

Flood map for planning

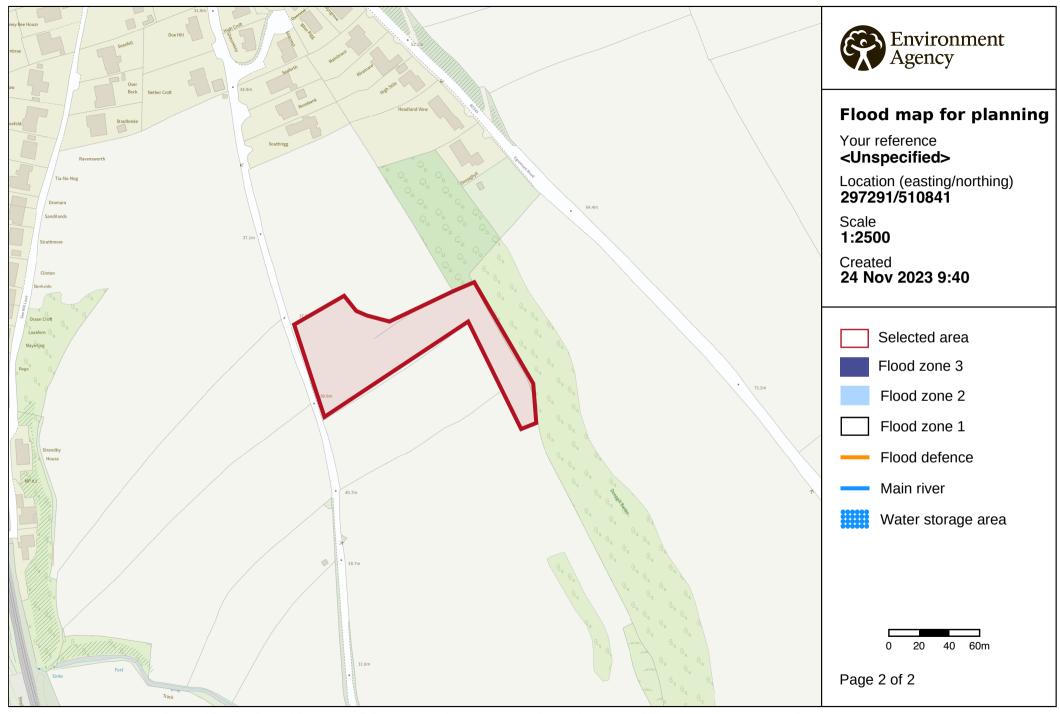
Your reference Location (easting/northing) Created

<Unspecified> 297291/510841 24 Nov 2023 9:40

Your selected location is in flood zone 1, an area with a low probability of flooding.

You will need to do a flood risk assessment if your site is any of the following:

- bigger that 1 hectare (ha)
- In an area with critical drainage problems as notified by the Environment Agency
- identified as being at increased flood risk in future by the local authority's strategic flood risk assessment
- at risk from other sources of flooding (such as surface water or reservoirs) and its development would increase the vulnerability of its use (such as constructing an office on an undeveloped site or converting a shop to a dwelling)


Notes

The flood map for planning shows river and sea flooding data only. It doesn't include other sources of flooding. It is for use in development planning and flood risk assessments.

This information relates to the selected location and is not specific to any property within it. The map is updated regularly and is correct at the time of printing.

Flood risk data is covered by the Open Government Licence **which** sets out the terms and conditions for using government data. https://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/

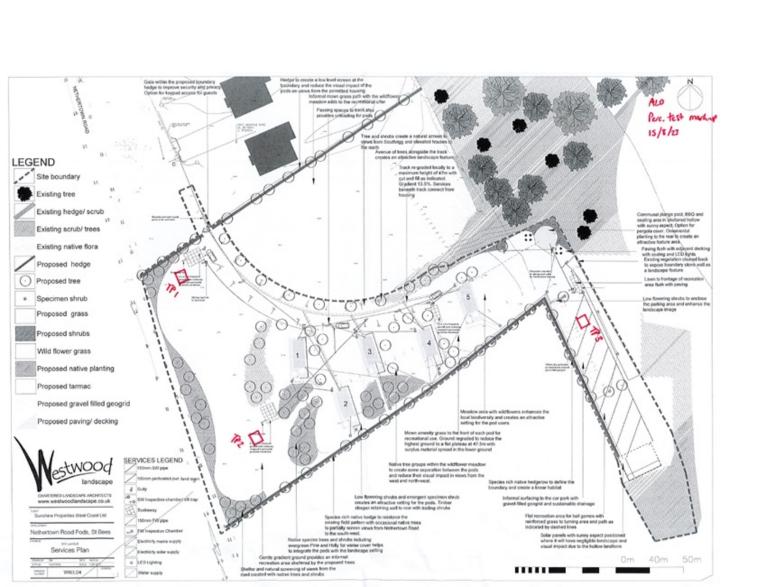
Use of the address and mapping data is subject to Ordnance Survey public viewing terms under Crown copyright and database rights 2022 OS 100024198. https://flood-map-for-planning.service.gov.uk/os-terms

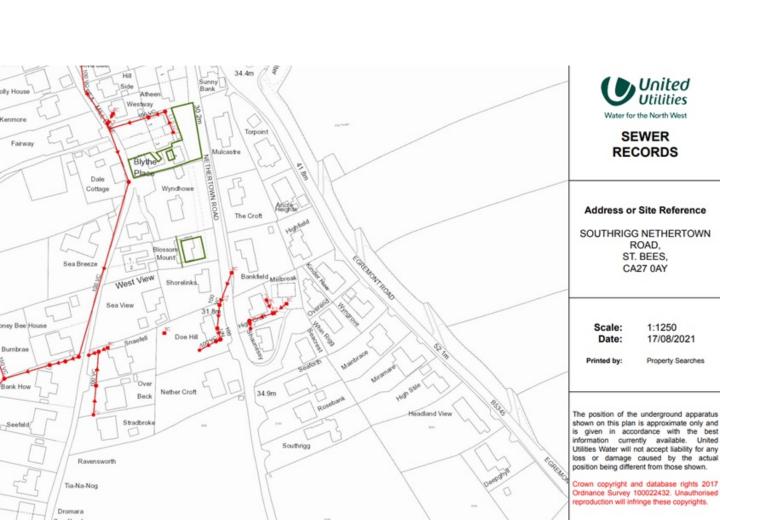
© Environment Agency copyright and / or database rights 2022. All rights reserved. © Crown Copyright and database right 2022. Ordnance Survey licence number 100024198.

<u>APPENDIX B – INFILTRATION TESTING RESULTS</u>

All trial holes on site were 1000mm x 300mm x 1000mm.

TP01 Percolation Test Results


Test Number	Date of Test	Time @	Time @	Time (mins)
		750mm deep	250mm deep	from 750mm to
			_	250mm
1	06/11/2023	09:58	16:32	394
2	07/11/2023	10:52	17:15	368
3	08/11/2023	10:45	17:30	375
			Average	379


TP02 Percolation Test Results

Test Number	Date of Test	Time @	Time @	Time (mins)
		750mm deep	250mm deep	from 750mm to
				250mm
1	06/11/2023	10:49	11:54	65
2	07/11/2023	08:20	09:35	75
3	08/11/2023	08:15	09:25	70
			Average	70

TP03 Percolation Test Results

Test Number	Date of Test	Time @	Time @	Time (mins)
		750mm deep	250mm deep	from 750mm to
				250mm
1	06/11/2023	12:30	15:00	150
2	07/11/2023	11:05	13:45	160
3	08/11/2023	12.10	14:56	166
			Average	158.67

A L Daines & Partners		Page 1
28 Castle Street		
Carlisle		
CA3 8TP		Mirro
Date 24/11/2023 13:42	Designed by p.allan	Drainage
File AREA 1.MDX	Checked by	niairiade
Micro Drainage	Network 2020.1.3	•

STORM SEWER DESIGN by the Modified Rational Method

Design Criteria for Storm

Pipe Sizes STANDARD Manhole Sizes STANDARD

FSR Rainfall Model - England and Wales

Return Period (years) 100

M5-60 (mm) 16.300

Ratio R 0.277

Minimum Backdrop Height (m) 0.200

Maximum Rainfall (mm/hr) 50

Maximum Time of Concentration (mins) 30

Foul Sewage (1/s/ha) 0.000

Win Vel for Auto Design only (m/s) 1.00

Volumetric Runoff Coeff. 0.750

Min Slope for Optimisation (1:X) 500

Designed with Level Soffits

Network Design Table for Storm

- Indicates pipe length does not match coordinates

PN	Length	Fall	Slope	I.Area	T.E.	Ba	ase	k	HYD	DIA	Section Type	Auto
	(m)	(m)	(1:X)	(ha)	(mins)	Flow	(1/s)	(mm)	SECT	(mm)		Design
1.000	5.000#	0.013	384.6	0.017	5.00		0.0	0.600	0	100	Pipe/Conduit	€
1.001	5.000#	0.013	384.6	0.000	0.00		0.0	0.600	0	100	Pipe/Conduit	<u>-</u>

Network Results Table

PN	Rain	T.C.	US/IL	Σ I.Area	ΣiΕ	sase	FOUL	Add F.ToM	vет	Cap	F.TOM	
	(mm/hr)	(mins)	(m)	(ha)	Flow	(1/s)	(1/s)	(1/s)	(m/s)	(1/s)	(1/s)	
1.000	50.00	5.22	47.700	0.017		0.0	0.0	0.0	0.39	3.0	2.3	
1.001	50.00	5.43	47.687	0.017		0.0	0.0	0.0	0.39	3.0	2.3	

A L Daines & Partners		Page 2
28 Castle Street		
Carlisle		
CA3 8TP		Micro
Date 24/11/2023 13:42	Designed by p.allan	Drainage
File AREA 1.MDX	Checked by	Diamage
Micro Drainage	Network 2020.1.3	·

Simulation Criteria for Storm

Volumetric Runoff Coeff 0.750 Additional Flow - % of Total Flow 0.000
Areal Reduction Factor 1.000 MADD Factor * 10m³/ha Storage 2.000
Hot Start (mins) 0 Inlet Coefficient 0.800
Hot Start Level (mm) 0 Flow per Person per Day (1/per/day) 0.000
Manhole Headloss Coeff (Global) 0.500 Run Time (mins) 60
Foul Sewage per hectare (1/s) 0.000 Output Interval (mins) 1

Number of Input Hydrographs 0 Number of Offline Controls 0 Number of Time/Area Diagrams 0 Number of Online Controls 1 Number of Storage Structures 1 Number of Real Time Controls 0

Synthetic Rainfall Details

	Rainfal	ll Model		FSR		Profi	ile Type	Summer
Retur	n Period	(years)		100		Cv	(Summer)	0.750
		Region	England	and Wales		Cv	(Winter)	0.840
	M5-	-60 (mm)		16.300	Storm	Duration	n (mins)	30
		Ratio R		0.277				

ACO V-Septor – Hydrodynamic Separator

The ACO V-Septor is an advanced hydrodynamic separator that removes sediment bound contaminants. Its design enables removal of pollutants by means of settlement and the capture of floatables.

The ACO V-Septor is available in a range of sizes to accommodate small to large sites and can be custom made for demanding installations.

The ACO V-Septor retains solid pollution and oil. It also forms part of the SuDS management train as it removes over 50% of fine Total Suspended Solids as well as sediment bound metals and hydrocarbons.

Benefits

- Removes solid pollution from plastic rubbish to fine silt
- Forms part of the SuDS management train
- Delivered fitted in a HDPE chamber with lifting eyes, and straps supplied for ease of installation
- Easily accessible for maintenance

Hydro	carbons	Total suspended solids	Metals
C	.5	0.5	0.4
Liquid hydrocarbons	Sediment bound hydrocarbons		
0.8	0.5		

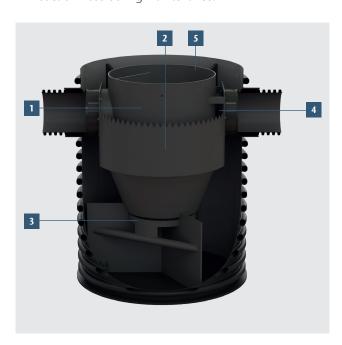
Details available on request

V-Septor 750

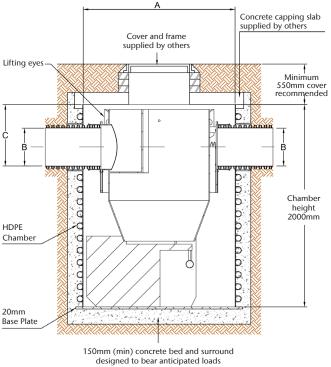
V-Septor 1000

V-Septor 1200

V-Septor 1500


V-Septor 2000


V-Septor 2500


Product name	Product code	Chamber diameter (A)	Pipe connections (B)	Top to invert (C)	Sediment storage capacity	Oil / debris storage capacity	Typical treatment flow rate (fine)	Typical treatment flow rate (coarse)	Typical non remobilisation flow rate (coarse)
		mm	mm	mm	m³	l	I/s	l/s	l/s
ACO V-Septor - I	Hydrodynami	c Separator	Range						
V-Septor 750	40995	750	150	375	0.4	49	11	14	37
V-Septor 1000	41000	1050	225	483	0.6	335	20	25	67
V-Septor 1200	41003	1200	300	550	0.86	397	29	37	98
V-Septor 1500	41005	1500	375	608	1.2	785	45	57	151
V-Septor 2000	41009	2100	500	700	2.2	1130	80	102	269
V-Septor 2500	41013	2400	600	850	3.5	2010	125	159	421

How it works

- 1 The deflection plate directs the incoming stormwater to create a vertical vortex.
- 2 Suspended solids settle down in the sludge chamber. Light liquids and debris are captured at the surface.
- Radial flow baffles create isolated zones to retain sediments in the sludge chamber and prevent remobilisation of sediments during peak flow events.
- 4 Cleaned water flows up the outer chamber and over the balancing weir and then passes through the outlet to discharge to the water environment.
- **S** Captured solids and debris can easily be removed by suction hose during maintenance.

ACO Water Management Contacts:

Sales: uk-swc@aco.co.uk Technical: technical@aco.co.uk Tel: 01462 816666

A L Daines & Partners		Page 3
28 Castle Street		
Carlisle		
CA3 8TP		Micro
Date 24/11/2023 13:42	Designed by p.allan	Drainage
File AREA 1.MDX	Checked by	niairiade
Micro Drainage	Network 2020.1.3	,

Online Controls for Storm

Pump Manhole: 2, DS/PN: 1.001, Volume (m³): 0.5

Invert Level (m) 47.687

A L Daines & Partners		Page 4
28 Castle Street		
Carlisle		
CA3 8TP		Micro
Date 24/11/2023 13:42	Designed by p.allan	Drainage
File AREA 1.MDX	Checked by	Diamade
Micro Drainage	Network 2020.1.3	

Storage Structures for Storm

Cellular Storage Manhole: 2, DS/PN: 1.001

Invert Level (m) 47.087 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.01979 Porosity 0.95 Infiltration Coefficient Side (m/hr) 0.01979

Depth (m)	Area (m²) Inf. A	rea (m²)	Depth	(m)	Area	(m²)	Inf.	Area	(m²)
0.000	20.	0	0.0	0.	801		0.0			0.0
0.800	20	n	0 0							

A L Daines & Partners		Page 5
28 Castle Street		
Carlisle		
CA3 8TP		Micro
Date 24/11/2023 13:42	Designed by p.allan	Drainage
File AREA 1.MDX	Checked by	pramage
Micro Drainage	Network 2020.1.3	,

$\frac{1}{2}$ year Return Period Summary of Critical Results by Maximum Level (Rank 1) for Storm

Simulation Criteria

Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000

Hot Start (mins) 0 MADD Factor * 10m³/ha Storage 2.000

Hot Start Level (mm) 0 Inlet Coefficient 0.800

Manhole Headloss Coeff (Global) 0.500 Flow per Person per Day (1/per/day) 0.000

Foul Sewage per hectare (1/s) 0.000

Number of Input Hydrographs 0 Number of Offline Controls 0 Number of Time/Area Diagrams 0 Number of Online Controls 1 Number of Storage Structures 1 Number of Real Time Controls 0

Synthetic Rainfall Details

Rainfall Model FSR Ratio R 0.274 Region England and Wales Cv (Summer) 0.750 M5-60 (mm) 16.800 Cv (Winter) 0.840

Margin for Flood Risk Warning (mm) 300.0 DVD Status OFF Analysis Timestep Fine Inertia Status OFF DTS Status ON

Profile(s) Summer and Winter
Duration(s) (mins) 15, 30, 60, 120, 180, 240, 360
Return Period(s) (years) 1, 30, 100
Climate Change (%) 0, 50, 50

WARNING: Half Drain Time has not been calculated as the structure is too full.

PN	US/MH Name	Storm		Climate Change	First (X) Surcharge	First (Y) Flood	First (Z) Overflow	Overflow Act.	Water Level (m)	
1.000	1	15 Winter	1	+0%	30/15 Summer				47.752	
1.001	2	360 Winter	1	+0%					47.242	

		Surcharged	Flooded			Half Drain	Pipe		
	US/MH	Depth	Volume	Flow /	Overflow	Time	Flow	L	evel
PN	Name	(m)	(m³)	Cap.	(1/s)	(mins)	(1/s)	Status Exc	ceeded
1.000	1	-0.048	0.000	0.52			1.7	OK	
1.001	2	-0.545	0.000	0.00			0.0	OK	

A L Daines & Partners		Page 6
28 Castle Street		
Carlisle		
CA3 8TP		Micro
Date 24/11/2023 13:42	Designed by p.allan	Drainage
File AREA 1.MDX	Checked by	niamade
Micro Drainage	Network 2020.1.3	

$\frac{30 \text{ year Return Period Summary of Critical Results by Maximum Level (Rank 1)}{\text{for Storm}}$

Simulation Criteria

Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000 Hot Start (mins) 0 MADD Factor * $10m^3$ /ha Storage 2.000 Hot Start Level (mm) 0 Inlet Coefficient 0.800 Manhole Headloss Coeff (Global) 0.500 Flow per Person per Day (1/per/day) 0.000 Foul Sewage per hectare (1/s) 0.000

Number of Input Hydrographs 0 Number of Offline Controls 0 Number of Time/Area Diagrams 0 Number of Online Controls 1 Number of Storage Structures 1 Number of Real Time Controls 0

Synthetic Rainfall Details

Rainfall Model FSR Ratio R 0.274
Region England and Wales Cv (Summer) 0.750
M5-60 (mm) 16.800 Cv (Winter) 0.840

Margin for Flood Risk Warning (mm) 300.0 DVD Status OFF Analysis Timestep Fine Inertia Status OFF DTS Status ON

Profile(s) Summer and Winter
Duration(s) (mins) 15, 30, 60, 120, 180, 240, 360
Return Period(s) (years) 1, 30, 100
Climate Change (%) 0, 50, 50

WARNING: Half Drain Time has not been calculated as the structure is too full.

PN	US/MH Name	Storm		Climate Change	First (X) Surcharge	First (Y) Flood	First (Z) Overflow	Overflow Act.	Water Level (m)
1.000	1	15 Winter	30	+50%	30/15 Summer				47.854
1.001	2	360 Winter	30	+50%					47.600

		Surcharged	Flooded			Half Drain	Pipe		
	US/MH	Depth	Volume	Flow /	Overflow	Time	Flow		Level
PN	Name	(m)	(m³)	Cap.	(1/s)	(mins)	(1/s)	Status	Exceeded
1.000	1	0.054	0.000	1.87			6.2	FLOOD RISK	
1.001	2	-0.187	0.000	0.00			0.0	OK	

A L Daines & Partners		Page 7
28 Castle Street		
Carlisle		
CA3 8TP		Micro
Date 24/11/2023 13:42	Designed by p.allan	Drainage
File AREA 1.MDX	Checked by	Diamage
Micro Drainage	Network 2020.1.3	

100 year Return Period Summary of Critical Results by Maximum Level (Rank 1) for Storm

Simulation Criteria

Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000 Hot Start (mins) 0 MADD Factor * $10m^3$ /ha Storage 2.000 Hot Start Level (mm) 0 Inlet Coefficient 0.800 Manhole Headloss Coeff (Global) 0.500 Flow per Person per Day (1/per/day) 0.000 Foul Sewage per hectare (1/s) 0.000

Number of Input Hydrographs 0 Number of Offline Controls 0 Number of Time/Area Diagrams 0 Number of Online Controls 1 Number of Storage Structures 1 Number of Real Time Controls 0

Synthetic Rainfall Details

Rainfall Model FSR Ratio R 0.274
Region England and Wales Cv (Summer) 0.750
M5-60 (mm) 16.800 Cv (Winter) 0.840

Margin for Flood Risk Warning (mm) 300.0 DVD Status OFF Analysis Timestep Fine Inertia Status OFF DTS Status ON

Profile(s) Summer and Winter
Duration(s) (mins) 15, 30, 60, 120, 180, 240, 360
Return Period(s) (years) 1, 30, 100
Climate Change (%) 0, 50, 50

WARNING: Half Drain Time has not been calculated as the structure is too full.

PN	US/MH Name	Storm		Climate Change	First (X) Surcharge	First (Y) Flood	First (Z) Overflow	Overflow Act.	Water Level (m)	
1.000	1	15 Winter	100	+50%	30/15 Summer				47.896	
1.001	2	360 Winter	100	+50%					47.746	

		Surcharged	Flooded			Half Drain	Pipe		
	US/MH	Depth	Volume	Flow /	Overflow	Time	Flow		Level
PN	Name	(m)	(m³)	Cap.	(1/s)	(mins)	(1/s)	Status	Exceeded
1.000	1	0.096	0.000	2.38			7.9	FLOOD RISK	
1.001	2	-0.041	0.000	0.00			0.0	OK	

A L Daines & Partners		Page 1
28 Castle Street		
Carlisle		
CA3 8TP		Micro Micro
Date 28/11/2023 13:54	Designed by p.allan	Drainage
File AREA 2.MDX	Checked by	Dialilade
Micro Drainage	Network 2020.1.3	·

STORM SEWER DESIGN by the Modified Rational Method

Design Criteria for Storm

Pipe Sizes STANDARD Manhole Sizes STANDARD

FSR Rainfall Model - England and Wales

Return Period (years) 100

M5-60 (mm) 16.300

Ratio R 0.277

Minimum Backdrop Height (m) 0.200

Maximum Rainfall (mm/hr) 50

Maximum Time of Concentration (mins) 30 Min Design Depth for Optimisation (m) 1.200

Foul Sewage (l/s/ha) 0.000

Win Vel for Auto Design only (m/s) 1.00

Volumetric Runoff Coeff. 0.750

Min Slope for Optimisation (1:X) 500

Designed with Level Soffits

Simulation Criteria for Storm

Volumetric Runoff Coeff 0.750 Additional Flow - % of Total Flow 0.000
Areal Reduction Factor 1.000 MADD Factor * 10m³/ha Storage 2.000
Hot Start (mins) 0 Inlet Coefficient 0.800
Hot Start Level (mm) 0 Flow per Person per Day (1/per/day) 0.000
Manhole Headloss Coeff (Global) 0.500 Run Time (mins) 60
Foul Sewage per hectare (1/s) 0.000 Output Interval (mins) 1

Number of Input Hydrographs 0 Number of Offline Controls 0 Number of Time/Area Diagrams 0 Number of Online Controls 1 Number of Storage Structures 1 Number of Real Time Controls 0

Synthetic Rainfall Details

Rainfall Model FSR Profile Type Summer Return Period (years) 100 Cv (Summer) 0.750 Region England and Wales Cv (Winter) 0.840 M5-60 (mm) 16.300 Storm Duration (mins) 30 Ratio R 0.277

A L Daines & Partners		Page 2
28 Castle Street		
Carlisle		
CA3 8TP		Micro
Date 28/11/2023 13:54	Designed by p.allan	Drainage
File AREA 2.MDX	Checked by	Drainage
Micro Drainage	Network 2020.1.3	

Online Controls for Storm

Pump Manhole: 2, DS/PN: 1.001, Volume (m³): 0.9

Invert Level (m) 39.269

A L Daines & Partners		Page 3
28 Castle Street		
Carlisle		
CA3 8TP		Micro
Date 28/11/2023 13:54	Danistana al last de al 1 au	Drainage
File AREA 2.MDX	Checked by	Diamage
Micro Drainage	Network 2020.1.3	

Storage Structures for Storm

Cellular Storage Manhole: 2, DS/PN: 1.001

Invert Level (m) 38.400 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.10711 Porosity 0.95 Infiltration Coefficient Side (m/hr) 0.10711

Depth (m)	Area (m²) Inf.	Area	(m²)	Depth	(m)	Area	(m²)	Inf.	Area	(m²)
0.000	60.	0		0.0	0.	.801		0.0			0.0
0.800	60	Ω		\cap \cap							

A L Daines & Partners		Page 4
28 Castle Street		
Carlisle		
CA3 8TP		Micro
Date 28/11/2023 13:54	Designed by p.allan	Drainage
File AREA 2.MDX	Checked by	niairiade
Micro Drainage	Network 2020.1.3	

$\frac{1}{2}$ year Return Period Summary of Critical Results by Maximum Level (Rank 1) for Storm

Simulation Criteria

Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000 Hot Start (mins) 0 MADD Factor * $10m^3$ /ha Storage 2.000 Hot Start Level (mm) 0 Inlet Coefficient 0.800 Manhole Headloss Coeff (Global) 0.500 Flow per Person per Day (1/per/day) 0.000 Foul Sewage per hectare (1/s) 0.000

Number of Input Hydrographs 0 Number of Offline Controls 0 Number of Time/Area Diagrams 0 Number of Online Controls 1 Number of Storage Structures 1 Number of Real Time Controls 0

Synthetic Rainfall Details

Rainfall Model FSR Ratio R 0.274 Region England and Wales Cv (Summer) 0.750 M5-60 (mm) 16.800 Cv (Winter) 0.840

Margin for Flood Risk Warning (mm) 300.0 DVD Status OFF Analysis Timestep Fine Inertia Status OFF DTS Status ON

Profile(s) Summer and Winter
Duration(s) (mins) 15, 30, 60, 120, 180, 240, 360
Return Period(s) (years) 1, 30, 100
Climate Change (%) 0, 50, 50

WARNING: Half Drain Time has not been calculated as the structure is too full.

PN	US/MH Name	Storm		Climate Change	First (X) Surcharge	First (Y) Flood	First (Z) Overflow	Overflow Act.	Water Level (m)	
1.000	1	15 Winter	1	+0%	30/15 Summer				39.373	
1.001	2	360 Winter	1	+0%					38.589	

		Surcharged	Flooded			Half Drain	Pipe		
	US/MH	Depth	Volume	Flow /	Overflow	Time	Flow		Level
PN	Name	(m)	(m³)	Cap.	(1/s)	(mins)	(1/s)	Status E	kceeded
1.000	1	-0.059	0.000	0.67			6.1	OK	
1.001	2	-0.830	0.000	0.00			0.0	OK	

A L Daines & Partners		Page 5
28 Castle Street		
Carlisle		
CA3 8TP		Micro
Date 28/11/2023 13:54	Designed by p.allan	Drainage
File AREA 2.MDX	Checked by	pramage
Micro Drainage	Network 2020.1.3	•

$\frac{\text{30 year Return Period Summary of Critical Results by Maximum Level (Rank 1)}}{\text{for Storm}}$

Simulation Criteria

Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000 Hot Start (mins) 0 MADD Factor * $10m^3$ /ha Storage 2.000 Hot Start Level (mm) 0 Inlet Coefficient 0.800 Manhole Headloss Coeff (Global) 0.500 Flow per Person per Day (1/per/day) 0.000 Foul Sewage per hectare (1/s) 0.000

Number of Input Hydrographs 0 Number of Offline Controls 0 Number of Time/Area Diagrams 0 Number of Online Controls 1 Number of Storage Structures 1 Number of Real Time Controls 0

Synthetic Rainfall Details

Rainfall Model FSR Ratio R 0.274
Region England and Wales Cv (Summer) 0.750
M5-60 (mm) 16.800 Cv (Winter) 0.840

Margin for Flood Risk Warning (mm) 300.0 DVD Status OFF Analysis Timestep Fine Inertia Status OFF DTS Status ON

Profile(s) Summer and Winter
Duration(s) (mins) 15, 30, 60, 120, 180, 240, 360
Return Period(s) (years) 1, 30, 100
Climate Change (%) 0, 50, 50

WARNING: Half Drain Time has not been calculated as the structure is too full.

PN	US/MH Name	Storm		Climate Change	First (X) Surcharge	First (Y) Flood	First (Z) Overflow	Overflow Act.	Water Level (m)
1.000	1	15 Winter	30	+50%	30/15 Summer				39.541
1.001	2	360 Winter	30	+50%					39.026

		Surcharged	Flooded			Half Drain	Pipe		
	US/MH	Depth	Volume	Flow /	Overflow	Time	Flow		Level
PN	Name	(m)	(m³)	Cap.	(1/s)	(mins)	(1/s)	Status	Exceeded
1.000	1	0 109	0.000	2 44			22 1	SURCHARGED	
1.001	2	-0.393					0.0	OK	
OOT	_	0.000	0.000	0.00			3.0	OIC	

A L Daines & Partners		Page 6
28 Castle Street		
Carlisle		
CA3 8TP		Micro
Date 28/11/2023 13:54	Designed by p.allan	Drainage
File AREA 2.MDX	Checked by	Diamage
Micro Drainage	Network 2020.1.3	

100 year Return Period Summary of Critical Results by Maximum Level (Rank 1) for Storm

Simulation Criteria

Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000 Hot Start (mins) 0 MADD Factor * $10m^3$ /ha Storage 2.000 Hot Start Level (mm) 0 Inlet Coefficient 0.800 Manhole Headloss Coeff (Global) 0.500 Flow per Person per Day (1/per/day) 0.000 Foul Sewage per hectare (1/s) 0.000

Number of Input Hydrographs 0 Number of Offline Controls 0 Number of Time/Area Diagrams 0 Number of Online Controls 1 Number of Storage Structures 1 Number of Real Time Controls 0

Synthetic Rainfall Details

Rainfall Model FSR Ratio R 0.274
Region England and Wales Cv (Summer) 0.750
M5-60 (mm) 16.800 Cv (Winter) 0.840

Margin for Flood Risk Warning (mm) 300.0 DVD Status OFF Analysis Timestep Fine Inertia Status OFF DTS Status ON

Profile(s) Summer and Winter
Duration(s) (mins) 15, 30, 60, 120, 180, 240, 360
Return Period(s) (years) 1, 30, 100
Climate Change (%) 0, 50, 50

WARNING: Half Drain Time has not been calculated as the structure is too full.

PN	US/MH Name	Storm		Climate Change	First (X) Surcharge	First (Y) Flood	First (Z) Overflow	Overflow Act.	Water Level (m)	
1.000	1	15 Winter	100	+50%	30/15 Summer				39.620	
1.001	2	360 Winter	100	+50%					39.414	

		Surcharged	Flooded			Half Drain	Pipe		
	US/MH	Depth	Volume	Flow /	Overflow	Time	Flow		Level
PN	Name	(m)	(m³)	Cap.	(1/s)	(mins)	(1/s)	Status	Exceeded
1.000	1	0.188	0.000	3.12			28.2	SURCHARGED	
1.001	2	-0.005	0.000	0.00			0.0	OK	

A L Daines & Partners		Page 1
28 Castle Street		
Carlisle		
CA3 8TP		Micro
Date 27/11/2023 08:23	Designed by p.allan	Drainage
File AREA 3.MDX	Checked by	niairiade
Micro Drainage	Network 2020.1.3	

STORM SEWER DESIGN by the Modified Rational Method

Design Criteria for Storm

Pipe Sizes STANDARD Manhole Sizes STANDARD

FSR Rainfall Model - England and Wales 100 Return Period (years) 100 PIMP (%) M5-60 (mm) 16.300 Add Flow / Climate Change (%) 0 Minimum Backdrop Height (m) 0.200 Ratio R 0.277 Maximum Rainfall (mm/hr) 50 Maximum Backdrop Height (m) 1.500 e of Concentration (mins) 30 Min Design Depth for Optimisation (m) 1.200 Maximum Time of Concentration (mins) Foul Sewage (1/s/ha) 0.000 Min Vel for Auto Design only (m/s) 1.00 Volumetric Runoff Coeff. 0.750 Min Slope for Optimisation (1:X) 500

Designed with Level Soffits

Network Design Table for Storm

- Indicates pipe length does not match coordinates

PN	Length	Fall	Slope	I.Area	T.E.	Ва	se	k	HYD	DIA	Section Type	Auto
	(m)	(m)	(1:X)	(ha)	(mins)	Flow	(1/s)	(mm)	SECT	(mm)		Design
	5.000# 5.000#										Pipe/Conduit Pipe/Conduit	_

Network Results Table

PN	Rain	T.C.	02/17	L I.Area	2 6	sase	FOUL	Add Flow	ver	Cap	FIOW	
	(mm/hr)	(mins)	(m)	(ha)	Flow	(1/s)	(1/s)	(1/s)	(m/s)	(1/s)	(1/s)	
1.000	50.00	5.16	47.700	0.044		0.0	0.0	0.0	0.51	9.0	6.0	
1.001	50.00	5.33	47.687	0.044		0.0	0.0	0.0	0.51	9.0	6.0	

A L Daines & Partners		Page 2
28 Castle Street		
Carlisle		
CA3 8TP		Micro
Date 27/11/2023 08:23	Designed by p.allan	Drainage
File AREA 3.MDX	Checked by	pramage
Micro Drainage	Network 2020.1.3	

Simulation Criteria for Storm

Volumetric Runoff Coeff 0.750 Additional Flow - % of Total Flow 0.000
Areal Reduction Factor 1.000 MADD Factor * 10m³/ha Storage 2.000
Hot Start (mins) 0 Inlet Coefficient 0.800
Hot Start Level (mm) 0 Flow per Person per Day (1/per/day) 0.000
Manhole Headloss Coeff (Global) 0.500 Run Time (mins) 60
Foul Sewage per hectare (1/s) 0.000 Output Interval (mins) 1

Number of Input Hydrographs 0 Number of Offline Controls 0 Number of Time/Area Diagrams 0 Number of Online Controls 1 Number of Storage Structures 1 Number of Real Time Controls 0

Synthetic Rainfall Details

Rainfall Model	FSR	Profile Type S	ummer
Return Period (years)	100	Cv (Summer)	0.750
Region	England and Wales	Cv (Winter)	0.840
M5-60 (mm)	16.300	Storm Duration (mins)	30
Ratio R	0.277		

A L Daines & Partners		Page 3
28 Castle Street		
Carlisle		
CA3 8TP		Micro
Date 27/11/2023 08:23	Designed by p.allan	Drainage
File AREA 3.MDX	Checked by	Dialilade
Micro Drainage	Network 2020.1.3	•

Online Controls for Storm

Pump Manhole: 2, DS/PN: 1.001, Volume (m³): 0.5

Invert Level (m) 47.687

A L Daines & Partners					
28 Castle Street					
Carlisle					
CA3 8TP		Micro			
Date 27/11/2023 08:23	D = = le = 1 e =	Drainage			
File AREA 3.MDX	Checked by	Diamage			
Micro Drainage	Network 2020.1.3				

Storage Structures for Storm

Cellular Storage Manhole: 2, DS/PN: 1.001

Invert Level (m) 47.700 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.04726 Porosity 0.40 Infiltration Coefficient Side (m/hr) 0.04726

Depth	(m)	Area	(m²)	Inf.	Area	(m²)	Depth	(m)	Area	(m²)	Inf.	Area	(m²)
0.	000	2	240.0			0.0	0	.401		0.0			0.0
Ω	400		240 0			0 0							

A L Daines & Partners		Page 5
28 Castle Street		
Carlisle		
CA3 8TP		Micro
Date 27/11/2023 08:23	Designed by p.allan	Drainage
File AREA 3.MDX	Checked by	niairiade
Micro Drainage	Network 2020.1.3	

$\frac{1}{2}$ year Return Period Summary of Critical Results by Maximum Level (Rank 1) for Storm

Simulation Criteria

Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000 Hot Start (mins) 0 MADD Factor * $10m^3$ /ha Storage 2.000 Hot Start Level (mm) 0 Inlet Coefficient 0.800 Manhole Headloss Coeff (Global) 0.500 Flow per Person per Day (1/per/day) 0.000 Foul Sewage per hectare (1/s) 0.000

Number of Input Hydrographs 0 Number of Offline Controls 0 Number of Time/Area Diagrams 0 Number of Online Controls 1 Number of Storage Structures 1 Number of Real Time Controls 0

Synthetic Rainfall Details

Rainfall Model FSR Ratio R 0.274 Region England and Wales Cv (Summer) 0.750 M5-60 (mm) 16.800 Cv (Winter) 0.840

Margin for Flood Risk Warning (mm) 300.0 DVD Status OFF Analysis Timestep Fine Inertia Status OFF DTS Status ON

Profile(s) Summer and Winter
Duration(s) (mins) 15, 30, 60, 120, 180, 240, 360
Return Period(s) (years) 1, 30, 100
Climate Change (%) 0, 50, 50

WARNING: Half Drain Time has not been calculated as the structure is too full.

	US/MH		Return	Climate	First (X)	First (Y)	First (Z)	Overflow	Water Level
PN	Name	Storm		Change	Surcharge	Flood	Overflow	Act.	(m)
1.000	1	360 Winter	1	+0%	30/15 Summer				47.780
1.001	2	360 Winter	1	+0%	30/60 Winter				47.780

		Surcharged	Flooded			Half Drain	Pipe		
	US/MH	Depth	Volume	Flow /	Overflow	Time	Flow		Level
PN	Name	(m)	(m³)	Cap.	(1/s)	(mins)	(1/s)	Status	Exceeded
1.000	1	-0.070	0.000	0.10			0.9	OK	
1.001	2	-0.057	0.000	0.00			0.0	OK	

A L Daines & Partners		Page 6
28 Castle Street		
Carlisle		
CA3 8TP		Micro
Date 27/11/2023 08:23	Designed by p.allan	Drainage
File AREA 3.MDX	Checked by	Diamage
Micro Drainage	Network 2020.1.3	

$\frac{30 \text{ year Return Period Summary of Critical Results by Maximum Level (Rank 1)}{\text{for Storm}}$

Simulation Criteria

Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000

Hot Start (mins) 0 MADD Factor * 10m³/ha Storage 2.000

Hot Start Level (mm) 0 Inlet Coefficient 0.800

Manhole Headloss Coeff (Global) 0.500 Flow per Person per Day (1/per/day) 0.000

Foul Sewage per hectare (1/s) 0.000

Number of Input Hydrographs 0 Number of Offline Controls 0 Number of Time/Area Diagrams 0 Number of Online Controls 1 Number of Storage Structures 1 Number of Real Time Controls 0

Synthetic Rainfall Details

Rainfall Model FSR Ratio R 0.274
Region England and Wales Cv (Summer) 0.750
M5-60 (mm) 16.800 Cv (Winter) 0.840

Margin for Flood Risk Warning (mm) 300.0 DVD Status OFF Analysis Timestep Fine Inertia Status OFF DTS Status ON

Profile(s) Summer and Winter
Duration(s) (mins) 15, 30, 60, 120, 180, 240, 360
Return Period(s) (years) 1, 30, 100
Climate Change (%) 0, 50, 50

WARNING: Half Drain Time has not been calculated as the structure is too full.

PN	US/MH Name	Storm		Climate Change	First (X) Surcharge	First (Y) Flood	First (Z) Overflow	Overflow Act.	Water Level (m)	
1.000	1	360 Winter	30	+50%	30/15 Summer				47.964	
1.001	2	360 Winter	30	+50%	30/60 Winter				47.964	

		Surcharged	Flooded			Half Drain	Pipe		
	US/MH	Depth	Volume	Flow /	Overflow	Time	Flow		Level
PN	Name	(m)	(m³)	Cap.	(1/s)	(mins)	(1/s)	Status	Exceeded
1.000	1	0.114	0.000	0.33			3.0	FLOOD RISK	
1.001	2	0.127	0.000	0.00			0.0	FLOOD RISK	

A L Daines & Partners				
28 Castle Street				
Carlisle				
CA3 8TP		Mirro		
Date 27/11/2023 08:23	Designed by p.allan	Drainage		
File AREA 3.MDX	Checked by	Diamage		
Micro Drainage	Network 2020.1.3			

$\frac{100 \text{ year Return Period Summary of Critical Results by Maximum Level (Rank 1)}{\text{for Storm}}$

Simulation Criteria

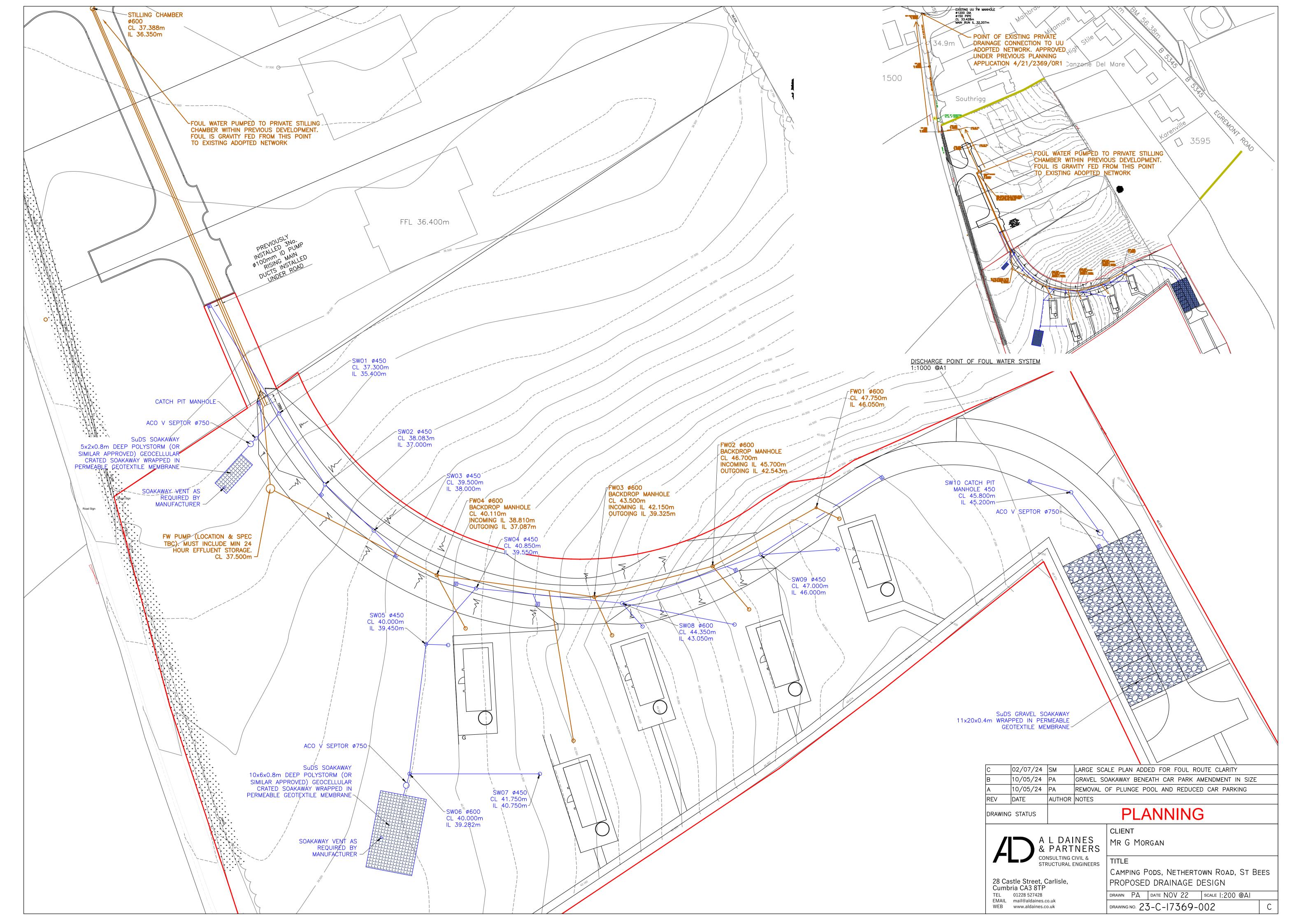
Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000 Hot Start (mins) 0 MADD Factor * $10m^3$ /ha Storage 2.000 Hot Start Level (mm) 0 Inlet Coefficient 0.800 Manhole Headloss Coeff (Global) 0.500 Flow per Person per Day (1/per/day) 0.000 Foul Sewage per hectare (1/s) 0.000

Number of Input Hydrographs 0 Number of Offline Controls 0 Number of Time/Area Diagrams 0 Number of Online Controls 1 Number of Storage Structures 1 Number of Real Time Controls 0

Synthetic Rainfall Details

Rainfall Model FSR Ratio R 0.274
Region England and Wales Cv (Summer) 0.750
M5-60 (mm) 16.800 Cv (Winter) 0.840

Margin for Flood Risk Warning (mm) 300.0 DVD Status OFF Analysis Timestep Fine Inertia Status OFF DTS Status ON


Profile(s) Summer and Winter
Duration(s) (mins) 15, 30, 60, 120, 180, 240, 360
Return Period(s) (years) 1, 30, 100
Climate Change (%) 0, 50, 50

WARNING: Half Drain Time has not been calculated as the structure is too full.

										Water
	1	US/MH		Return	Climate	First (X)	First (Y)	First (Z)	Overflow	Level
P	N	Name	Storm	Period	Change	Surcharge	Flood	Overflow	Act.	(m)
1.0	000	1	360 Winter	100	+50%	30/15 Summer				48.042
1.0	001	2	360 Winter	100	+50%	30/60 Winter				48.042

		Surcharged	Flooded			Half Drain	Pipe		
	US/MH	Depth	Volume	Flow /	Overflow	Time	Flow		Level
PN	Name	(m)	(m³)	Cap.	(1/s)	(mins)	(1/s)	Status	Exceeded
1.000	1	0.192	0.000	0.43			3.9	FLOOD RISK	
1.001	2	0.205	0.000	0.00			0.0	FLOOD RISK	

