possible, the levels will be designed to overland flows drain to the outfall Redhills Quarry (as per the existing condition).

Exceedance

The site drainage has been designed to attenuate the 100-yr rainfall event, including an allowance for climate change. No flooding has been calculated in the worst case event.

Exceedance flows will be retained on site within the drainage system as far as practical however for rainfall events of a greater return period it may be necessary to pass forward more flow or to spill flow from the system. The site levels design will allow overland flows to discharge to the lower part of the site towards the existing vegetation. Additional temporary storage could be provided within the terraced car parking extents with the use of full height kerbs.

Parking areas could be designed to offer additional storage volume should the drainage system be exceeded. Where appropriate, kerb lines should be raised by half batter kerbs (0.1m) to help retain flood water and allow drainage back into the system through the permeable surface.

Drainage Contingency

The proposed surface water drainage system has been designed to provide adequate storage volume against flooding, including an allowance for climate change in accordance with current best practice.

Building Layout and Detail

To meet accessibility requirements, new buildings tend to have level access and therefore, external levels will be set wherever possible to fall away from the buildings ensuring any flood water runs away from, rather than towards the building. Anywhere this is not possible thresholds will include drains.

6.5 Water Quality Treatment

The design should incorporate the following components where possible:

Type of SuDs component	Pollution M	itigation Indic	Viability	
	TSS	Metals	Hydrocarbons	
Filter strips	0.4	0.4	0.5	Potentially viable
Filter drain	0.4	0.4	0.4	Potentially viable - incorporated
Swale	0.5	0.6	0.6	Unviable due to land take/space
Bioretention system	0.8	0.8	0.8	Potentially viable but significantly limited in available footprint
Permeable pavements	0.7	0.6	0.7	Viable - incorporated
Detention basin	0.5	0.5	0.6	Unviable due to land take/space
Pond	0.7	0.7	0.5	Unviable due to land take/space
Wetland	0.8	0.8	0.8	Potentially viable if land can be redesignated
Proprietary treatment systems (see below)	These must demonstrate they can address each of the contaminant types to acceptable levels for frequent events up to approximately the 1 in 1 year return period event, for inflow concentrations relevant to the contributing drainage area.			Necessary and viable – incorporated (see below)

Table 9: C753, Table 26.3 Indicative SuDs mitigation indices for discharges to surface waters

Unfortunately, may SuDs features/components are not viable due to their land take/footprints given the site ecological constraints and third party land boundaries. Consequently, proprietary treatment systems must be used to achieve to necessary water quality treatment.

The below proprietary treatment systems have also been considered, with the supplier quoted pollution mitigation indices, as of March 2025. While some products have a lower mitigation, they are still appropriate for use when backed up with secondary treatment, such as the 'ACO Quadrceptor, which would be appropriate when used with upstream sediment traps/permeable paving etc.

Proprietary System	Pollution Mitig	gation Indices	
	TSS	Metals	Hydrocarbons
Hydro-International Downstream Defender Advanced Vortex	0.5	0.4	0.5
Klargester – AquaTreat	0.85	0.64	0.99
Marsh Hydroil Full retention separator	0.8435	0.6326	0.975
ACO QuadraCeptor	0.8	0.8	0.8

Table 10: C753, Table 26.3 Proprietary treatment pollution mitigation Indices examples

The below table summarises the total pollution mitigation indices for each land use category. These are based on the simple index approach from C753. The pollution mitigation indices are from Table 26.3, with the above Klargester – Aqua Treat proprietary system. Where two stages of treatment are required, the mitigation indices for the second stage of treatment have been factored by 0.5 to account for reduced performance due to lower inflows.

Land Use	Hazard Indices	Mitigation Indices
Building/ commercial roofs	Low hazard, TSS: 0.3, metals: 0.2, HCs: 0.05	Sediment trap TSS: 0.4, metals: 0.4, HCs: 0.4 ✓
Car parking/ aisles access road	Medium hazard, TSS: 0.7, metals: 0.6, HCs: 0.7	Pervious paving, sediment trap and downstream defender (min)/ ACO Quadrceptor <tss: 1.0,="" 1.15="" 1.15,="" hcs:="" metals:="" th="" ✓<=""></tss:>
Site wide industrial roads (HWRC/tip access if drained)	High hazard, TSS: 0.8, metals: 0.8, HCs: 0.9	Filter drains, sediments traps and proprietary treatment TSS: 1.0, metals: 1.0, HCs: 1.0 ✓

Table 11: Pollution hazard indices and mitigation indices/measures

The Water Quality Assessment calculations can be seen in Appendix D.

Surface water treatment from the catchment is provided by stone filled filter trenches, permeable construction and propriety treatment units where possible. The permeable construction provides

CUR Millom Iron Line

Drainage Strategy Report

Curtins

some the attenuation for this catchment but a dedicated attenuation tank and flow control (Hydrobrake) beneath the proposed coach parking/drop off allows a restriction back to the 1:1 year greenfield runoff rate for all storms up to and including the 1:100 year + 35% climate change event. Connection to the quarry pond will be via a newly formed drain or open channel/swale adjacent to the access road.

Flows from the Visitor Centre access road/aisles have a medium pollution hazard so require two stages of treatment. The first stage being SuDs components, sediment traps, filter drains where possible followed by a proprietary treatment system. Other methods of initial treatment include the use of Trapped Gullies and Catchpit chambers, which may be used to filter out high volumes of sediment and aid maintenance.

Permeable paving/ filter drain, and an Aco Quadrceptor are proposed as a final stage of treatment for the contributing catchment.

Runoff from roofs can be effectively treated by frequent sediment traps.

The type(s) of mitigation proposed may be further considered as the site design is finalised i.e. paving surfaces etc. The proposals for pollution protection should be agreed with the lead local flood authority (LLFA).

7.0 Proposed Foul Water Drainage Strategy

7.1 Design Proposals

Refer to the following plans/calculations:

- 081617-CUR-01-ZZ-DR-C-92001-P02 Drainage Strategy Sheet 1,
- 081617-CUR-01-ZZ-DR-C-92002-P02 Drainage Strategy Sheet 2 and
- 081617-CUR-01-ZZ-DR-C-92003-P01 Drainage Strategy Sheet 3.
- 081617-CUR-XX-XX-D-C-92200-P02 Drainage Details Sheet 1
- 081617-CUR-XX-XX-D-C-92201-P02 Drainage Details Sheet 2
- 081617-CUR-ZZ-XX-T-C-92702-P01 BW Foul Flows and Loads 4

7.2 Design Detail

A separate foul water drainage system is proposed for the Visitor Centre site. This is to drain via an immediate gravity system to a convenient location within the service yard directly north of the building. From here it shall be pumped along the access road, and up Mainsgate Road. The outfall being the nearest combined sewer and potential outfall is United Utilities chamber '4300' which lies on Mainsgate Road, Millom. This is a considerable distance away. Alternative 'non main drainage' means of foul water disposal have been explored but discounted.

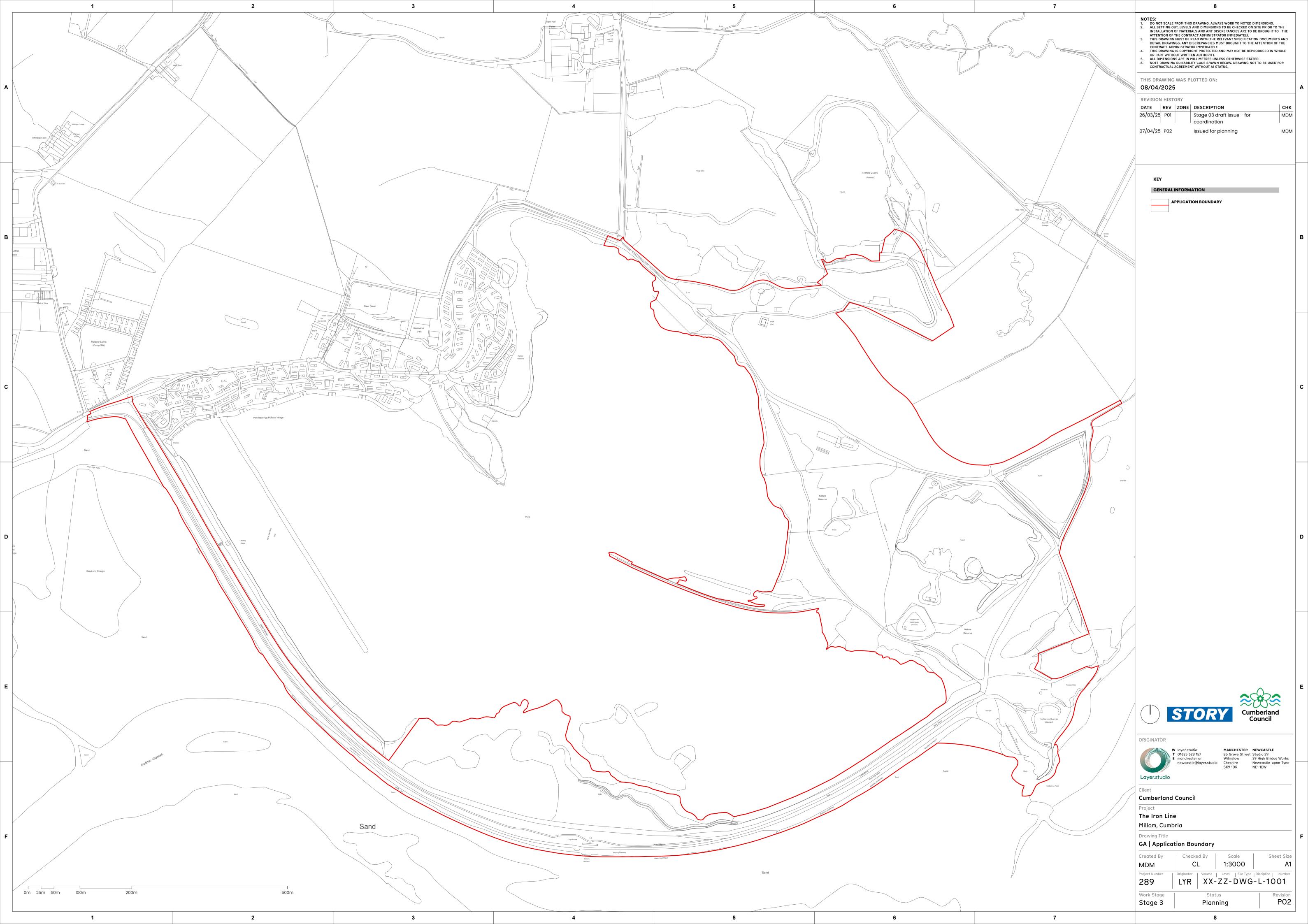
Based on the following person use rates/notes:

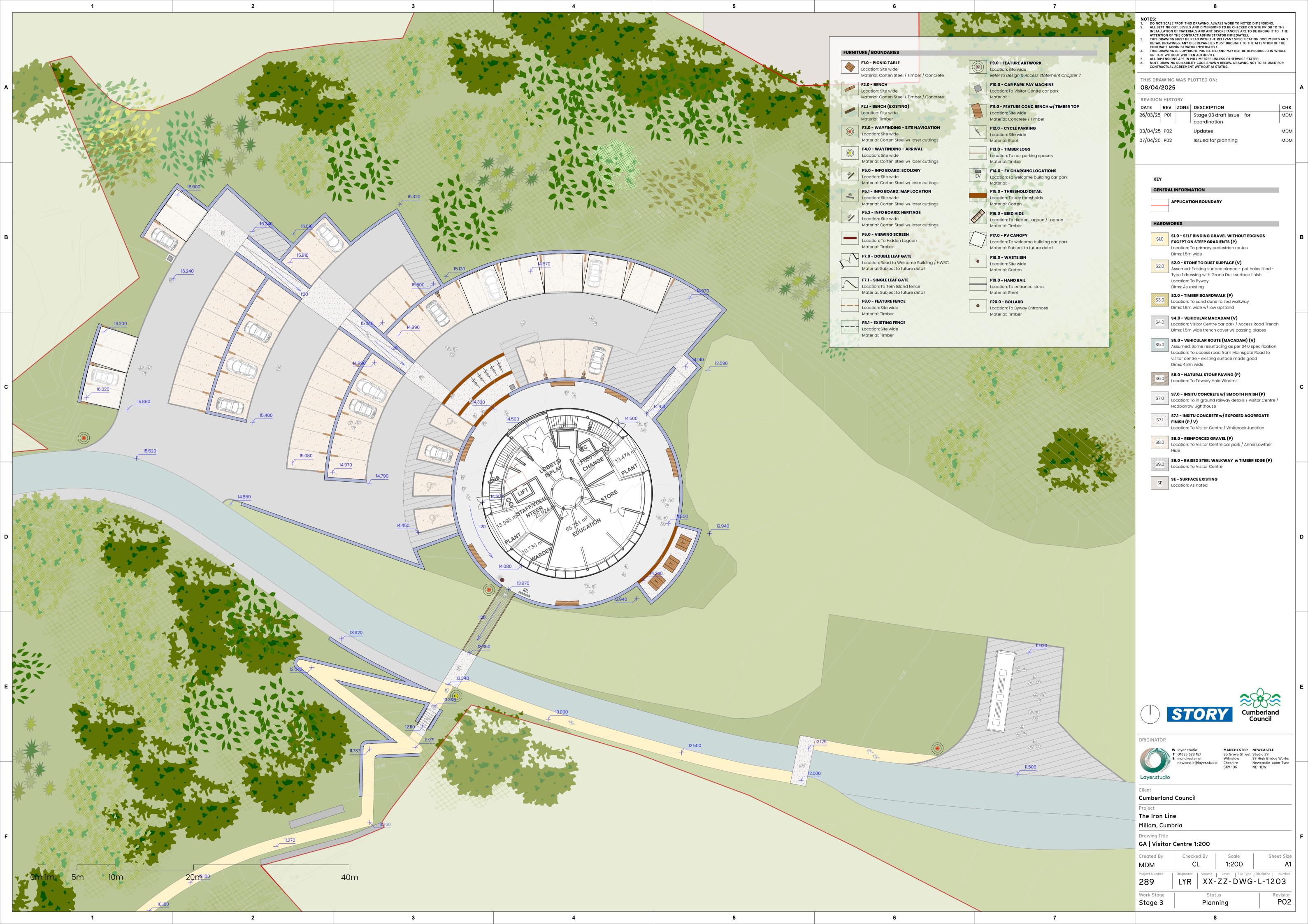
Description	No.
Canteen (provides hot drinks, pre-prepared sandwiches, cakes, confectionary etc) (Assumed Calc value of Restaurants - Snack Bars & bar meals)	58
Staff workers - (Office / Factory without canteen)	10
Visitor toilets (Toilet (WC) (per use)	150

Table 12 British Water Foul Flows and Loads Code of Practice

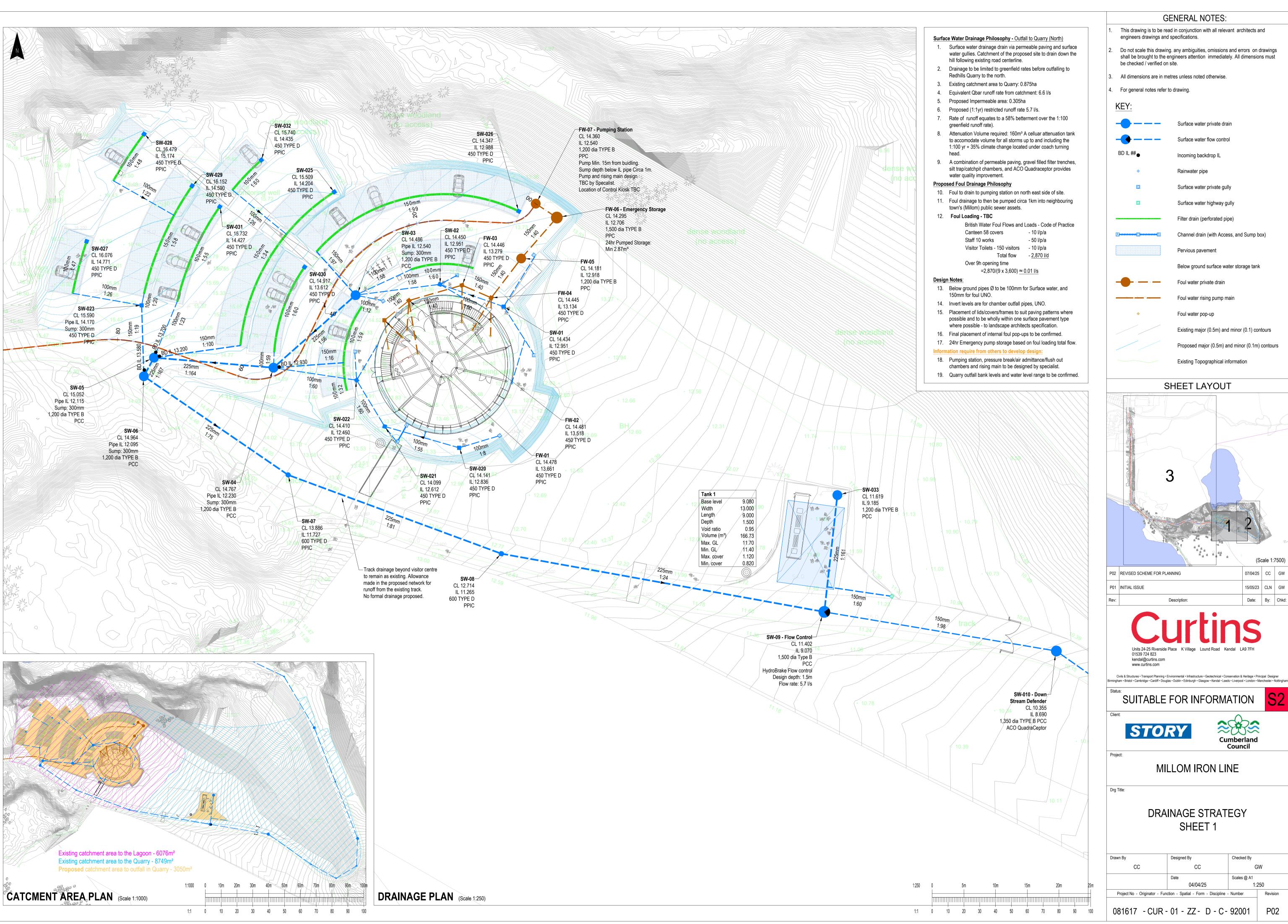
We therefore expect the development runoff to be circa 0.1 l/s (British Water Foul Flows and Loads – Code of Practice – Appendix C). The flow rate from the foul has been factored into the overall allowable 1:1 year greenfield discharge rate and the surface water rate reduced to accommodate the foul flow.

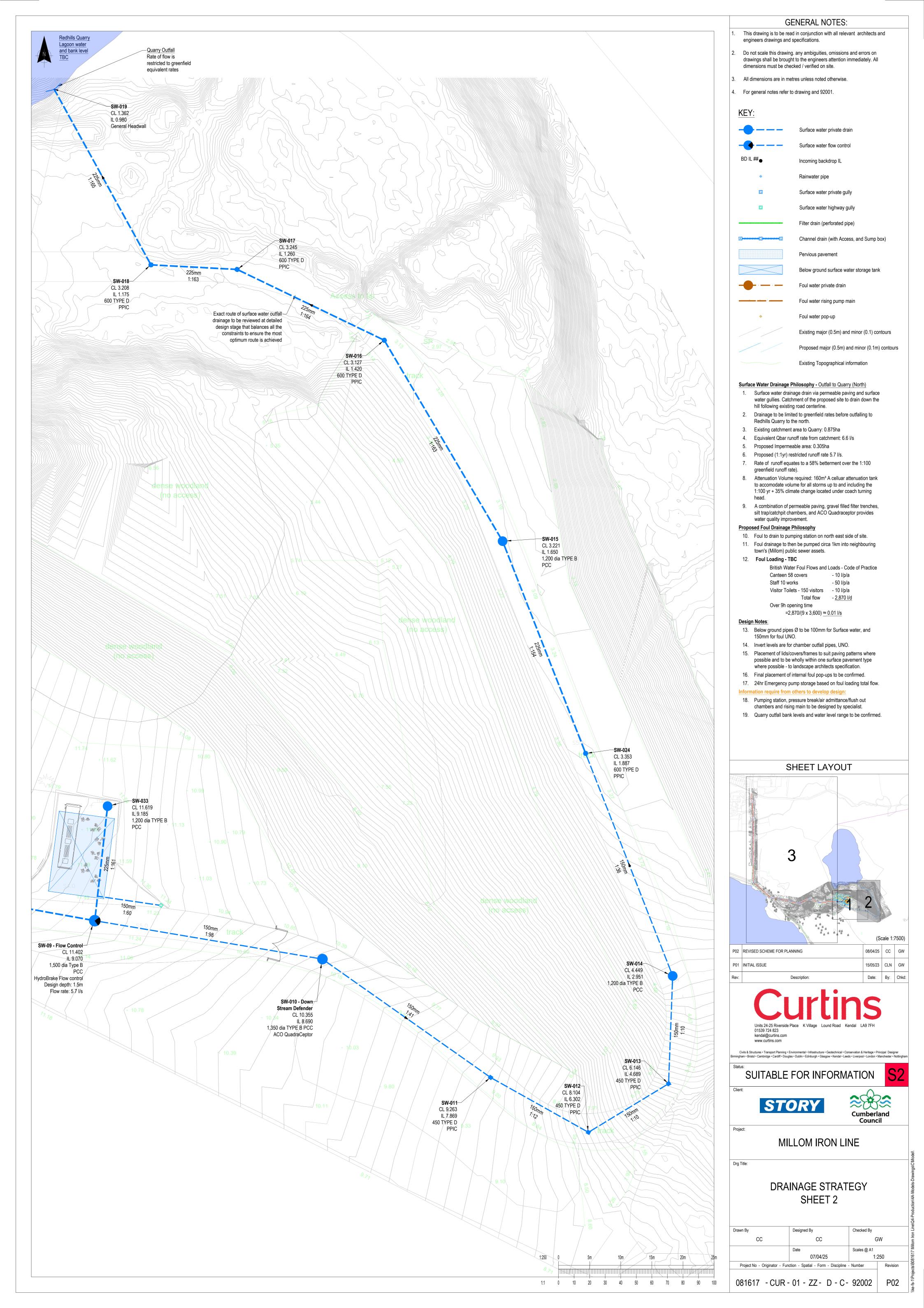
We have held meetings and had discussions with the LLFA/UU during the pre-app advice period and agreed the drainage philosophy in principle.

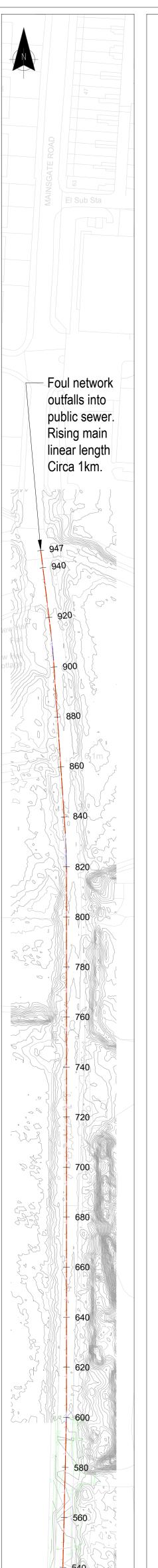

8.0 Appendices


- Appendix A Proposed site plan Appendix B Proposed Drainage Drawings Appendix C Drainage Calculations
- Appendix D Water Quality Assessment

Appendix A Proposed Site Plan

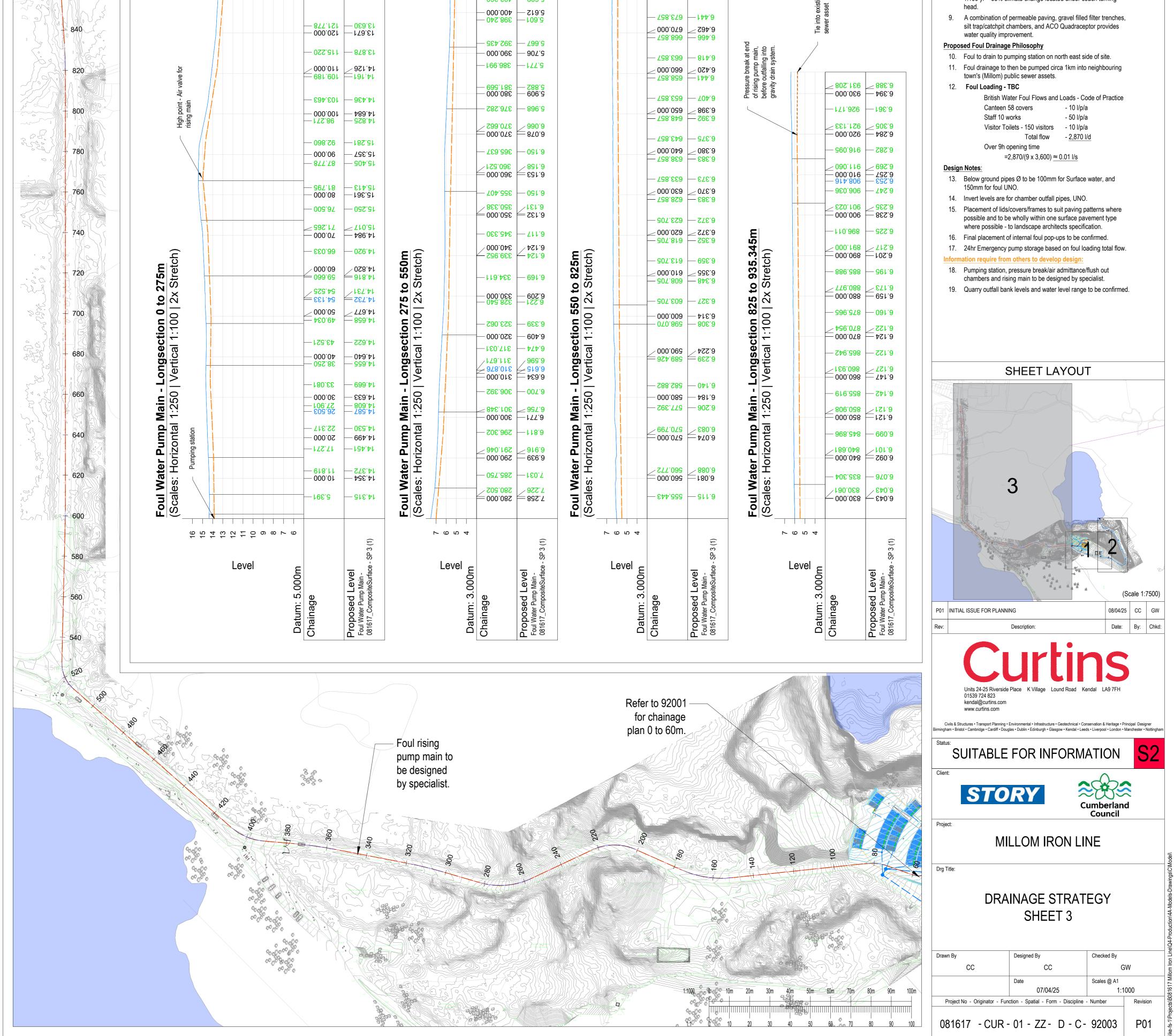


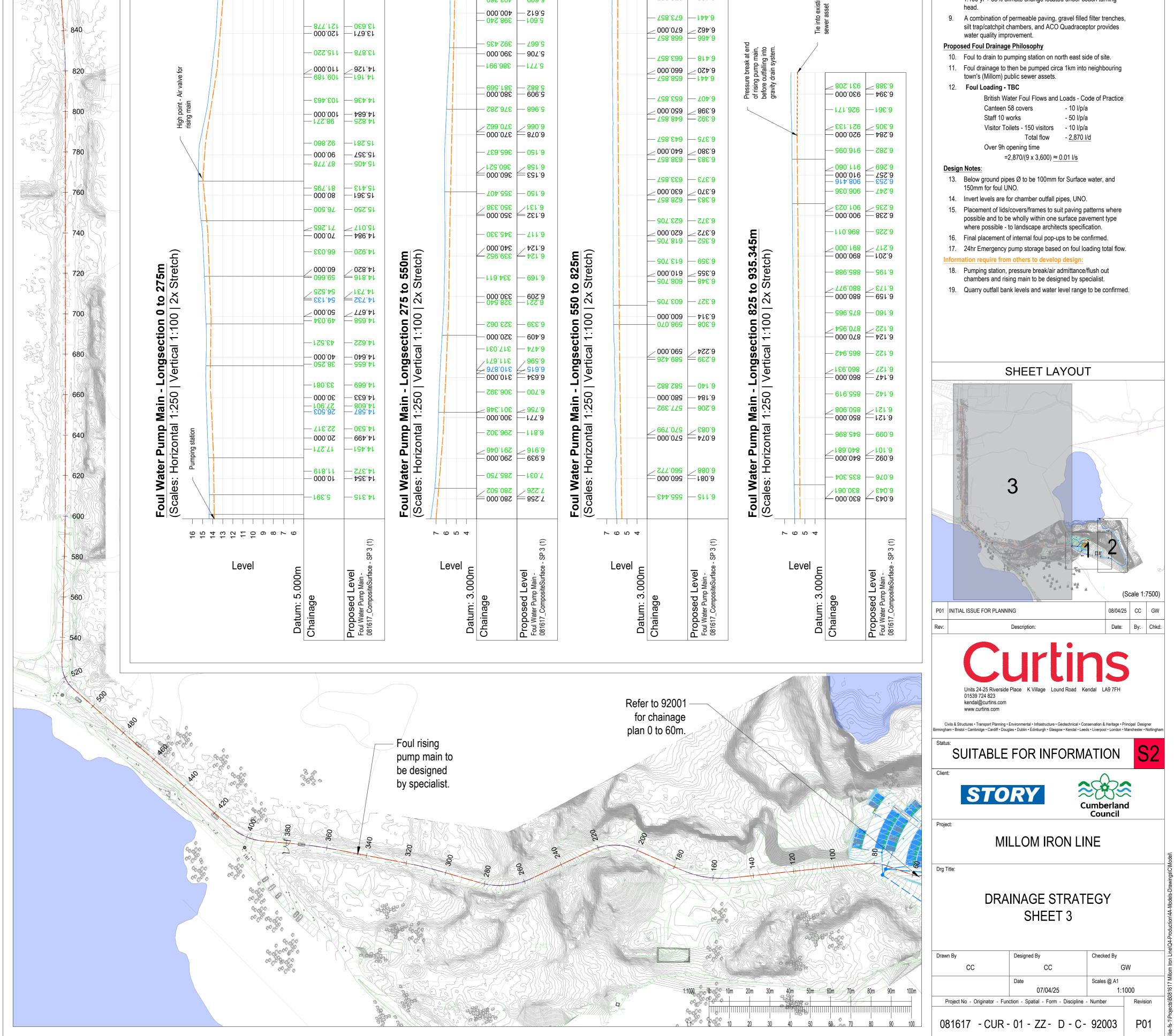


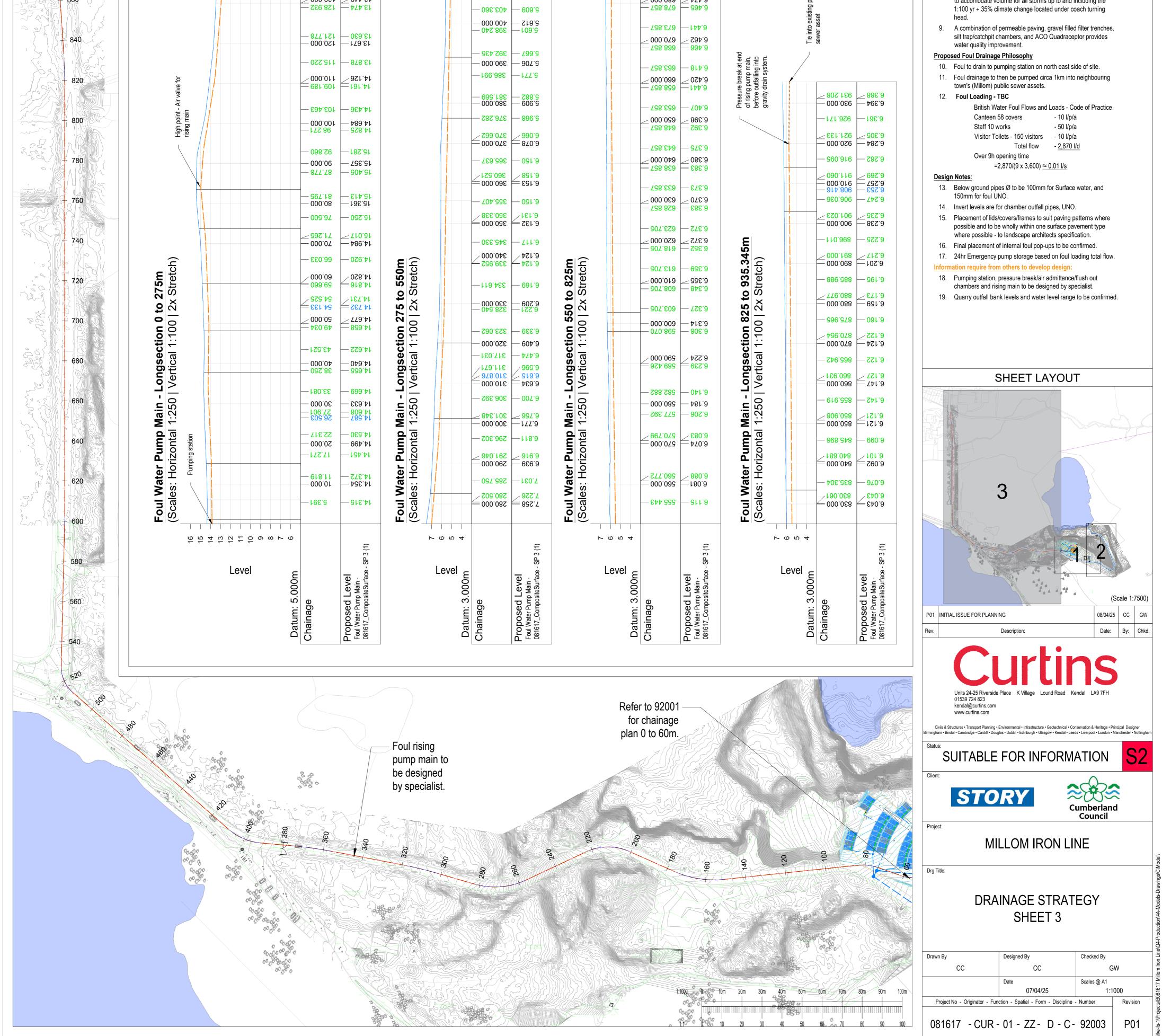


Appendix B Proposed Drainage Drawings

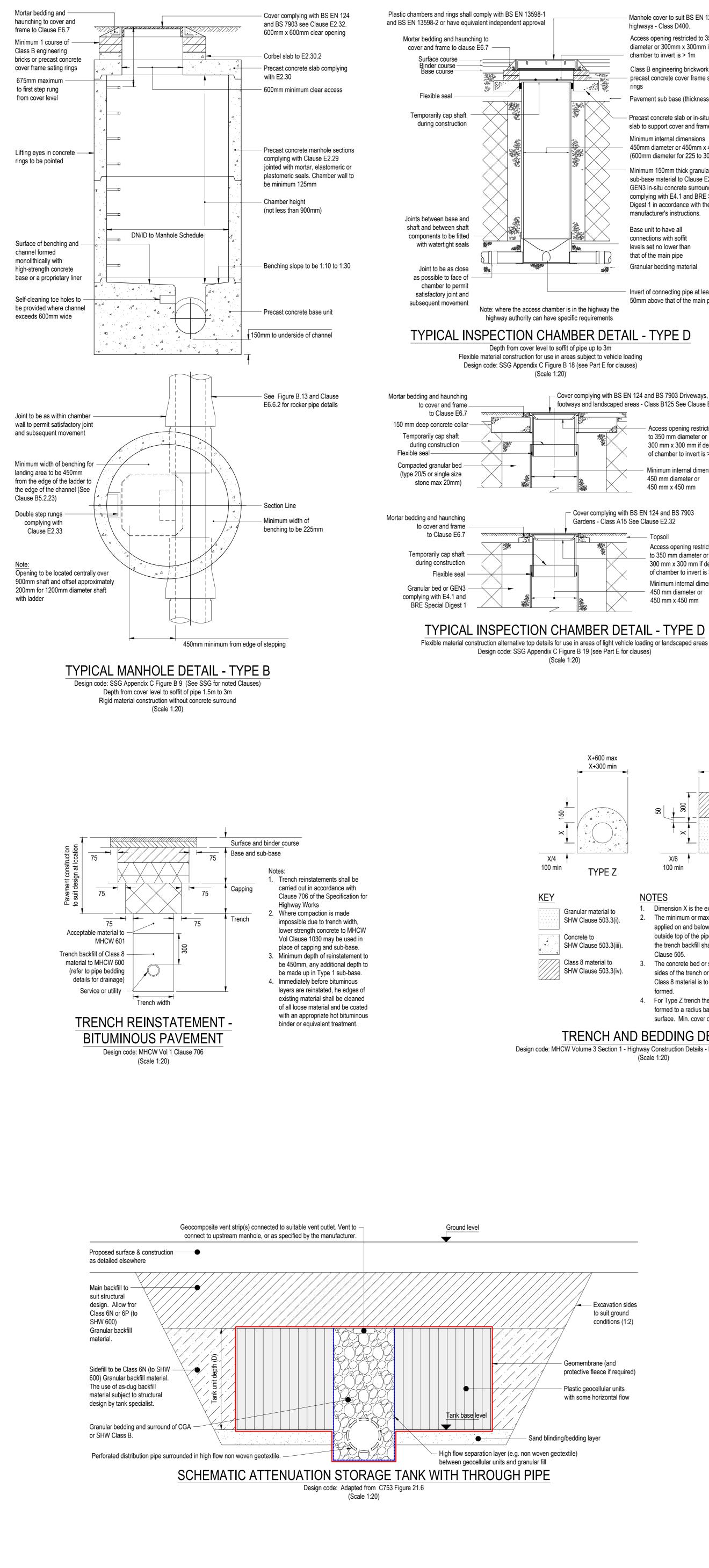
		-275.000	ZLG [.] Z	7
		270.000	7.782	
		569.908	← 787.7	
	$ \dot{I} $	- 667.492	- 871.8	
		560.000	757.8	
	1	529.562	€ 387.8	
		524.324	885.0	
	$\frac{1}{1}$	520.000		
		248.768 —	090.01	
		543.263	10.720	
		540.000		
		538.224	- 262.11	
	1	970.652		
	1	530.000	-106.11	
		227.425	- 1 994	
		522.093	- 781.21	
		220.000		
	1 Î	216.915	15.345 —	
		922.112		
		210.000		
		-194.902	12.531	
		501 [.] 313 _	15 [.] 649 <u>-</u>	
		- 720.961	15.544	
		190.828	12.544 /	
		000.001	12.544	
		- 995.381	15.560	Rising pump main shown with 1.2m of cover under centerline of road - System to be designed by specalist
		180.502	15.585	p mai 1.2m r ceni /stem
		000.081	12.588	j pum n with unde id - Sy
		175.315	12.640	Risinç showi cover of roa
		120.058	15.695	L L
		000.071	15.695 —	
	1	164.756	15.742	
		/000.091	15.829 🗸	
	1	120.450	12.846	
		164.112	- 296.21	
		- 000.06r	- 650.51	
		148.575 	13 [.] 039 — 13 [.] 065 —	
		142.845	13.174	
		140.000	13.228	
		600.951	-916.61	
		130.000	13.474	
4		1	1	1


F	- 670.129	- 210.9
\mid	- 697.642	- 296 [.] 9
	- 297.762 - 537.762	9283
	- 230.000 -	5.916 5.883 5.916
	250'410 250'193 250'193 250'00	6331 5.760 5.760 5.760
	-183.313	£.820
	- 000.013	508.5 5.805
	- 447.408	£67.ð
	200 [.] 000 <u>-</u> 468.863 -	₽.854 <u>-</u> 5.854 -
2	<400.000 -	_178.ð _178.ð
\mid	- 246.384	962.3
	480.000 =	917.8 607.8
╞	- 406.474	099 [.] 9
	- 270.734 - 470.000	- 919.3 - 626
	- 460.000 - 460.000	-119.2 -119.2
╞	456.264 -	- 019.3
	420 [.] 032 <	<mark>989.8</mark> 678.8
\mid	- 963.344	9:536
4	440.060 =	5.502 5.497
╞	432'420 -	— 624 [.] 9
	+ 30°100 − † 30°000 −	994.8 9.460
	456.051-	9.463
	420.000 - 420.000 -	£ 69⊅.5 −۲74.5
$\left \right $	- 713.614	9.522 —
╞	408.528 - 408.528	9.592
	000.00+	00000


	Proposed Level Foul Water Pump Main - 081617_CompositeSurface - SP 3 (1)		Datum: 3.000m	Chainage	Proposed Level Foul Water Pump Main - 081617_CompositeSurface - SP 3 (1)
222.443	— ₹11.8 — 180.8 880.8	oul Water Scales: Ho		830.000 830.004 830.000	0.043 6.043 6.043 6.043
- 667.078	≥\$009 280.9 280.9	Foul Water Pump Main - Longsection 825 t (Scales: Horizontal 1:250 Vertical 1:100 2x		<pre>600.008</pre> 600.000 610	- 260.9 - 101.9 - 121.9
- 582.882	— 902.9 — 181.9 — 140 —	ain - Lon 250 Ver		<pre>860.033</pre> 860.000 856.000 856.000 856.000 856.000 856.000 856.000 856.000 856.000 855	6.121 6.147 6.147 6.127
- 200.000 290.000 289.426	€.224 6.239 6.239	igsection rtical 1:100		8420.9542	6.125 — 6.125 —
- 902.809 - 803.705 - 000.009	6.348	00			091.9 - 091.9
- 902.819 - 803.805 - 813.705	€'325 9`228 9`228	o 935.345m Stretch)		— 886.∂88 — 000.168	- 201-9 - 212-0 - 212-0 - 212-0
e30 [°] 000 ≥ e33 [°] 822 = e53 [°] 202 ≥	6.372 ~ 6.383 ~ 6.383 ~ 6.372 ~	۶		- 110.968 - 000.000 - 201.023 - 200.006	6.247
€40.000 ≥ 638.857 = 638.857 =	6.380			— 910.095 — 090.116 — 000.016 — 000.016 914.806 • 000.006	€.282 6.269 6.257 6.253 6.253
290.000 ≤ 000 ≤ 000.0000 ≤ 000.000 € 000.000 € 000.000 € 000.0000 € 000.0000 € 000.0000 € 000.0000 € 000.0000 € 000.0000 € 000.0000 € 000.0000000 € 000.00000000	€.398 <u>~</u> 6.392 <u>~</u> 6.395 –			056.171 920.000 920.000	6.361 6.305 6.284
∠900 [.] 099 - 238.859 - 238.859	— 704.8 — 144.8 — 2420	Pressure break at end of rising pump main, before outfalling into gravity drain system.		<mark>631`508 ∠</mark> 630`000	e.388 ~
∠28.899 - 728.835 - 728.835	- 814.8 - 814.8 - 814.8 - 814.8	k at end main, gi into ystem.	Tie in	SGWC	
- 728.578 - 728.878 - 728.878 - 728.878 - 728.583	<u>∼</u> †∠† [.] 9		Tie into existing public	asset	
	<mark>∕ 894.9</mark> 9.474 –				
– 728.807 ≤ 000.007 – 78.869	009.9				
- 738.807 - 738.817 - 538.817	— 887 [.] 9 ~ 267 [.] 9				
− 738.857 – 720.000 ~ 723.857 –	— 764.8 √ 764.8				
- 738.857 - - 738.857 - - 700.067	— 814.9 — 6.463 — 746.0				
∠280.000 280.000 280.000 280.000 280.000	— 907 [.] 9				
2000.037 728.837 728.827	- 195.9 				
∠28.857	<mark>≥ 8.251</mark> 9.266				
- 788.877 - 788.877 - 788.877 - 788.877	∠161.9 — 061.9				
- 728.887 - 728.887 - 728.887 - 728.887	≥921.9 				
- 728.803 - 728.807 - 728.867	<u>~</u> 9159 9.126				
– 738.808 ≤ 000.018 – 738.808					
– 738.818 ≤ 000.028 – 878.528	— 800 ^{.9} — 900 ^{.9} — 800 ^{.9}				


GENERAL NOTES: This drawing is to be read in conjunction with all relevant architects and engineers drawings and specifications. 2. Do not scale this drawing. any ambiguities, omissions and errors on drawings shall be brought to the engineers attention immediately. All dimensions must be checked / verified on site. 3. All dimensions are in metres unless noted otherwise. 4. For general notes refer to drawing and 92001. KEY: Surface water private drain Surface water flow control BD IL ## Incoming backdrop IL Rainwater pipe G Surface water private gully G Surface water highway gully Filter drain (perforated pipe) Channel drain (with Access, and Sump box) Pervious pavement Below ground surface water storage tank Foul water private drain Foul water rising pump main Foul water pop-up Existing major (0.5m) and minor (0.1) contours Proposed major (0.5m) and minor (0.1m) contours Existing Topographical information Surface Water Drainage Philosophy - Outfall to Quarry (North) 1. Surface water drainage drain via permeable paving and surface water gullies. Catchment of the proposed site to drain down the hill following existing road centerline. 2. Drainage to be limited to greenfield rates before outfalling to Redhills Quarry to the north. 3. Existing catchment area to Quarry: 0.875ha 4. Equivalent Qbar runoff rate from catchment: 6.6 l/s 5. Proposed Impermeable area: 0.305ha 6. Proposed (1:1yr) restricted runoff rate 5.7 l/s. 7. Rate of runoff equates to a 58% betterment over the 1:100

8. Att to


gr

ate of runoff equates to a 58% better reenfield runoff rate).	ment over the 1:100
ttenuation Volume required: 160m ³ A accomodate volume for all storms up 100 yr + 35% climate change located ead.	p to and including the
combination of permeable paving, gr It trap/catchpit chambers, and ACO G ater quality improvement.	
d Foul Drainage Philosophy	
oul to drain to pumping station on nor	th east side of site.
oul drainage to then be pumped circa wn's (Millom) public sewer assets.	1km into neighbouring
oul Loading - TBC	
British Water Foul Flows and L	oads - Code of Practice
Canteen 58 covers	- 10 l/p/a
Staff 10 works	- 50 l/p/a
Visitor Toilets - 150 visitors	- 10 l/p/a
Total flow	- <u>2,870 l/d</u>
Over 9h opening time	
=2,870/(9 x 3,600) <u>≈ 0</u>	.01 l/s
otes:	
elow ground pipes Ø to be 100mm fo 50mm for foul UNO.	r Surface water, and
vert levels are for chamber outfall pip	es, UNO.
lacement of lids/covers/frames to suit ossible and to be wholly within one su here possible - to landscape architec	irface pavement type
nal placement of internal foul pop-up	s to be confirmed.
4hr Emergency pump storage based	on foul loading total flow.
on require from others to develop	design:
umping station, pressure break/air ad nambers and rising main to be design	
uarry outfall bank levels and water le	vel range to be confirmed.
SHEET LA	YOUT
2	
-3	

Manhole cover to suit BS EN 124 loading highways - Class D400.

Access opening restricted to 350mm diameter or 300mm x 300mm if depth of chamber to invert is > 1m Class B engineering brickwork or precast concrete cover frame seating rings

Pavement sub base (thickness varies) - Precast concrete slab or in-situ concrete slab to support cover and frame Minimum internal dimensions

450mm diameter or 450mm x 450mm (600mm diameter for 225 to 300mm pipe) Minimum 150mm thick granular Type 1 sub-base material to Clause E2.43 or GEN3 in-situ concrete surround complying with E4.1 and BRE Special Digest 1 in accordance with the

manufacturer's instructions. Base unit to have all connections with soffit levels set no lower than that of the main pipe Granular bedding material

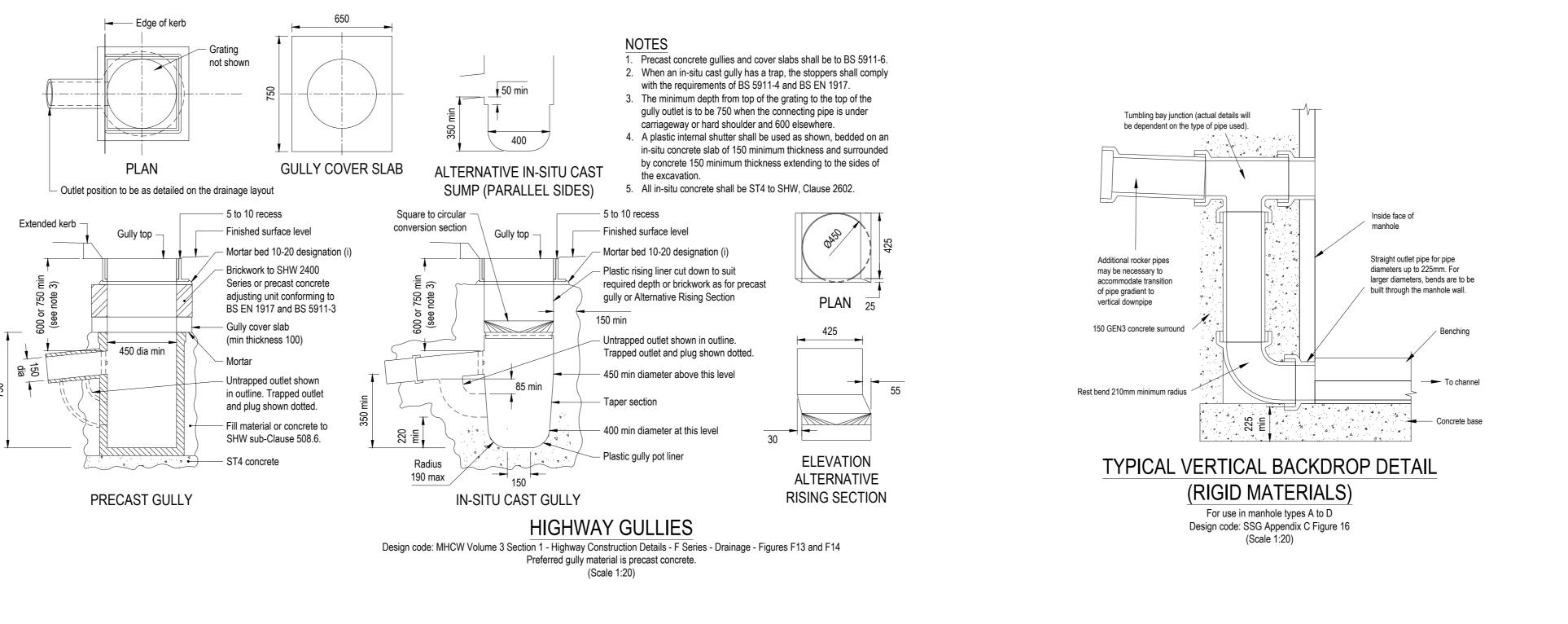
> Invert of connecting pipe at least 50mm above that of the main pipe

- Cover complying with BS EN 124 and BS 7903 Driveways, footways and landscaped areas - Class B125 See Clause E2.32

 Access opening restricted to 350 mm diameter or 300 mm x 300 mm if depth of chamber to invert is > 1 m
 Minimum internal dimensions 450 mm diameter or 450 mm x 450 mm

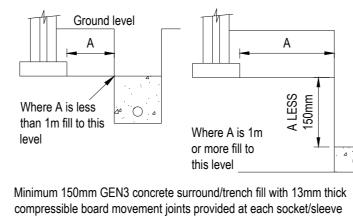
Cover complying with BS EN 124 and BS 7903 Gardens - Class A15 See Clause E2.32

	- Topsoil
	Access opening restricted to 350 mm diameter or
	300 mm x 300 mm if depth of chamber to invert is > 1 m
\mathbf{X}	Minimum internal dimensions
	450 mm diameter or 450 mm x 450 mm

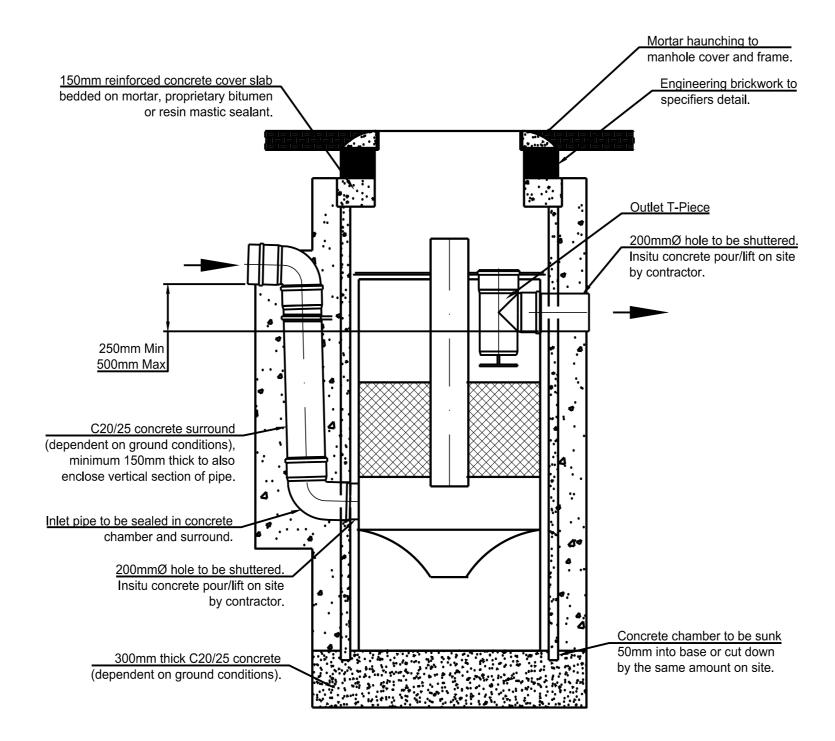

ł		X+600 max X+300 min
	20 20 300	
	X/6 ∮ 100 min	TYPE S
<u>NO</u> 1. 2.	The minimum or	he external diameter of the pipe. maximum width of the trench below a line 300mm above the

outside top of the pipe. Above the 300mm line the trench backfill shall be as described in SHW Clause 505. The concrete bed or surround may extend to the sides of the trench or be or minimum width. Class 8 material is to be used to fill any voids so

formed. 4. For Type Z trench the concrete cover may be formed to a radius batter or horizontal or surface. Min. cover of concrete shall be 150.

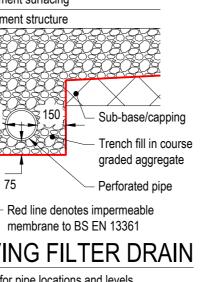

TRENCH AND BEDDING DETAILS

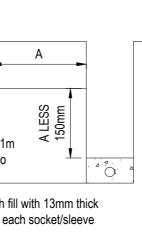
Design code: MHCW Volume 3 Section 1 - Highway Construction Details - F Series - Drainage - Figures F1 (Scale 1:20)

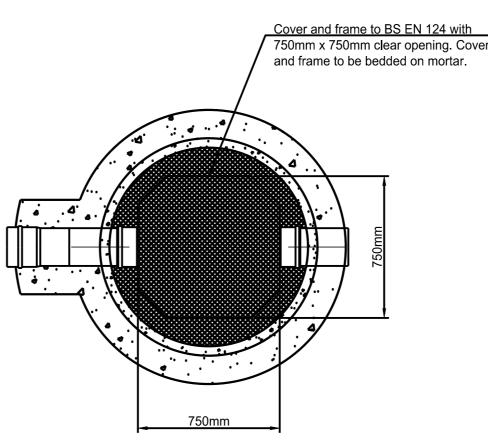


Pavement surfacing Pavement structure i re re re re Bottom of permeable sub-base to be laid to 1:200 falls toward nearest filter drain trench unless noted otherwise Red line denotes impermeable

PERVIOUS PAVING FILTER DRAIN See drainage layout for pipe locations and levels (Scale 1:20)

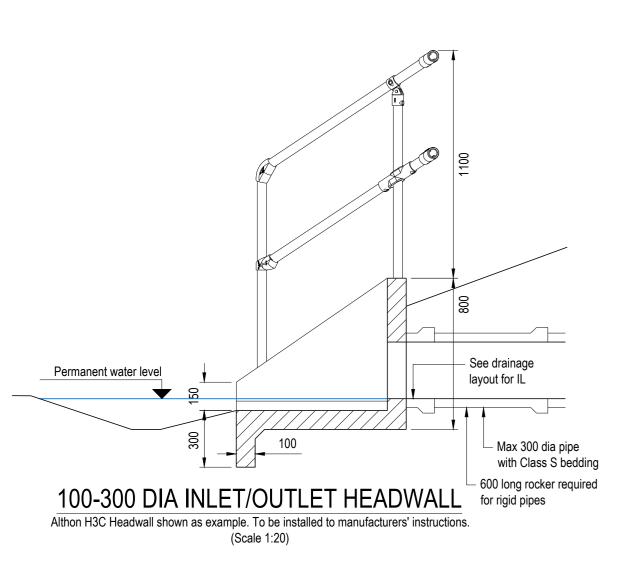


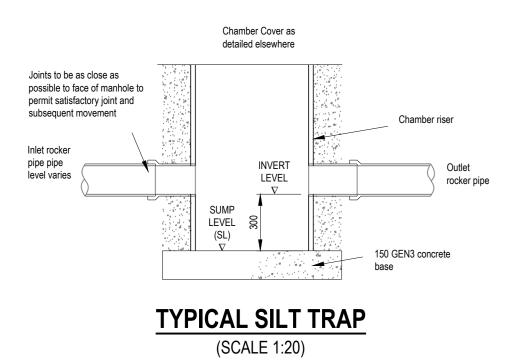

joint face or at not more than 5m intervals PIPE RUNS NEAR BUILDINGS Based on Building Regulations H1 Diagrams 8 & 12 (not to scale)

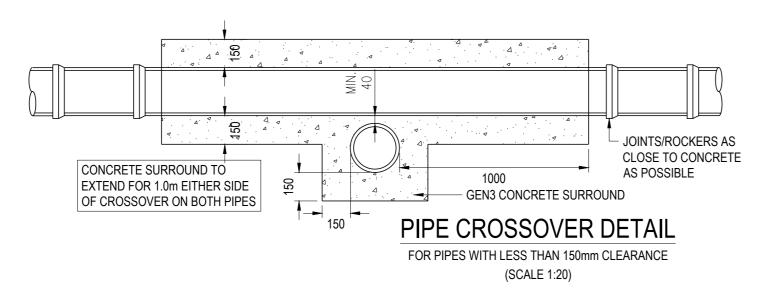


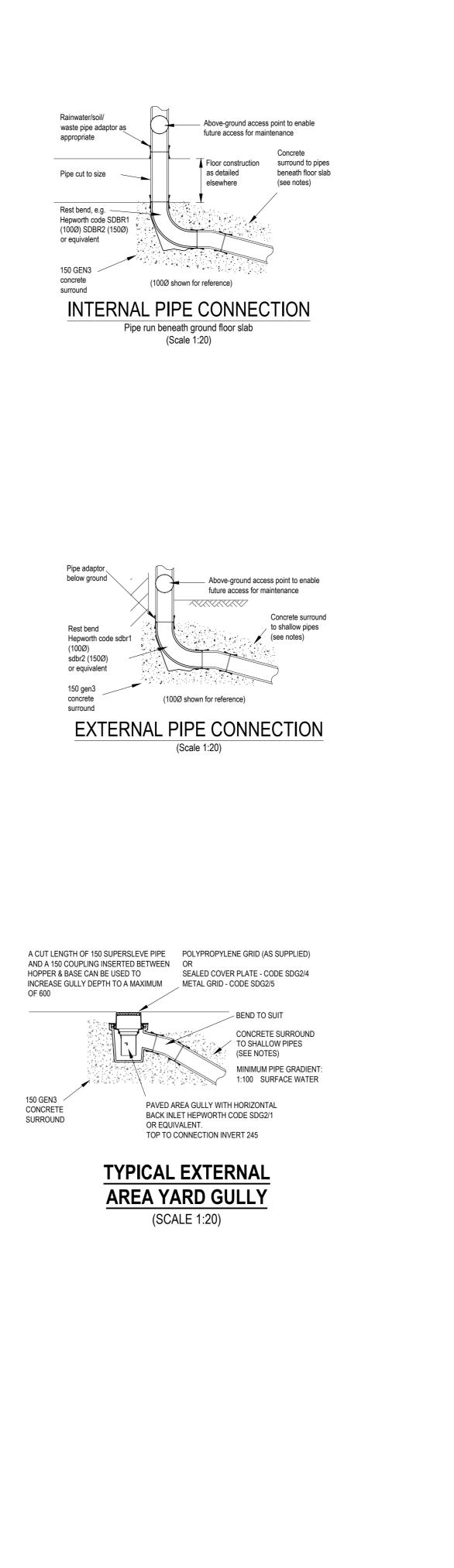
Section View of Quadraceptor Chamber

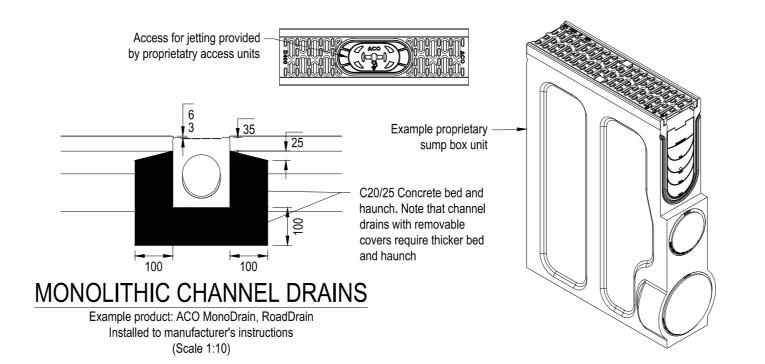
VORTEX SEPARATOR - ACO QUADRACEPTOR ACO Quadraceptorl shown as example. To be installed to manufacturers' instructions. (Scale 1:20)

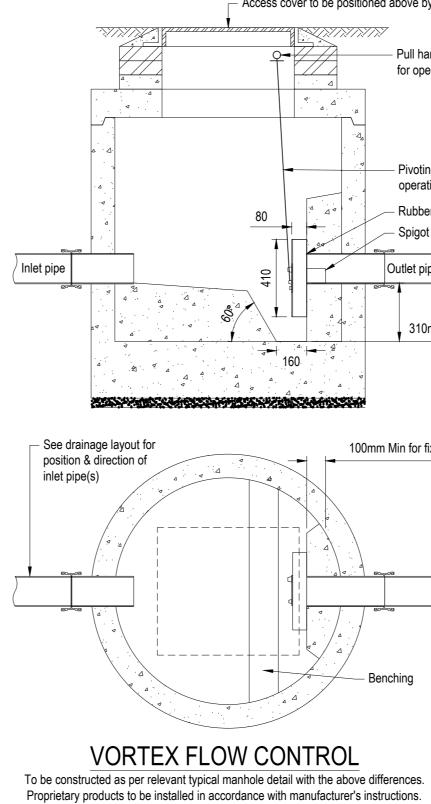




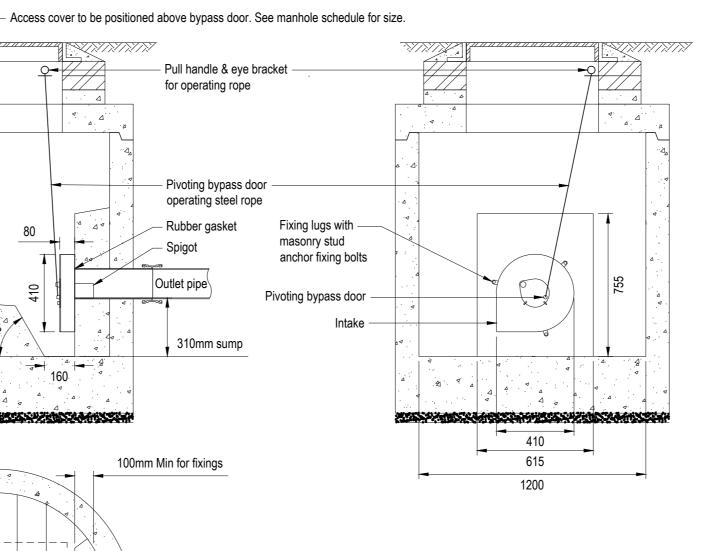

Plan View of Quadraceptor Chamber


	GENERAL NOTES: 1. THIS DRAWING IS TO BE READ IN CONJUNCTION WITH ALL RELEVANT ARCHITECTS AND ENGINEERS DRAWINGS AND SPECIFICATIONS.
Drainage Notes: 1. This drawing is to be read in conjunction with all relevant architects and	 DO NOT SCALE THIS DRAWING. ANY AMBIGUITIES, OMISSIONS AND ERRORS ON DRAWINGS SHALL BE BROUGHT TO THE ENGINEERS ATTENTION IMMEDIATELY. ALL DIMENSIONS MUST BE
engineers drawings and specifications.2. Do not scale this drawing. Any ambiguities, omissions or errors on drawings shall be brought to the engineers attention immediately. All dimensions must	CHECKED / VERIFIED ON SITE. 3. ALL DIMENSIONS ARE IN METRES UNLESS NOTED OTHERWISE.
be checked / verified on site.3. Design based on available topographical survey and cctv survey information at the time of design.	4. FOR GENERAL NOTES REFER TO DRAWING.
 All drainage works to be in accordance with the Civil Engineering Specification for the Water Industry (CESWI) as included in Sewer Sector Guidance (SSG), the requirements of The Building Regulations: Approved 	
 Document H (Part H) and Curtins drainage Specification. All dimensions are in mm and levels in m above ordnance datum unless otherwise noted. Diameters are expressed in millimeters and denoted by a Ø 	
symbol.It is advised that the contractor survey retained existing drainage prior to commencement to confirm location and condition, with cleansing to facilitate	
survey if required.7. Existing sewer locations where the proposed drainage is to connect, are to be surveyed and exact levels confirmed and provided to engineer prior to	
commencement of works.8. All existing services to be located prior to commencement of any drainage works, and where necessary protection or diversions to be undertaken to	
avoid conflict with the proposed work.9. All existing drains to be abandoned shall be either removed or grouted up if not possible. Grouting to be performed by capping all ends / connections and	
filling the retaining void with grout, in accordance with CESWI.10. All soft spots to be removed from bottom of excavations and to be refilled to formation level in accordance with groundworks specifications.	
 Raised ground must be filled in accordance with groundworks specifications and consolidated before any sewer works are carried out. All adoptable drainage works including works to existing public sewers to be 	
 undertaken in accordance with SSG, CESWI and the relevant statutory undertakers details. 13. All private drainage works to be in accordance with CESWI, BS EN 752 2017 	
 'Drain And Sewer Systems Outside Buildings' and the Part H. 14. All drains, unless agreed otherwise stated, shall be: 100mm to 300mm diameter to be vitrified clay. 	
15. All diameters given are nominal internal pipe diameters.16. Pipe materials in accordance with the following:	
 all vitrified clay pipes to BS EN 295-1: all concrete pipes to be to BS EN 1916. all concrete manholes to be to BS EN 1917. 	
 As an alternative the contractor may use an approved unplasticised polyvinyl chloride (uPVC). 	
18. All private drainage pipes with a cover of less than 600mm in non-trafficked areas and less than 1200mm in trafficked areas to have a concrete protection slab or be bedded and surrounded in concrete (Class Z). Compressible material shall be provided at every pipe joint. Where cover exceeds this	
depth, pipes are typically bedded and surrounded in Class S. Refer to pipe embedment details drawing for specific types.19. Backfill to drainage trenches under hardstanding areas to be Type 1 sub	
base material, elsewhere backfill to be free draining readily compatible material free from detritus, organic matter, frozen soil clay lumps and large stones. To be compacted in layers not exceeding 150mm thick.	
20. Bedding and backfill materials to conform to the requirements of WIS 4-08-02 (Table A2).21. Where foul drains run above surface drains, concrete protection may be	
required at crossovers to prevent any potential contamination.22. The first pipe out of manholes to be as short as practicable so as to provide a flexible joint as close as possible to the outside face of the concrete surround	
and connected to a length of rocker pipe.23. All connections passing through bases or edge beams to be in sealed sleeves. Alternatively connections may be cast-in with flexible joints not	
greater than 150mm from face of concrete.24. Where drainage pipes are less than 300mm below the underside of the ground floor slab, concrete encasement is required (Class Z). Compressible	
joints are to be provided at every pipe joint within the concrete.25. Where pipes are more than 300mm below the underside of the slab, Class S bedding is acceptable.	
26. Drain pipes to be laid in maximum 3 metre lengths unless there is a specific operational need to lay longer lengths.27. Plastic channel sections will not be permitted within manhole chambers.	
Clayware channels shall be used within manholes for pipe sizes up to and including 300mm diameter.28. All new connections into existing manholes (or into existing sewers) to be	
'soffits level' unless otherwise noted.29. Sulphate resistant cement (C20-DC2) and precast concrete products must be used or a laboratory report provided to prove that such precautions are not	
required subject to SI.30. Sewers must have 5m clearance from trees and hedges or to have suitable root protection in accordance with SSG requirements.	
31. The chamber size of manholes with more than one connection in them may need to be increased to accommodate the connections and bends.32. All internal drainage connections are provided to the penetration positions	
 shown on architect and M&E drawings. Refer to dimensioned locations on architect's ground floor setting-out plans. 33. Rainwater and foul water pop up locations and sizes to be confirmed by 	
others.34. All underground foul drainage should be suitably vented at or near to the head of runs.	
 All access fittings, stacks, RWPs and gullies to be roddable. All to have low level rodding access plates unless an alternative means of access is agreed. Access point to be above any ground floor connected appliance spill level. 	
36. Large access fitting required above ground where greater than 12m up to 22m to a junction. Small access fitting required up to 12m to a junction.37. All gully and channel drain outlets and termination points to be trapped and	
37. All guily and channel drain outers and terminaton points to be trapped and roddable. Internal gullies and channel drains to be specified by others.38. All branch connections to be made with swept bends in the direction of flow in the main sewer.	
39. Where no WCs are connected upstream, under slab foul water drainage to be laid at 1:40 min. After the connection of at least 1no WC, a min. fall of 1:80 applies.	
40. All internal covers to have mechanically jointed corners and be double sealed with recessed tray suit finishes.41. All manhole covers in block/slab and external paving areas to have recessed	
 42. Unless noted otherwise in the manhole schedule, all manhole, gully and channel covers (ironwork) should be the following specification: 	
B125 load class in pedestrian areasD400 load class in vehicular areas.	
44. Cover levels, gully positions, and building location are approximate and shall be confirmed by architect/landscape architect. Contractor to allow for adjustment to suit agreed positions and finished levels, and confirm all cover levels on site.	
45. Outfall connection(s) subject to agreement with the approving authority.46. The contractor shall comply with the following:-	
(i). All operations should be carried out in accordance with the general health and safety policy of the developer as required by sections 2 of the Health and Safety at Work Act 1974 and in particular The Construction (Health, Safety and Welfare) Regulations 1996.	
 (ii). The local authority and utilities companies are to be notified prior to commencement of work on site. 	
(iii). Prior to construction the actual positions and depths of services likely to be affected by the works should be established by means of hand dig in close liaison with the utility companies. The contractor shall immediately advise the engineer of any services exposed which may affect the design.	
(iiii). All operatives working on the highway works must have street works accreditation.47. The contractor shall be responsible for ensuring that pipes are adequately	
47. The contractor shall be responsible for ensuring that pipes are adequately protected from concentrated loading by construction traffic during the construction period.48. The contractor shall allow for the protection, temporary and permanent	
40. The contractor shall allow for the protection, temporary and permanent support, and temporary and permanent diversion works, as necessary to all existing services.49. The contractor shall allow for keeping trenches and excavations as dry as	P02 REVISED TO NEW PROPOSALS FOR PLANNING 08/04/25 CC GW
practicable by pumping from temporary sumps and de-watering as appropriate. The point and method of discharge to be agreed with the drainage authority & LLFA and environment agency.	P01 STAGE 3 ISSUE 07/07/23 AMG GW
50. It is advised that drainage works are to be constructed from the outfall towards the head of run to ensure the outfall can be achieved.51. All drains to be CCTV surveyed on completion of the works.	Rev: Description: Date: By: Chkd:
 Grease traps should be provided above ground within an enzyme treatment system, by appropriate specialist designer. 	Curtins
	Units 24-25 Riverside Place K Village Lound Road Kendal LA9 7FH 01539 724 823
	kendal@curtins.com www.curtins.com
	Civils & Structures • Transport Planning • Environmental • Infrastructure • Geotechnical • Conservation & Heritage • Principal Designer Birmingham • Bristol • Cambridge • Cardiff • Douglas • Dublin • Edinburgh • Glasgow • Kendal • Leeds • Liverpool • London • Manchester • Nottinghar Status:
	SUITABLE FOR INFORMATION S2
	STORY 200
	Project:
	MILLOM IRON LINE
	Drg Title:
	DRAINAGE DETAILS
	SHEET 1
	Drawn By Designed By Checked By
	AMG GW GW
1:20 0 0.5m 1m 1.5m 2m	AMG GW Date Scales @ A0 JULY 23 AS SHOWN Project No - Originator - Function - Spatial - Form - Discipline - Number Revision

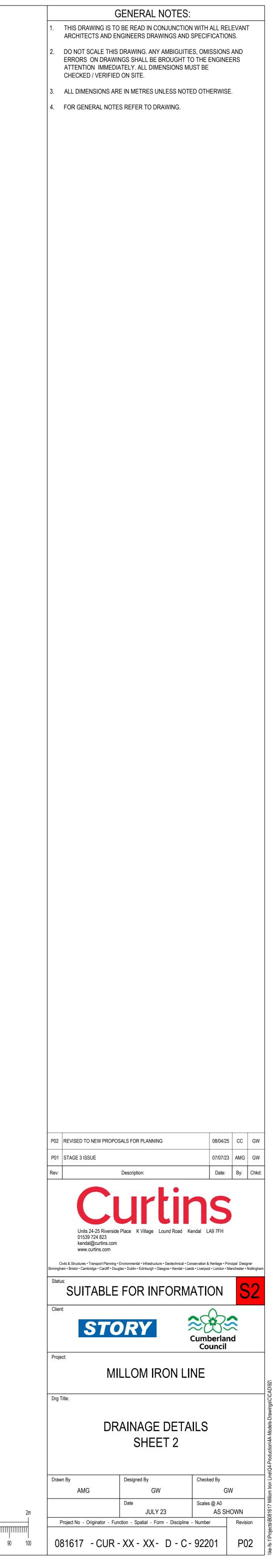




FLOOR SLAB AS DETAILED ELSEWHERE CONCRETE SURROUND ADAPTOR FROM 110Ø TO 100Ø, IF TO SHALLOW PIPES (SEE NOTES) REQUIRED HEPWORTH LOW-BACK P-TRAP CODE SG1/1 OR EQUIVALENT INVERT LEVEL ∇ 150 GEN3 CONCRETE SURROUND MINIMUM PIPE GRADIENT: 1:40 FOUL **TYPICAL INTERNAL** ACCESS FLOOR GULLY (SCALE 1:20)



(Scale 1:20)



Benching

Orange text represents dims likely to change for construction.

PUMP STATION - TBC Pump station to be designed and installed to specialist details.

(Scale 1:20)

1:20 0 0.5m 1m 1.5m 1:1 0 10 20 30 40 50 60 70 80 90 100

Appendix C Drainage Calculations

Design Settings

Rainfall Methodology	FSR	Maximum Time of Concentration (mins)	30.00
Return Period (years)	100	Maximum Rainfall (mm/hr)	50.0
Additional Flow (%)	0	Minimum Velocity (m/s)	1.00
FSR Region	England and Wales	Connection Type	Level Soffits
M5-60 (mm)	17.000	Minimum Backdrop Height (m)	0.200
Ratio-R	0.470	Preferred Cover Depth (m)	1.200
CV	0.750	Include Intermediate Ground	х
Time of Entry (mins)	4.00	Enforce best practice design rules	х

Nodes

Name	Area (ha)	T of E (mins)	Cover Level (m)	Diameter (mm)	Easting (m)	Northing (m)	Depth (m)
SW-023	0.041	4.00	15.590	450	317856.530	478989.854	1.420
SW-05 SW-06	0.073	4.00	15.052 14.964	1200 1200	317858.475 317856.878	478981.611 478978.679	2.937 2.869
SW-04 SW-03 SW-02 SW-01 SW-022	0.036 0.056 0.013 0.026 0.013	4.00 4.00 4.00 4.00 4.00	14.767 14.486 14.450 14.434 14.410	1200 1200 450 450 450	317877.316 317890.258 317903.571 317913.620 317890.431	478980.023 478991.464 478993.174 478989.659 478978.056	2.537 1.946 1.499 1.305 1.960
SW-020 SW-021 SW-07 SW-08 SW-033	0.006 0.018	4.00 4.00 4.00	14.141 14.099 13.886 12.717 11.619	450 450 450 450	317906.598 317894.853 317879.630 317913.440 317964.533	478967.391 478970.757 478963.111 478950.985 478943.649	1.305 1.487 2.159 1.452 2.434
SW-09 SW-010 SW-011 SW-012 SW-013 SW-014 SW-014 SW-017 SW-017 SW-015 SW-018 SW-016 SW-019	0.023	4.00	11.402 10.355 9.263 8.104 6.146 4.449 3.353 3.245 3.221 3.208 3.127 1.362	1200 1350 450 450 1200 450 1200 450 450 450 450 450	317964.179 318000.768 318027.787 318043.511 318056.398 318057.059 318043.065 317987.052 318029.719 317973.205 318010.709 317957.633	478941.510 478935.337 478916.313 478907.497 478915.311 478932.633 478968.403 479046.195 479002.519 479046.931 479034.809 479075.192	2.332 1.665 1.394 1.802 1.457 1.498 1.466 1.985 1.571 2.033 1.707 0.382

Curl	in	Curtin 24-25 K Villa LA9 7	ns Consult Riverside age, Loune FH	e Place,	Net Crai	: 081617-(work: 081 g Clarke 04/25		Proje Surfa	Page 2 Project: Iron Line - Millom Surface Water Drainage Rev: P01 Checked: GW			
					<u>Links</u>							
Name	US Node	DS Node	Length (m)	ks (mm) / n	US IL (m)	DS IL (m)	Fall (m)	Slope (1:X)	Dia (mm)	T of C (mins)	Rain (mm/hr)	
1.001	SW-01	SW-02	10.646	0.600	13.129	12.951	0.178	59.8	100	4.18	50.0	
1.002	SW-02	SW-03	13.422	0.600	12.951	12.720	0.231	58.1	150	4.35	50.0	
1.003	SW-03	SW-04	17.274	0.600	12.540	12.230	0.310	55.7	225	4.51	50.0	
1.004	SW-04	SW-05	18.908	0.600	12.230	12.115	0.115	164.4	225	4.82	50.0	
1.005	SW-05	SW-06	3.339	0.600	12.115	12.095	0.020	167.0	225	4.88	50.0	
1.006	SW-06	SW-07	27.568	0.600	12.095	11.728	0.367	75.1	225	5.18	50.0	
1.007	SW-07	SW-08	35.919	0.600	11.727	11.285	0.442	81.3	225	5.59	50.0	
1.008	SW-08	SW-09	51.616	0.600	11.265	9.070	2.195	23.5	225	5.91	50.0	
1.009	SW-09	SW-010	37.106	0.600	9.070	8.690	0.380	97.6	150	6.52	50.0	
1.0010	SW-010	SW-011	33.044	0.600	8.690	7.889	0.801	41.3	150	6.87	50.0	
1.0011	SW-011	SW-012	18.027	0.600	7.869	6.302	1.567	11.5	150	6.97	50.0	
1.0012	SW-012	SW-013	15.071	0.600	6.302	4.795	1.507	10.0	150	7.05	50.0	
1.0013	SW-013	SW-014	17.335	0.600	4.689	2.971	1.718	10.1	150	7.14	50.0	
1.0014	SW-014	SW-024	38.410	0.600	2.951	1.887	1.064	36.1	150	7.52	50.0	
1.0015	SW-015	SW-016	37.470	0.600	1.650	1.420	0.230	162.9	225	8.71	50.0	
1.0016	SW-016	SW-017	26.254	0.600	1.420	1.260	0.160	164.1	225	9.14	50.0	
1.0017	SW-017	SW-018	13.867	0.600	1.260	1.175	0.085	163.1	225	9.37	50.0	
1.0018	SW-018	SW-019	32.267	0.600	1.175	0.980	0.195	165.5	225	9.90	50.0	
2.004	SW-020	SW-021	12.218	0.600	12.836	12.612	0.224	54.5	100	4.19	50.0	
2.005	SW-021	SW-022	8.534	0.600	12.612	12.470	0.142	60.1	100	4.34	50.0	
2.006	SW-022	SW-04	13.262	0.600	12.450	12.230	0.220	60.3	150	4.51	50.0	
3.001	SW-023	SW-06	11.180	0.600	14.170	13.583	0.587	19.0	150	4.08	50.0	
1.0014 (1)	SW-024	SW-015	36.634	0.600	1.887	1.650	0.237	154.6	225	8.10	50.0	
3.0041	SW-033	SW-09	14.639	0.600	9.185	9.070	0.115	127.3	225	4.21	50.0	

Name	Vel (m/s)	Cap (l/s)	Flow (l/s)	US Depth (m)	DS Depth (m)	Σ Area (ha)	Σ Add Inflow (I/s)	Pro Depth (mm)	Pro Velocity (m/s)
1.001	0.998	7.8	3.5	1.205	1.399	0.026	0.0	47	0.974
1.002	1.322	23.4	5.3	1.349	1.616	0.039	0.0	48	1.070
1.003	1.755	69.8	12.9	1.721	2.312	0.095	0.0	65	1.350
1.004	1.017	40.4	22.8	2.312	2.712	0.168	0.0	121	1.046
1.005	1.009	40.1	32.7	2.712	2.644	0.241	0.0	154	1.120
1.006	1.510	60.0	38.2	2.644	1.933	0.282	0.0	131	1.597
1.007	1.451	57.7	38.2	1.934	1.207	0.282	0.0	134	1.549
1.008	2.709	107.7	38.2	1.227	2.107	0.282	0.0	93	2.488
1.009	1.017	18.0	41.3	2.182	1.515	0.305	0.0	150	1.036
1.0010	1.571	27.8	41.3	1.515	1.224	0.305	0.0	150	1.600
1.0011	2.987	52.8	41.3	1.244	1.652	0.305	0.0	100	3.295
1.0012	3.204	56.6	41.3	1.652	1.201	0.305	0.0	95	3.490
1.0013	3.190	56.4	41.3	1.307	1.328	0.305	0.0	96	3.480
1.0014	1.680	29.7	41.3	1.348	1.316	0.305	0.0	150	1.712
1.0015	1.021	40.6	41.3	1.346	1.482	0.305	0.0	189	1.158
1.0016	1.018	40.5	41.3	1.482	1.760	0.305	0.0	190	1.153
1.0017	1.021	40.6	41.3	1.760	1.808	0.305	0.0	189	1.157
1.0018	1.013	40.3	41.3	1.808	0.157	0.305	0.0	191	1.148
2.004	1.045	8.2	0.8	1.205	1.387	0.006	0.0	21	0.667
2.005	0.995	7.8	3.3	1.387	1.840	0.024	0.0	45	0.949
2.006	1.297	22.9	5.0	1.810	2.387	0.037	0.0	48	1.043
3.001	2.318	41.0	5.6	1.270	1.231	0.041	0.0	37	1.626
1.0014 (1)	1.049	41.7	41.3	1.241	1.346	0.305	0.0	183	1.190
3.0041	1.157	46.0	0.0	2.209	2.107	0.000	0.0	0	0.000

— • • •	Curtins Consulting Ltd	File: 081617-CUR-XX-XX-T-C-0(Page 3
Curtins	24-25 Riverside Place,	Network: 081617_SurfaceWate	Project: Iron Line - Millom
	K Village, Lound Road,	Craig Clarke	Surface Water Drainage
	LA9 7FH	04/04/25	Rev: P01 Checked: GW

Pipeline Schedule

Link	Length (m)	Slope (1:X)	Dia (mm)	Link Type	US CL (m)	US IL (m)	US Depth (m)	DS CL (m)	DS IL (m)	DS Depth (m)
1.001	10.646	59.8	100	Circular	14.434	13.129	1.205	14.450	12.951	1.399
1.002	13.422	58.1	150	Circular	14.450	12.951	1.349	14.486	12.720	1.616
1.003	17.274	55.7	225	Circular	14.486	12.540	1.721	14.767	12.230	2.312
1.004	18.908	164.4	225	Circular	14.767	12.230	2.312	15.052	12.115	2.712
1.005	3.339	167.0	225	Circular	15.052	12.115	2.712	14.964	12.095	2.644
1.006	27.568	75.1	225	Circular	14.964	12.095	2.644	13.886	11.728	1.933
1.007	35.919	81.3	225	Circular	13.886	11.727	1.934	12.717	11.285	1.207
1.008	51.616	23.5	225	Circular	12.717	11.265	1.227	11.402	9.070	2.107
1.009	37.106	97.6	150	Circular	11.402	9.070	2.182	10.355	8.690	1.515
1.0010	33.044	41.3	150	Circular	10.355	8.690	1.515	9.263	7.889	1.224
1.0011	18.027	11.5	150	Circular	9.263	7.869	1.244	8.104	6.302	1.652
1.0012	15.071	10.0	150	Circular	8.104	6.302	1.652	6.146	4.795	1.201
1.0013	17.335	10.1	150	Circular	6.146	4.689	1.307	4.449	2.971	1.328
1.0014	38.410	36.1	150	Circular	4.449	2.951	1.348	3.353	1.887	1.316
1.0015	37.470	162.9	225	Circular	3.221	1.650	1.346	3.127	1.420	1.482
1.0016	26.254	164.1	225	Circular	3.127	1.420	1.482	3.245	1.260	1.760
1.0017	13.867	163.1	225	Circular	3.245	1.260	1.760	3.208	1.175	1.808
1.0018	32.267	165.5	225	Circular	3.208	1.175	1.808	1.362	0.980	0.157
2.004	12.218	54.5	100	Circular	14.141	12.836	1.205	14.099	12.612	1.387
2.005	8.534	60.1	100	Circular	14.099	12.612	1.387	14.410	12.470	1.840
2.006	13.262	60.3	150	Circular	14.410	12.450	1.810	14.767	12.230	2.387
3.001	11.180	19.0	150	Circular	15.590	14.170	1.270	14.964	13.583	1.231
1.0014 (1)	36.634	154.6	225	Circular	3.353	1.887	1.241	3.221	1.650	1.346
3.0041	14.639	127.3	225	Circular	11.619	9.185	2.209	11.402	9.070	2.107

Link	US	Dia	Node	MH	DS	Dia	Node	MH
	Node	(mm)	Туре	Туре	Node	(mm)	Туре	Туре
1.001	SW-01	450	Manhole	Adoptable	SW-02	450	Manhole	Adoptable
1.002	SW-02	450	Manhole	Adoptable	SW-03	1200	Manhole	Adoptable
1.003	SW-03	1200	Manhole	Adoptable	SW-04	1200	Manhole	Adoptable
1.004	SW-04	1200	Manhole	Adoptable	SW-05	1200	Manhole	Adoptable
1.005	SW-05	1200	Manhole	Adoptable	SW-06	1200	Manhole	Adoptable
1.006	SW-06	1200	Manhole	Adoptable	SW-07	450	Manhole	Adoptable
1.007	SW-07	450	Manhole	Adoptable	SW-08	450	Manhole	Adoptable
1.008	SW-08	450	Manhole	Adoptable	SW-09	1200	Manhole	Adoptable
1.009	SW-09	1200	Manhole	Adoptable	SW-010	1350	Manhole	Adoptable
1.0010	SW-010	1350	Manhole	Adoptable	SW-011	450	Manhole	Adoptable
1.0011	SW-011	450	Manhole	Adoptable	SW-012	450	Manhole	Adoptable
1.0012	SW-012	450	Manhole	Adoptable	SW-013	450	Manhole	Adoptable
1.0013	SW-013	450	Manhole	Adoptable	SW-014	1200	Manhole	Adoptable
1.0014	SW-014	1200	Manhole	Adoptable	SW-024	450	Manhole	Adoptable
1.0015	SW-015	1200	Manhole	Adoptable	SW-016	450	Manhole	Adoptable
1.0016	SW-016	450	Manhole	Adoptable	SW-017	450	Manhole	Adoptable
1.0017	SW-017	450	Manhole	Adoptable	SW-018	450	Manhole	Adoptable
1.0018	SW-018	450	Manhole	Adoptable	SW-019	450	Manhole	Adoptable
2.004	SW-020	450	Manhole	Adoptable	SW-021	450	Manhole	Adoptable
2.005	SW-021	450	Manhole	Adoptable	SW-022	450	Manhole	Adoptable
2.006	SW-022	450	Manhole	Adoptable	SW-04	1200	Manhole	Adoptable
3.001	SW-023	450	Manhole	Adoptable	SW-06	1200	Manhole	Adoptable
1.0014 (1)	SW-024	450	Manhole	Adoptable	SW-015	1200	Manhole	Adoptable
3.0041	SW-033		Junction		SW-09	1200	Manhole	Adoptable

Curtins			
		IIIIIIIIIIIII	Inc
	U U		

Project: Iron Line - Millom Surface Water Drainage Checked: GW

Manhole Schedule

Node	Easting (m)	Northing (m)	CL (m)	Depth (m)	Dia (mm)	Connection	S	Link	IL (m)	Dia (mm)
SW-023	317856.530	478989.854	15.590	1.420	450					
						\bigcirc				
						, v	0	3.001	14.170	150
SW-05	317858.475	478981.611	15.052	2.937	1200	\bigcirc	1	1.004	12.115	225
							0	1.005	12.115	225
SW-06	317856.878	478978.679	14.964	2.869	1200	1, 2	1	3.001	13.583	150
						K.	2	1.005	12.095	225
						0	0	1.006	12.095	225
SW-04	317877.316	478980.023	14.767	2.537	1200	2	1	2.006	12.230	150
						0 < 1	2	1.003	12.230	225
							0	1.004	12.230	225
SW-03	317890.258	478991.464	14.486	1.946	1200		1	1.002	12.720	150
						04	0	1.003	12.540	225
SW-02	317903.571	478993.174	14.450	1.499	450		1	1.005	12.951	100
						0 <	_			
							0	1.002	12.951	150
SW-01	317913.620	478989.659	14.434	1.305	450	0 <				
							0	1.001	13.129	100
SW-022	317890.431	478978.056	14.410	1.960	450	0 <	1	2.005	12.470	100
						1	0	2.006	12.450	150
SW-020	317906.598	478967.391	14.141	1.305	450	0 <	0	2.000	12.450	
						\mathbf{C}				
							0	2.004	12.836	100
SW-021	317894.853	478970.757	14.099	1.487	450	°	1	2.004	12.612	100
							0	2.005	12.612	100
SW-07	317879.630	478963.111	13.886	2.159	450	1	1	1.006	11.728	225
						\bigcirc	_			
SW/ 00	217012 440	170050.005	10 717	1 450	450		0	1.007	11.727	225
SW-08	317913.440	478950.985	12.717	1.452	450		T	1.007	11.285	225
<u></u>	247064 525	470040.040	14.010	2 42 4			0	1.008	11.265	225
SW-033	317964.533	478943.649	11.619	2.434		ĵ				
						o v	0	3.0041	9.185	225

	Curtins Consulting Ltd	File: 081617-CUR-XX-XX-T-C-0(Page 5
Curtino	24-25 Riverside Place,	Network: 081617_SurfaceWate	Project: Iron Line - Millom
Curtins	K Village, Lound Road,	Craig Clarke	Surface Water Drainage
	LA9 7FH	04/04/25	Rev: P01 Checked: GW

Manhole Schedule

Node	Easting (m)	Northing (m)	CL (m)	Depth (m)	Dia (mm)	Connectior	IS	Link	IL (m)	Dia (mm
SW-09	317964.179	478941.510	11.402	2.332	1200	1	1	3.0041	9.070	225
						2	2	1.008	9.070	225
							0	1.009	9.070	150
SW-010	318000.768	478935.337	10.355	1.665	1350	1	1	1.009	8.690	150
							•	1 0010	0 0 0 0	1
SW-011	210027 707	470016 212	0.262	1.394	450		0	1.0010	8.690	150
300-011	318027.787	478916.313	9.263	1.394	450	1	T	1.0010	7.889	150
							0	1.0011	7.869	150
SW-012	318043.511	478907.497	8.104	1.802	450	1 70	1	1.0011	6.302	150
							0	1.0012	6.302	150
SW-013	318056.398	478915.311	6.146	1.457	450	0	1	1.0012	4.795	150
						1	0	1.0013	4.689	150
SW-014	318057.059	478932.633	4.449	1.498	1200	0	1	1.0013	2.971	150
						ϕ				
						1	0	1.0014	2.951	150
SW-024	318043.065	478968.403	3.353	1.466	450	°	1	1.0014	1.887	150
						1	0	1.0014 (1)	1.887	225
SW-017	317987.052	479046.195	3.245	1.985	450	0 <	1	1.0016	1.260	22
							0	1.0017	1.260	225
SW-015	318029.719	479002.519	3.221	1.571	1200	0	1	1.0014 (1)	1.650	22
						1	0	1.0015	1.650	225
SW-018	317973.205	479046.931	3.208	2.033	450	0	1	1.0017	1.175	225
						\bigcirc	0	1.0018	1.175	22
SW-016	318010.709	479034.809	3.127	1.707	450		1	1.0015	1.420	225
-				-		0 5			-	
						1	0	1.0016	1.420	22
SW-019	317957.633	479075.192	1.362	0.382	450	\bigcirc	1	1.0018	0.980	22

	Curtins Consulting Ltd	File: 081617-CUR-XX-XX-T-C-0(Page 6		
irtinc	24-25 Riverside Place,	Network: 081617_SurfaceWate	Project: Iron Line - Millom		
	24-25 Riverside Place, K Village, Lound Road,	Craig Clarke	Surface Water Drainage		
	LA9 7FH	04/04/25	Rev: P01 Checked: GW		

Simulation Settings

Rainfall Methodology	FSR	Drain Down Time (mins)	240
Rainfall Events	Singular	Additional Storage (m³/ha)	0.0
FSR Region	England and Wales	Starting Level (m)	
M5-60 (mm)	17.000	Check Discharge Rate(s)	\checkmark
Ratio-R	0.300	1 year (l/s)	5.7
Summer CV	0.750	30 year (l/s)	5.7
Winter CV	0.840	100 year (l/s)	5.7
Analysis Speed	Normal	Check Discharge Volume	\checkmark
Skip Steady State	x	100 year +35% 360 minute (m ³)	123

Storm Durations

	Ret	urn Perio	d Clim	ate Change	tibba a	ional Area	٥itibb۵	nal Flow	
30	120	240	480	720	1440	2880	5760	8640	
15	60	180	360	600	960	2160	4320	7200	10080

(years)	(CC %)	Additional Area (A %)	(Q %)	
1	0	0	0	
30	30	0	0	
100	35	0	0	

Pre-development Discharge Rate

Site Makeup	Greenfield	Growth Factor 30 year	1.95
Greenfield Method	IH124	Growth Factor 100 year	2.48
Positively Drained Area (ha)	0.281	Betterment (%)	0
SAAR (mm)	1020	QBar	2.1
Soil Index	4	Q 1 year (l/s)	1.8
SPR	0.47	Q 30 year (l/s)	4.1
Region	10	Q 100 year (I/s)	5.2
Growth Factor 1 year	0.85		

Pre-development Discharge Volume

Site Makeup	Greenfield	Return Period (years)	100
Greenfield Method	FSR/FEH	Climate Change (%)	35
Positively Drained Area (ha)	0.281	Storm Duration (mins)	360
Soil Index	4	Betterment (%)	0
SPR	0.47	PR	0.532
CWI	125.050	Runoff Volume (m ³)	123

Node SW-09 Online Hydro-Brake[®] Control

Flap Valve Replaces Downstream Link		Objective Sump Available	(HE) Minimise upstream storage √
Invert Level (m)	9.070	Product Number	CTL-SHE-0105-5700-1500-5700
Design Depth (m)	1.500	Min Outlet Diameter (m)	0.150
Design Flow (I/s)	5.7	Min Node Diameter (mm)	1200

Node SW-033 Depth/Area Storage Structure

Base Inf Coefficient (m/hr)	0.00000	Safety Factor	2.0	Invert Level (m)	9.185
Side Inf Coefficient (m/hr)	0.00000	Porosity	1.00	Time to half empty (mins)	28

	Curtins Consulting Ltd	File: 081617-CUR-XX-XX-T-C-0(Page 7	
Curtins	24-25 Riverside Place,	Network: 081617_SurfaceWate	Project: Iron Line - Millom	
	K Village, Lound Road,	Craig Clarke	Surface Water Drainage	
	LA9 7FH	04/04/25	Rev: P01 Checked: GW	
	Dauth Anna Inf Anna	Double Anna Inf Anna		

Depth	Area	Inf Area	Depth	Area	Inf Area
(m)	(m²)	(m²)	(m)	(m²)	(m²)
0.000	106.0	106.0	1.500	106.0	160.7

Curtins Consulting Ltd 24-25 Riverside Place, K Village, Lound Road,

Curtins Consulting Ltd LA9 7FH

File: 081617-CUR-XX-XX-T-C-00 Page 8 Network: 081617_SurfaceWate Craig Clarke 04/04/25

Project: Iron Line - Millom Surface Water Drainage Checked: GW Rev: P01

Results for 1 year Critical Storm Duration. Lowest mass balance: 98.84%

Node Event	US		Level	Depth	Inflow	Node	Flood	Sta	atus
15 minute winter	Nod SW-0		(m) 14.205	(m) 0.035	(I/s) 4.7	Vol (m ³) 0.0056	(m³) 0.0000	ОК	
	511 0		111200	0.000		0.00000	0.0000	ÖN	
15 minute winter			12.262	0.147	27.5	0.1665	0.0000	ОК	
15 minute winter	SW-0	6 10	12.217	0.122	32.0	0.1377	0.0000	ОК	
15 minute winter	SW-0	4 10	12.343	0.113	19.3	0.1278	0.0000	ОК	
15 minute winter			12.600	0.060	10.9	0.0676	0.0000	ОК	
15 minute summe			12.997	0.046	4.5	0.0073	0.0000	ОК	
15 minute summe	er SW-0	1 10	13.173	0.044	3.0	0.0070	0.0000	ОК	
15 minute winter	SW-0	22 10	12.494	0.044	4.3	0.0070	0.0000	ОК	
15 minute winter	SW-0	20 10	12.856	0.020	0.7	0.0031	0.0000	ОК	
15 minute winter			12.655	0.043	2.8	0.0069	0.0000	ОК	
15 minute winter			11.850	0.123	31.8	0.0195	0.0000	ОК	
15 minute winter			11.348	0.083	31.6	0.0132	0.0000	ОК	
60 minute winter			9.305	0.120	13.7	12.6824	0.0000	ОК	
15 minute winter			9.339	0.269	34.0	0.3045	0.0000		IARGED
15 minute winter			8.734	0.044	5.2	0.0635	0.0000	ОК	
15 minute winter			7.901	0.032	5.1	0.0051	0.0000	OK	
15 minute winter			6.333	0.031	5.1	0.0050	0.0000	ОК	
30 minute summe			4.720	0.031	5.1	0.0050	0.0000	OK	
15 minute winter			2.993	0.042	5.1	0.0478	0.0000	ОК	
15 minute winter			1.941	0.054	5.1	0.0085	0.0000	ОК	
15 minute winter			1.316	0.056	5.1	0.0088	0.0000	OK	
15 minute winter			1.704	0.054	5.1	0.0616	0.0000	ОК	
						••• •••	10		
Link Event	US	Link	DS	Outflov		•	/Cap	Link	Discharge
(Upstream Depth)	Node		Node	(I/s)	(m/	/s)	v	′ol (m³)	Discharge Vol (m ³)
		Link 3.001			(m/	/s)	v		-
(Upstream Depth)	Node		Node	(I/s)	(m/ 7 1.	's) 514	0.115	′ol (m³)	-
(Upstream Depth) 15 minute winter	Node SW-023	3.001	Node SW-06	(I/s) 4.1	(m/ 7 1.1 3 1.1	's) 514 (102 (102)	V 0.115 0.680	'ol (m³) 0.0347	-
(Upstream Depth) 15 minute winter 15 minute winter 15 minute winter	Node SW-023 SW-05 SW-06	3.001 1.005 1.006	Node SW-06 SW-06 SW-07	(I/s) 4.7 27.3 31.8	(m/ 7 1.1 3 1.1 8 1.4	7s) 514 102 468	V 0.115 0.680 0.530	/ol (m³) 0.0347 0.0825 0.5973	-
(Upstream Depth) 15 minute winter 15 minute winter 15 minute winter 15 minute winter	Node SW-023 SW-05 SW-06 SW-04	3.001 1.005 1.006 1.004	Node SW-06 SW-06 SW-07 SW-05	(I/s) 4.1 27.3 31.8 19.3	(m) 7 1.1 3 1.1 8 1.4 1 0.3	75) 514 102 468 801	V 0.115 0.680 0.530 0.471	'ol (m³) 0.0347 0.0825 0.5973 0.4488	-
(Upstream Depth) 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter	Node SW-023 SW-05 SW-06 SW-04 SW-03	3.001 1.005 1.006 1.004 1.003	Node SW-06 SW-06 SW-07 SW-05 SW-04	(I/s) 4.7 27.3 31.8 19.3	(m) 7 1.1 3 1.1 8 1.4 1 0.1 9 0.1	7s) 514 102 468 801 785	V 0.115 0.680 0.530 0.471 0.156	Yol (m³) 0.0347 0.0825 0.5973 0.4488 0.2452	-
(Upstream Depth) 15 minute winter 15 minute winter 15 minute winter 15 minute winter	Node SW-023 SW-05 SW-06 SW-04 SW-03 SW-02	3.001 1.005 1.006 1.004 1.003 1.002	Node SW-06 SW-07 SW-07 SW-05 SW-04 SW-03	(I/s) 4.7 31.8 19.7 10.9 4.9	(m) 7 1.1 3 1.1 8 1.4 1 0.1 9 0.7 5 1.0	7s) 514 102 468 801 785 002	v 0.115 0.680 0.530 0.471 0.156 0.192	Yol (m³) 0.0347 0.0825 0.5973 0.4488 0.2452 0.0602	-
(Upstream Depth) 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute summer	Node SW-023 SW-05 SW-06 SW-04 SW-03	3.001 1.005 1.006 1.004 1.003	Node SW-06 SW-06 SW-07 SW-05 SW-04	(I/s) 4.7 27.3 31.8 19.3	(m) 7 1.1 8 1.1 8 1.4 1 0.3 9 0.7 5 1.0 0 0.3	7s) 514 102 468 801 785 002 875	V 0.115 0.680 0.530 0.471 0.156 0.192 0.383	Yol (m³) 0.0347 0.0825 0.5973 0.4488 0.2452	-
(Upstream Depth) 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute summer 15 minute summer 15 minute summer 15 minute summer	Node SW-023 SW-05 SW-06 SW-04 SW-03 SW-02 SW-01 SW-022	3.001 1.005 1.006 1.004 1.003 1.002 1.001 2.006	Node SW-06 SW-07 SW-05 SW-04 SW-03 SW-02 SW-04	(I/s) 4.7 31.8 19.7 10.9 4.9 3.0 4.3	(m) 7 1.1 8 1.4 1 0.3 9 0.7 5 1.0 0 0.3 3 0.4	7s) 514 102 468 801 785 002 875 459	V 0.115 0.680 0.530 0.471 0.156 0.192 0.383 0.186	vol (m³) 0.0347 0.0825 0.5973 0.4488 0.2452 0.0602 0.0365 0.1228	-
 (Upstream Depth) 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute summer 15 minute summer 15 minute winter 15 minute winter 	Node SW-023 SW-05 SW-06 SW-04 SW-03 SW-02 SW-01 SW-022	3.001 1.005 1.006 1.004 1.003 1.002 1.001 2.006 2.004	Node SW-06 SW-07 SW-05 SW-04 SW-03 SW-02 SW-04 SW-021	(I/s) 4.7 31.8 19.7 10.9 4.9 3.0 4.3	(m) 7 1.1 3 1.1 8 1.4 1 0.3 9 0.7 5 1.0 0 0.3 3 0.4 7 0.3	7s) 514 102 468 801 785 002 875 459 331	V 0.115 0.680 0.530 0.471 0.156 0.192 0.383 0.186 0.085	rol (m³) 0.0347 0.0825 0.5973 0.4488 0.2452 0.0602 0.0365 0.1228 0.0264	-
 (Upstream Depth) 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute summer 15 minute summer 15 minute winter 15 minute winter 15 minute winter 15 minute winter 	Node SW-023 SW-05 SW-06 SW-04 SW-03 SW-02 SW-01 SW-020 SW-020 SW-020	3.001 1.005 1.006 1.004 1.003 1.002 1.001 2.006 2.004 2.005	Node SW-06 SW-07 SW-05 SW-04 SW-03 SW-02 SW-02 SW-021 SW-022	(I/s) 4.7 31.8 19.7 10.9 4.1 3.0 4.3 0.7 2.8	(m) 7 1.1 8 1.4 9 0.7 5 1.6 0 0.3 3 0.4 7 0.3 8 0.3	7s) 514 102 468 801 785 002 875 459 331 887	V 0.115 0.680 0.530 0.471 0.156 0.192 0.383 0.186 0.085 0.356	rol (m ³) 0.0347 0.0825 0.5973 0.4488 0.2452 0.0602 0.0365 0.1228 0.0264 0.0264	-
 (Upstream Depth) 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute summer 15 minute summer 15 minute winter 	Node SW-023 SW-05 SW-06 SW-04 SW-03 SW-02 SW-01 SW-020 SW-020 SW-021 SW-021 SW-021	3.001 1.005 1.006 1.004 1.003 1.002 1.001 2.006 2.004 2.005 1.007	Node SW-06 SW-07 SW-07 SW-05 SW-04 SW-03 SW-02 SW-04 SW-021 SW-021 SW-022 SW-08	(I/s) 4.7 31.8 19.7 10.9 4.9 3.0 4.3 3.0 3.1 0.7 2.8 31.6	(m) 7 1.1 8 1.4 9 0.3 5 1.4 0 0.3 5 1.4 0 0.3 3 0.4 7 0.3 8 0.3 5 1.4	7s) 514 102 468 801 785 002 875 459 331 887 6887 645	V 0.115 0.680 0.530 0.471 0.156 0.192 0.383 0.186 0.085 0.356 0.356 0.548	ol (m ³) 0.0347 0.0825 0.5973 0.4488 0.2452 0.0602 0.0365 0.1228 0.0264 0.0268 0.7749	-
 (Upstream Depth) 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute summer 15 minute summer 15 minute winter 	Node SW-023 SW-05 SW-06 SW-04 SW-03 SW-03 SW-02 SW-01 SW-020 SW-020 SW-021 SW-07 SW-08	3.001 1.005 1.006 1.004 1.003 1.002 1.001 2.006 2.004 2.005 1.007 1.008	Node SW-06 SW-07 SW-07 SW-04 SW-03 SW-02 SW-04 SW-021 SW-022 SW-08 SW-09	(I/s) 4.7 31.8 19.7 10.9 4.9 3.0 4.3 3.0 4.3 3.1 31.0 31.1	(m) 7 1.1 8 1.4 9 0.7 5 1.0 0 0.3 3 0.4 7 0.3 8 0.3 5 1.4 7 1.0	7s) 514 102 468 801 785 002 875 459 331 887 465 015	V 0.115 0.680 0.530 0.471 0.156 0.192 0.383 0.186 0.085 0.356 0.356 0.548 0.294	 vol (m³) 0.0347 0.0825 0.5973 0.4488 0.2452 0.0602 0.0365 0.1228 0.0264 0.0268 0.7749 1.3702 	-
 (Upstream Depth) 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute summer 15 minute summer 15 minute winter 	Node SW-023 SW-05 SW-06 SW-04 SW-03 SW-02 SW-01 SW-022 SW-01 SW-020 SW-020 SW-021 SW-021 SW-021 SW-023	3.001 1.005 1.006 1.004 1.003 1.002 1.001 2.006 2.004 2.005 1.007 1.008 3.0041	Node SW-06 SW-07 SW-05 SW-04 SW-03 SW-02 SW-04 SW-02 SW-04 SW-021 SW-021 SW-022 SW-08 SW-09 SW-09	(I/s) 4.7 31.8 19.7 10.9 4.9 3.0 4.9 3.0 31.0 31.0 31.1 -13.7	(m) 7 1.1 8 1.1 8 1.4 1 0.3 9 0.1 5 1.0 0 0.3 3 0.4 7 0.3 8 0.3 5 1.4 7 1.0 7 -0.1	7s) 514 102 468 801 785 002 875 459 331 887 465 015 521	V 0.115 0.680 0.530 0.471 0.156 0.192 0.383 0.186 0.085 0.356 0.548 0.294 0.298	rol (m ³) 0.0347 0.0825 0.5973 0.4488 0.2452 0.0602 0.0365 0.1228 0.0264 0.0268 0.7749 1.3702 0.4481	-
 (Upstream Depth) 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute summer 15 minute summer 15 minute winter 	Node SW-023 SW-05 SW-06 SW-04 SW-03 SW-02 SW-01 SW-020 SW-020 SW-020 SW-020 SW-020 SW-020 SW-020 SW-020 SW-020 SW-020	3.001 1.005 1.006 1.004 1.003 1.002 1.001 2.006 2.004 2.005 1.007 1.008 3.0041 1.009	Node SW-06 SW-07 SW-05 SW-04 SW-03 SW-02 SW-04 SW-02 SW-04 SW-021 SW-021 SW-022 SW-08 SW-09 SW-09 SW-09	(I/s) 4.7 31.8 19.7 10.9 4.9 3.0 4.3 3.0 31.7 31.7 5.7	(m) 7 1.1 3 1.1 8 1.4 1 0.3 9 0.7 5 1.0 0 0.3 3 0.4 7 0.3 8 0.3 5 1.4 7 0.3 2 1.0	7s) 514 102 468 801 785 002 875 459 331 887 465 015 521 -005	V 0.115 0.680 0.530 0.471 0.156 0.192 0.383 0.186 0.085 0.356 0.548 0.294 0.298 0.298 0.287	rol (m ³) 0.0347 0.0825 0.5973 0.4488 0.2452 0.0602 0.0365 0.1228 0.0264 0.0268 0.7749 1.3702 0.4481 0.1964	-
 (Upstream Depth) 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute summer 15 minute summer 15 minute winter 	Node SW-023 SW-05 SW-06 SW-04 SW-03 SW-02 SW-01 SW-020 SW-020 SW-020 SW-020 SW-020 SW-020 SW-020 SW-020 SW-020 SW-020 SW-020	3.001 1.005 1.006 1.004 1.003 1.002 1.001 2.006 2.004 2.005 1.007 1.008 3.0041 1.009 1.0010	Node SW-06 SW-07 SW-05 SW-04 SW-03 SW-02 SW-04 SW-021 SW-021 SW-022 SW-08 SW-09 SW-09 SW-09 SW-010 SW-011	(I/s) 4.7 31.8 19.7 10.9 4.9 3.0 4.3 3.0 3.1 31.7 5.7 5.7	(m) 7 1.1 3 1.1 8 1.4 1 0.3 9 0.7 5 1.0 0 0.3 3 0.4 7 0.3 8 0.3 6 1.4 7 1.0 7 -0.1 2 1.0	7s) 514 102 468 801 785 002 875 459 331 887 465 015 521 -1 005 194	V 0.115 0.680 0.530 0.471 0.156 0.192 0.383 0.186 0.085 0.356 0.548 0.294 0.298 0.287 0.185	ol (m³) 0.0347 0.0825 0.5973 0.4488 0.2452 0.0602 0.0365 0.1228 0.0264 0.0268 0.7749 1.3702 0.4481 0.1964 0.1425	-
 (Upstream Depth) 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute summer 15 minute summer 15 minute winter 	Node SW-023 SW-05 SW-06 SW-04 SW-03 SW-02 SW-01 SW-020 SW-00 SW-00 SW-00 SW-00 SW-00 SW-000 S	3.001 1.005 1.006 1.004 1.003 1.002 1.001 2.006 2.004 2.005 1.007 1.008 3.0041 1.009 1.0010 1.0011	Node SW-06 SW-07 SW-07 SW-04 SW-03 SW-02 SW-04 SW-02 SW-04 SW-021 SW-022 SW-08 SW-09 SW-09 SW-09 SW-010 SW-011 SW-012	(I/s) 4.7 31.8 19.7 10.9 4.9 3.0 4.3 0.7 2.8 31.0 31.7 5.7 5.7 5.7	(m) 7 1.1 8 1.4 9 0.3 5 1.4 0 0.3 5 1.4 0 0.3 6 1.4 7 0.3 6 1.4 7 0.3 1 1.3	7s) 514 102 468 801 785 002 875 459 331 687 465 0015 521 -1 005 4892	V 0.115 0.680 0.530 0.471 0.156 0.192 0.383 0.186 0.085 0.356 0.548 0.294 0.298 0.294 0.298 0.287 0.185 0.097	ol (m ³) 0.0347 0.0825 0.5973 0.4488 0.2452 0.0602 0.0365 0.1228 0.0264 0.0268 0.7749 1.3702 0.4481 0.1964 0.1964 0.1425 0.0490	-
 (Upstream Depth) 15 minute winter 15 minute summer 15 minute winter 	Node SW-023 SW-05 SW-06 SW-04 SW-03 SW-02 SW-01 SW-020 SW-00 SW-00 SW-00 SW-00 SW-000	3.001 1.005 1.006 1.004 1.003 1.002 1.001 2.006 2.004 2.005 1.007 1.008 3.0041 1.009 1.0010 1.0011 1.0012	Node SW-06 SW-07 SW-07 SW-03 SW-04 SW-03 SW-02 SW-04 SW-021 SW-021 SW-022 SW-08 SW-09 SW-09 SW-010 SW-011 SW-012 SW-013	(I/s) 4.7 27.3 31.8 19.7 10.9 4.9 3.0 4.3 3.0 4.3 31.0 31.7 5.7 5.7 5.7	(m) 7 1.1 8 1.7 8 1.7 1 0.3 9 0.7 5 1.0 0 0.3 3 0.7 7 0.3 8 0.3 6 1.4 7 1.0 7 -0.1 2 1.0 1 1.3 1 1.3	7s) 514 102 468 801 785 002 875 459 331 465 015 521 -1005 194 992 967	V 0.115 0.680 0.530 0.471 0.156 0.192 0.383 0.186 0.085 0.356 0.356 0.356 0.356 0.356 0.294 0.298 0.298 0.287 0.185 0.097 0.091	ol (m ³) 0.0347 0.0825 0.5973 0.4488 0.2452 0.0602 0.0365 0.1228 0.0264 0.0268 0.7749 1.3702 0.4481 0.1964 0.1425 0.0490 0.0393	-
 (Upstream Depth) 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute summer 15 minute summer 15 minute winter 30 minute summer 	Node SW-023 SW-05 SW-06 SW-04 SW-03 SW-02 SW-01 SW-020 SW-020 SW-021 SW-020 SW-021 SW-020 SW-021 SW-020 SW-021 SW-021 SW-03 SW-03 SW-03 SW-03 SW-03 SW-03 SW-03 SW-03 SW-03 SW-03 SW-03 SW-04 SW-04 SW-04 SW-04 SW-05 SW-04 SW-04 SW-04 SW-04 SW-05 SW-04 SW-05 SW-04 SW-05 SW-04 SW-05 SW-05 SW-05 SW-04 SW-05 SW-04 SW-05 SW-04 SW-05 SW-04 SW-04 SW-05 SW-04 SW-05 SW-04 SW	3.001 1.005 1.006 1.004 1.003 1.002 1.001 2.006 2.004 2.005 1.007 1.008 3.0041 1.009 1.0010 1.0011 1.0012 1.0013	Node SW-06 SW-07 SW-07 SW-03 SW-04 SW-03 SW-02 SW-04 SW-02 SW-04 SW-022 SW-08 SW-09 SW-09 SW-09 SW-010 SW-011 SW-012 SW-013 SW-014	(I/s) 4.7 27.3 31.8 19.7 10.9 4.9 3.0 4.3 3.0 4.3 3.1 3.1 31.1 5.7 5.7 5.7 5.7	(m) 7 1.1 3 1.1 8 1.4 9 0.7 5 1.0 0 0.3 3 0.4 7 0.3 8 0.3 5 1.4 7 0.3 1 1.4 1 1.3 1 1.4 1 1.	7s) 514 102 468 801 785 002 875 459 331 887 465 015 521 102 487 4965 907 9967	V 0.115 0.680 0.530 0.471 0.156 0.192 0.383 0.186 0.085 0.356 0.356 0.356 0.356 0.356 0.294 0.298 0.294 0.298 0.287 0.185 0.097 0.091 0.091	ol (m ³) 0.0347 0.0825 0.5973 0.4488 0.2452 0.0602 0.0365 0.1228 0.0264 0.0268 0.7749 1.3702 0.4481 0.1964 0.1425 0.0490 0.0393 0.0453	-
(Upstream Depth) 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute summer 15 minute summer 15 minute winter 15 minute winter	Node SW-023 SW-05 SW-06 SW-04 SW-03 SW-02 SW-02 SW-02 SW-02 SW-033 SW-010 SW-011 SW-012 SW-013 SW-014	3.001 1.005 1.006 1.004 1.003 1.002 1.001 2.006 2.004 2.005 1.007 1.008 3.0041 1.009 1.0010 1.0011 1.0012 1.0013 1.0014	Node SW-06 SW-07 SW-05 SW-04 SW-03 SW-02 SW-04 SW-02 SW-04 SW-021 SW-022 SW-08 SW-09 SW-09 SW-09 SW-09 SW-09 SW-010 SW-011 SW-012 SW-013 SW-014 SW-024	(I/s) 4.7 31.8 19.7 10.9 4.9 3.0 4.1 3.0 4.1 3.0 4.1 3.1 31.1 5.7 5.7 5.7 5.7 5.7	(m) 7 1.1 3 1.1 3 1.1 3 1.1 3 1.1 1 0.3 9 0.1 5 1.0 0 0.3 3 0.4 7 0.3 8 0.3 5 1.0 7 0.3 8 0.3 5 1.0 1 1.1 1 1.	7s) 514 102 468 801 785 002 875 002 8331 887 465 0015 521 -1005 194 892 965 239	V 0.115 0.680 0.530 0.471 0.156 0.192 0.383 0.186 0.085 0.356 0.548 0.294 0.298 0.294 0.298 0.294 0.298 0.297 0.185 0.097 0.091 0.091 0.073	ol (m ³) 0.0347 0.0825 0.5973 0.4488 0.2452 0.0602 0.0365 0.1228 0.0264 0.0264 0.0268 0.7749 1.3702 0.4481 0.1964 0.1425 0.0490 0.0393 0.0453 0.1863	-
(Upstream Depth) 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute summer 15 minute summer 15 minute winter 15 minute winter	Node SW-023 SW-05 SW-06 SW-01 SW-02 SW-02 SW-02 SW-02 SW-02 SW-02 SW-02 SW-020 SW-020 SW-021 SW-020 SW-021 SW-020 SW-021 SW-021 SW-033 SW-030 SW-031 SW-031 SW-033 SW-033 SW-033 SW-033 SW-033 SW-033 SW-033 SW-033 SW-033 SW-031 SW-011 SW-013 SW-014 SW-024	3.001 1.005 1.006 1.004 1.003 1.002 1.001 2.006 2.004 2.005 1.007 1.008 3.0041 1.009 1.0010 1.0011 1.0012 1.0013 1.0014 1.0014 (1)	Node SW-06 SW-07 SW-05 SW-04 SW-03 SW-02 SW-04 SW-02 SW-04 SW-021 SW-022 SW-08 SW-09 SW-09 SW-09 SW-09 SW-010 SW-011 SW-012 SW-013 SW-014 SW-024 SW-024 SW-024	(I/s) 4.7 31.8 19.7 10.9 4.9 3.0 4.1 3.0 4.1 3.1 31.7 5.7 5.7 5.7 5.7 5.7 5.7	(m) 7 1.1 3 1.1 3 1.1 3 1.4 1 0.3 9 0.7 5 1.0 0 0.3 3 0.4 7 0.3 8 0.3 6 1.4 7 0.3 1 1.1 1 1.3 1 1.3 1 1.3 1 0.4 1 0.4 1 1.4 1 0.4 1 1.4 1 1.	7s) 514 102 468 801 785 002 875 459 331 465 005 194 892 965 239 796	V 0.115 0.680 0.530 0.471 0.156 0.192 0.383 0.186 0.085 0.356 0.548 0.294 0.298 0.287 0.185 0.294 0.287 0.185 0.097 0.091 0.091 0.091 0.173 0.123	ol (m ³) 0.0347 0.0825 0.5973 0.4488 0.2452 0.0602 0.0365 0.1228 0.0264 0.0268 0.7749 1.3702 0.4481 0.1964 0.1425 0.0490 0.0393 0.0453 0.1863 0.2675	-
(Upstream Depth) 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute summer 15 minute summer 15 minute winter 15 minute winter	Node SW-023 SW-05 SW-06 SW-04 SW-03 SW-02 SW-02 SW-02 SW-02 SW-033 SW-010 SW-011 SW-012 SW-013 SW-014	3.001 1.005 1.006 1.004 1.003 1.002 1.001 2.006 2.004 2.005 1.007 1.008 3.0041 1.009 1.0010 1.0011 1.0012 1.0013 1.0014	Node SW-06 SW-07 SW-05 SW-04 SW-03 SW-02 SW-04 SW-02 SW-04 SW-021 SW-022 SW-08 SW-09 SW-09 SW-09 SW-09 SW-09 SW-010 SW-011 SW-012 SW-013 SW-014 SW-024	(I/s) 4.7 31.8 19.7 10.9 4.9 3.0 4.1 3.0 4.1 3.0 4.1 3.1 31.1 5.7 5.7 5.7 5.7 5.7	(m) 7 1.1 3 1.1 8 1.4 1 0.1 9 0.7 5 1.0 0 0.3 3 0.4 7 0.3 6 1.4 7 0.3 1 1.1 1 1.1 1 1.1 1 1.1 1 0.7 1 0.7 1 0.1 1 1.1 1 1.1 1 1.1 1 1.1 1 0.1 1 1.1 1 1.1 1 0.1 1 0.1 1 1.1 1 1.1 1 1.1 1 0.1 1 0.	7s) 514 102 468 801 785 002 875 459 331 465 005 194 892 965 239 734	V 0.115 0.680 0.530 0.471 0.156 0.192 0.383 0.186 0.085 0.356 0.548 0.294 0.298 0.287 0.185 0.097 0.287 0.185 0.097 0.091 0.091 0.173 0.123 0.126	ol (m ³) 0.0347 0.0825 0.5973 0.4488 0.2452 0.0602 0.0365 0.1228 0.0264 0.0264 0.0268 0.7749 1.3702 0.4481 0.1964 0.1425 0.0490 0.0393 0.0453 0.1863	-

	Curtins Consulting Ltd	File: 081617-CUR-XX-XX-T-C-0(Page 9	
irtinc	24-25 Riverside Place,	Network: 081617_SurfaceWate	Project: Iron Line - Millom	
	24-25 Riverside Place, K Village, Lound Road,	Craig Clarke	Surface Water Drainage	
	LA9 7FH	04/04/25	Rev: P01 Checked: GW	

Results for 1 year Critical Storm Duration. Lowest mass balance: 98.84%

Node Even	t	US Node	Peak (mins)	Leve (m)	l Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
15 minute wi	nter	SW-018	16	1.230	0.055	5.1	0.0087	0.0000	ОК
15 minute wi	nter	SW-016	15	1.475	5 0.055	5.1	0.0087	0.0000	ОК
15 minute wi	nter	SW-019	17	1.034	4 0.054	5.1	0.0000	0.0000	ОК
Link Event (Upstream Depth)	U: Noe)S ode	Outflow (I/s)	Velocity (m/s)	Flow/Cap	Link Vol (m	Discharge ³) Vol (m ³)

5.1

5.1

0.696

0.697

0.127

0.127

0.2370

0.1975

14.5

SW-018 1.0018 SW-019

SW-016 1.0016 SW-017

15 minute winter

15 minute winter

Curtins Consulting Ltd 24-25 Riverside Place, K Village, Lound Road,

Curtins Consulting Ltd LA9 7FH

File: 081617-CUR-XX-XX-T-C-00 Page 10 Network: 081617_SurfaceWate Craig Clarke 04/04/25 Rev: P01

Project: Iron Line - Millom Surface Water Drainage Checked: GW

Results for 30 year +30% CC Critical Storm Duration. Lowest mass balance: 98.84%

Node Event	US Noc			Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Sta	atus
15 minute winte		•		0.067	14.9	0.0106	0.0000	ОК	
15 minute winte	r SW-C	5 1	1 13.026	0.911	62.7	1.0307	0.0000	SURCH	IARGED
15 minute winte				0.824	74.1	0.9314	0.0000		IARGED
15 minute winte				0.944	43.5	1.0678	0.0000		IARGED
15 minute winte				0.684	33.0	0.7735	0.0000		IARGED
15 minute winte				0.334	12.9	0.0532	0.0000		
15 minute winte 15 minute winte				0.315 0.767	9.4 10.6	0.0502 0.1220	0.0000 0.0000		IARGED IARGED
15 minute winter	500-0	22 1	2 13.217	0.707	10.0	0.1220	0.0000	JUNCI	
15 minute winte	r SW-C	20 1	2 13.300	0.464	4.8	0.0737	0.0000		IARGED
15 minute winte	r SW-C			0.680	8.6	0.1081	0.0000		IARGED
15 minute winte				0.545	72.7	0.0866	0.0000		IARGED
15 minute winte				0.134	72.4	0.0214	0.0000	OK	
180 minute wint				0.697	22.8	73.9019	0.0000		IARGED
180 minute wint				0.812	29.4	0.9186	0.0000		IARGED
30 minute summ				0.047	5.7	0.0670	0.0000	OK	
30 minute summ				0.034	5.7	0.0054	0.0000	OK	
30 minute summ				0.033	5.7	0.0052	0.0000	OK	
30 minute summ				0.033	5.7	0.0052	0.0000	OK	
30 minute summ				0.045	5.7	0.0504	0.0000	OK	
15 minute winte				0.057	5.7	0.0090	0.0000	OK	
15 minute winte				0.059	5.7	0.0094	0.0000	OK	
15 minute winte	r SW-C	15 1	1 1.708	0.058	5.7	0.0651	0.0000	OK	
Link Event	US	Link	DS	Outflow		-	v/Cap	Link	Discharge
(Upstream Depth)	Node		Node	(I/s)	(m/	/s)	v	ol (m³)	Discharge Vol (m ³)
		Link 3.001			(m/	/s)	v		-
(Upstream Depth)	Node		Node	(I/s)	(m/ 9 2.0	/s) 052	V 0.364	ol (m³)	-
(Upstream Depth) 15 minute winter	Node SW-023	3.001	Node SW-06	(I/s) 14.9	(m/ 9 2.0 8 1.5	/s) 052 530	0.364 1.517	ol (m³) 0.0812	-
(Upstream Depth) 15 minute winter 15 minute winter 15 minute winter	Node SW-023 SW-05 SW-06	3.001 1.005 1.006	Node SW-06 SW-06 SW-07	(I/s) 14.9 60.8 72.7	(m/ 9 2.0 3 1.1 7 1.3	/s) 052 530 828	0.364 1.517 1.210	ol (m³) 0.0812 0.1328 1.0964	-
(Upstream Depth) 15 minute winter 15 minute winter 15 minute winter 15 minute winter	Node SW-023 SW-05 SW-06 SW-04	3.001 1.005 1.006 1.004	Node SW-06 SW-07 SW-05	(I/s) 14.9 60.8 72.7 44.0	(m/) 2.0 3 1.1 7 1.3 0 1.3	/s) 052 530 828 108	V 0.364 1.517 1.210 1.090	ol (m ³) 0.0812 0.1328 1.0964 0.7520	-
(Upstream Depth) 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter	Node SW-023 SW-05 SW-06 SW-04 SW-03	3.001 1.005 1.006 1.004 1.003	Node SW-06 SW-07 SW-05 SW-04	(I/s) 14.9 60.8 72.7 44.0 27.4	(m) 2.0 3 1.1 7 1.3 7 1.3 0 1.3 4 0.3	/s) 052 530 828 108 888	V 0.364 1.517 1.210 1.090 0.392	ol (m ³) 0.0812 0.1328 1.0964 0.7520 0.6870	-
 (Upstream Depth) 15 minute winter 	Node SW-023 SW-05 SW-06 SW-04 SW-03 SW-02	3.001 1.005 1.006 1.004 1.003 1.002	Node SW-06 SW-07 SW-07 SW-05 SW-04 SW-03	(I/s) 14.9 60.8 72.7 44.0 27.4 12.7	(m) 2.0 3.1.1 7.1.3 7.1.3 0.1 4.0.3 7.1.3	/s) 052 530 828 108 888 242	V 0.364 1.517 1.210 1.090 0.392 0.545	ol (m ³) 0.0812 0.1328 1.0964 0.7520 0.6870 0.2363	-
 (Upstream Depth) 15 minute winter 	Node SW-023 SW-05 SW-06 SW-04 SW-03 SW-02 SW-01	3.001 1.005 1.006 1.004 1.003 1.002 1.001	Node SW-06 SW-07 SW-07 SW-05 SW-04 SW-03 SW-02	(I/s) 14.5 60.8 72.7 44.0 27.4 12.7 8.2	(m) 9 2.0 8 1.1 7 1.3 0 1.3 4 0.3 7 1.3 2 1.0	/s) 052 530 828 108 888 242 087	V 0.364 1.517 1.210 1.090 0.392 0.545 1.051	ol (m ³) 0.0812 0.1328 1.0964 0.7520 0.6870 0.2363 0.0833	-
 (Upstream Depth) 15 minute winter 	Node SW-023 SW-05 SW-06 SW-04 SW-03 SW-02	3.001 1.005 1.006 1.004 1.003 1.002 1.001 2.006	Node SW-06 SW-07 SW-05 SW-04 SW-03 SW-02 SW-04	(I/s) 14.9 60.8 72.7 44.0 27.4 12.7 8.7 13.4	(m) 9 2.0 8 1.1 7 1.3 0 1.3 4 0.3 7 1.3 2 1.0	/s) 052 530 828 108 888 242 087	V 0.364 1.517 1.210 1.090 0.392 0.545 1.051	ol (m ³) 0.0812 0.1328 1.0964 0.7520 0.6870 0.2363	-
 (Upstream Depth) 15 minute winter 	Node SW-023 SW-05 SW-06 SW-04 SW-03 SW-02 SW-01	3.001 1.005 1.006 1.004 1.003 1.002 1.001 2.006 2.004	Node SW-06 SW-07 SW-05 SW-04 SW-03 SW-02 SW-04 SW-021	(I/s) 14.9 60.8 72.7 44.0 27.4 12.7 8.2 13.4 3.8	(m) 9 2.0 8 1.1 7 1.3 0 1.3 4 0.3 7 1.3 2 1.0 4 0.3 8 0.4	/s) 052 530 828 108 888 242 087 760	V 0.364 1.517 1.210 1.090 0.392 0.545 1.051 0.583 0.457	ol (m ³) 0.0812 0.1328 1.0964 0.7520 0.6870 0.2363 0.2363 0.2335 0.0956	-
 (Upstream Depth) 15 minute winter 	Node SW-023 SW-05 SW-06 SW-04 SW-03 SW-02 SW-01 SW-022 SW-020 SW-020 SW-020 SW-020	3.001 1.005 1.006 1.004 1.003 1.002 1.001 2.006 2.004 2.004	Node SW-06 SW-07 SW-05 SW-04 SW-03 SW-02 SW-04 SW-021 SW-021 SW-022	(I/s) 14.9 60.8 72.7 44.0 27.4 12.7 8.7 13.4 3.8 8.6	(m) 9 2.0 8 1.1 7 1.3 0 1.3 1 0.3 7 1.3 1 0.3 1 0.	7s) 052 530 828 108 888 242 087 760 479 103	V 0.364 1.517 1.210 1.090 0.392 0.545 1.051 0.583 0.457 1.104	ol (m ³) 0.0812 0.1328 1.0964 0.7520 0.6870 0.2363 0.2363 0.2335 0.0956 0.0956	-
 (Upstream Depth) 15 minute winter 	Node SW-023 SW-05 SW-06 SW-04 SW-03 SW-02 SW-01 SW-02 SW-02 SW-020 SW-020 SW-021 SW-021	3.001 1.005 1.006 1.004 1.003 1.002 1.001 2.006 2.004 2.005 1.007	Node SW-06 SW-07 SW-07 SW-04 SW-04 SW-02 SW-04 SW-021 SW-022 SW-08	(I/s) 14.9 60.8 72.7 44.0 27.4 12.7 8.7 13.4 3.8 8.7 2.4	(m) 9 2.0 3 1.1 7 1.3 0 1.3 4 0.3 7 1.3 2 1.0 4 0.3 5 1.3 4 1.3	/s) 052 530 828 108 888 242 087 760 479 103 822	V 0.364 1.517 1.210 1.090 0.392 0.545 1.051 0.583 0.457 1.104 1.255	ol (m ³) 0.0812 0.1328 1.0964 0.7520 0.6870 0.2363 0.2363 0.2335 0.0956 0.0956 0.0668 1.4085	-
 (Upstream Depth) 15 minute winter 	Node SW-023 SW-05 SW-06 SW-04 SW-03 SW-02 SW-01 SW-02 SW-02 SW-02 SW-02 SW-02 SW-02 SW-02 SW-02 SW-02 SW-020 SW-021 SW-07 SW-08	3.001 1.005 1.006 1.004 1.003 1.002 1.001 2.006 2.004 2.005 1.007 1.008	Node SW-06 SW-07 SW-07 SW-05 SW-04 SW-03 SW-02 SW-04 SW-021 SW-022 SW-08 SW-09	(I/s) 14.5 60.8 72.7 44.0 27.4 12.7 8.2 13.4 3.8 8.6 72.4 72.6	(m) 9 2.0 8 1.1 7 1.3 9 2.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1	/s) 052 530 828 108 888 242 087 760 479 103 822 018	V 0.364 1.517 1.210 1.090 0.392 0.545 1.051 0.583 0.457 1.104 1.255 0.674	ol (m ³) 0.0812 0.1328 1.0964 0.7520 0.6870 0.2363 0.0833 0.2335 0.0956 0.0668 1.4085 1.6640	-
 (Upstream Depth) 15 minute winter 	Node SW-023 SW-05 SW-06 SW-04 SW-03 SW-02 SW-01 SW-020 SW-020 SW-021 SW-07 SW-08 SW-03	3.001 1.005 1.006 1.004 1.003 1.002 1.001 2.006 2.004 2.005 1.007 1.008 3.0041	Node SW-06 SW-07 SW-05 SW-04 SW-03 SW-02 SW-04 SW-021 SW-021 SW-022 SW-08 SW-09 SW-09	(I/s) 14.9 60.8 72.7 44.0 27.4 12.7 8.2 13.4 3.8 8.6 72.4 72.6 -22.8	(m) 9 2.0 8 1.1 7 1.3 7 1.3 8 0.4 5 1.3 5 2.0 8 -0.3 8 -	/s) 052 530 828 108 888 242 087 760 479 103 822 018 574 -	V 0.364 1.517 1.210 1.090 0.392 0.545 1.051 0.583 0.457 1.104 1.255 0.674 0.496	ol (m ³) 0.0812 0.1328 1.0964 0.7520 0.6870 0.2363 0.0833 0.2335 0.0956 0.0668 1.4085 1.6640 0.5822	-
 (Upstream Depth) 15 minute winter 180 minute winter 	Node SW-023 SW-05 SW-06 SW-04 SW-03 SW-02 SW-01 SW-020 SW-020 SW-021 SW-021 SW-021 SW-023 SW-033 SW-033 SW-09	3.001 1.005 1.006 1.004 1.003 1.002 1.001 2.006 2.004 2.005 1.007 1.008 3.0041 1.009	Node SW-06 SW-07 SW-05 SW-04 SW-03 SW-02 SW-04 SW-02 SW-04 SW-021 SW-021 SW-022 SW-08 SW-09 SW-09 SW-09 SW-010	(I/s) 14.9 60.8 72.7 44.0 27.4 12.7 8.7 13.4 3.8 72.4 72.6 -22.8	(m) 9 2.0 8 1.1 7 1.3 7 1.3 9 2.1 1.1 7 1.3 7 1.3 9 0.3 7 1.3 9 0.4 1.1 9 0.3 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1	/s) 052 530 828 108 888 242 087 760 479 103 822 018 574 - 002	V 0.364 1.517 1.210 1.090 0.392 0.545 1.051 0.583 0.457 1.104 1.255 0.674 0.496 0.317	ol (m ³) 0.0812 0.1328 1.0964 0.7520 0.6870 0.2363 0.2363 0.2335 0.0956 0.0668 1.4085 1.6640 0.5822 0.2115	-
 (Upstream Depth) 15 minute winter 180 minute winter 30 minute summer 	Node SW-023 SW-05 SW-06 SW-04 SW-03 SW-02 SW-02 SW-020 SW-020 SW-020 SW-020 SW-020 SW-020 SW-020 SW-020 SW-03 SW-03 SW-09 SW-010	3.001 1.005 1.006 1.004 1.003 1.002 1.001 2.006 2.004 2.005 1.007 1.008 3.0041 1.009 1.0010	Node SW-06 SW-07 SW-05 SW-04 SW-03 SW-02 SW-04 SW-02 SW-04 SW-021 SW-022 SW-08 SW-09 SW-09 SW-09 SW-010 SW-011	(I/s) 14.9 60.8 72.7 44.0 27.4 12.7 8.7 13.4 3.8 72.4 72.6 72.6 5.7 5.7	(m) 9 2.0 8 1.1 7 1.3 7 1.3 9 1.3 7 1.3 9 0.4 1.3 9 0.4 1.3 1.3 1.3 1.3 1.4 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3	/s) 052 530 828 108 888 242 087 760 479 103 822 018 574 - 002 228	V 0.364 1.517 1.210 1.090 0.392 0.545 1.051 0.583 0.457 1.104 1.255 0.674 0.496 0.317 0.205	ol (m ³) 0.0812 0.1328 1.0964 0.7520 0.6870 0.2363 0.2363 0.2335 0.0956 0.0956 0.0668 1.4085 1.6640 0.5822 0.2115 0.1533	-
 (Upstream Depth) 15 minute winter 180 minute winter 180 minute summer 30 minute summer 	Node SW-023 SW-05 SW-06 SW-04 SW-03 SW-02 SW-01 SW-020 SW-020 SW-020 SW-020 SW-021 SW-07 SW-08 SW-033 SW-09 SW-010 SW-010	3.001 1.005 1.006 1.004 1.003 1.002 1.001 2.006 2.004 2.005 1.007 1.008 3.0041 1.009 1.0010 1.0011	Node SW-06 SW-07 SW-07 SW-04 SW-04 SW-02 SW-04 SW-021 SW-022 SW-04 SW-022 SW-08 SW-09 SW-09 SW-09 SW-010 SW-011 SW-012	(I/s) 14.9 60.8 72.7 44.0 27.4 12.7 8.2 13.4 3.8 72.4 72.6 72.6 5.7 5.7	(m) 9 2.0 8 1.1 7 1.3 9 1.3 7 1.3 9 2.0 1.3 9 2.0 1.3 9 0.4 1.3 9 0.4 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3	/s) 052 530 828 108 888 242 087 760 479 103 822 018 574 - 002 228 946	V 0.364 1.517 1.210 1.090 0.392 0.545 1.051 0.583 0.457 1.104 1.255 0.674 0.496 0.317 0.205 0.108	ol (m ³) 0.0812 0.1328 1.0964 0.7520 0.6870 0.2363 0.2363 0.2335 0.0956 0.0956 0.0668 1.4085 1.6640 0.5822 0.2115 0.1533 0.0528	-
 (Upstream Depth) 15 minute winter 30 minute summer 30 minute summer 	Node SW-023 SW-05 SW-06 SW-04 SW-03 SW-02 SW-01 SW-020 SW-020 SW-020 SW-020 SW-020 SW-020 SW-020 SW-020 SW-020 SW-020 SW-021 SW-021 SW-021 SW-021	3.001 1.005 1.006 1.004 1.003 1.002 1.001 2.006 2.004 2.005 1.007 1.008 3.0041 1.009 1.0010 1.0011 1.0012	Node SW-06 SW-07 SW-07 SW-04 SW-03 SW-04 SW-02 SW-04 SW-021 SW-021 SW-022 SW-08 SW-09 SW-09 SW-09 SW-010 SW-011 SW-012 SW-013	(I/s) 14.5 60.8 72.7 44.0 27.4 12.7 8.7 13.4 3.8 72.6 72.6 72.6 72.6 5.7 5.7 5.7	(m) 9 2.0 8 1.1 7 1.3 9 1.3 7 1.3 9 2.0 1.3 1.3 1.3 1.4 0.4 0.4 1.3 1.4 0.4 1.3 1.4 0.4 1.3 1.4 1.4 0.4 1.3 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4	/s) 052 530 828 108 888 242 087 760 479 103 822 018 574 - 002 228 946 027	V 0.364 1.517 1.210 1.090 0.392 0.545 1.051 0.583 0.457 1.104 1.255 0.674 0.496 0.317 0.205 0.108 0.101	ol (m ³) 0.0812 0.1328 1.0964 0.7520 0.6870 0.2363 0.0833 0.2335 0.0956 0.0668 1.4085 1.6640 0.5822 0.2115 0.1533 0.0528 0.0424	-
 (Upstream Depth) 15 minute winter 180 minute winter 30 minute summer 30 minute summer 30 minute summer 30 minute summer 	Node SW-023 SW-05 SW-06 SW-04 SW-03 SW-02 SW-01 SW-020 SW-020 SW-020 SW-021 SW-020 SW-021 SW-020 SW-021 SW-021 SW-021 SW-03 SW-03 SW-03 SW-03 SW-03 SW-03 SW-03 SW-021	3.001 1.005 1.006 1.004 1.003 1.002 1.001 2.006 2.004 2.005 1.007 1.008 3.0041 1.009 1.0010 1.0011 1.0012 1.0013	Node SW-06 SW-07 SW-07 SW-03 SW-04 SW-03 SW-02 SW-04 SW-022 SW-04 SW-022 SW-08 SW-022 SW-08 SW-09 SW-09 SW-010 SW-011 SW-012 SW-013 SW-014	(I/s) 14.5 60.8 72.7 44.0 27.4 12.7 8.7 13.4 3.8 72.4 72.6 -22.8 5.7 5.7 5.7 5.7	(m) 9 2.0 3 1.1 7 1.3 7 2.0 7 2.0	/s) 052 530 828 108 888 242 087 760 479 103 822 018 574 - 002 228 946 027 025	V 0.364 1.517 1.210 1.090 0.392 0.545 1.051 0.583 0.457 1.104 1.255 0.674 0.496 0.317 0.205 0.108 0.101 0.101	ol (m ³) 0.0812 0.1328 1.0964 0.7520 0.6870 0.2363 0.0833 0.2335 0.0956 0.0668 1.4085 1.6640 0.5822 0.2115 0.1533 0.0528 0.0424 0.0488	-
 (Upstream Depth) 15 minute winter 180 minute winter 30 minute summer 	Node SW-023 SW-05 SW-06 SW-04 SW-03 SW-02 SW-01 SW-020 SW-020 SW-020 SW-020 SW-020 SW-020 SW-020 SW-020 SW-020 SW-033 SW-09 SW-010 SW-011 SW-012 SW-012 SW-013 SW-014	3.001 1.005 1.006 1.004 1.003 1.002 1.001 2.006 2.004 2.005 1.007 1.008 3.0041 1.009 1.0010 1.0011 1.0012 1.0013 1.0014	Node SW-06 SW-07 SW-05 SW-04 SW-03 SW-03 SW-02 SW-04 SW-021 SW-021 SW-022 SW-08 SW-09 SW-09 SW-09 SW-09 SW-010 SW-011 SW-012 SW-013 SW-014 SW-024	(I/s) 14.9 60.8 72.7 44.0 27.4 12.7 8.7 13.4 72.6 72.6 72.6 72.6 5.7 5.7 5.7 5.7 5.7	(m) 9 2.0 8 1.1 7 1.3 7 1.3 7 1.3 7 1.3 7 1.3 7 1.3 8 0.4 5 1.3 8 0.4 5 1.3 7 1.4 7 1.3 7 1.3 7 1.4 7 1.3 7 1.4 7 1.3 7 1.	/s) 052 530 828 108 888 242 087 760 479 103 822 018 574 - 002 228 946 027 025 216	V 0.364 1.517 1.210 1.090 0.392 0.545 1.051 0.583 0.457 1.104 1.255 0.674 0.496 0.317 0.205 0.108 0.101 0.101 0.192	ol (m ³) 0.0812 0.1328 1.0964 0.7520 0.6870 0.2363 0.0333 0.2335 0.0956 0.0668 1.4085 1.6640 0.5822 0.2115 0.1533 0.0528 0.0424 0.0488 0.2006	-
(Upstream Depth) 15 minute winter 15 minute winter 180 minute winter 180 minute summer 30 minute summer 30 minute summer 30 minute summer 30 minute summer	Node SW-023 SW-05 SW-06 SW-04 SW-03 SW-02 SW-01 SW-020 SW-020 SW-020 SW-020 SW-020 SW-020 SW-020 SW-020 SW-020 SW-020 SW-021 SW-03 SW-03 SW-09 SW-010 SW-011 SW-012 SW-013 SW-014 SW-024	3.001 1.005 1.006 1.004 1.003 1.002 1.001 2.006 2.004 2.005 1.007 1.008 3.0041 1.009 1.0010 1.0011 1.0012 1.0013 1.0014 (1	Node SW-06 SW-07 SW-05 SW-04 SW-03 SW-02 SW-04 SW-02 SW-04 SW-021 SW-022 SW-08 SW-09 SW-09 SW-09 SW-09 SW-010 SW-011 SW-012 SW-013 SW-014 SW-024 SW-024	(I/s) 14.9 60.8 72.7 44.0 27.4 12.7 8.7 13.4 72.6 72.6 72.6 72.6 5.7 5.7 5.7 5.7 5.7	(m) 9 2.0 8 1.1 7 1.3 7 1.3 9 2.1 1.1 7 1.3 9 2.0 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1	Ys) 052 530 828 108 888 242 087 760 479 103 822 018 574 - 002 228 946 027 025 216 813	V 0.364 1.517 1.210 1.090 0.392 0.545 1.051 0.583 0.457 1.104 1.255 0.674 0.496 0.317 0.205 0.108 0.101 0.101 0.192 0.137	ol (m ³) 0.0812 0.1328 1.0964 0.7520 0.6870 0.2363 0.2363 0.2335 0.0956 0.0668 1.4085 1.6640 0.5822 0.2115 0.1533 0.0528 0.0424 0.0488 0.2006 0.2892	-
 (Upstream Depth) 15 minute winter 180 minute winter 30 minute summer 	Node SW-023 SW-05 SW-06 SW-04 SW-03 SW-02 SW-01 SW-020 SW-020 SW-020 SW-020 SW-020 SW-020 SW-020 SW-020 SW-020 SW-033 SW-09 SW-010 SW-011 SW-012 SW-012 SW-013 SW-014	3.001 1.005 1.006 1.004 1.003 1.002 1.001 2.006 2.004 2.005 1.007 1.008 3.0041 1.009 1.0010 1.0011 1.0012 1.0013 1.0014	Node SW-06 SW-07 SW-05 SW-04 SW-03 SW-03 SW-02 SW-04 SW-021 SW-021 SW-022 SW-08 SW-09 SW-09 SW-09 SW-09 SW-010 SW-011 SW-012 SW-013 SW-014 SW-024	(I/s) 14.9 60.8 72.7 44.0 27.4 12.7 8.7 13.4 3.8 72.4 72.6 72.6 72.6 72.6 5.7 5.7 5.7 5.7 5.7 5.7	(m) 9 2.0 8 1.1 7 1.3 7 1.3 9 1.1 7 1.3 9 0.4 1.1 9 0.4 7 1.1 9 0.4 7 1.1 7 1.1 7 2.0 7 0.3 7 0.3 7 0.3 7 0.3 7 0.4 7 0.3 7 0.4 7 0.4 0.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1	/s) 052 530 828 108 888 242 087 760 479 103 822 018 574 - 002 228 946 027 025 216 813 766	V 0.364 1.517 1.210 1.090 0.392 0.545 1.051 0.583 0.457 1.104 1.255 0.674 0.496 0.317 0.205 0.108 0.101 0.101 0.192 0.137 0.141	ol (m ³) 0.0812 0.1328 1.0964 0.7520 0.6870 0.2363 0.0333 0.2335 0.0956 0.0668 1.4085 1.6640 0.5822 0.2115 0.1533 0.0528 0.0424 0.0488 0.2006	-

Flow+ v14.0 Copyright © 1988-2025 Causeway Technologies Ltd

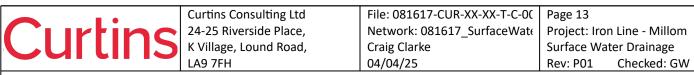
	Curtins Consulting Ltd	File: 081617-CUR-XX-XX-T-C-0(Page 11		
Curtine	24-25 Riverside Place,	Network: 081617_SurfaceWate	Project: Iron Line - Millom		
Curtins	K Village, Lound Road,	Craig Clarke	Surface Water Drainage		
	LA9 7FH	04/04/25	Rev: P01 Checked: GW		

Results for 30 year +30% CC Critical Storm Duration. Lowest mass balance: 98.84%

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
15 minute winter	SW-018	14	1.233	0.058	5.7	0.0092	0.0000	ОК
15 minute winter	SW-016	13	1.478	0.058	5.7	0.0092	0.0000	OK
15 minute winter	SW-019	14	1.037	0.057	5.7	0.0000	0.0000	ОК
		_						

Link Event	US	Link	DS	Outflow	Velocity	Flow/Cap	Link	Discharge
(Upstream Depth)	Node		Node	(I/s)	(m/s)		Vol (m³)	Vol (m³)
15 minute winter	SW-018	1.0018	SW-019	5.7	0.717	0.142	0.2566	46.8
15 minute winter	SW-016	1.0016	SW-017	5.7	0.714	0.141	0.2140	

Curtins Consulting Ltd 24-25 Riverside Place, K Village, Lound Road,


Curtins Consulting Ltd LA9 7FH

File: 081617-CUR-XX-XX-T-C-00 Page 12 Network: 081617_SurfaceWate Craig Clarke 04/04/25 Rev: P01

Project: Iron Line - Millom Surface Water Drainage Checked: GW

Results for 100 year +35% CC Critical Storm Duration. Lowest mass balance: 98.84%

Node Event	US Node	Peak e (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	St	atus
15 minute winter	SW-02	3 10	14.250	0.080	19.9	0.0127	0.0000	ОК	
15 minute winter	SW-05	12	13.665	1.550	74.0	1.7531	0.0000	SURCI	HARGED
15 minute winter	SW-06	5 12	13.515	1.420	88.6	1.6055	0.0000	SURC	HARGED
15 minute winter			13.881	1.651	48.1	1.8676	0.0000		HARGED
15 minute winter			13.951	1.411	36.6	1.5954	0.0000		HARGED
15 minute winter			14.024	1.073	14.0	0.1706	0.0000		HARGED
15 minute winter			14.222	1.093	12.6	0.1737	0.0000	FLOOI	
15 minute winter	SW-02	2 12	13.925	1.475	11.2	0.2345	0.0000	SURCI	HARGED
15 minute winter	SW-02	.0 13	14.012	1.176	7.1	0.1870	0.0000	FLOOI	D RISK
15 minute winter	SW-02	1 12	13.992	1.380	10.9	0.2194	0.0000	FLOOI	D RISK
15 minute winter	SW-07	12	12.605	0.878	86.1	0.1396	0.0000	SURC	HARGED
15 minute winter	SW-08	13	11.431	0.166	86.4	0.0264	0.0000	ОК	
240 minute winte	er SW-03		10.297	1.112	26.4	117.8913	0.0000		HARGED
240 minute winte	er SW-09		10.297	1.227	32.8	1.3879	0.0000		HARGED
15 minute summe			8.737	0.047	5.7	0.0670	0.0000	ОК	
15 minute summe			7.903	0.034	5.7	0.0054	0.0000	ОК	
15 minute summe			6.335	0.033	5.7	0.0052	0.0000	ОК	
15 minute summe			4.722	0.033	5.7	0.0052	0.0000	ОК	
15 minute summe			2.996	0.045	5.7	0.0504	0.0000	OK	
15 minute winter			1.944	0.057	5.7	0.0090	0.0000	OK	
15 minute winter			1.319	0.059	5.7	0.0094	0.0000	OK	
15 minute winter	SW-01	.5 11	1.708	0.058	5.7	0.0654	0.0000	ОК	
Link Event	US Node	Link	DS Node	Outflov (I/s)		-	-	Link	Discharge
(Upstream Depth)	Node		Node	(I/s)	(m	/s)	Vo	ol (m³)	Discharge Vol (m ³)
(Upstream Depth) 15 minute winter	Node SW-023	3.001	Node SW-06	(I/s) 19.1	(m) 9 2.	/s) 196 0	.486 (ol (m³)).1013	-
(Upstream Depth) 15 minute winter 15 minute winter	Node SW-023 SW-05	3.001 1.005	Node SW-06 SW-06	(I/s) 19. 72.	(m) 9 2. 0 1.	/s) 196 0 810 1	.486 C	bl (m³)).1013).1328	-
(Upstream Depth) 15 minute winter	Node SW-023	3.001	Node SW-06	(I/s) 19.1	(m) 9 2. 0 1.	/s) 196 0 810 1	.486 C	ol (m³)).1013	-
(Upstream Depth) 15 minute winter 15 minute winter	Node SW-023 SW-05	3.001 1.005	Node SW-06 SW-06	(I/s) 19. 72.	(m) 9 2. 0 1. 1 2.	/s) 196 0 810 1 165 1	.486 (C .794 (C .434 1	bl (m³)).1013).1328	-
(Upstream Depth) 15 minute winter 15 minute winter 15 minute winter	Node SW-023 SW-05 SW-06 SW-04 SW-03	3.001 1.005 1.006 1.004 1.003	Node SW-06 SW-07 SW-05 SW-04	(I/s) 19. 72. 86. 51. 28.	(m) 9 2. 0 1. 1 2. 8 1. 9 0.	/s) 196 0 810 1 165 1 304 1 880 0	.486 C .794 C .434 1 .282 C .414 C	bl (m ³) 0.1013 0.1328 1.0964 0.7520 0.6870	-
 (Upstream Depth) 15 minute winter 	Node SW-023 SW-05 SW-06 SW-04 SW-03 SW-02	3.001 1.005 1.006 1.004 1.003 1.002	Node SW-06 SW-07 SW-05 SW-04 SW-03	(I/s) 19. 72. 86. 51. 28. 14.	(m) 9 2. 0 1. 1 2. 8 1. 9 0. 4 1.	/s) 196 0 810 1 165 1 304 1 880 0 225 0	.486 C .794 C .434 1 .282 C .414 C .615 C	bl (m ³) 0.1013 0.1328 1.0964 0.7520 0.6870 0.2363	-
 (Upstream Depth) 15 minute winter 	Node SW-023 SW-05 SW-06 SW-04 SW-03 SW-02 SW-01	3.001 1.005 1.006 1.004 1.003 1.002 1.001	Node SW-06 SW-07 SW-07 SW-05 SW-04 SW-03 SW-02	(I/s) 19. 72. 86. 51. 28. 14. 8.	(m) 9 2. 0 1. 1 2. 8 1. 9 0. 4 1. 6 1.	/s) 196 0 810 1 165 1 304 1 880 0 225 0 107 1	.486 C .794 C .434 1 .282 C .414 C .615 C .103 C	bl (m ³)).1013).1328 1.0964).7520).6870).2363).0833	-
 (Upstream Depth) 15 minute winter 	Node SW-023 SW-05 SW-06 SW-04 SW-03 SW-02	3.001 1.005 1.006 1.004 1.003 1.002	Node SW-06 SW-07 SW-05 SW-04 SW-03	(I/s) 19. 72. 86. 51. 28. 14.	(m) 9 2. 0 1. 1 2. 8 1. 9 0. 4 1. 6 1.	/s) 196 0 810 1 165 1 304 1 880 0 225 0 107 1	.486 C .794 C .434 1 .282 C .414 C .615 C .103 C	bl (m ³) 0.1013 0.1328 1.0964 0.7520 0.6870 0.2363	-
 (Upstream Depth) 15 minute winter 	Node SW-023 SW-05 SW-06 SW-04 SW-03 SW-02 SW-01 SW-022 SW-020	3.001 1.005 1.006 1.004 1.003 1.002 1.001 2.006 2.004	Node SW-06 SW-07 SW-05 SW-04 SW-03 SW-02 SW-04	(I/s) 19. 72. 86. 51. 28. 14. 8. 16. 5.	(m) 9 2. 0 1. 1 2. 8 1. 9 0. 4 1. 6 1. 3 0. 2 0.	/s) 196 0 810 1 165 1 304 1 880 0 225 0 107 1 924 0 662 0	Va .486 C .794 C .434 1 .282 C .414 C .615 C .103 C .710 C	bl (m ³) 0.1013 0.1328 1.0964 0.7520 0.6870 0.2363 0.0833 0.2335 0.0956	-
 (Upstream Depth) 15 minute winter 	Node SW-023 SW-05 SW-06 SW-04 SW-03 SW-02 SW-02 SW-01 SW-022 SW-020 SW-021	3.001 1.005 1.006 1.004 1.003 1.002 1.001 2.006 2.004 2.005	Node SW-06 SW-07 SW-05 SW-04 SW-03 SW-02 SW-04	(I/s) 19. 72. 86. 51. 28. 14. 8. 16. 5. 10.	(m) 9 2. 0 1. 1 2. 8 1. 9 0. 4 1. 6 1. 3 0. 2 0. 6 1.	/s) 196 0 810 1 165 1 304 1 880 0 225 0 107 1 924 0 662 0 349 1	Vc .486 C .794 C .434 1 .282 C .414 C .615 C .103 C .710 C .630 C .350 C	bl (m ³) 0.1013 0.1328 1.0964 0.7520 0.6870 0.2363 0.0833 0.2335 0.0956 0.0956	-
 (Upstream Depth) 15 minute winter 	Node SW-023 SW-05 SW-04 SW-03 SW-02 SW-01 SW-022 SW-021 SW-021 SW-021 SW-021 SW-021	3.001 1.005 1.006 1.004 1.003 1.002 1.001 2.006 2.004 2.005 1.007	Node SW-06 SW-07 SW-05 SW-04 SW-03 SW-02 SW-04 SW-021 SW-021 SW-022 SW-08	(I/s) 19. 72. 86. 51. 28. 14. 8. 16. 5. 10. 86.	(m) 9 2. 0 1. 1 2. 8 1. 9 0. 4 1. 6 1. 3 0. 2 0. 6 1. 4 2.	/s) 196 0 810 1 165 1 304 1 880 0 225 0 107 1 924 0 662 0 349 1 172 1	Vc .486 0 .794 0 .434 1 .282 0 .414 0 .615 0 .710 0 .630 0 .350 0 .497 1	bl (m ³) 0.1013 0.1328 1.0964 0.7520 0.6870 0.2363 0.0833 0.2335 0.0956 0.0956 0.0668 1.4141	-
 (Upstream Depth) 15 minute winter 	Node SW-023 SW-05 SW-06 SW-04 SW-03 SW-03 SW-02 SW-01 SW-020 SW-020 SW-021 SW-07 SW-08	3.001 1.005 1.006 1.004 1.003 1.002 1.001 2.006 2.004 2.005 1.007 1.008	Node SW-06 SW-07 SW-07 SW-04 SW-03 SW-02 SW-04 SW-021 SW-022 SW-08 SW-09	(I/s) 19. 72. 86. 51. 28. 14. 8. 16. 5. 10. 86. 85.	(m) 9 2. 0 1. 1 2. 8 1. 9 0. 4 1. 6 1. 3 0. 2 0. 6 1. 4 2. 8 2.	/s) 196 0 810 1 165 1 304 1 880 0 225 0 107 1 924 0 662 0 349 1 172 1 245 0	Vc .486 C .794 C .434 1 .282 C .414 C .615 C .103 C .710 C .630 C .350 C .497 1 .797 1	bl (m ³) 0.1013 0.1328 1.0964 0.7520 0.6870 0.2363 0.0833 0.2335 0.0956 0.0956 0.0668 1.4141 1.8384	-
 (Upstream Depth) 15 minute winter 240 minute winter 	Node SW-023 SW-05 SW-06 SW-04 SW-03 SW-02 SW-02 SW-01 SW-020 SW-020 SW-021 SW-07 SW-08 SW-033	3.001 1.005 1.006 1.004 1.003 1.002 1.001 2.006 2.004 2.005 1.007 1.008 3.0041	Node SW-06 SW-07 SW-05 SW-04 SW-03 SW-02 SW-04 SW-02 SW-04 SW-021 SW-021 SW-022 SW-08 SW-09 SW-09	(I/s) 19. 72. 86. 51. 28. 14. 8. 16. 5. 10. 86. 85. -26.	(m) 9 2. 0 1. 1 2. 8 1. 9 0. 4 1. 6 1. 3 0. 2 0. 6 1. 4 2. 8 2. 4 -0.	/s) 196 0 810 1 165 1 304 1 880 0 225 0 107 1 924 0 662 0 349 1 172 1 245 0 663 -0	Vc .486 C .794 C .434 1 .282 C .414 C .615 C .710 C .630 C .350 C .497 1 .573 C	bl (m ³)).1013).1328).0964).7520).6870).2363).0833).2335).0956).0668 I.4141 I.8384).5822	-
 (Upstream Depth) 15 minute winter 240 minute winter 	Node SW-023 SW-05 SW-06 SW-04 SW-03 SW-02 SW-02 SW-020 SW-020 SW-020 SW-021 SW-020 SW-05 SW-06 SW-05 SW-06 SW-05 SW-06 SW-05 SW-06 SW-06 SW-02 SW-06 SW-06 SW-06 SW-06 SW-02 SW-06 SW-02 SW-02 SW-02 SW-04 SW-02 S	3.001 1.005 1.006 1.004 1.003 1.002 1.001 2.006 2.004 2.005 1.007 1.008 3.0041 1.009	Node SW-06 SW-07 SW-05 SW-04 SW-03 SW-02 SW-04 SW-02 SW-04 SW-021 SW-021 SW-022 SW-08 SW-09 SW-09 SW-010	(I/s) 19. 72. 86. 51. 28. 14. 8. 16. 5. 10. 86. 85. -26. 5.	(m) 9 2. 0 1. 1 2. 8 1. 9 0. 4 1. 3 0. 2 0. 6 1. 3 0. 2 0. 6 1. 4 2. 8 2. 4 -0. 7 1.	/s) 196 0 810 1 165 1 304 1 880 0 225 0 107 1 924 0 662 0 349 1 172 1 245 0 663 -0 002 0	Vc .486 C .794 C .434 1 .282 C .414 C .615 C .710 C .350 C .497 1 .797 1 .573 C .317 C	bl (m ³)).1013).1328 1.0964).7520).6870).2363).0833).2335).0956).0956).0668 1.4141 1.8384).5822).2115	-
 (Upstream Depth) 15 minute winter 	Node SW-023 SW-05 SW-06 SW-04 SW-03 SW-02 SW-02 SW-020 SW-020 SW-020 SW-021 SW-07 SW-08 SW-033 SW-09 SW-010	3.001 1.005 1.006 1.004 1.003 1.002 1.001 2.006 2.004 2.005 1.007 1.008 3.0041 1.009 1.0010	Node SW-06 SW-07 SW-05 SW-04 SW-03 SW-02 SW-04 SW-02 SW-04 SW-021 SW-022 SW-08 SW-09 SW-09 SW-09 SW-010 SW-011	(I/s) 19. 72. 86. 51. 28. 14. 8. 16. 5. 10. 86. 85. -26. 5. 5.	(m) 9 2. 0 1. 1 2. 8 1. 9 0. 4 1. 6 1. 3 0. 6 1. 4 2. 8 2. 4 -0. 7 1. 7 1.	/s) 196 0 810 1 165 1 304 1 880 0 225 0 107 1 924 0 662 0 349 1 172 1 245 0 663 -0 002 0 228 0	Vc .486 C .794 C .434 1 .282 C .414 C .615 C .103 C .710 C .630 C .350 C .497 1 .573 C .317 C .205 C	bl (m ³)).1013).1328 1.0964).7520).6870).2363).0833).2335).0956).0956).0668 1.4141 1.8384).5822).2115).1533	-
 (Upstream Depth) 15 minute winter 15 minute summer 15 minute summer 	Node SW-023 SW-05 SW-06 SW-04 SW-03 SW-02 SW-01 SW-020 SW-000 SW-000 SW-000 SW-00 SW-000 SW-00 SW-000 SW-00 SW-00 SW-000 SW-000	3.001 1.005 1.006 1.004 1.003 1.002 1.001 2.006 2.004 2.005 1.007 1.008 3.0041 1.009 1.0010 1.0011	Node SW-06 SW-07 SW-05 SW-04 SW-03 SW-02 SW-04 SW-02 SW-04 SW-021 SW-022 SW-08 SW-09 SW-09 SW-09 SW-010 SW-011 SW-012	(I/s) 19. 72. 86. 51. 28. 14. 8. 16. 5. 10. 86. 85. -26. 5. 5.	(m) 9 2. 0 1. 1 2. 8 1. 9 0. 4 1. 6 1. 3 0. 6 1. 4 2. 8 2. 4 -0. 7 1. 7 1. 7 1.	/s) 196 0 810 1 165 1 304 1 880 0 225 0 107 1 924 0 662 0 349 1 172 1 245 0 663 -0 002 0 228 0 946 0	Vc .486 C .794 C .434 1 .282 C .414 C .615 C .103 C .710 C .630 C .350 C .497 1 .573 C .317 C .205 C	bl (m ³) 0.1013 0.1328 1.0964 0.7520 0.6870 0.2363 0.0833 0.2335 0.0956 0.0956 0.0668 1.4141 1.8384 0.5822 0.2115 0.1533 0.0528	-
 (Upstream Depth) 15 minute winter 15 minute summer 15 minute summer 15 minute summer 15 minute summer 	Node SW-023 SW-05 SW-06 SW-04 SW-03 SW-02 SW-01 SW-020 SW-020 SW-020 SW-021 SW-07 SW-08 SW-033 SW-09 SW-010 SW-011 SW-012	3.001 1.005 1.006 1.004 1.003 1.002 1.001 2.006 2.004 2.005 1.007 1.008 3.0041 1.009 1.0010 1.0011 1.0012	Node SW-06 SW-07 SW-05 SW-04 SW-03 SW-02 SW-04 SW-02 SW-04 SW-021 SW-022 SW-08 SW-09 SW-09 SW-09 SW-010 SW-011 SW-012 SW-013	(I/s) 19. 72. 86. 51. 28. 14. 8. 16. 5. 10. 86. 85. -26. 5. 5. 5.	(m) 9 2. 0 1. 1 2. 8 1. 9 0. 4 1. 6 1. 3 0. 2 0. 6 1. 4 2. 8 2. 4 -0. 7 1. 7 1. 7 2.	/s) 196 0 810 1 165 1 304 1 880 0 225 0 107 1 924 0 662 0 349 1 172 1 245 0 663 -0 002 0 228 0 946 0 027 0	Vc .486 0 .794 0 .434 1 .282 0 .414 0 .615 0 .710 0 .630 0 .350 0 .497 1 .573 0 .317 0 .108 0 .101 0	bl (m ³) 0.1013 0.1328 1.0964 0.7520 0.6870 0.2363 0.0833 0.2335 0.0956 0.0956 0.0956 0.0956 0.0956 0.0956 0.0956 0.0956 0.0956 0.1533 0.0528 0.0528 0.0424	-
 (Upstream Depth) 15 minute winter 15 minute summer 	Node SW-023 SW-05 SW-06 SW-03 SW-02 SW-01 SW-020 SW-020 SW-021 SW-07 SW-08 SW-033 SW-09 SW-010 SW-011 SW-012 SW-012 SW-013	3.001 1.005 1.006 1.004 1.003 1.002 1.001 2.006 2.004 2.005 1.007 1.008 3.0041 1.009 1.0010 1.0011 1.0012 1.0013	Node SW-06 SW-07 SW-07 SW-04 SW-03 SW-02 SW-04 SW-02 SW-04 SW-022 SW-08 SW-09 SW-09 SW-09 SW-010 SW-011 SW-012 SW-013 SW-014	(I/s) 19. 19. 12. 86. 51. 28. 14. 8. 16. 5. 10. 86. 85. -26. 5. 5. 5. 5.	(m) 9 2. 0 1. 1 2. 8 1. 9 0. 4 1. 6 1. 3 0. 2 0. 6 1. 3 0. 2 0. 6 1. 7 1. 7 1. 7 1. 7 2. 7 2.	/s) 196 0 810 1 165 1 304 1 880 0 225 0 107 1 924 0 662 0 349 1 172 1 245 0 663 -0 002 0 228 0 946 0 027 0 025 0	Vc .486 0 .794 0 .434 1 .282 0 .414 0 .615 0 .710 0 .630 0 .350 0 .497 1 .797 1 .573 0 .317 0 .108 0 .101 0	bl (m ³) 0.1013 0.1328 1.0964 0.7520 0.6870 0.2363 0.0333 0.2335 0.0956 0.0668 1.4141 1.8384 0.5822 0.2115 0.1533 0.0528 0.0424 0.0488	-
 (Upstream Depth) 15 minute winter 15 minute summer 	Node SW-023 SW-05 SW-06 SW-04 SW-03 SW-02 SW-02 SW-020 SW-021 SW-020 SW-021 SW-020 SW-021 SW-020 SW-020 SW-021 SW-020 SW-021 SW-020 SW-021 SW-020 SW-021 SW-020 SW-021 SW-020 SW-021 SW-021 SW-020 SW-021 SW-020 SW-021 SW-021 SW-020 SW-021 SW-021 SW-020 SW-021 SW-020 SW-021 SW-020 SW-021 SW-020 SW-021 SW-020 SW-021 SW-020 SW-021 SW-020 SW-021 SW-020 SW-020 SW-020 SW-020 SW-020 SW-	3.001 1.005 1.006 1.004 1.003 1.002 1.001 2.006 2.004 2.005 1.007 1.008 3.0041 1.009 1.0010 1.0011 1.0012 1.0013 1.0014	Node SW-06 SW-07 SW-05 SW-04 SW-03 SW-02 SW-04 SW-02 SW-04 SW-021 SW-022 SW-08 SW-09 SW-09 SW-09 SW-09 SW-010 SW-011 SW-012 SW-013 SW-014 SW-024	(I/s) 19. 12. 86. 51. 28. 14. 8. 16. 5. 10. 86. 85. -26. 5. 5. 5. 5. 5.	(m, 9 2. 0 1. 1 2. 8 1. 9 0. 4 1. 3 0. 4 1. 3 0. 6 1. 3 0. 6 1. 4 2. 8 2. 4 -0. 7 1. 7 1. 7 1. 7 2. 7 2. 7 1.	/s) 196 0 810 1 165 1 304 1 880 0 225 0 107 1 924 0 662 0 349 1 172 1 245 0 663 -0 002 0 228 0 946 0 027 0 390 0	Value .486 0 .794 0 .434 1 .282 0 .414 0 .615 0 .103 0 .710 0 .630 0 .350 0 .497 1 .573 0 .317 0 .108 0 .101 0 .101 0 .102 0	bl (m ³)).1013).1328).0964).7520).6870).2363).0833).2335).0833).2335).0833).2335).0833).0358).0424).0488).0424	-
(Upstream Depth) 15 minute winter 15 minute winter 240 minute winter 240 minute winter 15 minute summer 15 minute summer	Node SW-023 SW-05 SW-06 SW-04 SW-03 SW-02 SW-02 SW-01 SW-020 SW-020 SW-020 SW-020 SW-020 SW-020 SW-020 SW-021 SW-03 SW-03 SW-03 SW-010 SW-011 SW-012 SW-013 SW-014 SW-024	3.001 1.005 1.006 1.004 1.003 1.002 1.001 2.006 2.004 2.005 1.007 1.008 3.0041 1.009 1.0010 1.0011 1.0012 1.0013 1.0014 1.0014 (1)	Node SW-06 SW-07 SW-05 SW-04 SW-03 SW-02 SW-04 SW-02 SW-04 SW-021 SW-022 SW-08 SW-09 SW-09 SW-09 SW-09 SW-09 SW-010 SW-011 SW-012 SW-013 SW-014 SW-024 SW-015	(I/s) 19. 12. 86. 51. 28. 14. 8. 16. 5. 10. 86. 85. -26. 5. 5. 5. 5. 5. 5.	(m) 9 2. 0 1. 1 2. 8 1. 9 0. 4 1. 6 1. 3 0. 6 1. 3 0. 6 1. 4 2. 8 2. 4 -0. 7 1. 7 1. 7 1. 7 2. 7 1. 7 2. 7 1. 7 0.	/s) 196 0 810 1 165 1 304 1 880 0 225 0 107 1 924 0 662 0 349 1 172 1 245 0 663 -0 002 0 228 0 946 0 027 0 390 0 839 0	Value .486 0 .794 0 .434 1 .282 0 .414 0 .615 0 .103 0 .710 0 .630 0 .350 0 .497 1 .573 0 .317 0 .108 0 .101 0 .102 0 .138 0	bl (m ³)).1013).1328).0964).7520).6870).2363).0833).2335).0356).0956).0668 1.4141 1.8384).5822).2115).1533).0528).0424).0488).2006).2898	-
 (Upstream Depth) 15 minute winter 15 minute summer 	Node SW-023 SW-05 SW-06 SW-04 SW-03 SW-02 SW-02 SW-020 SW-021 SW-020 SW-021 SW-020 SW-021 SW-020 SW-020 SW-021 SW-020 SW-021 SW-020 SW-021 SW-020 SW-021 SW-020 SW-021 SW-020 SW-021 SW-021 SW-020 SW-021 SW-020 SW-021 SW-021 SW-020 SW-021 SW-021 SW-020 SW-021 SW-020 SW-021 SW-020 SW-021 SW-020 SW-021 SW-020 SW-021 SW-020 SW-021 SW-020 SW-021 SW-020 SW-020 SW-020 SW-020 SW-020 SW-	3.001 1.005 1.006 1.004 1.003 1.002 1.001 2.006 2.004 2.005 1.007 1.008 3.0041 1.009 1.0010 1.0011 1.0012 1.0013 1.0014	Node SW-06 SW-07 SW-05 SW-04 SW-03 SW-02 SW-04 SW-02 SW-04 SW-021 SW-022 SW-08 SW-09 SW-09 SW-09 SW-09 SW-010 SW-011 SW-012 SW-013 SW-014 SW-024	(I/s) 19. 12. 86. 51. 28. 14. 8. 16. 5. 10. 86. 85. -26. 5. 5. 5. 5. 5. 5.	(m) 9 2. 0 1. 1 2. 8 1. 9 0. 4 1. 6 1. 3 0. 4 1. 3 0. 6 1. 4 2. 8 2. 4 -0. 7 1. 7 1. 7 1. 7 2. 7 2. 7 0. 7 0. 7 0.	/s) 196 0 810 1 165 1 304 1 880 0 225 0 107 1 924 0 662 0 349 1 172 1 245 0 663 -0 002 0 228 0 946 0 027 0 390 0 839 0 778 0	Vc .486 C .794 C .434 1 .282 C .414 C .615 C .103 C .710 C .630 C .350 C .497 1 .573 C .317 C .108 C .101 C .102 C .138 C .141 C	bl (m ³)).1013).1328).0964).7520).6870).2363).0833).2335).0833).2335).0833).2335).0833).0358).0424).0488).0424	-

Results for 100 year +35% CC Critical Storm Duration. Lowest mass balance: 98.84%

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
15 minute summer	SW-018	44	1.233	0.058	5.7	0.0092	0.0000	OK
15 minute winter	SW-016	12	1.478	0.058	5.8	0.0092	0.0000	OK
15 minute summer	SW-019	44	1.037	0.057	5.7	0.0000	0.0000	ОК

Link Event (Upstream Depth)	US Node	Link	DS Node	Outflow (I/s)	Velocity (m/s)	Flow/Cap	Link Vol (m³)	Discharge Vol (m ³)
15 minute summer	SW-018	1.0018	SW-019	5.7	0.717	0.141	0.2564	56.9
15 minute winter	SW-016	1.0016	SW-017	5.7	0.719	0.142	0.2139	

Job Title:	Millom Iron	Millom Iron Line				
Job No:	081617					
Made by:	CC	Checked:	GW	Sheet No	. 1	
Date:	07/04/2025	Date:	14/11/2023	o	f 1	
Calculatio	n	081617-CL	JR-ZZ-XX-T-C-	92702	Revision:	P01

Curtins

SOURCE OF WASTE: British Water Flows and Loads 4

BW COP: 18.11/14

Description	No.	FLOW (LITRE	S / DAY)	BOD (GRA	MS / DAY)	NH ₃	
Description	NO.	Per head	TOTAL	Per head	TOTAL	Per head	TOTAL
Canteen (provides hot drinks, pre-prepared sandwiches, cakes, confectionary etc) (Assumed Calc value of Restaurants - Snack Bars & bar meals)	58	15	870	19	1102	2.5	145
Staff workers - (Office / Factory without canteen)	10	50	500	25	250	5	50
Visitor toilets (Toilet (WC) (per use)	150	10	1500	12	1800	2.5	375
TOTAL LOADS	218	75	2870	56	3152	10	570

Average Discharge Rate - (I/s) (DWF)	0.089 *
Design Peak Discharge Rate (I/s) (6DWF)	0.531
•• ·	

Notes:

1 *Visitor centre operating hours 9am to 6pm (daily) - Discharge rates reflect demand over 9hr operating period.

- 2 Effluent quality required to satisfy freshwater bathing water quality requirements (UK)
- 3 If discharging to ground, an Environment Agency Permit is required for daily discharge of 2 cubic metres (2,000 litres) a day
- 4 If discharging to ground, treated effluent must be discharged to a drainage field, designed in accrdance with BS 6297:2007
- 5 If discharging to a watercourse, an Environment Agency Permit is required for daily discharge of 5 cubic metres (5,000 litres) a day
- 6 Treatment plants should only be used where there is no foul water drain or sewer within "reasonable" distance. The EA has a formula to assess

Appendix D Water Quality Assessment

Water Quality Assessment - Simple Index Approach - Options

Discharges to surface waters - Commerical Roof, footway/car park, carriageway/access and potentially an industrial access road (TBC)

Made By: GW

Checked By: AMB

Required for events up to 1:1 year Simple index approach (SuDs Manual, Ch 26)

Land use classification	Pollution Hazard Level	Note	TSS	Metals I	HCs
Residential roofs	Very Low	Residential roofs	0.2	0.2	0.05
Commercial roofs	Low	Typically commercial/ industrial roofs	0.3	0.4	0.05
Individual property driveway	Low	Driveways/car parks, low traffic access roads, schools, offices, <300 movements/day	0.5	0.4	0.4
Commercial yards	Medium	Yards and delivery areas/access	0.7	0.6	0.7
Docks	Medium	Commerical loading docks/ramps	0.7	0.6	0.7
Car parking	Medium	Non residential car parks with frequent change areas - hospital, retail	0.7	0.6	0.7
Roads	Medium	All roads except for low traffic and trunk roads/motorways	0.7	0.6	0.7
Industrial Yards	High	Haulage yards, lorry parks, highly frequent industrial estates, sites with chemicals and fuel delivery, handled, stores, used or manufactured: industrial sites, trunk roads and motorways	0.8	0.8	0.9

Surface water protection measures

DS Treatment Train	Mitiga	tion Indi	
			ices
5 2 Step 3	TSS. n	metals. H	ICs.
	0.4	0.4	0.4
iment trap	0.6	0.6	0.6
iment trap 'Downstream Defener Adv	1.15	1	1.15
wnstream Defener Adv. Vortex'	0.65	0.6	0.65
adraCeptor'	0.8	0.8	0.8
adraCeptor'	0.8	0.8	0.8
iment trap 'QuadraCeptor'	1	1	1
	0.4	0.4	0.4
ad	lraCeptor'	raCeptor' 0.8 nent trap 'QuadraCeptor' 1	raCeptor' 0.8 0.8 nent trap 'QuadraCeptor' 1 1

Curtins

Our Locations

Birmingham 2 The Wharf Bridge Street Birmingham B1 2JS T. 0121 643 4694 birmingham@curtins.com

Bristol Quayside 40-58 Hotwell Road Bristol BS8 4UQ T. 0117 302 7560 bristol@curtins.com

Cambridge 50 Cambridge Place Cambridge CB2 1NS T. 01223 631 799 cambridge@curtins.com

Cardiff 3 Cwrt-y-Parc Earlswood Road Cardiff CF14 5GH T. 029 2068 0900

cardiff@curtins.com

Douglas Varley House 29-31 Duke Street Douglas Isle of Man IM1 2AZ T. 01624 624 585 douglas@curtins.com

Dublin 11 Pembroke Lane Dublin 2 D02 CX82 Ireland T. +353 1 507 9447 dublin@curtins.com

Edinburgh 1a Belford Road Edinburgh EH4 3BL T. 0131 225 2175 edinburgh@curtins.com Glasgow Queens House 29 St Vincent Place Glasgow G1 2DT T. 0141 319 8777 glasgow@curtins.com

Kendal Units 24 & 25 Riverside Place K Village Lound Road Kendal LA9 7FH T. 01539 724 823 kendal@curtins.com

Leeds Ground Floor Rose Wharf 78-80 East Street Leeds LS9 8EE T. 0113 274 8509 leeds@curtins.com

Liverpool 51-55 Tithebarn Street Liverpool L2 2SB T. 0151 726 2000 liverpool@curtins.com

London 40 Compton Street London EC1V 0BD T. 020 7324 2240 Iondon@curtins.com

Manchester

Merchant Exchange 17-19 Whitworth Street West Manchester M1 5WG T. 0161 236 2394 manchester@curtins.com

Nottingham 56 The Ropewalk Nottingham NG1 5DW T. 0115 941 5551 nottingham@curtins.com