

PROPOSED NEW BUNGALOW LAND ADJACENT TO THORNLEA, CARLETON DRAINAGE STRATEGY

Unit 2, Mereside Greenbank Road Eden Business Park Gilwilly, Penrith Cumbria, CA11 9FB

Introduction

Tweddell and Slater Ltd have been appointed to prepare a surface water and foul drainage statement that is compliant with the National Planning Policy.

This report has been prepared in support of the proposed construction of a residential dormer bungalow at Carleton, near Egremont in Cumbria. The closest postcode to the site is CA22 2NU and the development area is currently greenfield.

The layout of the proposed site is indicated in Figure 1 below.

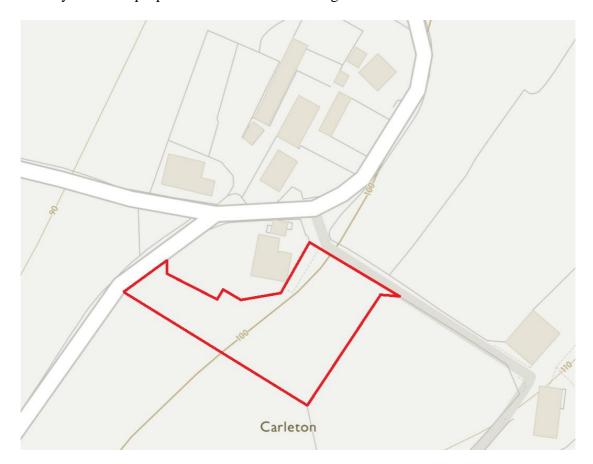


Figure 1 – Proposed Site Location and Boundary

In accordance with the recognised guidance, there is a hierarchy of where surface water should be discharged. This hierarchy where practicable, is as follows:

- 1) Infiltration
- 2) Watercourse
- 3) Public sewer

A site walkover was undertaken in August 2021. The existing site surface water appears to be drained straight to ground. An analysis of the area's topography has shown that the flow direction of overland flow in saturated conditions would generally fall to the west due to the topography on site.

The EA flood risk maps and flood map for planning show that the entirety of the site is not identified as at risk from flooding from rivers and is categorised as Flood Zone 1. Flood Zone 1 is considered to be land having a 1 in 1000 or lesser annual probability of river or sea flooding.

By review of the government long term flood risk information, it has been determined that the site is at a very low risk from surface water flooding (Appendix D).

Existing Site Runoff

The greenfield runoff rate calculation for the site is shown within Appendix B. The greenfield runoff rates for the site are shown below:

Event	Greenfield Runoff Rate
1 in 1 year	0.73 l/s
Q Bar	0.84 l/s
1 in 30 years	1.42 l/s
1 in 100 years	1.74 l/s

Soil infiltration testing has been undertaken at the site by GEO Environmental Engineering in August 2021 in accordance with the method prescribed in BRE Digest 365, with percolation testing undertaken in 2x trial pits within the site.

Infiltration testing has demonstrated that the ground has insufficient infiltration properties therefore, soakaways and permeable paving are not considered viable options for the site. Further information of the percolation testing is contained within Appendix C.

The closest watercourse to the site is an unnamed watercourse leading to "Beggar Gill". This watercourse is located approximately 270m north of the proposed development and within the boundary of an agricultural field. This watercourse is not classified as a main river by the Environment Agency (EA). The closest main river to the site is the River Ehen which lies approximately 600m to the northwest. Due to the significant distance to these watercourses and the land ownership issues involved, discharging to either of these watercourses is not considered to be a viable option for the development.

Surface Water Proposals

Sewer records obtained from United Utilities (UU) show that there is a 150mm diameter combined sewer located to the north of the site and beneath the unnamed road running through Carleton. There are no surface water or foul sewers located within close proximity to the site.

A surface water drainage strategy (Appendix A) has therefore been developed to discharge the runoff generated by the roof and driveway area of the proposed residence to the combined sewer north of the development. This is in line with the drainage hierarchy as outlined above.

To achieve a discharge rate in line with the site's Q_{BAR} value it is proposed to attenuate surface water within an attenuation tank on site and then have a controlled outflow to the existing combined sewer via a flow control device.

These proposals have been presented to UU and have been agreed as per application reference SC5677.

Due to the topography of the area, there is potential for surface water generated by the proposed block paved driveway to flow into the adjacent unnamed access road. To prevent this from occurring, it is proposed that a linear drainage channel be installed where the proposed driveway meets the existing access road.

The attenuation tank and surface water system will be designed such that it will not be surcharged in events up to 30 years recurrence and that there will be no flooding in events up to 100 years with an allowance for climate change of 40%.

The proposed surface water drainage system will be designed to building regulations to ensure the structural integrity under anticipated loading conditions over the design life, this includes the cover to pipes that have been designed in accordance with the manufacturer's requirements and specification.

Foul System Proposal

It is anticipated that foul discharge from the development will connect to the existing combined sewer located to the north of the site. The proposal is to collect all foul drainage from the new property, and then connect to an existing manhole located in the unnamed road approximately 20m northwest of the site.

As per the surface water proposals, the foul proposals have been presented to UU and have been agreed as per application reference SC5677.

The use of a foul drainage field is not viable due to the ground conditions.

The proposed foul water drainage system will be designed to building regulations to ensure the structural integrity under anticipated loading conditions over the design life this includes the cover to pipes that have been designed in accordance with the manufacturer's requirements and specification.

Andy Poole BEng CEng MICE PCERT For Tweddell & Slater Ltd May 2022

APPENDIX A -DRAINAGE STRATEGY DRAWING

APPENDIX B - GREENFIELD RUNOFF CALCULATIONS

Simon Johnston

Calculated by:

Q_{BAR} (I/s):

1 in 1 year (l/s):

1 in 30 years (l/s):

1 in 100 year (l/s):

1 in 200 years (l/s):

0.84

0.73

1.42

1.74

1.99

0.84

0.73

1.42

1.74

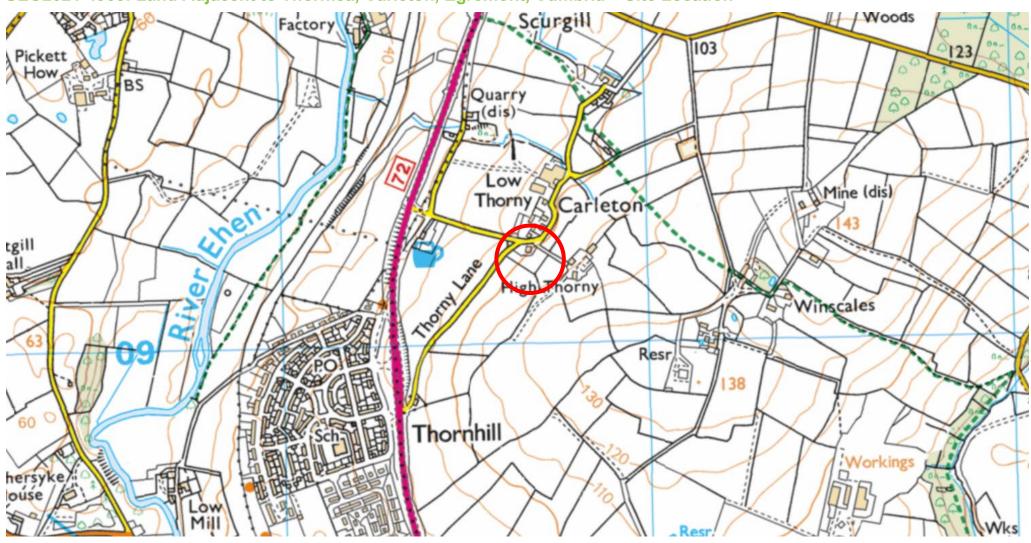
1.99

Greenfield runoff rate estimation for sites

54.46899° N

www.uksuds.com | Greenfield runoff tool

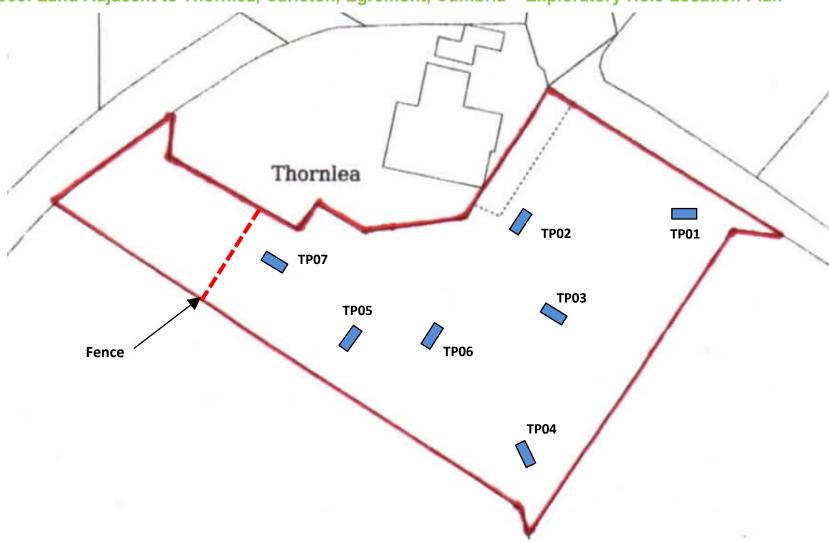
Site Details

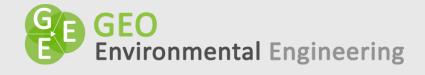

Latitude:

Site name:	Land Adjace	nt to Ir	iorniea	lea				
Site location:	Carleton					Longitude:	3.51819° W	
This is an estimation of in line with Environment SC030219 (2013), the (Defra, 2015). This infective drainage of surface	nt Agency guidan e SuDS Manual C ormation on greer	ce "Rain 753 (Ciri ifield run	fall runoff ma ia, 2015) and	nagement for de I the non-statuto	ry standards for SuDS	Reference: Date:	3230204333 Feb 23 2022 12:23	
Runoff estimation	on approach	IH12	4					
Site characteris	tics				Notes			
Total site area (ha):	0.09667				(1) Is Q _{BAR} < 2	0 l/s/ha?		
Methodology					(1) 10 QBAN \ 2			
Q _{BAR} estimation m	ethod: Cald	culate fr	om SPR a	nd SAAR	When Q _{BAR} is < 2.0 l/s/ha then limiting discharge rates are set			
SPR estimation me	ethod: Cald	culate fr	from SOIL type		at 2.0 l/s/ha.			
Soil characteristics Default Ed		Edite	d					
SOIL type:	4		4		(2) Are flow rat	tes < 5.0 l/s?		
HOST class:	N/A		N/A				501/	
SPR/SPRHOST:	0.47		0.47		Where flow rates are less than 5.0 l/s consent for discharge usually set at 5.0 l/s if blockage from vegetation and other			
Hydrological ch	aracteristics	Default		Edited		materials is possible. Lower consent flow rates may be set where the blockage risk is addressed by using appropriate		
SAAR (mm):		115	54	1154	drainage elements.			
Hydrological region	n:	10		10	(3) Is SPR/SPRHOST ≤ 0.3?		2	
Growth curve factor	or 1 year:	0.8	7	0.87	(3) 15 3FN/3FF	1031 20.3	•	
Growth curve factor	or 30 years:	1.7		1.7	Where groundwater levels are low enough the use of		•	
Growth curve factor 100 years:		2.08		2.08	soakaways to avoid discharge offsite would normally be preferred for disposal of surface water runoff.			
Growth curve factor 200 years: 2.37		7	2.37					
Greenfield runo	ff rates	Default	E	dited				

This report was produced using the greenfield runoff tool developed by HR Wallingford and available at www.uksuds.com. The use of this tool is subject to the UK SuDS terms and conditions and licence agreement, which can both be found at www.uksuds.com/terms-and-conditions.htm. The outputs from this tool are estimates of greenfield runoff rates. The use of these results is the responsibility of the users of this tool. No liability will be accepted by HR Wallingford, the Environment Agency, CEH, Hydrosolutions or any other organisation for the use of this data in the design or operational characteristics of any drainage scheme.

APPENDIX C - PERCOLATION TEST RESULTS


GEO2021-4903: Land Adjacent to Thornlea, Carleton, Egremont, Cumbria – Site Location

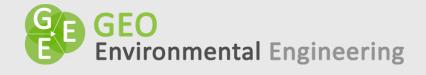

Website: www.geoenvironmentalengineering.com **Email:** info@geoenvironmentalengineering.com

GEO2021-4903: Land Adjacent to Thornlea, Carleton, Egremont, Cumbria – Exploratory Hole Location Plan

Website: www.geoenvironmentalengineering.com **Email:** info@geoenvironmentalengineering.com

Depth	Depth	Strata		Legend	Testing /
From (m)	To (m)	Description			Samples
0.00	0.18	TOPSOIL: Dark grey brown sandy gravelly LO clinker.	AM with occasional		0.10 - J
0.18	0.87	Brown slightly silty very sandy fine to coarse sub-rounded GRAVEL with many cobbles.			
0.87	1.50	Brown slightly silty gravelly medium SAND.			
1.50	2.00	Brown slightly silty very sandy fine to coarse sub-rounded GRAVEL and COBBLES of mixed lithology. Occasional boulders.			
		End of trial hole at 2.00m due to complete collapse. Groundwater ingress at 1.50m bgl. Standing groundwater at 1.50m bgl on completion. Complete collapse of trial pit at 2.00m bgl. Trial hole backfilled with arisings on completion.		- Innovati	
Engineer: J.			Log Notes:	41 - 1 - 21	
Site Works Date: 17/08/2021		HSV = Hand Shear Vane (kN/m²)			

Site Works Date: 17/08/2021 Plant: Tracked 360 Excavator


HSV = Hand Shear Vane (kN/m²)

LP = Limited Penetration (HSV/CBR)

B = Bulk Bag, J = Amber Glass Jar, T = Plastic Tub

Website: www.geoenvironmentalengineering.com **Email:** info@geoenvironmentalengineering.com

Depth	Depth	Strata		Legend	Testing /
From (m)	To (m)	Description			Samples
0.00	0.24	MADE GROUND: Dark brown silty sandy fin to sub-rounded GRAVEL of mixed aggrega brick, clinker and asphalt.	•		0.10 - J
0.24	0.90	Brown slightly silty very sandy fine to c GRAVEL with many cobbles.			
0.90	1.20	Brown slightly silty gravelly medium SAND.			
1.20	1.50	Brown slightly silty very sandy fine to coarse sub-rounded GRAVEL and COBBLES of mixed lithology. Occasional boulders.			
		End of trial hole at 1.50m – Soil Infiltration Groundwater ingress at 1.50m bgl. Standing groundwater at 1.50m bgl on com Trial hole backfilled with arisings on comple	pletion.		
Engineer: J.	Brock	<u> </u>	Log Notes:		
Site Works Date: 17/08/2021 HSV =		HSV = Hand Shear V	ane (kN/m²)		

Site Works Date: 17/08/2021

Plant: Tracked 360 Excavator

Dimensions: 2.10m x 0.90m

Log Notes:


HSV = Hand Shear Vane (kN/m²)

LP = Limited Penetration (HSV/CBR)

B = Bulk Bag, J = Amber Glass Jar, T = Plastic Tub

Website: www.geoenvironmentalengineering.com **Email:** info@geoenvironmentalengineering.com

Depth	Depth	Strata	Legend	Testing /
From (m)	To (m)	Description		Samples
0.00	0.38	MADE GROUND: Grey brown silty very sandy fine to coarse sub- rounded GRAVEL of mixed lithology with occasionally concrete/slag.		0.20 - J
0.38	2.00	Brown slightly silty very sandy fine to coarse sub-rounded GRAVEL and COBBLES of mixed lithology. Occasional boulders.		1.00 - J
		End of trial hole at 2.00m. Groundwater ingress at 1.40m bgl.		
		Standing groundwater at 1.40m bgl on completion.		
		Trial pit collapsing during excavation.		
		Trial hole backfilled with arisings on completion.		

Engineer: J.Brock
Site Works Date: 17/08/2021
Plant: Tracked 360 Excavator

Log Notes:

HSV = Hand Shear Vane (kN/m²) LP = Limited Penetration (HSV/CBR)

B = Bulk Bag, J = Amber Glass Jar, T = Plastic Tub

Website: www.geoenvironmentalengineering.com **Email:** info@geoenvironmentalengineering.com

Depth	Depth	Strata	Legend	Testing /
From (m)	To (m)	Description		Samples
0.00	0.22	MADE GROUND: Brown silty sandy gravelly LOAM with occasional clinker.		0.10 - J
0.22	0.41	MADE GROUND: Blue grey fused SLAG. Strong sulphurous odour. Difficult to excavate.		
0.41	1.80	Brown slightly silty, very sandy fine to coarse sub-rounded GRAVEL and COBBLES of mixed lithology. Occasional boulders. Occasional pockets of very gravelly sand.		1.00 - J
		End of trial hole at 1.80m.		
		Trial Pit dry and stable on completion.		
Fasiassa		Trial hole backfilled with arisings on completion.		

Engineer: J.Brock
Site Works Date: 17/08/2021
Plant: Tracked 360 Excavator

Log Notes:

HSV = Hand Shear Vane (kN/m²) LP = Limited Penetration (HSV/CBR)

B = Bulk Bag, J = Amber Glass Jar, T = Plastic Tub

Website: www.geoenvironmentalengineering.com **Email:** info@geoenvironmentalengineering.com

Depth	Depth	Strata	Legend	Testing /
From (m)	To (m)	Description		Samples
0.00	0.50	MADE GROUND: Grey brown sandy fine to coarse angular GRAVEL of mixed aggregate, slag and concrete. Plastic pipe at surface.		0.10 - J
0.50	1.10	Grey brown very silty gravelly SAND.		
1.10	1.70	Brown slightly silty, very sandy fine to coarse sub-rounded GRAVEL and COBBLES of mixed lithology. Ceramic field drain at 1.10m bgl.		
		End of trial hole at 1.70m.		
		Trial Pit dry and stable on completion.		
		Trial hole backfilled with arisings on completion.		

Engineer: J.Brock
Site Works Date: 17/08/2021
Plant: Tracked 360 Excavator

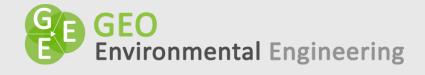
Log Notes:

HSV = Hand Shear Vane (kN/m²) LP = Limited Penetration (HSV/CBR)

B = Bulk Bag, J = Amber Glass Jar, T = Plastic Tub

Website: www.geoenvironmentalengineering.com **Email:** info@geoenvironmentalengineering.com

Depth	Depth	Strata		Legend	Testing /
From (m)	To (m)	Description			Samples
0.00	0.40	MADE GROUND: Grey brown sandy fine GRAVEL of mixed aggregate, slag and concre	-		0.10 - J
0.40	1.80	Brown slightly silty, very sandy fine to congress of mixed lithology. On			
		End of trial hole at 1.80m – Soil Infiltration Test Completed. Groundwater ingress at 1.45m bgl.			
		Trial hole backfilled with arisings on completion.			
Engineer: J.	.Brock		Log Notes:		


Site Works Date: 17/08/2021
Plant: Tracked 360 Excavator
Dimenions: 2.00m x 1.00m

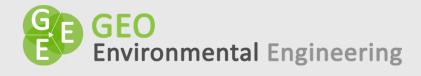
HSV = Hand Shear Vane (kN/m²) LP = Limited Penetration (HSV/CBR)

B = Bulk Bag, J = Amber Glass Jar, T = Plastic Tub

Website: www.geoenvironmentalengineering.com **Email:** info@geoenvironmentalengineering.com

Depth	Depth	Strata	Legend	Testing /
From (m)	To (m)	Description		Samples
0.00	0.20	MADE GROUND: Grey brown loamy soil with occasional ash (former bonfire).		0.10 - J
0.20	1.30	Brown slightly silty, very sandy fine to coarse sub-rounded GRAVEL and COBBLES of mixed lithology. Occasional boulders.		
1.30	2.10	Brown silty gravelly medium SAND		
		End of trial hole at 2.10m.		
		Trial Pit dry and stable on completion.		
Engineer:		Trial hole backfilled with arisings on completion.		

Engineer: J.Brock
Site Works Date: 17/08/2021
Plant: Tracked 360 Excavator


Log Notes:

HSV = Hand Shear Vane (kN/m²) LP = Limited Penetration (HSV/CBR)

B = Bulk Bag, J = Amber Glass Jar, T = Plastic Tub

Website: www.geoenvironmentalengineering.com **Email:** info@geoenvironmentalengineering.com

GEO2021-4903: Carleton, Egremont, Cumbria - Soil Infiltration Test Results

TP02 - Test 1

Duration (mins)	Water Level (m bgl)
0	0.66
11	0.66
36	0.65
72	0.65
128	0.64
199	0.63

TP06 - Test 1

Duration (mins)	Water Level (m bgl)
0	0.83
13	0.88
58	0.98
130	1.07

TP06 - Test 2

Duration (mins)	Water Level (m bgl)
0	0.73
137	0.98

Website: www.geoenvironmentalengineering.com **Email:** info@geoenvironmentalengineering.com

Environmental Engineerin

SOIL INFILTRATION TEST CALCULAT	TION SHEET
---------------------------------	------------

SITE: Thornlea, Carleton, Egremont

JOB NO: 2021-4903
TRIAL PIT: TP06
TEST NO.: 1

GROUND CONDITIONS: See Trial Pit Logs for Details

TEST HOLE SIZE:

 Width
 1000
 mm

 Length
 2000
 mm

 Depth of hole
 1800
 mm

 Change Water Level
 240
 mm

MONITORING RESULTS:

Re	ecorded Tir	ne	Total Time	Depth of water
Hours	Minutes	Seconds	(secs)	(mm)
0	0	0	0	830
0	13	0	780	880
0	58	0	3480	980
0	130	0	7800	1070

PERCOLATION TEST RESULTS AND SOIL INFILTRATION ASSESSMENT

TEST NO.: 1

SOIL INFILTRATION RATE ASSESSMENT:

Vol. Outflowing between 75% and 25% effective depth:

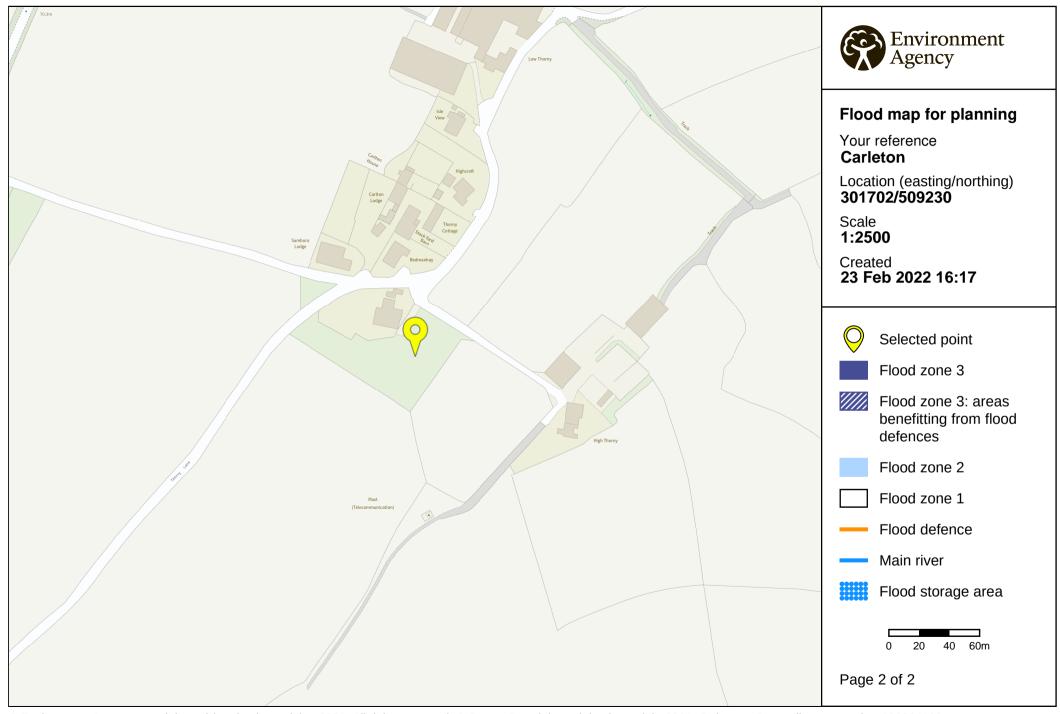
 $V_{p75-25} =$ 0.24 m³

Mean surface area (pit sides to 50% effective depth + base of pit):

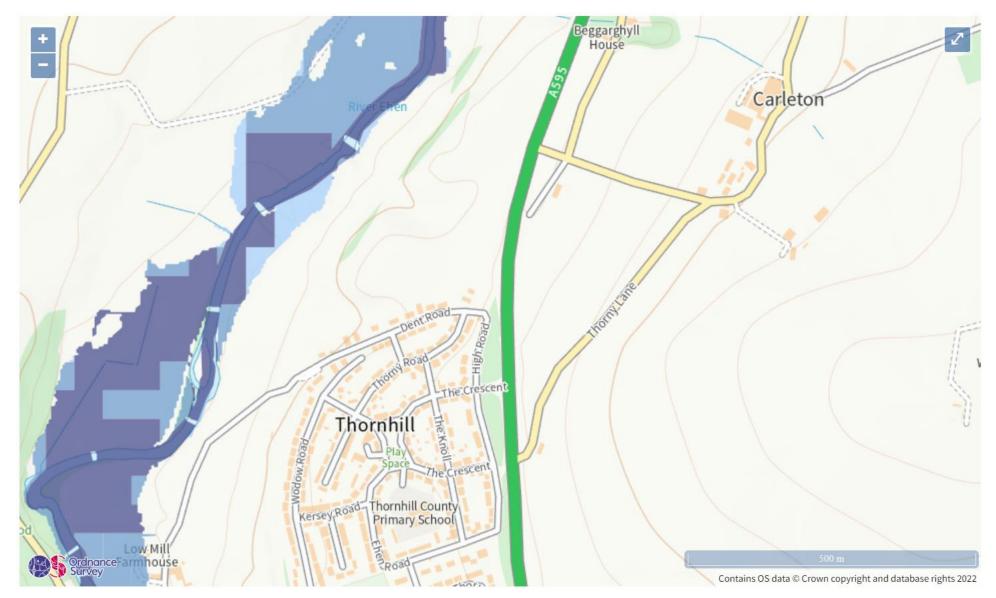
 $A_{p50} =$ 2.72 m^2

Time for the outflow between 75% and 25% effective depth:

 $t_{p75-25} =$ 3900 secs


Soil Infiltration rate:

f = <u>2.3E-05</u> m/s


				Enviro	onmental En	igineeri
SOIL INFILTRATION	TEST CALCU	LATION SI	HEET_			
SITE: JOB NO: TRIAL PIT: TEST NO.:	Thornlea, Ca 2021-4903 TP06 2	arleton, Eg	remont	1		
GROUND CONDITION	NS:	See Trial	Pit Logs for D	etails		
TEST HOLE SIZE: Width Length Depth of hole Change Water Level MONITORING RESUL	100 200 180 250 TS:	0	mm mm mm mm			
	Re	ecorded Ti	me	Total Time	Depth of water	1
	Hours	Minutes	Seconds	(secs)	(mm)	
	0 0	0 137	0 0	0 8220	730 980	
PERCOLATION TEST	RESULTS A	ND SOIL IN	NFILTRATION	ASSESSMENT		
TEST NO.:	2					
SOIL INFILTRATION	RATE ASSES	SMENT:				
Vol. Outflowing betw V _{p75-25} =	een 75% and 0.25	25% effec t	tive depth:			
Mean surface area (p A _{p50} =	it sides to 50 ^o 2.75	% effective m²	e depth + bas	e of pit):		
Time for the outflow t_{p75-25} =	between 75% 4110	and 25% of secs	effective dept	th:		
Soil Infiltration rate:		_				

2.2E-05 m/s

APPENDIX D - EA FLOOD MAP FOR PLANNING AND LONG-TERM FLOOD RISK

© Environment Agency copyright and / or database rights 2021. All rights reserved. © Crown Copyright and database right 2021. Ordnance Survey licence number 100024198.

Extent of flooding from rivers or the sea

Extent of flooding from surface water

APPENDIX E - ATTENUATION TANK SIZE CALCULATION

TWEDDELL & SLATER CONSULTING CIVIL & STRUCTURAL ENGINEERS Tweddell & Slater Ltd

File: Outline DS - 23.02.22.pfd Network: Storm Network Simon Johnston 23/02/2022 Page 1

Design Settings

Rainfall Methodology FSR
Return Period (years) 100
Additional Flow (%) 40
FSR Region England and Wales
M5-60 (mm) 20.000
Ratio-R 0.300
CV 1.000

Time of Entry (mins) 2.00

Maximum Time of Concentration (mins) 30.00

Maximum Rainfall (mm/hr) 50.0

Minimum Velocity (m/s) 1.00

Connection Type Level Soffits

Minimum Backdrop Height (m) 0.200

Preferred Cover Depth (m) 1.200

Include Intermediate Ground ✓

Enforce best practice design rules x

Nodes

Name	Area (ha)	T of E (mins)	Cover Level (m)	Diameter (mm)	Depth (m)
S1	0.006	2.00	101.850	1200	0.700
S2	0.005	2.00	101.850	1200	0.742
S3	0.005	2.00	101.850	1200	0.830
S4	0.005	2.00	101.850	1200	0.859
S5	0.005	2.00	101.850	1200	1.088
S6	0.005	2.00	101.850	1200	2.095
S7	0.005	2.00	101.850	1200	2.140
S8	0.005	2.00	101.850	1200	2.573
Tank Inlet			101.500		2.373
Tank Outlet			100.800		1.733
S9			100.750	1200	1.698
COM1			100.600	1200	1.600

<u>Links</u>

Name	US Node	DS Node	Length (m)	ks (mm) / n	US IL (m)	DS IL (m)	Fall (m)	Slope (1:X)	Dia (mm)	T of C (mins)	Rain (mm/hr)
1.000	S1	S2	4.250	0.600	101.150	101.108	0.042	100.0	150	2.07	50.0
1.001	S2	S3	8.760	0.600	101.108	101.020	0.088	100.0	150	2.22	50.0
1.002	S3	S4	2.903	0.600	101.020	100.991	0.029	100.0	150	2.26	50.0
1.003	S4	S5	22.859	0.600	100.991	100.762	0.229	100.0	150	2.64	50.0
1.004	S5	S6	10.250	0.600	100.762	99.755	1.007	10.2	150	2.70	50.0
1.005	S6	S8	4.775	0.600	99.755	99.277	0.478	10.0	150	2.72	50.0
2.000	S7	S8	4.325	0.600	99.710	99.277	0.433	10.0	150	2.02	50.0
1.006	S8	Tank Inlet	1.500	0.600	99.277	99.127	0.150	10.0	150	2.73	50.0
1.007	Tank Inlet	Tank Outlet	12.000	0.600	99.127	99.067	0.060	200.0	400	2.83	50.0
1.008	Tank Outlet	S9	1.500	0.600	99.067	99.052	0.015	100.0	150	2.86	50.0

Name	Vel (m/s)	Cap (l/s)	Flow (I/s)	US Depth	DS Depth	Σ Area (ha)	Σ Add Inflow	Pro Depth	Pro Velocity
				(m)	(m)		(I/s)	(mm)	(m/s)
1.000	1.005	17.8	1.5	0.550	0.592	0.006	0.0	30	0.613
1.001	1.005	17.8	2.8	0.592	0.680	0.011	0.0	40	0.734
1.002	1.005	17.8	4.0	0.680	0.709	0.016	0.0	49	0.818
1.003	1.005	17.8	5.3	0.709	0.938	0.021	0.0	56	0.877
1.004	3.176	56.1	6.6	0.938	1.945	0.026	0.0	34	2.126
1.005	3.206	56.7	7.8	1.945	2.423	0.031	0.0	38	2.270
2.000	3.206	56.7	1.3	1.990	2.423	0.005	0.0	16	1.314
1.006	3.204	56.6	10.4	2.423	2.223	0.041	0.0	44	2.458
1.007	1.975	4739.6	10.4	1.973	1.333	0.041	0.0	7	0.232
1.008	1.005	17.8	10.4	1.583	1.548	0.041	0.0	82	1.042
1.006 1.007	3.204 1.975	56.6 4739.6	10.4 10.4	2.423 1.973	2.223 1.333	0.041 0.041	0.0	44 7	2.45 0.23

File: Outline DS - 23.02.22.pfd Network: Storm Network

Simon Johnston 23/02/2022 Page 2

<u>Links</u>

Name	US	DS	Length	ks (mm) /	US IL	DS IL	Fall	Slope	Dia	T of C	Rain
	Node	Node	(m)	n	(m)	(m)	(m)	(1:X)	(mm)	(mins)	(mm/hr)
1.009	S9	COM1	5.156	0.600	99.052	99.000	0.052	100.0	150	2.94	50.0

Name	Vel	Cap	Flow	US	DS	Σ Area	Σ Add	Pro	Pro
	(m/s)	(I/s)	(I/s)	Depth	Depth	(ha)	Inflow	Depth	Velocity
				(m)	(m)		(I/s)	(mm)	(m/s)
1.009	1.005	17.8	10.4	1.548	1.450	0.041	0.0	82	1.042

Simulation Settings

Rainfall Methodology	FSR	Drain Down Time (mins)	240
FSR Region	England and Wales	Additional Storage (m³/ha)	20.0
M5-60 (mm)	20.000	Check Discharge Rate(s)	\checkmark
Ratio-R	0.300	1 year (I/s)	0.4
Summer CV	1.000	30 year (I/s)	0.9
Winter CV	1.000	100 year (I/s)	1.0
Analysis Speed	Detailed	Check Discharge Volume	\checkmark
Skip Steady State	X	100 year +40% 360 minute (m³)	52

Storm Durations

15	30	60	120	180	240	360

Return Period	Climate Change	Additional Area	Additional Flow
(years)	(CC %)	(A %)	(Q %)
1	40	10	0
30	40	10	0
100	40	10	0

Pre-development Discharge Rate

Greenfield IH124 0.097 1154 4 0.47	Growth Factor 30 year Growth Factor 100 year Betterment (%) QBar Q 1 year (I/s) Q 30 year (I/s) Q 100 year (I/s)	1.95 2.48 0 0.8
0.85	Q 100 year (i/s)	
	IH124 0.097 1154 4 0.47 10	IH124 Growth Factor 100 year 0.097 Betterment (%) 1154 QBar 4 Q 1 year (I/s) 0.47 Q 30 year (I/s) 10 Q 100 year (I/s)

Pre-development Discharge Volume

Site Makeup	Greenfield	Return Period (years)	100
Greenfield Method	FSR/FEH	Climate Change (%)	40
Positively Drained Area (ha)	0.097	Storm Duration (mins)	360
Soil Index	4	Betterment (%)	0
SPR	0.47	PR	0.548
CWI	125.385	Runoff Volume (m³)	52

Tweddell & Slater Ltd File: Outline DS - 23.02.22.pfd

Network: Storm Network

Simon Johnston 23/02/2022 Page 3

Node S9 Online Hydro-Brake® Control

Flap Valve	Χ	Objective	(HE) Minimise upstream storage
Replaces Downstream Link	\checkmark	Sump Available	\checkmark
Invert Level (m)	99.052	Product Number	CTL-SHE-0050-8000-0400-8000
Design Depth (m)	0.400	Min Outlet Diameter (m)	0.075
Design Flow (I/s)	0.8	Min Node Diameter (mm)	1200

Approval Settings

Node Size	х	Backdrops	x	Return Period (years)	100
Node Losses	Х	Full Bore Velocity	X	Discharge Rates	\checkmark
Link Size	Х	Proportional Velocity	X	1 year (l/s)	0.8
Link Length	Х	Surcharged Depth	X	30 year (l/s)	8.0
Coordinates	Х	Flooding	\checkmark	100 year (l/s)	8.0
Crossings	Х	Return Period (years)	100	Discharge Volume	\checkmark
Cover Depth	Х	Time to Half Empty	\checkmark	100 year +40% 360 minute (m³)	52

Approval Results

The network has been designed for a 1 in 100 year storm using FSR rainfall
It contains 12 nodes (1 outfall) and 11 links
The total impermeable area is 0.041 ha
1 online control has been defined
No additional storage is present
Simulations have been completed using FSR summer and winter storms from 15 to 1440 minute duration

The node size test has not been completed

The node losses test has not been completed

The link size test has not been completed

The link length test has not been completed

The coordinates test has not been completed

The crossings test has not been completed

The cover depth test has not been completed

The backdrops test has not been completed

The full bore velocity test has not been completed

The proportional velocity test has not been completed

The surcharged depth test has not been completed

No nodes flood during the 100 year return period

No infiltrating structures failed to half empty in 1440 minutes during the 100 year return period

No outfalls have a discharge rate greater than 0.8l/s during the 1 year return period

No outfalls have a discharge rate greater than 0.8l/s during the 30 year return period

Tweddell & Slater Ltd	File: Outline DS - 23.02.22.pfd	Page 4
	Network: Storm Network	
	Simon Johnston	
	23/02/2022	

No outfalls have a discharge rate greater than 0.81/s during the 100 year return period $\,$

No outfalls have a discharge volume greater than $52m^3$ during the 100 year 360 minute storm

File: Outline DS - 23.02.22.pfd Network: Storm Network

Simon Johnston 23/02/2022 Page 5

Results for 1 year +40% CC +10% A Critical Storm Duration. Lowest mass balance: 98.95%

Node Event	US	Peak	Level	Depth	Inflow	Node	Flood	Status
	Node	(mins)	(m)	(m)	(I/s)	Vol (m³)	(m³)	
15 minute summer	S1	9	101.187	0.037	2.1	0.0493	0.0000	OK
15 minute summer	S2	9	101.157	0.049	3.9	0.0622	0.0000	OK
15 minute summer	S3	9	101.090	0.070	5.7	0.0883	0.0000	OK
15 minute summer	S4	9	101.064	0.073	7.4	0.0915	0.0000	OK
15 minute summer	S5	9	100.803	0.041	9.0	0.0506	0.0000	OK
15 minute summer	S6	9	99.800	0.045	10.6	0.0530	0.0000	OK
15 minute summer	S7	9	99.728	0.018	1.8	0.0218	0.0000	OK
15 minute summer	S8	9	99.339	0.062	14.1	0.0733	0.0000	OK
180 minute summer	Tank Inlet	164	99.197	0.070	4.2	0.0000	0.0000	OK
180 minute summer	Tank Outlet	144	99.196	0.129	4.0	0.0000	0.0000	OK
180 minute summer	S9	144	99.197	0.145	2.4	0.1635	0.0000	OK
15 minute summer	COM1	1	99.000	0.000	0.8	0.0000	0.0000	OK

Link Event (Outflow)	US Node	Link	DS Node	Outflow (I/s)	Velocity (m/s)	Flow/Cap	Link Vol (m³)	Discharge Vol (m³)
15 minute summer	S1	1.000	S2	2.1	0.504	0.118	0.0177	
15 minute summer	S2	1.001	S3	3.9	0.607	0.221	0.0568	
15 minute summer	S3	1.002	S4	5.6	0.681	0.316	0.0239	
15 minute summer	S4	1.003	S5	7.2	1.173	0.404	0.1413	
15 minute summer	S5	1.004	S6	8.8	2.117	0.157	0.0426	
15 minute summer	S6	1.005	S8	10.5	1.850	0.185	0.0271	
15 minute summer	S7	2.000	S8	1.8	0.527	0.032	0.0177	
15 minute summer	S8	1.006	Tank Inlet	13.9	4.392	0.246	0.0055	
15 minute summer	Tank Inlet	1.007	Tank Outlet	13.3	0.105	0.003	3.6110	
30 minute summer	Tank Outlet	1.008	S9	3.0	0.365	0.170	0.0197	
30 minute summer	S9	Hydro-Brake®	COM1	0.8				6.0

File: Outline DS - 23.02.22.pfd Network: Storm Network

Simon Johnston 23/02/2022 Page 6

Results for 30 year +40% CC +10% A Critical Storm Duration. Lowest mass balance: 98.95%

Node Event	US	Peak	Level	Depth	Inflow	Node	Flood	Status
	Node	(mins)	(m)	(m)	(I/s)	Vol (m³)	(m³)	
15 minute summer	S1	9	101.214	0.064	5.1	0.0841	0.0000	OK
15 minute summer	S2	9	101.190	0.082	9.4	0.1051	0.0000	OK
15 minute summer	S3	9	101.156	0.136	13.7	0.1716	0.0000	OK
15 minute summer	S4	9	101.124	0.133	17.7	0.1679	0.0000	OK
15 minute summer	S5	9	100.828	0.066	21.4	0.0816	0.0000	OK
15 minute summer	S6	9	99.833	0.078	25.6	0.0919	0.0000	OK
15 minute summer	S7	9	99.738	0.028	4.3	0.0331	0.0000	OK
360 minute summer	S8	360	99.381	0.104	7.1	0.1217	0.0000	OK
360 minute summer	Tank Inlet	360	99.379	0.252	7.3	0.0000	0.0000	OK
360 minute summer	Tank Outlet	360	99.379	0.312	8.1	0.0000	0.0000	SURCHARGED
360 minute summer	S9	352	99.379	0.327	2.0	0.3698	0.0000	SURCHARGED
15 minute summer	COM1	1	99.000	0.000	0.8	0.0000	0.0000	OK

Link Event (Outflow)	US Node	Link	DS Node	Outflow (I/s)	Velocity (m/s)	Flow/Cap	Link Vol (m³)	Discharge Vol (m³)
15 minute summer	S1	1.000	S2	5.1	0.600	0.287	0.0361	
15 minute summer	S2	1.001	S3	9.4	0.702	0.529	0.1167	
15 minute summer	S3	1.002	S4	13.4	0.802	0.753	0.0484	
15 minute summer	S4	1.003	S5	17.1	1.417	0.965	0.2748	
15 minute summer	S5	1.004	S6	21.3	2.547	0.379	0.0856	
15 minute summer	S6	1.005	S8	25.4	2.289	0.448	0.0529	
15 minute summer	S7	2.000	S8	4.3	0.637	0.076	0.0329	
15 minute summer	S8	1.006	Tank Inlet	33.8	5.031	0.598	0.0125	
15 minute summer	Tank Inlet	1.007	Tank Outlet	32.7	0.138	0.007	9.5663	
15 minute summer	Tank Outlet	1.008	S9	2.8	0.511	0.156	0.0264	
15 minute summer	S9	Hvdro-Brake®	COM1	0.8				10.4

File: Outline DS - 23.02.22.pfd Network: Storm Network

Simon Johnston 23/02/2022 Page 7

Results for 100 year +40% CC +10% A Critical Storm Duration. Lowest mass balance: 98.95%

Node Event	US	Peak	Level	Depth	Inflow	Node	Flood	Status
	Node	(mins)	(m)	(m)	(I/s)	Vol (m³)	(m³)	
15 minute summer	S1	10	101.251	0.101	6.7	0.1332	0.0000	OK
15 minute summer	S2	10	101.247	0.139	11.6	0.1777	0.0000	OK
15 minute summer	S3	9	101.217	0.197	15.9	0.2494	0.0000	SURCHARGED
15 minute summer	S4	9	101.183	0.192	19.4	0.2413	0.0000	SURCHARGED
15 minute summer	S5	9	100.832	0.070	23.6	0.0862	0.0000	OK
15 minute summer	S6	9	99.840	0.085	29.0	0.1003	0.0000	OK
15 minute summer	S7	9	99.742	0.032	5.5	0.0374	0.0000	OK
720 minute summer	S8	495	99.487	0.210	4.9	0.2466	0.0000	SURCHARGED
720 minute summer	Tank Inlet	495	99.487	0.360	4.9	0.0000	0.0000	OK
720 minute summer	Tank Outlet	495	99.487	0.420	3.0	0.0000	0.0000	SURCHARGED
720 minute summer	S9	495	99.487	0.435	2.0	0.4919	0.0000	SURCHARGED
15 minute summer	COM1	1	99.000	0.000	0.8	0.0000	0.0000	OK

Link Event (Outflow)	US Node	Link	DS Node	Outflow (I/s)	Velocity (m/s)	Flow/Cap	Link Vol (m³)	Discharge Vol (m³)
15 minute summer	S1	1.000	S2	6.1	0.619	0.343	0.0630	
15 minute summer	S2	1.001	S3	10.4	0.719	0.586	0.1517	
15 minute summer	S3	1.002	S4	13.9	0.827	0.780	0.0511	
15 minute summer	S4	1.003	S5	18.1	1.391	1.022	0.2932	
15 minute summer	S5	1.004	S6	23.5	2.590	0.419	0.0939	
15 minute summer	S6	1.005	S8	28.9	2.314	0.510	0.0595	
15 minute summer	S7	2.000	S8	5.5	0.667	0.097	0.0375	
15 minute summer	S8	1.006	Tank Inlet	39.8	4.989	0.702	0.0181	
15 minute winter	Tank Inlet	1.007	Tank Outlet	40.6	0.146	0.009	12.5961	
15 minute winter	Tank Outlet	1.008	S9	3.7	0.566	0.209	0.0264	
720 minute summer	S9	Hydro-Brake®	COM1	0.8				60.0