

FLOSH MEADOWS, CLEATOR, SR12A AND TOP MEADOWS

Drainage Strategy

Issue Date:

09 June 2023

Report Number:

1842-DS11

Client:

Lakeland Associates (Cleator) Ltd

Revision:

D

Contents

1.	Introduction	1
2.	Site location, Existing Topography, Geology and Proposals	2
3.	Surface and foul Water Disposal	6
4.	References	11

Appendix A – Topographical Survey

Appendix B – Proposed Site Layout

Appendix C – Existing Drainage Layout

Appendix D – Greenfield Runoff Calculations

Appendix E – Drainage Strategy and Calculations

Executive Summary

	[
Site Location	The site is located off A5086, Cleator, CA23 3EP (nearest) at NGR 301752E 514082N. The
	overall development footprint measures approximately 3.30 Ha, entirely greenfield.
Site Proposals	The site is proposed to be developed with residential units.
Ground Conditions	The site is located in an area underlain by drift deposits consisting of soft - stiff clays.
	Surface water cannot be discharged utilising infiltration techniques.
Nearest Watercourse	The River Ehen is located 300m to the south of the overall site boundary beyond third
	party land. It is not possible to make a direct connection to a water course to dispose of
	surface water.
Nearest water feature	Within the development site, an historic man-made culverted mill race flows from north
	to south and outfalls via a culvert below the public highway located to the south. The mill
	race conveys flows from agricultural land located to the north of the development site.
	Surface water should discharge to the surface water feature. Surface water discharge
	should restricted to a greenfield rate matching Qbar for the development, in this case 32
	litres/sec.
Nearest Surface Water	Adjacent to proposed site entrance, discharging within 40m of the head of the run to a
Sewer.	UU combined sewer at A5086. Another surface water sewer is located within Howthorne
	Fields to the south of Flosh Meadows. Neither sewer is suitable for disposal of surface
	water. The reasons are covered in greater detail within section 3.0.
Nearest Combined	On site adjacent to southern boundary
Sewer	
Nearest Foul Water	Adjacent to proposed site entrance, discharging within 40m to a UU combined sewer at
Sewer	A5086
SUDS	Pipes, flow control

The above summary should not be used in isolation and reference should be made the full report which provides a detailed assessment of the risks affecting the development.

1. Introduction

Coast Consulting Engineers have been commissioned by Lakeland Associates (Cleator) Ltd to produce a drainage strategy to accompany a planning application for a proposed development at Flosh Meadows, Cleator. This strategy is produced only for the phases known as SR12A Mid Meadows (4/17/2214) and Top Meadows (4/17/2390), although the strategy also references the wider site, as the drainage from SR12A and Top Meadows discharges into the phase known as SR12, The Meadows. This Assessment is reviewed in accordance with the National Planning Policy Framework (NPPF) for Development and Flood Risk.

A flood risk assessment has previously been completed by RWO Associates reference RO/14016.200 Version 3, dated October 2017 and has subsequently been approved. As such, this report does not assess flood risk to the proposed development.

2. Site location, Existing Topography, Geology and Proposals

2.1 Site Location

The site is located off A5086, Cleator, CA23 3EP (nearest) at NGR 301752E 514082N. The entire development footprint measures approximately 3.30 Ha, entirely greenfield.

The site location is indicated in Figure 2.11 and the proposed phasing in Figure 2.12 below.

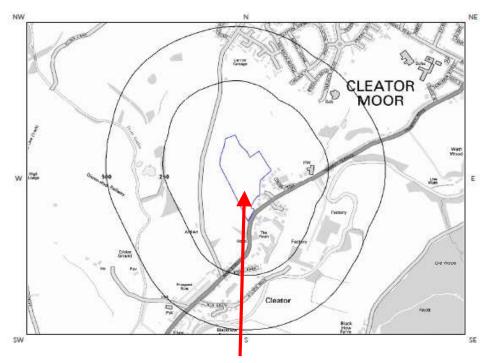


Figure 2.11 – Site Location

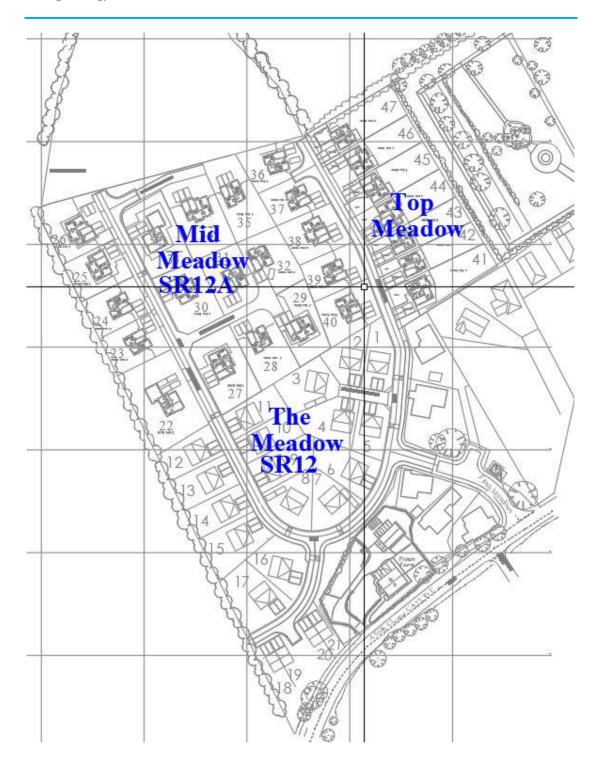


Figure 2.12 – Proposed Phasing

2.2 Existing Topography

A topographical survey of the site has been undertaken and is included in Appendix A. The overall development site generally falls in a southerly direction. Site levels range from approximately 67.50m AOD at the north of SR12A to 63.00m AOD at the southern extents of SR12.

The surrounding area is developed as follows:

North: Agricultural Land

East: Agricultural Land and residential properties

South: Residential properties West: Agricultural Land

Figure 2.21 below extracted from Google maps shows the existing site.

Figure 2.21 – Satellite image of the existing site.

2.3 Existing sewers and watercourses

A combined sewer is located within the development land, adjacent to the southern boundary line of SR12. Adopted foul and surface water sewers are located within Flosh Meadows, adjacent to the proposed site entrance, the head of each run is located at the proposed site entrance. The adopted surface water and foul sewers outfall into a combined sewer approximately 40m downstream of the head of each run. All sewers are owned and maintained by United Utilities Ltd (UU). Figure 2.31 below shows the location of the existing public sewers within the vicinity of the site.

Within the overall development site, an historic man-made culverted mill race flows from north to south and outfalls via a culvert below the public highway located to the south of SR12. The mill race conveys flows from agricultural land located to the north of SR12A. Figure 2.32 overleaf shows the location of the natural watercourses within the vicinity of the site. Please also refer to Appendix C for further information on the existing drainage regime.

The River Ehen is located approximately 300m to the south of the site boundary, beyond third party land.

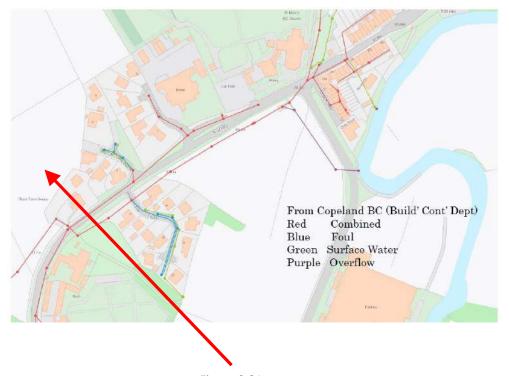


Figure 2.31 – sewers.

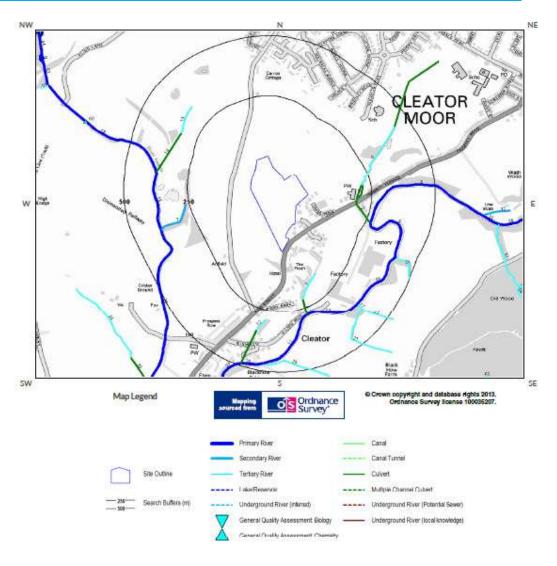


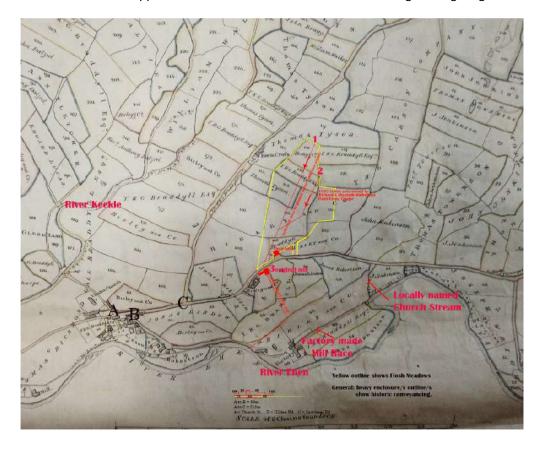
Figure 2.32 – watercourses.

2.4 Geology

A phase 2 intrusive investigation of ground conditions has been completed by Geo Environmental Engineering Ltd, reference 2018-3167 dated 09.08.2018. The report states that the site is underlain by varying ground conditions, largely comprising soft to stiff clays. Ground water was encountered across the site at depths of between 1.50m to 2.90m.

2.5 **Development Proposals**

The site is proposed to be developed with residential units. A copy of the proposed architectural site layout can be found in Appendix B.


3. Surface Water Disposal

3.1 Existing Surface Water Drainage

There are no existing sewers serving the greenfield site.

An existing historic, man-made, culverted, mill race flows through the site from north to south. The race outfalls from the development via a culvert below the public highway located to the south of SR12. The race is not a natural watercourse and is not identified on GroundSure plans (ref figure 2.32) above or historic Pre 1800's mining plans (ref figure 3.11) below.

Please also refer to Appendix C for further information on the existing drainage regime.

3.2 Proposed Surface Water Drainage

In line with national standards, consideration has been given to the preferred hierarchy for disposal of surface water from the development, as contained in Part H of the Building Regulations. The hierarchy is as follows:

- 1. By infiltration
- 2. To watercourse
- To sewer

As noted earlier, superficial deposits comprise of soft - stiff clays with a low permeability. It is considered that utilisation of infiltration techniques will not be applicable for the proposed development.

The nearest watercourse to the development is located approximately 300m to the south of the site boundary, beyond third party land. As such, it will not be possible to make a direct connection to a watercourse.

Following discussions between the developer and the LLFA, it has been agreed to discharge surface water to the Mill Race located within the site boundary.

3.3 SUDS Techniques

In line with National Planning Policy, SUDS techniques will be utilised as part of the design of the surface water network. The applicable techniques and the benefits that they bring to the development are outlined below.

- Flow control: A vortex flow control device will be utilised to restrict flows to the equivalent of existing site greenfield rate (Qbar)
- Surface water conveyance: Surface water will be conveyed through the development utilising below ground pipes.
- Surface water treatment: Attenuated surface water flows will be stored in a piped network.

3.4 SuDS Maintenance

Regular inspection and maintenance is key to the effective operation of SuDS features. Maintenance responsibility for SuDS features proposed as part of the development is to be placed with a responsible organisation and in this case a nominated management and maintenance company.

Removal of debris and any settled silt from SuDS features is the key maintenance requirement for the continued effective operation of the SuDS features. Most of the maintenance activities can be undertaken as part of regular landscape maintenance activities.

3.5 Post Development Discharge Rate

Proposed surface water discharge rates will be limited from the development to the equivalent of the pre-development Qbar green field run off rate, for all storms up to and including 1 in 100 year return period rainfall event + 40% increase in rainfall intensity to account for the predicted effects of climate change.

In line with national and local standards the greenfield run off rate for 3.30 Ha of developed land has been calculated using the Institute of Hydrology (IH) Report 124 Flood Estimation for Small Catchments (1994) method, with flow rate linearly interpolated due to site being smaller than 50Ha. HR Wallingford Greenfield runoff rate estimation for sites tool, available at https://www.uksuds.com has been used to calculate Qbar run off rate at 32.02 l/sec. An assessment of the allowable discharge rate is outlined below in figure 3.51.

Greenfield runoff rates	Default	Edited
Q _{BAR} (I/s):	32.02	32.02
1 in 1 year (l/s):	27.85	27.85
1 in 30 years (I/s):	54.43	54.43
1 in 100 year (I/s):	66.59	66.59
1 in 200 years (l/s):	75.88	75.88

This report was produced using the greenfield runoff loot developed by HR Walfingford and available at www.uksuds.com. The use of this tool is subject to the UK SuDS terms and conditions and licence agreement, which can both be found at www.uksuds.com/terms and conditions him. The autgods from this tool are estimates of greenfield runoff rates. The use of these results is the responsibility of the users of this tool. No fability will be accepted by HR Walfingford, the Environment Agency, CEH, Hydrosolutions or any other organisation for the use of this data in the design or operational characteristics of any drainage scheme.

Figure 3.51 Greenfield run off rates.

Please refer to Appendix D for further information on green field run off rates. Note – the 'developed land' includes for all phases of the proposed development.

3.6 Surface Water Attenuation

Surface water will be restricted for all events up to an including the 100 year event with a 50% allowance for climate change and a 10% allowance for urban creep. Attenuated flows will be contained on site within a designated storage system. Please refer to the calculations and drainage strategy contained within Appendix E.

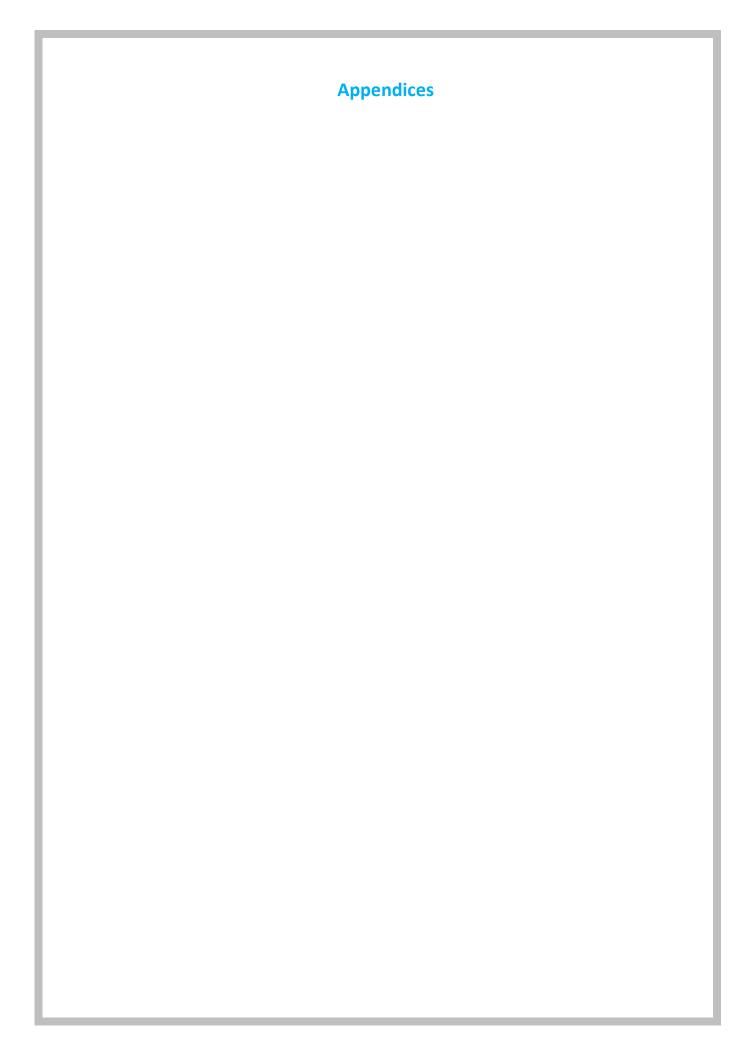
Note – the allowable discharge rate and drainage calculations include for all phases of the development.

By restricting the peak rate of discharge from the site Qbar to the watercourse for all events up to and including the 100-year event, the proposed development will provide betterment from the existing regime in line with the table below.

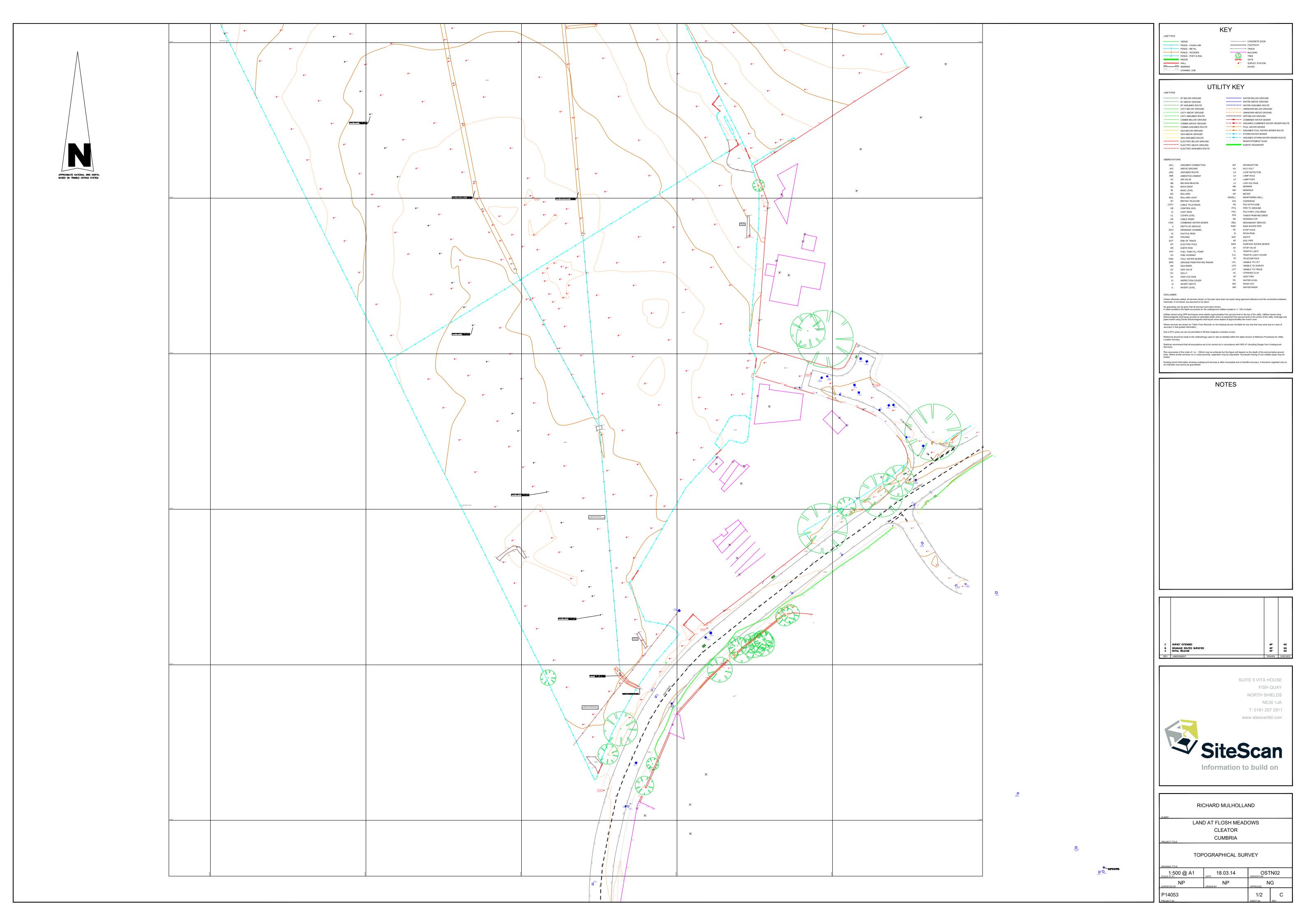
Return period	greenfield rate	Proposed	Betterment
Qbar	32.02 l/s	32.0 l/s	0%
30	54.43 l/s	32.0 l/s	31%
100	66.59 l/s	32.0 l/s	52%
100+50%	99.85 l/s	32.0 l/s	68%

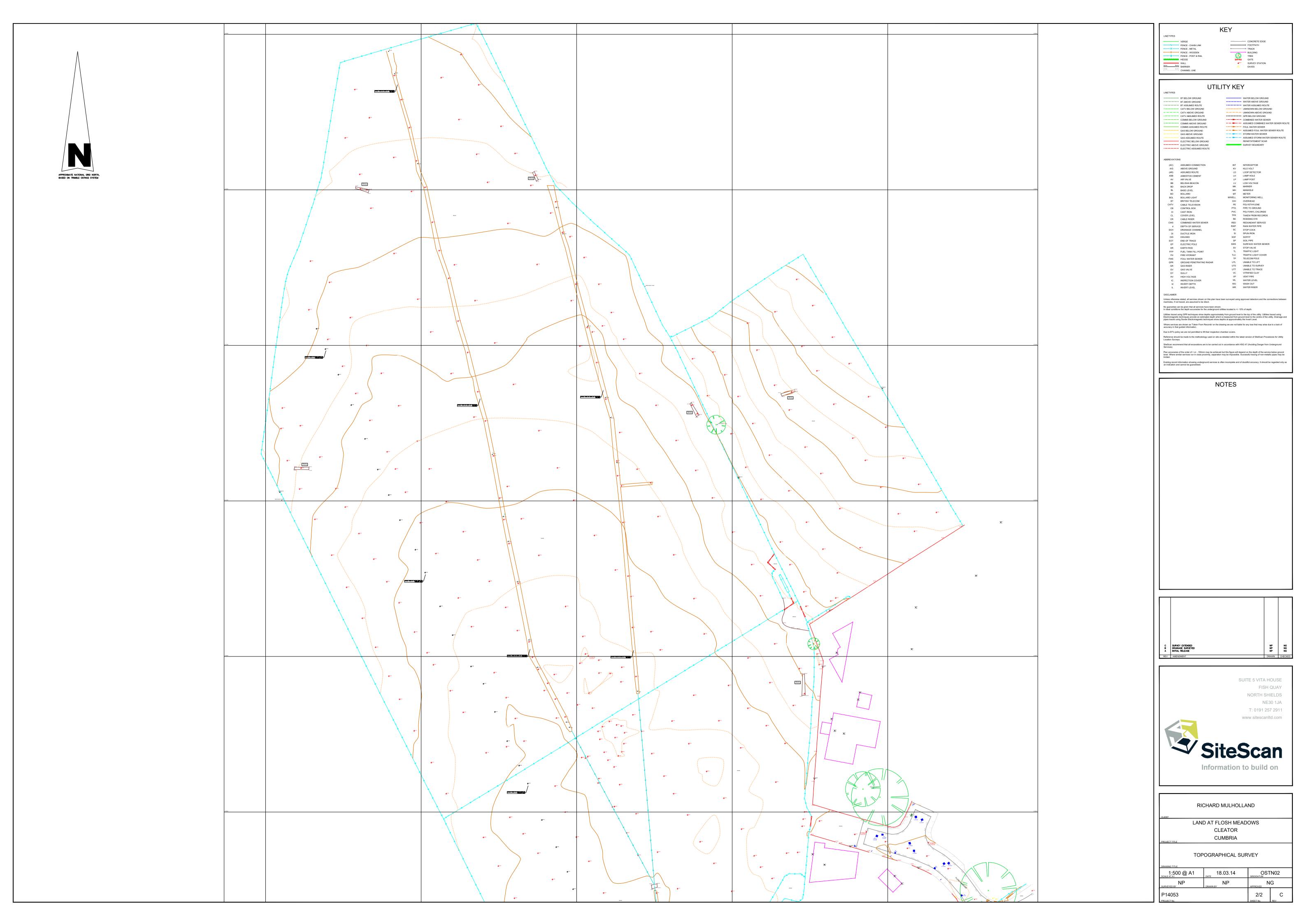
3.7 Proposed Foul Drainage

It is proposed to discharge a portion of the foul water to the adjacent UU combined sewer and a portion to the existing foul sewer in Flosh Meadows, both via gravity connections.



4. References


The following reference documents have been used in the preparation of this report.


- National Planning Policy Framework 2021.
- PPG 2021.
- Environment Agency online flood maps.
- Sewers for Adoption 6th Edition WRC plc, April 2006.
- Building Regulations Document H 2010.
- Improving the Flood Performance of New Buildings Defra.
- Rainfall runoff management for developments SC030219 Defra.
- Susdrain.org
- The SuDS Manual CIRIA C753.

Greenfield runoff rate estimation for sites

www.uksuds.com | Greenfield runoff tool

Calculated by:	richard hall
Site name:	Flosh Meadows
Site location:	Cleator

This is an estimation of the greenfield runoff rates that are used to meet normal best practice criteria in line with Environment Agency guidance "Rainfall runoff management for developments", SC030219 (2013), the SuDS Manual C753 (Ciria, 2015) and the non-statutory standards for SuDS (Defra, 2015). This information on greenfield runoff rates may

the basis for setting consents for the drainage of surface water runoff from sites.

Site Details

Latitude: 54.51164° N Longitude: 3.51942° W

Reference: 2032601581

Date: May 28 2021 13:23

Runoff estimation approach

IH124

Site characteristics

Notes

Total site area (ha):

3.30

(1) Is $Q_{BAR} < 2.0 \text{ l/s/ha}$?

Methodology

Q_{BAR} estimation method: SPR estimation method:

Calculate from SPR and SAAR Calculate from SOIL type

When Q_{BAR} is < 2.0 l/s/ha then limiting discharge rates are set at 2.0 l/s/ha.

Soil characteristics

Default SOIL type: 4 **HOST class:** N/A SPR/SPRHOST: 0.47

Hydrological characteristics

SAAR (mm): Hydrological region: Growth curve factor 1 year: Growth curve factor 30 years: Growth curve factor 100 years: Growth curve factor 200 years:

Default	Edited
1271	1271
10	10
0.87	0.87
1.7	1.7
2.08	2.08
2.37	2.37

Edited

N/A

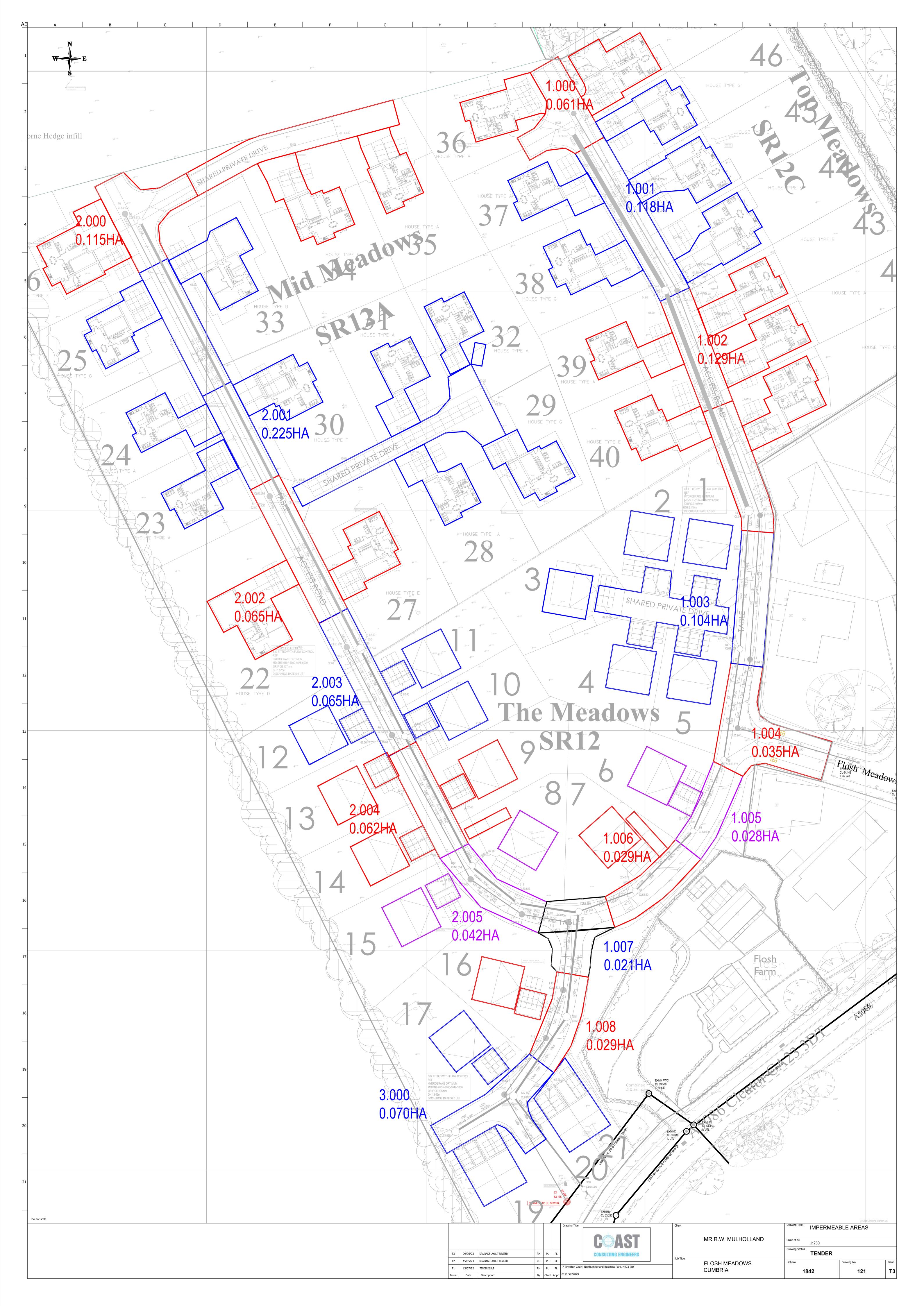
0.47

(2) Are flow rates < 5.0 l/s?

Where flow rates are less than 5.0 l/s consent for discharge is usually set at 5.0 l/s if blockage from vegetation and other materials is possible. Lower consent flow rates may be set where the blockage risk is addressed by using appropriate drainage elements.

(3) Is SPR/SPRHOST ≤ 0.3?

Where groundwater levels are low enough the use of soakaways to avoid discharge offsite would normally be preferred for disposal of surface water runoff.


Greenfield runoff rates

Q_{BAR} (I/s): 1 in 1 year (l/s): 1 in 30 years (l/s): 1 in 100 year (l/s): 1 in 200 years (I/s):

Default	Edited				
32.02	32.02				
27.85	27.85				
54.43	54.43				
66.59	66.59				
75.88	75.88				

This report was produced using the greenfield runoff tool developed by HR Wallingford and available at www.uksuds.com. The use of this tool is subject to the UK SuDS terms and conditions and licence agreement, which can both be found at www.uksuds.com/terms-and-conditions.htm. The outputs from this tool are estimates of greenfield runoff rates. The use of these results is the responsibility of the users of this tool. No liability will be accepted by HR Wallingford, the Environment Agency, CEH, Hydrosolutions or any other organisation for the use of this data in the design or operational characteristics of any drainage scheme.

Coast Consulting Engineers Ltd Suite 6, Vita House Page 1 Fish Quay North Shields NE30 1JA Date 09/06/2023 09:12 Designed by rh Checked by File 230609 REVISED SURFACE WATER OUTFALL REV A.MDX Network 2020.1 ©1982-2020 Innovyze

Coast Consulting Engineers Ltd		Page 0
Suite 6, Vita House	FLOSH MEADOWS	
Fish Quay	CLEATOR	
North Shields NE30 1JA	1:2	Micro
Date 09/06/2023	Designed by RH	Drainage
File 230609 REVISED SURFACE W	Checked by PL	Dialilade
Innovyze	Network 2020.1	

STORM SEWER DESIGN by the Modified Rational Method

Network Design Table for 180518 SW1.SWS

PN	Length (m)	Fall (m)	Slope (1:X)	I.Area (ha)	T.E. (mins)	Base Flow (1/s)	k (mm)	HYD SECT	DIA (mm)	Section Type	Auto Design
1.000	41.957	0.105	399.6	0.061	5.00	0.0	0.600	0	975	Pipe/Conduit	8
1.001	53.639	0.134	400.3	0.118	0.00	0.0	0.600	0	975	Pipe/Conduit	ē
1.002	31.512	0.185	170.3	0.129	0.00	0.0	0.600	0	225	Pipe/Conduit	ē
1.003	25.483	0.150	169.9	0.104	0.00	0.0	0.600	0	225	Pipe/Conduit	ē
1.004	17.652	0.104	169.7	0.035	0.00	0.0	0.600	0	225	Pipe/Conduit	ē
1.005	18.982	0.112	169.5	0.028	0.00	0.0	0.600	0	225	Pipe/Conduit	ē
1.006	13.655	0.080	170.7	0.029	0.00	0.0	0.600	0	225	Pipe/Conduit	<u>-</u>
2.000	71.706	0.221	324.5	0.115	5.00	0.0	0.600	0	525	Pipe/Conduit	ð
2.001	37.730	0.116	325.3	0.225	0.00	0.0	0.600	0	525	Pipe/Conduit	ē
2.002	22.253	0.068	325.0	0.065	0.00	0.0	0.600	0	375	Pipe/Conduit	<u>-</u>
2.003	33.218	0.102	325.7	0.065	0.00	0.0	0.600	0	375	Pipe/Conduit	ē
2.004	13.246	0.041	323.1	0.062	0.00	0.0	0.600	0	375	Pipe/Conduit	<u>.</u>
2.005	14.105	0.043	328.0	0.042	0.00	0.0	0.600	0	375	Pipe/Conduit	•
1.007	24.092	0.074	325.6	0.021	0.00	0.0	0.600	0	375	Pipe/Conduit	₽
1.008	21.726	0.067	324.3	0.029	0.00	0.0	0.600	0	375	Pipe/Conduit	<u>-</u>

Network Results Table

PN	Rain (mm/hr)	T.C. (mins)	US/IL (m)	Σ I.Area (ha)	Σ Base Flow (1/s)	Foul (1/s)	Add Flow (1/s)	Vel (m/s)	Cap (1/s)	Flow (1/s)
1.000	0.00	5.43	63.013	0.061	0.0	0.0	0.0	1.64	1225.0	0.0
1.001	0.00	5.97	62.908	0.179	0.0	0.0	0.0	1.64	1223.9	0.0
1.002	0.00	6.50	62.774	0.308	0.0	0.0	0.0	1.00	39.7	0.0
1.003	0.00	6.92	62.589	0.412	0.0	0.0	0.0	1.00	39.8	0.0
1.004	0.00	7.22	62.439	0.447	0.0	0.0	0.0	1.00	39.8	0.0
1.005	0.00	7.53	62.335	0.475	0.0	0.0	0.0	1.00	39.8	0.0
1.006	0.00	7.76	62.223	0.504	0.0	0.0	0.0	1.00	39.7	0.0
2.000	0.00	5.97	62.586	0.115	0.0	0.0	0.0	1.24	268.0	0.0
2.001	0.00	6.47	62.365	0.340	0.0	0.0	0.0	1.24	267.7	0.0
2.002	0.00	6.85	62.249	0.405	0.0	0.0	0.0	1.00	110.4	0.0
2.003	0.00	7.40	62.181	0.470	0.0	0.0	0.0	1.00	110.3	0.0
2.004	0.00	7.62	62.079	0.532	0.0	0.0	0.0	1.00	110.7	0.0
2.005	0.00	7.86	62.038	0.574	0.0	0.0	0.0	0.99	109.9	0.0
1.007	0.00	8.26	61.993	1.099	0.0	0.0	0.0	1.00	110.3	0.0
1.008	0.00	8.62	61.919	1.128	0.0	0.0	0.0	1.00	110.5	0.0

Coast Consulting Engineers Ltd		Page 1
Suite 6, Vita House	FLOSH MEADOWS	
Fish Quay	CLEATOR	
North Shields NE30 1JA	1:2	Micro
Date 09/06/2023	Designed by RH	Drainage
File 230609 REVISED SURFACE W	Checked by PL	prairiage
Innovyze	Network 2020.1	

STORM SEWER DESIGN by the Modified Rational Method

Network Design Table for 180518 SW1.SWS

P	N			•	I.Area							Section Type	
		(m)	(m)	(I:X)	(ha)	(mins)	F.TOM.	(I/S)	(mm)	SECT	(mm)		Design
3.0	000	15.459	0.048	322.1	0.070	5.00		0.0	0.600	0	375	Pipe/Conduit	Ô
		26.775 3.900				0.00			0.600			Pipe/Conduit Pipe/Conduit	_

Network Results Table

PN	Rain	T.C.	US/IL	Σ I.Area	Σ Base	Foul	Add Flow	Vel	Cap	Flow
	(mm/hr)	(mins)	(m)	(ha)	Flow (1/s)	(1/s)	(1/s)	(m/s)	(1/s)	(1/s)
3.000	0.00	5.26	61.900	0.070	0.0	0.0	0.0	1.00	110.9	0.0
1.009	0.00	9.07	61.852	1.198	0.0	0.0	0.0	1.00	70.6	0.0
1.010	0.00	9.13	61.743	1.198	0.0	0.0	0.0	1.00	70.9	0.0

Free Flowing Outfall Details for 180518 SW1.SWS

Outfall	Outfall	c.	Level	I.	Level		Min	D,L	W
Pipe Number	Name		(m)		(m)	I.	Level	(mm)	(mm)
							(m)		

1.010 C1 63.006 61.727 61.727 1350 C

Simulation Criteria for 180518 SW1.SWS

Volumetric Runoff Coeff 0.750 Additional Flow - % of Total Flow 0.000
Areal Reduction Factor 1.000 MADD Factor * 10m³/ha Storage 2.000
Hot Start (mins) 0 Inlet Coefficient 0.800
Hot Start Level (mm) 0 Flow per Person per Day (1/per/day) 0.000
Manhole Headloss Coeff (Global) 0.500 Run Time (mins) 60
Foul Sewage per hectare (1/s) 0.000 Output Interval (mins) 1

Number of Input Hydrographs 0 Number of Storage Structures 13 Number of Online Controls 3 Number of Time/Area Diagrams 0 Number of Offline Controls 0 Number of Real Time Controls 0

Synthetic Rainfall Details

Rainfall Model FSR M5-60 (mm) 19.600 Return Period (years) 2 Ratio R 0.223 Region England and Wales Profile Type Summer

Coast Consulting Engineers Ltd		Page 2
Suite 6, Vita House	FLOSH MEADOWS	
Fish Quay	CLEATOR	
North Shields NE30 1JA	1:2	Micro
Date 09/06/2023	Designed by RH	Drainage
File 230609 REVISED SURFACE W	Checked by PL	Dialilade
Innovyze	Network 2020.1	

Synthetic Rainfall Details

Cv (Summer) 0.750 Storm Duration (mins) 30 Cv (Winter) 0.840

Coast Consulting Engineers Ltd					
Suite 6, Vita House	FLOSH MEADOWS				
Fish Quay	CLEATOR				
North Shields NE30 1JA	1:2	Micro			
Date 09/06/2023	Designed by RH	Drainage			
File 230609 REVISED SURFACE W	Checked by PL	niairiade			
Innovyze	Network 2020.1				

Online Controls for 180518 SW1.SWS

Hydro-Brake® Optimum Manhole: 3 HB, DS/PN: 1.002, Volume (m³): 45.9

Unit Reference MD-SHE-0107-7000-2119-7000 Design Head (m) 2.119 Design Flow (1/s) 7.0 Flush-Flo™ Calculated Objective Minimise upstream storage Application Surface Sump Available Yes 107 Diameter (mm) Invert Level (m) 62.774 Minimum Outlet Pipe Diameter (mm) 150 1200 Suggested Manhole Diameter (mm)

Control	Points	Head (m)	Flow (1/s)	Control Points	Head (m)	Flow (1/s)
Design Point	(Calculated)	2.119	7.0	Kick-Flo®	0.957	4.8
	Flush-Flo™	0.469	6.1	Mean Flow over Head Range	_	5.6

The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake® Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated

Depth (m)	Flow (1/s)	Depth (m)	Flow (1/s)	Depth (m) Fl	ow (1/s)	Depth (m)	Flow (1/s)
0.100	3.7	1.200	5.4	3.000	8.2	7.000	12.3
0.200	5.4	1.400	5.8	3.500	8.9	7.500	12.7
0.300	5.9	1.600	6.1	4.000	9.4	8.000	13.1
0.400	6.0	1.800	6.5	4.500	10.0	8.500	13.5
0.500	6.1	2.000	6.8	5.000	10.5	9.000	13.9
0.600	6.0	2.200	7.1	5.500	11.0	9.500	14.3
0.800	5.6	2.400	7.4	6.000	11.4		
1.000	4.9	2.600	7.7	6.500	11.9		

Hydro-Brake® Optimum Manhole: 10 HB, DS/PN: 2.002, Volume (m³): 13.2

Unit Reference MD-SHE-0107-6000-1575-6000 1.575 Design Head (m) Design Flow (1/s) 6.0 Flush-Flo™ Calculated Objective Minimise upstream storage Application Surface Sump Available Yes Diameter (mm) 106 62.249 Invert Level (m) 150 Minimum Outlet Pipe Diameter (mm)

Coast Consulting Engineers Ltd		Page 4
Suite 6, Vita House	FLOSH MEADOWS	
Fish Quay	CLEATOR	
North Shields NE30 1JA	1:2	Micro
Date 09/06/2023	Designed by RH	Drainage
File 230609 REVISED SURFACE W	Checked by PL	pramage
Innovyze	Network 2020.1	

Hydro-Brake® Optimum Manhole: 10 HB, DS/PN: 2.002, Volume (m³): 13.2

Suggested Manhole Diameter (mm) 1200

Control	Points	Head (m)	Flow (1/s)	Control Points	Head (m)	Flow (1/s)
Design Point	(Calculated)	1.575	6.0	Kick-Flo®	0.952	4.7
	Flush-Flo™	0.468	5.9	Mean Flow over Head Range	_	5.2

The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake® Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated

Depth (m)	Flow (1/s)	Depth (m)	Flow (1/s)	Depth (m) Flo	w (1/s)	Depth (m)	Flow (1/s)
0.100	3.6	1.200	5.3	3.000	8.1	7.000	12.1
0.200	5.3	1.400	5.7	3.500	8.7	7.500	12.5
0.300	5.7	1.600	6.0	4.000	9.3	8.000	12.9
0.400	5.9	1.800	6.4	4.500	9.8	8.500	13.3
0.500	5.9	2.000	6.7	5.000	10.3	9.000	13.7
0.600	5.9	2.200	7.0	5.500	10.8	9.500	14.0
0.800	5.5	2.400	7.3	6.000	11.3		
1.000	4.9	2.600	7.6	6.500	11.7		

Hydro-Brake® Optimum Manhole: 17 HB, DS/PN: 1.009, Volume (m³): 9.6

Unit Reference MD-SHE-0235-3200-1642-3200 Design Head (m) 1.642 Design Flow (1/s) 32.0 Flush-Flo™ Calculated Objective Minimise upstream storage Application Surface Sump Available Yes Diameter (mm) 235 Invert Level (m) 61.852 300 Minimum Outlet Pipe Diameter (mm) Suggested Manhole Diameter (mm) 1800

Control	Points	Head (m)	Flow (1/s)	Control Points	Head (m)	Flow (1/s)
Design Point	(Calculated)	1.642	32.0	Kick-Flo®	1.101	26.4
	Flush-Flo™	0.503	32.0	Mean Flow over Head Range	-	27.5

The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake® Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated

Depth (m) Flow	(1/s)	Depth (m)	Flow (1/s)	Depth (m) E	Flow (1/s)	Depth (m)	Flow (1/s)
0.100	7.8	0.200	23.7	0.300	30.6	0.400	31.7

Coast Consulting Engineers Ltd					
Suite 6, Vita House	FLOSH MEADOWS				
Fish Quay	CLEATOR				
North Shields NE30 1JA	1:2	Micro			
Date 09/06/2023	Designed by RH	Drainage			
File 230609 REVISED SURFACE W	Checked by PL	niairiade			
Innovyze	Network 2020.1				

Hydro-Brake® Optimum Manhole: 17 HB, DS/PN: 1.009, Volume (m³): 9.6

Depth (m	Flow (1/s	Depth (m)	Flow (1/s)	Depth (m)	Flow (1/s)	Depth (m)	Flow (1/s)
0.50	32.0	1.800	33.4	4.000	49.1	7.500	66.6
0.60	31.8	2.000	35.2	4.500	52.0	8.000	68.8
0.80	31.0	2.200	36.8	5.000	54.7	8.500	70.8
1.00	28.	2.400	38.4	5.500	57.3	9.000	72.8
1.20	27.	2.600	39.9	6.000	59.8	9.500	74.8
1.40	29.	3.000	42.8	6.500	62.2		
1.60	31.	3.500	46.1	7.000	64.4		

Coast Consulting Engineers Ltd		Page 6
Suite 6, Vita House	FLOSH MEADOWS	
Fish Quay	CLEATOR	
North Shields NE30 1JA	1:2	Micro
Date 09/06/2023	Designed by RH	Drainage
File 230609 REVISED SURFACE W	Checked by PL	Dialilade
Innovyze	Network 2020.1	

Storage Structures for 180518 SW1.SWS

Cellular Storage Manhole: 1, DS/PN: 1.000

Invert Level (m) 63.585 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.00000 Porosity 0.95 Infiltration Coefficient Side (m/hr) 0.00000

Depth (m) Area (m²) Inf. Area (m²) Depth (m) Area (m²) Inf. Area (m²) 0.000 51.8 0.0 0.521 0.0 0.0 0.520 51.8 0.0

Cellular Storage Manhole: 2, DS/PN: 1.001

Invert Level (m) 63.015 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.00000 Porosity 0.95 Infiltration Coefficient Side (m/hr) 0.00000

Depth (m) Area (m²) Inf. Area (m²) Depth (m) Area (m²) Inf. Area (m²) 0.000 220.0 0.0 0.521 0.0 0.0 0.520 220.0 0.0

Cellular Storage Manhole: 4, DS/PN: 1.003

Invert Level (m) 62.589 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.00000 Porosity 0.95 Infiltration Coefficient Side (m/hr) 0.00000

Depth	(m)	Area	(m²)	Inf.	Area	(m²)	Depth	(m)	Area	(m²)	Inf.	Area	(m²)
0.	.000	1	129.5			0.0	0	.521		0.0			0.0
0.	.520	1	129.5			0.0							

Cellular Storage Manhole: 6, DS/PN: 1.005

Invert Level (m) 62.335 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.00000 Porosity 0.95 Infiltration Coefficient Side (m/hr) 0.00000

Depth	(m)	Area	(m²)	Inf.	Area	(m²)	Depth	(m)	Area	(m²)	Inf.	Area	(m²)
0.	000		25.9			0.0	0.	521		0.0			0.0
0.	520		25.9			0.0							

Coast Consulting Engineers Ltd		Page 7
Suite 6, Vita House	FLOSH MEADOWS	
Fish Quay	CLEATOR	
North Shields NE30 1JA	1:2	Micro
Date 09/06/2023	Designed by RH	Drainage
File 230609 REVISED SURFACE W	Checked by PL	niairiade
Innovyze	Network 2020.1	

Cellular Storage Manhole: 7, DS/PN: 1.006

Depth (m) Area (m²) Inf. Area (m²) Depth (m) Area (m²) Inf. Area (m²) 0.000 25.9 0.0 0.521 0.0 0.0 0.520 25.9 0.0

Cellular Storage Manhole: 8, DS/PN: 2.000

Invert Level (m) 63.413 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.00000 Porosity 0.95 Infiltration Coefficient Side (m/hr) 0.00000

Depth (m) Area (m²) Inf. Area (m²) Depth (m) Area (m²) Inf. Area (m²) 0.000 77.7 0.0 0.520 77.7 0.0

Cellular Storage Manhole: 9, DS/PN: 2.001

Invert Level (m) 62.621 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.00000 Porosity 0.95 Infiltration Coefficient Side (m/hr) 0.00000

Depth (m) Area (m²) Inf. Area (m²) Depth (m) Area (m²) Inf. Area (m²) 0.000 388.5 0.0 0.521 0.0 0.0 0.520 388.5 0.0

Cellular Storage Manhole: 10 HB, DS/PN: 2.002

Depth	(m)	Area	(m²)	Inf.	Area	(m²)	Depth	(m)	Area	(m²)	Inf.	Area	(m²)
0.	000	1	170.0			0.0	0.	.521		0.0			0.0
0.	520	1	170.0			0.0							

Cellular Storage Manhole: 11, DS/PN: 2.003

Invert Level (m) 62.181 Infiltration Coefficient Side (m/hr) 0.00000 Infiltration Coefficient Base (m/hr) 0.00000 Safety Factor 2.0

Coast Consulting Engineers Ltd		Page 8
Suite 6, Vita House	FLOSH MEADOWS	
Fish Quay	CLEATOR	
North Shields NE30 1JA	1:2	Micro
Date 09/06/2023	Designed by RH	Drainage
File 230609 REVISED SURFACE W	Checked by PL	prairiage
Innovvze	Network 2020.1	

Cellular Storage Manhole: 11, DS/PN: 2.003

Porosity 0.95

Depth (m) Area (m²) Inf. Area (m²) Depth (m) Area (m²) Inf. Area (m²) 0.000 200.0 0.520 0.0 0.0 0.520 200.0 0.0

Cellular Storage Manhole: 12, DS/PN: 2.004

Invert Level (m) 62.079 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.00000 Porosity 0.95 Infiltration Coefficient Side (m/hr) 0.00000

Depth (m) Area (m²) Inf. Area (m²) Depth (m) Area (m²) Inf. Area (m²) 0.000 129.5 0.0 0.521 0.0 0.0

Cellular Storage Manhole: 15, DS/PN: 1.008

Invert Level (m) 61.919 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.00000 Porosity 0.95 Infiltration Coefficient Side (m/hr) 0.00000

Depth (m) Area (m²) Inf. Area (m²) Depth (m) Area (m²) Inf. Area (m²) 0.000 30.0 0.0 0.520 30.0 0.0

Cellular Storage Manhole: 16, DS/PN: 3.000

Invert Level (m) 61.900 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.00000 Porosity 0.95 Infiltration Coefficient Side (m/hr) 0.00000

Depth (m) Area (m²) Inf. Area (m²) Depth (m) Area (m²) Inf. Area (m²) 0.000 51.8 0.0 0.521 0.0 0.0 0.520 51.8 0.0

Cellular Storage Manhole: 17 HB, DS/PN: 1.009

Invert Level (m) 61.852 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.00000 Porosity 0.95 Infiltration Coefficient Side (m/hr) 0.00000

Coast Consulting Engineers Ltd		Page 9
Suite 6, Vita House	FLOSH MEADOWS	
Fish Quay	CLEATOR	
North Shields NE30 1JA	1:2	Micro
Date 09/06/2023	Designed by RH	Drainage
File 230609 REVISED SURFACE W	Checked by PL	Diamage
Innovyze	Network 2020.1	

Cellular Storage Manhole: 17 HB, DS/PN: 1.009

Depth (m)	Area (m²)	Inf. Area	(m²)	Depth	(m)	Area	(m²)	Inf.	Area	(m²)
0.000	77.7		0.0	0.	521		0.0			0.0
0.520	77.7		0.0							

Coast Consulting Engineers Ltd		Page 10
Suite 6, Vita House	FLOSH MEADOWS	
Fish Quay	CLEATOR	
North Shields NE30 1JA	1:2	Micro
Date 09/06/2023	Designed by RH	Drainage
File 230609 REVISED SURFACE W	Checked by PL	Diamage
Innovyze	Network 2020.1	

Summary of Critical Results by Maximum Level (Rank 1) for 180518 SW1.SWS

Simulation Criteria

Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000 Hot Start (mins) 0 MADD Factor * $10m^3$ /ha Storage 2.000 Hot Start Level (mm) 0 Inlet Coefficient 0.800 Manhole Headloss Coeff (Global) 0.500 Flow per Person per Day (1/per/day) 0.000 Foul Sewage per hectare (1/s) 0.000

Number of Input Hydrographs 0 Number of Storage Structures 13 Number of Online Controls 3 Number of Time/Area Diagrams 0 Number of Offline Controls 0 Number of Real Time Controls 0

Synthetic Rainfall Details

Rainfall Model FSR Ratio R 0.220
Region England and Wales Cv (Summer) 1.000
M5-60 (mm) 18.600 Cv (Winter) 1.000

Margin for Flood Risk Warning (mm) 300.0

Analysis Timestep 2.5 Second Increment (Extended)

DTS Status

OFF

DVD Status

OFF

Inertia Status

										Water
	US/MH			Return	Climate	First (X)	First (Y) First (Z)	Overflow	Level
PN	Name	S	torm	Period	Change	Surcharge	Flood	Overflow	Act.	(m)
1.000	1	240	Summer	2	+0%					63.117
1.001	2	240	Summer	2	+0%					63.117
1.002	3 HB	240	Summer	2	+0%	2/15 Summer				63.116
1.003	4	120	Summer	2	+0%					62.684
1.004	5	60	Summer	2	+0%					62.547
1.005	6	60	Summer	2	+0%					62.451
1.006	7	60	Summer	2	+0%					62.349
2.000	8	15	Summer	2	+0%					62.686
2.001	9	480	Summer	2	+0%					62.618
2.002	10 HB	480	Summer	2	+0%					62.617
2.003	11	360	Summer	2	+0%					62.256
2.004	12	360	Summer	2	+0%					62.194
2.005	13	360	Summer	2	+0%					62.181
1.007	14	360	Summer	2	+0%					62.174
					©1982	-2020 Inno	vvze			

Coast Consulting Engineers Ltd		Page 11
Suite 6, Vita House	FLOSH MEADOWS	
Fish Quay	CLEATOR	
North Shields NE30 1JA	1:2	Micro
Date 09/06/2023	Designed by RH	Drainage
File 230609 REVISED SURFACE W	Checked by PL	Drainage
Innovyze	Network 2020.1	

 $\underline{\text{Summary of Critical Results by Maximum Level (Rank 1) for 180518 SW1.SWS}}$

PN	US/MH Name	Surcharged Depth (m)			Overflow (1/s)	Half Drain Time (mins)	Pipe Flow (1/s)	Status	Level Exceeded
1.000	1	-0.871	0.000	0.00		80	4.4	OK	
1.001	2	-0.766	0.000	0.01		83	6.1	OK	
1.002	3 HB	0.117	0.000	0.16			6.0	SURCHARGED	
1.003	4	-0.130	0.000	0.37		140	13.7	OK	
1.004	5	-0.117	0.000	0.46			16.5	OK	
1.005	6	-0.109	0.000	0.52			18.8	OK	
1.006	7	-0.099	0.000	0.60		51	20.8	OK	
2.000	8	-0.425	0.000	0.08		6	19.1	OK	
2.001	9	-0.272	0.000	0.07		102	15.9	OK	
2.002	10 HB	-0.007	0.000	0.06		192	5.8	OK	
2.003	11	-0.300	0.000	0.08		315	7.8	OK	
2.004	12	-0.260	0.000	0.11		248	9.5	OK	
2.005	13	-0.231	0.000	0.13			10.8	OK	
1.007	14	-0.194	0.000	0.29			27.8	OK	

Coast Consulting Engineers Ltd		Page 12
Suite 6, Vita House	FLOSH MEADOWS	
Fish Quay	CLEATOR	
North Shields NE30 1JA	1:2	Micro
Date 09/06/2023	Designed by RH	Drainage
File 230609 REVISED SURFACE W	Checked by PL	prairiage
Innovyze	Network 2020.1	

 $\underline{\text{Summary of Critical Results by Maximum Level (Rank 1) for 180518 SW1.SWS}}$

PN		US/I Nam		s	torm			First (X Surcharg		First Overf	٠,	Overflow Act.	Water Level (m)
1.00	8	:	15	360	Summer	2	+0%						62.152
3.00	0		16	360	Summer	2	+0%						62.138
1.00	9	17	ΗB	360	Summer	2	+0%						62.137
1.01	. 0		18	360	Summer	2	+0%						61.897

		Surcharged	Flooded			Half Drain	Pipe		
	US/MH	Depth	Volume	Flow /	Overflow	Time	Flow		Level
PN	Name	(m)	(m³)	Cap.	(1/s)	(mins)	(1/s)	Status	Exceeded
1.008	15	-0.142	0.000	0.29		126	27.7	OK	
3.000	16	-0.137	0.000	0.02		115	2.0	OK	
1.009	17 HB	-0.015	0.000	0.40		154	25.4	OK	
1.010	18	-0.146	0.000	0.52			25.4	OK	

Coast Consulting Engineers Ltd		Page 0
Suite 6, Vita House	FLOSH MEADOWS	
Fish Quay	CLEATOR	
North Shields NE30 1JA	1:30	Micro
Date 09/06/2023	Designed by RH	Drainage
File 230609 REVISED SURFACE W	Checked by PL	prairiage
Innovyze	Network 2020.1	

STORM SEWER DESIGN by the Modified Rational Method

Network Design Table for 180518 SW1.SWS

PN	Length	Fall	Slope	I.Area	T.E.	Ва	ase	k	HYD	DIA	Section Type	Auto
	(m)	(m)	(1:X)	(ha)	(mins)	Flow	(1/s)	(mm)	SECT	(mm)		Design
1.000	41.957	0.105	399.6	0.061	5.00		0.0	0.600	0	975	Pipe/Conduit	6
1.001	53.639	0.134	400.3	0.118	0.00		0.0	0.600	0	975	Pipe/Conduit	ē
1.002	31.512	0.185	170.3	0.129	0.00		0.0	0.600	0	225	Pipe/Conduit	ē
1.003	25.483	0.150	169.9	0.104	0.00		0.0	0.600	0	225	Pipe/Conduit	ē
1.004	17.652	0.104	169.7	0.035	0.00		0.0	0.600	0	225	Pipe/Conduit	ē
1.005	18.982	0.112	169.5	0.028	0.00		0.0	0.600	0	225	Pipe/Conduit	<u>-</u>
1.006	13.655	0.080	170.7	0.029	0.00		0.0	0.600	0	225	Pipe/Conduit	<u>-</u>
2.000	71.706	0.221	324.5	0.115	5.00		0.0	0.600	0	525	Pipe/Conduit	ð
2.001	37.730	0.116	325.3	0.225	0.00		0.0	0.600	0	525	Pipe/Conduit	₩
2.002	22.253	0.068	325.0	0.065	0.00		0.0	0.600	0	375	Pipe/Conduit	₩
2.003	33.218	0.102	325.7	0.065	0.00		0.0	0.600	0	375	Pipe/Conduit	●
2.004	13.246	0.041	323.1	0.062	0.00		0.0	0.600	0	375	Pipe/Conduit	₩
2.005	14.105	0.043	328.0	0.042	0.00		0.0	0.600	0	375	Pipe/Conduit	●
1.007	24.092	0.074	325.6	0.021	0.00		0.0	0.600	0	375	Pipe/Conduit	₩
1.008	21.726	0.067	324.3	0.029	0.00		0.0	0.600	0	375	Pipe/Conduit	ď

Network Results Table

PN	Rain (mm/hr)	T.C. (mins)	US/IL (m)	Σ I.Area (ha)	Σ Base Flow (1/s)	Foul (1/s)	Add Flow (1/s)	Vel (m/s)	Cap (1/s)	Flow (1/s)
1.000	0.00	5.43	63.013	0.061	0.0	0.0	0.0	1.64	1225.0	0.0
1.001	0.00	5.97	62.908	0.179	0.0	0.0	0.0	1.64	1223.9	0.0
1.002	0.00	6.50	62.774	0.308	0.0	0.0	0.0	1.00	39.7	0.0
1.003	0.00	6.92	62.589	0.412	0.0	0.0	0.0	1.00	39.8	0.0
1.004	0.00	7.22	62.439	0.447	0.0	0.0	0.0	1.00	39.8	0.0
1.005	0.00	7.53	62.335	0.475	0.0	0.0	0.0	1.00	39.8	0.0
1.006	0.00	7.76	62.223	0.504	0.0	0.0	0.0	1.00	39.7	0.0
2.000	0.00	5.97	62.586	0.115	0.0	0.0	0.0	1.24	268.0	0.0
2.001	0.00	6.47	62.365	0.340	0.0	0.0	0.0	1.24	267.7	0.0
2.002	0.00	6.85	62.249	0.405	0.0	0.0	0.0	1.00	110.4	0.0
2.003	0.00	7.40	62.181	0.470	0.0	0.0	0.0	1.00	110.3	0.0
2.004	0.00	7.62	62.079	0.532	0.0	0.0	0.0	1.00	110.7	0.0
2.005	0.00	7.86	62.038	0.574	0.0	0.0	0.0	0.99	109.9	0.0
1.007	0.00	8.26	61.993	1.099	0.0	0.0	0.0	1.00	110.3	0.0
1.008	0.00	8.62	61.919	1.128	0.0	0.0	0.0	1.00	110.5	0.0

Coast Consulting Engineers Ltd	Page 1	
Suite 6, Vita House	FLOSH MEADOWS	
Fish Quay	CLEATOR	
North Shields NE30 1JA	1:30	Micro
Date 09/06/2023	Designed by RH	Drainage
File 230609 REVISED SURFACE W	Checked by PL	niairiade
Innovyze	Network 2020.1	

STORM SEWER DESIGN by the Modified Rational Method

Network Design Table for 180518 SW1.SWS

P	N			•	I.Area							Section Type	
		(m)	(m)	(I:X)	(ha)	(mins)	F.TOM.	(I/S)	(mm)	SECT	(mm)		Design
3.0	000	15.459	0.048	322.1	0.070	5.00		0.0	0.600	0	375	Pipe/Conduit	Ô
		26.775 3.900				0.00			0.600			Pipe/Conduit Pipe/Conduit	_

Network Results Table

PN	Rain	T.C.	US/IL	Σ I.Area	ΣΕ	Base	Foul	Add Flow	Vel	Cap	Flow
	(mm/hr)	(mins)	(m)	(ha)	Flow	(1/s)	(1/s)	(1/s)	(m/s)	(l/s)	(1/s)
3.000	0.00	5.26	61.900	0.070		0.0	0.0	0.0	1.00	110.9	0.0
1.009	0.00	9.07	61.852	1.198		0.0	0.0	0.0	1.00	70.6	0.0
1.010	0.00	9.13	61.743	1.198		0.0	0.0	0.0	1.00	70.9	0.0

Free Flowing Outfall Details for 180518 SW1.SWS

Outfall	Outfall	c.	Level	I.	Level		Min	D,L	W
Pipe Number	Name		(m)		(m)	I.	Level	(mm)	(mm)
							(m)		

1.010 C1 63.006 61.727 61.727 1350 C

Simulation Criteria for 180518 SW1.SWS

Volumetric Runoff Coeff 0.750 Additional Flow - % of Total Flow 0.000
Areal Reduction Factor 1.000 MADD Factor * 10m³/ha Storage 2.000
Hot Start (mins) 0 Inlet Coefficient 0.800
Hot Start Level (mm) 0 Flow per Person per Day (1/per/day) 0.000
Manhole Headloss Coeff (Global) 0.500 Run Time (mins) 60
Foul Sewage per hectare (1/s) 0.000 Output Interval (mins) 1

Number of Input Hydrographs 0 Number of Storage Structures 13 Number of Online Controls 3 Number of Time/Area Diagrams 0 Number of Offline Controls 0 Number of Real Time Controls 0

Synthetic Rainfall Details

Rainfall Model FSR M5-60 (mm) 19.600 Return Period (years) 2 Ratio R 0.223 Region England and Wales Profile Type Summer

Coast Consulting Engineers Ltd	Page 2	
Suite 6, Vita House	FLOSH MEADOWS	
Fish Quay	CLEATOR	
North Shields NE30 1JA	1:30	Micro
Date 09/06/2023	Designed by RH	Drainage
File 230609 REVISED SURFACE W	Checked by PL	Dialilade
Innovyze	Network 2020.1	

Synthetic Rainfall Details

Cv (Summer) 0.750 Storm Duration (mins) 30 Cv (Winter) 0.840

Coast Consulting Engineers Ltd	Page 3	
Suite 6, Vita House	FLOSH MEADOWS	
Fish Quay	CLEATOR	
North Shields NE30 1JA	1:30	Micro
Date 09/06/2023	Designed by RH	Drainage
File 230609 REVISED SURFACE W	Checked by PL	niairiade
Innovyze	Network 2020.1	

Online Controls for 180518 SW1.SWS

Hydro-Brake® Optimum Manhole: 3 HB, DS/PN: 1.002, Volume (m³): 45.9

Unit Reference MD-SHE-0107-7000-2119-7000 Design Head (m) 2.119 Design Flow (1/s) 7.0 Flush-Flo™ Calculated Objective Minimise upstream storage Application Surface Sump Available Yes 107 Diameter (mm) Invert Level (m) 62.774 Minimum Outlet Pipe Diameter (mm) 150 1200 Suggested Manhole Diameter (mm)

Control	Points	Head (m)	Flow (1/s)	Control Points	Head (m)	Flow (1/s)
Design Point	(Calculated)	2.119	7.0	Kick-Flo®	0.957	4.8
	Flush-Flo™	0.469	6.1	Mean Flow over Head Range	_	5.6

The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake® Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated

Depth (m)	Flow $(1/s)$	Depth (m)	Flow (1/s)	Depth (m) F	low (1/s)	Depth (m)	Flow (1/s)
0.100	3.7	1.200	5.4	3.000	8.2	7.000	12.3
0.200	5.4	1.400	5.8	3.500	8.9	7.500	12.7
0.300	5.9	1.600	6.1	4.000	9.4	8.000	13.1
0.400	6.0	1.800	6.5	4.500	10.0	8.500	13.5
0.500	6.1	2.000	6.8	5.000	10.5	9.000	13.9
0.600	6.0	2.200	7.1	5.500	11.0	9.500	14.3
0.800	5.6	2.400	7.4	6.000	11.4		
1.000	4.9	2.600	7.7	6.500	11.9		

Hydro-Brake® Optimum Manhole: 10 HB, DS/PN: 2.002, Volume (m³): 13.2

Unit Reference MD-SHE-0107-6000-1575-6000 1.575 Design Head (m) Design Flow (1/s) 6.0 Flush-Flo™ Calculated Objective Minimise upstream storage Application Surface Sump Available Yes Diameter (mm) 106 62.249 Invert Level (m) 150 Minimum Outlet Pipe Diameter (mm)

Coast Consulting Engineers Ltd		
Suite 6, Vita House	FLOSH MEADOWS	
Fish Quay	CLEATOR	
North Shields NE30 1JA	1:30	Micro
Date 09/06/2023	Designed by RH	Drainage
File 230609 REVISED SURFACE W	Checked by PL	pramage
Innovyze	Network 2020.1	

Hydro-Brake® Optimum Manhole: 10 HB, DS/PN: 2.002, Volume (m³): 13.2

Suggested Manhole Diameter (mm) 1200

Control	Points	Head (m)	Flow (1/s)	Control Points	Head (m)	Flow (1/s)
Design Point	(Calculated)	1.575	6.0	Kick-Flo®	0.952	4.7
	Flush-Flo™	0.468	5.9	Mean Flow over Head Range	_	5.2

The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake® Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated

Depth (m)	Flow (1/s)	Depth (m)	Flow (1/s)	Depth (m) Flo	w (1/s)	Depth (m)	Flow (1/s)
0.100	3.6	1.200	5.3	3.000	8.1	7.000	12.1
0.200	5.3	1.400	5.7	3.500	8.7	7.500	12.5
0.300	5.7	1.600	6.0	4.000	9.3	8.000	12.9
0.400	5.9	1.800	6.4	4.500	9.8	8.500	13.3
0.500	5.9	2.000	6.7	5.000	10.3	9.000	13.7
0.600	5.9	2.200	7.0	5.500	10.8	9.500	14.0
0.800	5.5	2.400	7.3	6.000	11.3		
1.000	4.9	2.600	7.6	6.500	11.7		

Hydro-Brake® Optimum Manhole: 17 HB, DS/PN: 1.009, Volume (m³): 9.6

Unit Reference MD-SHE-0235-3200-1642-3200 Design Head (m) 1.642 Design Flow (1/s) 32.0 Flush-Flo™ Calculated Objective Minimise upstream storage Application Surface Sump Available Yes Diameter (mm) 235 Invert Level (m) 61.852 Minimum Outlet Pipe Diameter (mm) 300 Suggested Manhole Diameter (mm) 1800

Control	Points	Head (m)	Flow (1/s)	Control Points	Head (m)	Flow (1/s)
Design Point	(Calculated)	1.642	32.0	Kick-Flo®	1.101	26.4
	Flush-Flo™	0.503	32.0	Mean Flow over Head Range	_	27.5

The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake® Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated

Depth (m) Flow	(1/s)	Depth (m)	Flow (1/s)	Depth (m) Fl	ow (1/s)	Depth (m)	Flow (1/s)
0.100	7.8	0.200	23.7	0.300	30.6	0.400	31.7

Coast Consulting Engineers Ltd		Page 5
Suite 6, Vita House	FLOSH MEADOWS	
Fish Quay	CLEATOR	
North Shields NE30 1JA	1:30	Micro
Date 09/06/2023	Designed by RH	Drainage
File 230609 REVISED SURFACE W	Checked by PL	niairiade
Innovyze	Network 2020.1	

Hydro-Brake® Optimum Manhole: 17 HB, DS/PN: 1.009, Volume (m³): 9.6

Depth	(m)	Flow (1/s)	Depth	(m)	Flow	(1/s)	Depth	(m)	Flow	(1/s)	Depth	(m)	Flow	(1/s)
0.	500		32.0	1.	800		33.4	4.	000		49.1	7.	500		66.6
0.	600		31.8	2.	000		35.2	4.	500		52.0	8.	000		68.8
0.	800		31.0	2.	200		36.8	5.	000		54.7	8.	500		70.8
1.	000		28.8	2.	400		38.4	5.	500		57.3	9.	000		72.8
1.	200		27.5	2.	600		39.9	6.	000		59.8	9.	500		74.8
1.	400		29.6	3.	000		42.8	6.	500		62.2				
1.	600		31.6	3.	500		46.1	7.	000		64.4				

Coast Consulting Engineers Ltd		Page 6
Suite 6, Vita House	FLOSH MEADOWS	
Fish Quay	CLEATOR	
North Shields NE30 1JA	1:30	Micro
Date 09/06/2023	Designed by RH	Drainage
File 230609 REVISED SURFACE W	Checked by PL	Diamage
Innovyze	Network 2020.1	•

Storage Structures for 180518 SW1.SWS

Cellular Storage Manhole: 1, DS/PN: 1.000

Invert Level (m) 63.585 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.00000 Porosity 0.95 Infiltration Coefficient Side (m/hr) 0.00000

Depth (m) Area (m²) Inf. Area (m²) Depth (m) Area (m²) Inf. Area (m²) 0.000 51.8 0.0 0.521 0.0 0.0 0.520 51.8 0.0

Cellular Storage Manhole: 2, DS/PN: 1.001

Invert Level (m) 63.015 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.00000 Porosity 0.95 Infiltration Coefficient Side (m/hr) 0.00000

Depth (m) Area (m²) Inf. Area (m²) Depth (m) Area (m²) Inf. Area (m²) 0.000 220.0 0.0 0.521 0.0 0.0 0.520 220.0 0.0

Cellular Storage Manhole: 4, DS/PN: 1.003

Invert Level (m) 62.589 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.00000 Porosity 0.95 Infiltration Coefficient Side (m/hr) 0.00000

Depth (m) Area (m²) Inf. Area (m²) Depth (m) Area (m²) Inf. Area (m²) 0.000 129.5 0.0 0.521 0.0 0.0 0.520 129.5 0.0

Cellular Storage Manhole: 6, DS/PN: 1.005

Invert Level (m) 62.335 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.00000 Porosity 0.95 Infiltration Coefficient Side (m/hr) 0.00000

Depth	(m)	Area	(m²)	Inf.	Area	(m²)	Depth	(m)	Area	(m²)	Inf.	Area	(m²)
0.	000		25.9			0.0	0.	521		0.0			0.0
0.	520		25.9			0.0							

Coast Consulting Engineers Ltd		Page 7
Suite 6, Vita House	FLOSH MEADOWS	
Fish Quay	CLEATOR	
North Shields NE30 1JA	1:30	Micro
Date 09/06/2023	Designed by RH	Drainage
File 230609 REVISED SURFACE W	Checked by PL	pramage
Innovyze	Network 2020.1	

Cellular Storage Manhole: 7, DS/PN: 1.006

Depth (m) Area (m²) Inf. Area (m²) Depth (m) Area (m²) Inf. Area (m²) 0.000 25.9 0.0 0.521 0.0 0.0 0.520 25.9 0.0

Cellular Storage Manhole: 8, DS/PN: 2.000

Invert Level (m) 63.413 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.00000 Porosity 0.95 Infiltration Coefficient Side (m/hr) 0.00000

Depth (m) Area (m²) Inf. Area (m²) Depth (m) Area (m²) Inf. Area (m²) 0.000 77.7 0.0 0.520 77.7 0.0

Cellular Storage Manhole: 9, DS/PN: 2.001

Invert Level (m) 62.621 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.00000 Porosity 0.95 Infiltration Coefficient Side (m/hr) 0.00000

Depth (m) Area (m²) Inf. Area (m²) Depth (m) Area (m²) Inf. Area (m²) 0.000 388.5 0.0 0.521 0.0 0.0 0.520 388.5 0.0

Cellular Storage Manhole: 10 HB, DS/PN: 2.002

Depth	(m)	Area	(m²)	Inf.	Area	(m²)	Depth	(m)	Area	(m²)	Inf.	Area	(m²)
0.	000	1	170.0			0.0	0.	.521		0.0			0.0
0.	520	1	170.0			0.0							

Cellular Storage Manhole: 11, DS/PN: 2.003

Invert Level (m) 62.181 Infiltration Coefficient Side (m/hr) 0.00000 Infiltration Coefficient Base (m/hr) 0.00000 Safety Factor 2.0

Coast Consulting Engineers Ltd		Page 8
Suite 6, Vita House	FLOSH MEADOWS	
Fish Quay	CLEATOR	
North Shields NE30 1JA	1:30	Micro
Date 09/06/2023	Designed by RH	Drainage
File 230609 REVISED SURFACE W	Checked by PL	prairiage
Innovvze	Network 2020.1	

Cellular Storage Manhole: 11, DS/PN: 2.003

Porosity 0.95

Depth (m) Area (m²) Inf. Area (m²) Depth (m) Area (m²) Inf. Area (m²) 0.000 200.0 0.0 0.520 200.0 0.0

Cellular Storage Manhole: 12, DS/PN: 2.004

Invert Level (m) 62.079 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.00000 Porosity 0.95 Infiltration Coefficient Side (m/hr) 0.00000

Depth (m) Area (m²) Inf. Area (m²) Depth (m) Area (m²) Inf. Area (m²) 0.000 129.5 0.0 0.521 0.0 0.0

Cellular Storage Manhole: 15, DS/PN: 1.008

Invert Level (m) 61.919 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.00000 Porosity 0.95 Infiltration Coefficient Side (m/hr) 0.00000

Depth (m) Area (m²) Inf. Area (m²) Depth (m) Area (m²) Inf. Area (m²) 0.000 30.0 0.0 0.520 30.0 0.0

Cellular Storage Manhole: 16, DS/PN: 3.000

Invert Level (m) 61.900 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.00000 Porosity 0.95 Infiltration Coefficient Side (m/hr) 0.00000

Depth (m) Area (m²) Inf. Area (m²) Depth (m) Area (m²) Inf. Area (m²) 0.000 51.8 0.0 0.521 0.0 0.0 0.520 51.8

Cellular Storage Manhole: 17 HB, DS/PN: 1.009

Invert Level (m) 61.852 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.00000 Porosity 0.95 Infiltration Coefficient Side (m/hr) 0.00000

Coast Consulting Engineers Ltd		Page 9
Suite 6, Vita House	FLOSH MEADOWS	
Fish Quay	CLEATOR	
North Shields NE30 1JA	1:30	Micro
Date 09/06/2023	Designed by RH	Drainage
File 230609 REVISED SURFACE W	Checked by PL	prairiage
Innovvze	Network 2020.1	•

Cellular Storage Manhole: 17 HB, DS/PN: 1.009

Depth	(m)	Area	(m²)	Inf.	Area	(m²)	Depth	(m)	Area	(m²)	Inf.	Area	(m²)
0.	000		77.7			0.0	0	.521		0.0			0.0
0.	520		77.7			0.0							

Coast Consulting Engineers Ltd		Page 10
Suite 6, Vita House	FLOSH MEADOWS	
Fish Quay	CLEATOR	
North Shields NE30 1JA	1:30	Micro
Date 09/06/2023	Designed by RH	Drainage
File 230609 REVISED SURFACE W	Checked by PL	Diamage
Innovyze	Network 2020.1	

Summary of Critical Results by Maximum Level (Rank 1) for 180518 SW1.SWS

Simulation Criteria

Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000 Hot Start (mins) 0 MADD Factor * $10m^3$ /ha Storage 2.000 Hot Start Level (mm) 0 Inlet Coefficient 0.800 Manhole Headloss Coeff (Global) 0.500 Flow per Person per Day (1/per/day) 0.000 Foul Sewage per hectare (1/s) 0.000

Number of Input Hydrographs 0 Number of Storage Structures 13 Number of Online Controls 3 Number of Time/Area Diagrams 0 Number of Offline Controls 0 Number of Real Time Controls 0

Synthetic Rainfall Details

Rainfall Model FSR Ratio R 0.220 Region England and Wales Cv (Summer) 1.000 M5-60 (mm) 18.600 Cv (Winter) 1.000

Margin for Flood Risk Warning (mm) 300.0

Analysis Timestep 2.5 Second Increment (Extended)

DTS Status

OFF

DVD Status

OFF

Inertia Status

Profile(s)
Duration(s) (mins) 15, 30, 60, 120, 180, 240, 360, 480, 600, 720, 960, 1440

Return Period(s) (years)
Climate Change (%)

T-7 - + - --

PN	US/MH Name	Storm			Climate Change		t (X) harge	First Floo	First Overf	Overflow Act.	Water Level (m)	
1.000 1.001 1.002 1.003	2 3 HB 4	360 360 60	Summer Summer Summer	30 30 30 30	+0%	30/15	Summer				63.286 63.286 63.286 62.721	
1.004 1.005 1.006 2.000 2.001	5 6 7 8	60 60 600	Summer Summer Summer Summer	30 30 30 30 30	+0% +0% +0% +0% +0%						62.600 62.524 62.437 62.751 62.751	
2.002 2.003 2.004 2.005 1.007	10 HB 11 12 13	600 240 240 240	Summer Summer Summer Summer Summer	30 30 30 30 30	+0% +0% +0% +0% +0%	30/30	Summer				62.750 62.328 62.323 62.318 62.313	
					©1982	-2020	Innov	yze				

Coast Consulting Engineers Ltd		Page 11
Suite 6, Vita House	FLOSH MEADOWS	
Fish Quay	CLEATOR	
North Shields NE30 1JA	1:30	Micro
Date 09/06/2023	Designed by RH	Drainage
File 230609 REVISED SURFACE W	Checked by PL	prairiage
Innovyze	Network 2020.1	

 $\underline{\text{Summary of Critical Results by Maximum Level (Rank 1) for 180518 SW1.SWS}}$

		Surcharged	Flooded			Half Drain	Pipe		
	US/MH	Depth	Volume	Flow /	Overflow	Time	Flow		Level
PN	Name	(m)	(m³)	Cap.	(1/s)	(mins)	(1/s)	Status	Exceeded
1.000	1	-0.702	0.000	0.01		183	6.1	OK	
1.001	2	-0.597	0.000	0.01		181	5.2	OK	
1.002	3 HB	0.287	0.000	0.16			6.1	SURCHARGED	
1.003	4	-0.093	0.000	0.65		41	23.7	OK	
1.004	5	-0.064	0.000	0.85			30.4	OK	
1.005	6	-0.036	0.000	0.93		20	33.4	OK	
1.006	7	-0.011	0.000	1.00		18	34.5	OK	
2.000	8	-0.360	0.000	0.03		250	8.6	OK	
2.001	9	-0.139	0.000	0.08		233	18.9	OK	
2.002	10 HB	0.126	0.000	0.06		405	5.9	SURCHARGED	
2.003	11	-0.227	0.000	0.10		101	9.9	OK	
2.004	12	-0.131	0.000	0.17		96	14.0	OK	
2.005	13	-0.094	0.000	0.18			14.7	OK	
1.007	14	-0.055	0.000	0.41			39.2	OK	

Coast Consulting Engineers Ltd		Page 12
Suite 6, Vita House	FLOSH MEADOWS	
Fish Quay	CLEATOR	
North Shields NE30 1JA	1:30	Micro
Date 09/06/2023	Designed by RH	Drainage
File 230609 REVISED SURFACE W	Checked by PL	Dialilade
Innovyze	Network 2020.1	

 $\underline{\text{Summary of Critical Results by Maximum Level (Rank 1) for 180518 SW1.SWS}}$

PN	US/MH Name	Storm		Climate Change	First Surcha		First (Y) Flood	First (Z) Overflow	Overflow Act.	Water Level (m)
1.008	15	240 Summe	30	+0%	30/240 \$	Summer				62.296
3.000	16	240 Summe	30	+0%	30/240 \$	Summer				62.280
1.009	17 HB	240 Summe	30	+0%	30/60 8	Summer				62.278
1.010	18	240 Summe	30	+0%						61.916

PN	US/MH Name	Depth (m)			Overflow (1/s)	Time (mins)	Flow (1/s)	Status	Level Exceeded
1.008	15	0.002	0.000	0.40		122	37.5	SURCHARGED	
3.000	16	0.005	0.000	0.03		126	2.9	SURCHARGED	
1.009	17 HB	0.126	0.000	0.48		135	30.8	SURCHARGED	
1.010	18	-0.127	0.000	0.63			30.8	OK	

Coast Consulting Engineers Ltd		Page 0
Suite 6, Vita House	FLOSH MEADOWS	
Fish Quay	CLEATOR	
North Shields NE30 1JA	1:100 +50%	Micro
Date 09/06/2023	Designed by RH	Drainage
File 230609 REVISED SURFACE W	Checked by PL	Dialilade
Innovyze	Network 2020.1	

STORM SEWER DESIGN by the Modified Rational Method

Network Design Table for 180518 SW1.SWS

PN	Length (m)	Fall (m)	Slope (1:X)	I.Area (ha)	T.E. (mins)	se (1/s)	k (mm)	HYD SECT	DIA (mm)	Section Type	Auto Design
											_
1.000	41.957	0.105	399.6	0.061	5.00	0.0	0.600	0	975	Pipe/Conduit	0
1.001	53.639	0.134	400.3	0.118	0.00	0.0	0.600	0	975	Pipe/Conduit	ē
1.002	31.512	0.185	170.3	0.129	0.00	0.0	0.600	0	225	Pipe/Conduit	ē
1.003	25.483	0.150	169.9	0.104	0.00	0.0	0.600	0	225	Pipe/Conduit	ĕ
1.004	17.652	0.104	169.7	0.035	0.00	0.0	0.600	0	225	Pipe/Conduit	ĕ
1.005	18.982	0.112	169.5	0.028	0.00	0.0	0.600	0	225	Pipe/Conduit	ĕ
1.006	13.655	0.080	170.7	0.029	0.00	0.0	0.600	0	225	Pipe/Conduit	ē
											_
2.000	71.706	0.221	324.5	0.115	5.00	0.0	0.600	0	525	Pipe/Conduit	ð
2.001	37.730	0.116	325.3	0.225	0.00	0.0	0.600	0	525	Pipe/Conduit	ĕ
2.002	22.253	0.068	325.0	0.065	0.00	0.0	0.600	0	375	Pipe/Conduit	ĕ
2.003	33.218	0.102	325.7	0.065	0.00	0.0	0.600	0	375	Pipe/Conduit	ĕ
2.004	13.246	0.041	323.1	0.062	0.00	0.0	0.600	0	375	Pipe/Conduit	ď
2.005	14.105	0.043	328.0	0.042	0.00	0.0	0.600	0	375	Pipe/Conduit	ĕ
										-	•
1.007	24.092	0.074	325.6	0.021	0.00	0.0	0.600	0	375	Pipe/Conduit	₽
1.008	21.726	0.067	324.3	0.029	0.00	0.0	0.600	0	375	Pipe/Conduit	ĕ
											_

Network Results Table

PN	Rain	T.C.	US/IL	Σ I.Area	Σ Base	Foul	Add Flow	Vel	Cap	Flow
	(mm/hr)	(mins)	(m)	(ha)	Flow (1/s)	(1/s)	(1/s)	(m/s)	(1/s)	(1/s)
1.000	0.00	5.43	63.013	0.061	0.0	0.0	0.0	1.64	1225.0	0.0
1.001	0.00	5.97	62.908	0.179	0.0	0.0	0.0	1.64	1223.9	0.0
1.002	0.00	6.50	62.774	0.308	0.0	0.0	0.0	1.00	39.7	0.0
1.003	0.00	6.92	62.589	0.412	0.0	0.0	0.0	1.00	39.8	0.0
1.004	0.00	7.22	62.439	0.447	0.0	0.0	0.0	1.00	39.8	0.0
1.005	0.00	7.53	62.335	0.475	0.0	0.0	0.0	1.00	39.8	0.0
1.006	0.00	7.76	62.223	0.504	0.0	0.0	0.0	1.00	39.7	0.0
2.000	0.00	5.97	62.586	0.115	0.0	0.0	0.0	1.24	268.0	0.0
2.001	0.00	6.47	62.365	0.340	0.0	0.0	0.0	1.24	267.7	0.0
2.002	0.00	6.85	62.249	0.405	0.0	0.0	0.0	1.00	110.4	0.0
2.003	0.00	7.40	62.181	0.470	0.0	0.0	0.0	1.00	110.3	0.0
2.004	0.00	7.62	62.079	0.532	0.0	0.0	0.0	1.00	110.7	0.0
2.005	0.00	7.86	62.038	0.574	0.0	0.0	0.0	0.99	109.9	0.0
1.007	0.00	8.26	61.993	1.099	0.0	0.0	0.0	1.00	110.3	0.0
1.008	0.00	8.62	61.919	1.128	0.0	0.0	0.0	1.00	110.5	0.0

Coast Consulting Engineers Ltd		Page 1
Suite 6, Vita House	FLOSH MEADOWS	
Fish Quay	CLEATOR	
North Shields NE30 1JA	1:100 +50%	Micro
Date 09/06/2023	Designed by RH	Drainage
File 230609 REVISED SURFACE W	Checked by PL	Dialilade
Innovyze	Network 2020.1	

STORM SEWER DESIGN by the Modified Rational Method

Network Design Table for 180518 SW1.SWS

PN	Length	Fall	Slope	I.Area	T.E.	Ва	ase	k	HYD	DIA	Section Type	Auto
	(m)	(m)	(1:X)	(ha)	(mins)	Flow	(1/s)	(mm)	SECT	(mm)		Design
3.000	15.459	0.048	322.1	0.070	5.00		0.0	0.600	0	375	Pipe/Conduit	0
	26.775 3.900				0.00			0.600			Pipe/Conduit Pipe/Conduit	_

Network Results Table

PN	Rain		US/IL	S/IL Σ I.Area Σ Base		Foul	Add Flow	Vel	Cap	Flow		
	(mm/hr)	(mins)	(m)	(ha)	Flow	(1/s)	(l/s)	(1/s)	(m/s)	(1/s)	(1/s)	
3.000	0.00	5.26	61.900	0.070		0.0	0.0	0.0	1.00	110.9	0.0	
1.009	0.00	9.07	61.852	1.198		0.0	0.0	0.0	1.00	70.6	0.0	
1.010	0.00	9.13	61.743	1.198		0.0	0.0	0.0	1.00	70.9	0.0	

Free Flowing Outfall Details for 180518 SW1.SWS

Outfall	Outfall	c.	Level	I.	Level		Min	D,L	W
Pipe Number	Name		(m)		(m)	I.	Level	(mm)	(mm)
							(m)		

1.010 C1 63.006 61.727 61.727 1350 C

Simulation Criteria for 180518 SW1.SWS

Volumetric Runoff Coeff 0.750 Additional Flow - % of Total Flow 0.000
Areal Reduction Factor 1.000 MADD Factor * 10m³/ha Storage 2.000
Hot Start (mins) 0 Inlet Coefficient 0.800
Hot Start Level (mm) 0 Flow per Person per Day (1/per/day) 0.000
Manhole Headloss Coeff (Global) 0.500 Run Time (mins) 60
Foul Sewage per hectare (1/s) 0.000 Output Interval (mins) 1

Number of Input Hydrographs 0 Number of Storage Structures 13 Number of Online Controls 3 Number of Time/Area Diagrams 0 Number of Offline Controls 0 Number of Real Time Controls 0

Synthetic Rainfall Details

Rainfall Model FSR M5-60 (mm) 19.600 Return Period (years) 2 Ratio R 0.223 Region England and Wales Profile Type Summer

Coast Consulting Engineers Ltd		Page 2
Suite 6, Vita House	FLOSH MEADOWS	
Fish Quay	CLEATOR	
North Shields NE30 1JA	1:100 +50%	Micro
Date 09/06/2023	Designed by RH	Drainage
File 230609 REVISED SURFACE W	Checked by PL	Dialilade
Innovyze	Network 2020.1	

Synthetic Rainfall Details

Cv (Summer) 0.750 Storm Duration (mins) 30 Cv (Winter) 0.840

Coast Consulting Engineers Ltd		Page 3
Suite 6, Vita House	FLOSH MEADOWS	
Fish Quay	CLEATOR	
North Shields NE30 1JA	1:100 +50%	Micro
Date 09/06/2023	Designed by RH	Drainage
File 230609 REVISED SURFACE W	Checked by PL	niairiade
Innovyze	Network 2020.1	

Online Controls for 180518 SW1.SWS

Hydro-Brake® Optimum Manhole: 3 HB, DS/PN: 1.002, Volume (m³): 45.9

Unit Reference MD-SHE-0107-7000-2119-7000 Design Head (m) 2.119 Design Flow (1/s) 7.0 Flush-Flo™ Calculated Objective Minimise upstream storage Application Surface Sump Available Yes 107 Diameter (mm) Invert Level (m) 62.774 Minimum Outlet Pipe Diameter (mm) 150 1200 Suggested Manhole Diameter (mm)

Control	Points	Head (m)	Flow (1/s)	Control Points	Head (m)	Flow (1/s)
Design Point	(Calculated)	2.119	7.0	Kick-Flo®	0.957	4.8
	Flush-Flo™	0.469	6.1	Mean Flow over Head Range	_	5.6

The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake® Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated

Depth (m) Fl	low (1/s)	Depth (m) E	Flow (1/s)	Depth (m) Fl	ow (1/s)	Depth (m)	Flow (1/s)
0.100	3.7	1.200	5.4	3.000	8.2	7.000	12.3
0.200	5.4	1.400	5.8	3.500	8.9	7.500	12.7
0.300	5.9	1.600	6.1	4.000	9.4	8.000	13.1
0.400	6.0	1.800	6.5	4.500	10.0	8.500	13.5
0.500	6.1	2.000	6.8	5.000	10.5	9.000	13.9
0.600	6.0	2.200	7.1	5.500	11.0	9.500	14.3
0.800	5.6	2.400	7.4	6.000	11.4		
1.000	4.9	2.600	7.7	6.500	11.9		

Hydro-Brake® Optimum Manhole: 10 HB, DS/PN: 2.002, Volume (m³): 13.2

Unit Reference MD-SHE-0107-6000-1575-6000 1.575 Design Head (m) Design Flow (1/s) 6.0 Flush-Flo™ Calculated Objective Minimise upstream storage Application Surface Sump Available Yes Diameter (mm) 106 62.249 Invert Level (m) 150 Minimum Outlet Pipe Diameter (mm)

Coast Consulting Engineers Ltd		Page 4
Suite 6, Vita House	FLOSH MEADOWS	
Fish Quay	CLEATOR	
North Shields NE30 1JA	1:100 +50%	Micro
Date 09/06/2023	Designed by RH	Drainage
File 230609 REVISED SURFACE W	Checked by PL	prairiage
Innovyze	Network 2020.1	

Hydro-Brake® Optimum Manhole: 10 HB, DS/PN: 2.002, Volume (m³): 13.2

Suggested Manhole Diameter (mm) 1200

Control	Points	Head (m)	Flow (1/s)	Control Points	Head (m)	Flow (1/s)
Design Point	(Calculated)	1.575	6.0	Kick-Flo®	0.952	4.7
	Flush-Flo™	0.468	5.9	Mean Flow over Head Range	_	5.2

The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake® Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated

Depth (m)	Flow (1/s)	Depth (m)	Flow (1/s)	Depth (m) Flo	w (1/s)	Depth (m)	Flow (1/s)
0.100	3.6	1.200	5.3	3.000	8.1	7.000	12.1
0.200	5.3	1.400	5.7	3.500	8.7	7.500	12.5
0.300	5.7	1.600	6.0	4.000	9.3	8.000	12.9
0.400	5.9	1.800	6.4	4.500	9.8	8.500	13.3
0.500	5.9	2.000	6.7	5.000	10.3	9.000	13.7
0.600	5.9	2.200	7.0	5.500	10.8	9.500	14.0
0.800	5.5	2.400	7.3	6.000	11.3		
1.000	4.9	2.600	7.6	6.500	11.7		

Hydro-Brake® Optimum Manhole: 17 HB, DS/PN: 1.009, Volume (m³): 9.6

Unit Reference MD-SHE-0235-3200-1642-3200 Design Head (m) 1.642 Design Flow (1/s) 32.0 Flush-Flo™ Calculated Objective Minimise upstream storage Application Surface Sump Available Yes Diameter (mm) 235 Invert Level (m) 61.852 Minimum Outlet Pipe Diameter (mm) 300 Suggested Manhole Diameter (mm) 1800

Control Poi	ints Head	(m) Flow	(1/s)	Control	Points	Head (m)	Flow (1/s)
Design Point (Ca	lculated) 1	.642	32.0		Kick-Flo®	1.101	26.4
F.	lush-Flo™ 0	.503	32.0	Mean Flow ove	r Head Range	-	27.5

The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake® Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated

Depth (m) Flow	(1/s)	Depth (m)	Flow (1/s)	Depth (m) Fl	low (1/s)	Depth (m)	Flow (1/s)
0.100	7.8	0.200	23.7	0.300	30.6	0.400	31.7

Coast Consulting Engineers Ltd		Page 5
Suite 6, Vita House	FLOSH MEADOWS	
Fish Quay	CLEATOR	
North Shields NE30 1JA	1:100 +50%	Micro
Date 09/06/2023	Designed by RH	Drainage
File 230609 REVISED SURFACE W	Checked by PL	niairiade
Innovyze	Network 2020.1	

Hydro-Brake® Optimum Manhole: 17 HB, DS/PN: 1.009, Volume (m³): 9.6

Depth (n) Flow	(1/s)	Depth (m)	Flow (1/s)	Depth (m)	Flow (1/s)	Depth (m)	Flow (1/s)
0.50	0	32.0	1.800	33.4	4.000	49.1	7.500	66.6
0.60	0	31.8	2.000	35.2	4.500	52.0	8.000	68.8
0.80	0	31.0	2.200	36.8	5.000	54.7	8.500	70.8
1.00	0	28.8	2.400	38.4	5.500	57.3	9.000	72.8
1.20	0	27.5	2.600	39.9	6.000	59.8	9.500	74.8
1.40	0	29.6	3.000	42.8	6.500	62.2		
1.60	0	31.6	3.500	46.1	7.000	64.4		

Coast Consulting Engineers Ltd		Page 6
Suite 6, Vita House	FLOSH MEADOWS	
Fish Quay	CLEATOR	
North Shields NE30 1JA	1:100 +50%	Micro
Date 09/06/2023	Designed by RH	Drainage
File 230609 REVISED SURFACE W	Checked by PL	Dialilade
Innovyze	Network 2020.1	

Storage Structures for 180518 SW1.SWS

Cellular Storage Manhole: 1, DS/PN: 1.000

Invert Level (m) 63.585 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.00000 Porosity 0.95 Infiltration Coefficient Side (m/hr) 0.00000

Depth (m) Area (m²) Inf. Area (m²) Depth (m) Area (m²) Inf. Area (m²) 0.000 51.8 0.0 0.521 0.0 0.0 0.520 51.8 0.0

Cellular Storage Manhole: 2, DS/PN: 1.001

Invert Level (m) 63.015 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.00000 Porosity 0.95 Infiltration Coefficient Side (m/hr) 0.00000

Depth (m) Area (m²) Inf. Area (m²) Depth (m) Area (m²) Inf. Area (m²) 0.000 220.0 0.0 0.521 0.0 0.0 0.520 220.0 0.0

Cellular Storage Manhole: 4, DS/PN: 1.003

Invert Level (m) 62.589 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.00000 Porosity 0.95 Infiltration Coefficient Side (m/hr) 0.00000

Depth (m) Area (m²) Inf. Area (m²) Depth (m) Area (m²) Inf. Area (m²) 0.000 129.5 0.0 0.521 0.0 0.0 0.520 129.5 0.0

Cellular Storage Manhole: 6, DS/PN: 1.005

Invert Level (m) 62.335 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.00000 Porosity 0.95 Infiltration Coefficient Side (m/hr) 0.00000

Depth	(m)	Area	(m²)	Inf.	Area	(m²)	Depth	(m)	Area	(m²)	Inf.	Area	(m²)
0.	000		25.9			0.0	0.	521		0.0			0.0
0.	520		25.9			0.0							

Coast Consulting Engineers Ltd		Page 7
Suite 6, Vita House	FLOSH MEADOWS	
Fish Quay	CLEATOR	
North Shields NE30 1JA	1:100 +50%	Micro
Date 09/06/2023	Designed by RH	Drainage
File 230609 REVISED SURFACE W	Checked by PL	niairiade
Innovyze	Network 2020.1	

Cellular Storage Manhole: 7, DS/PN: 1.006

Depth (m) Area (m²) Inf. Area (m²) Depth (m) Area (m²) Inf. Area (m²) 0.000 25.9 0.0 0.521 0.0 0.0 0.520 25.9 0.0

Cellular Storage Manhole: 8, DS/PN: 2.000

Invert Level (m) 63.413 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.00000 Porosity 0.95 Infiltration Coefficient Side (m/hr) 0.00000

Depth (m) Area (m²) Inf. Area (m²) Depth (m) Area (m²) Inf. Area (m²) 0.000 77.7 0.0 0.520 77.7 0.0

Cellular Storage Manhole: 9, DS/PN: 2.001

Invert Level (m) 62.621 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.00000 Porosity 0.95 Infiltration Coefficient Side (m/hr) 0.00000

Depth (m) Area (m²) Inf. Area (m²) Depth (m) Area (m²) Inf. Area (m²) 0.000 388.5 0.0 0.521 0.0 0.0 0.520 388.5 0.0

Cellular Storage Manhole: 10 HB, DS/PN: 2.002

Invert Level (m) 62.249 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.00000 Porosity 0.95 Infiltration Coefficient Side (m/hr) 0.00000

Depth	(m)	Area	(m²)	Inf.	Area	(m²)	Depth	(m)	Area	(m²)	Inf.	Area	(m²)
0.	000	1	170.0			0.0	0.	.521		0.0			0.0
0.	520	1	170.0			0.0							

Cellular Storage Manhole: 11, DS/PN: 2.003

Invert Level (m) 62.181 Infiltration Coefficient Side (m/hr) 0.00000 Infiltration Coefficient Base (m/hr) 0.00000 Safety Factor 2.0

Coast Consulting Engineers Ltd		Page 8
Suite 6, Vita House	FLOSH MEADOWS	
Fish Quay	CLEATOR	
North Shields NE30 1JA	1:100 +50%	Micro
Date 09/06/2023	Designed by RH	Drainage
File 230609 REVISED SURFACE W	Checked by PL	Drairiage
Innovvze	Network 2020.1	

Cellular Storage Manhole: 11, DS/PN: 2.003

Porosity 0.95

Depth (m) Area (m²) Inf. Area (m²) Depth (m) Area (m²) Inf. Area (m²) 0.000 200.0 0.520 0.0 0.0 0.520 200.0 0.0

Cellular Storage Manhole: 12, DS/PN: 2.004

Invert Level (m) 62.079 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.00000 Porosity 0.95 Infiltration Coefficient Side (m/hr) 0.00000

Depth (m) Area (m²) Inf. Area (m²) Depth (m) Area (m²) Inf. Area (m²) 0.000 129.5 0.0 0.521 0.0 0.0 0.520 129.5 0.0

Cellular Storage Manhole: 15, DS/PN: 1.008

Invert Level (m) 61.919 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.00000 Porosity 0.95 Infiltration Coefficient Side (m/hr) 0.00000

Depth (m) Area (m²) Inf. Area (m²) Depth (m) Area (m²) Inf. Area (m²) 0.000 30.0 0.0 0.520 30.0 0.0

Cellular Storage Manhole: 16, DS/PN: 3.000

Invert Level (m) 61.900 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.00000 Porosity 0.95 Infiltration Coefficient Side (m/hr) 0.00000

Depth (m) Area (m²) Inf. Area (m²) Depth (m) Area (m²) Inf. Area (m²) 0.000 51.8 0.0 0.521 0.0 0.0 0.520 51.8 0.0

Cellular Storage Manhole: 17 HB, DS/PN: 1.009

Invert Level (m) 61.852 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.00000 Porosity 0.95 Infiltration Coefficient Side (m/hr) 0.00000

Coast Consulting Engineers Ltd		Page 9
Suite 6, Vita House	FLOSH MEADOWS	
Fish Quay	CLEATOR	
North Shields NE30 1JA	1:100 +50%	Micro
Date 09/06/2023	Designed by RH	Drainage
File 230609 REVISED SURFACE W	Checked by PL	niairiade
Innovvze	Network 2020.1	

Cellular Storage Manhole: 17 HB, DS/PN: 1.009

Depth	(m)	Area	(m²)	Inf.	Area	(m²)	Depth	(m)	Area	(m²)	Inf.	Area	(m²)
0.	000		77.7			0.0	0	.521		0.0			0.0
0.	520		77.7			0.0							

Coast Consulting Engineers Ltd		Page 10
Suite 6, Vita House	FLOSH MEADOWS	
Fish Quay	CLEATOR	
North Shields NE30 1JA	1:100 +50%	Micro
Date 09/06/2023	Designed by RH	Drainage
File 230609 REVISED SURFACE W	Checked by PL	Diamage
Innovyze	Network 2020.1	

Summary of Critical Results by Maximum Level (Rank 1) for 180518 SW1.SWS

Simulation Criteria

Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000 Hot Start (mins) 0 MADD Factor * $10m^3$ /ha Storage 2.000 Hot Start Level (mm) 0 Inlet Coefficient 0.800 Manhole Headloss Coeff (Global) 0.500 Flow per Person per Day (1/per/day) 0.000 Foul Sewage per hectare (1/s) 0.000

Number of Input Hydrographs 0 Number of Storage Structures 13 Number of Online Controls 3 Number of Time/Area Diagrams 0 Number of Offline Controls 0 Number of Real Time Controls 0

Synthetic Rainfall Details

Rainfall Model FSR Ratio R 0.220
Region England and Wales Cv (Summer) 1.000
M5-60 (mm) 18.600 Cv (Winter) 1.000

Margin for Flood Risk Warning (mm) 300.0

Analysis Timestep 2.5 Second Increment (Extended)

DTS Status

OFF

DVD Status

OFF

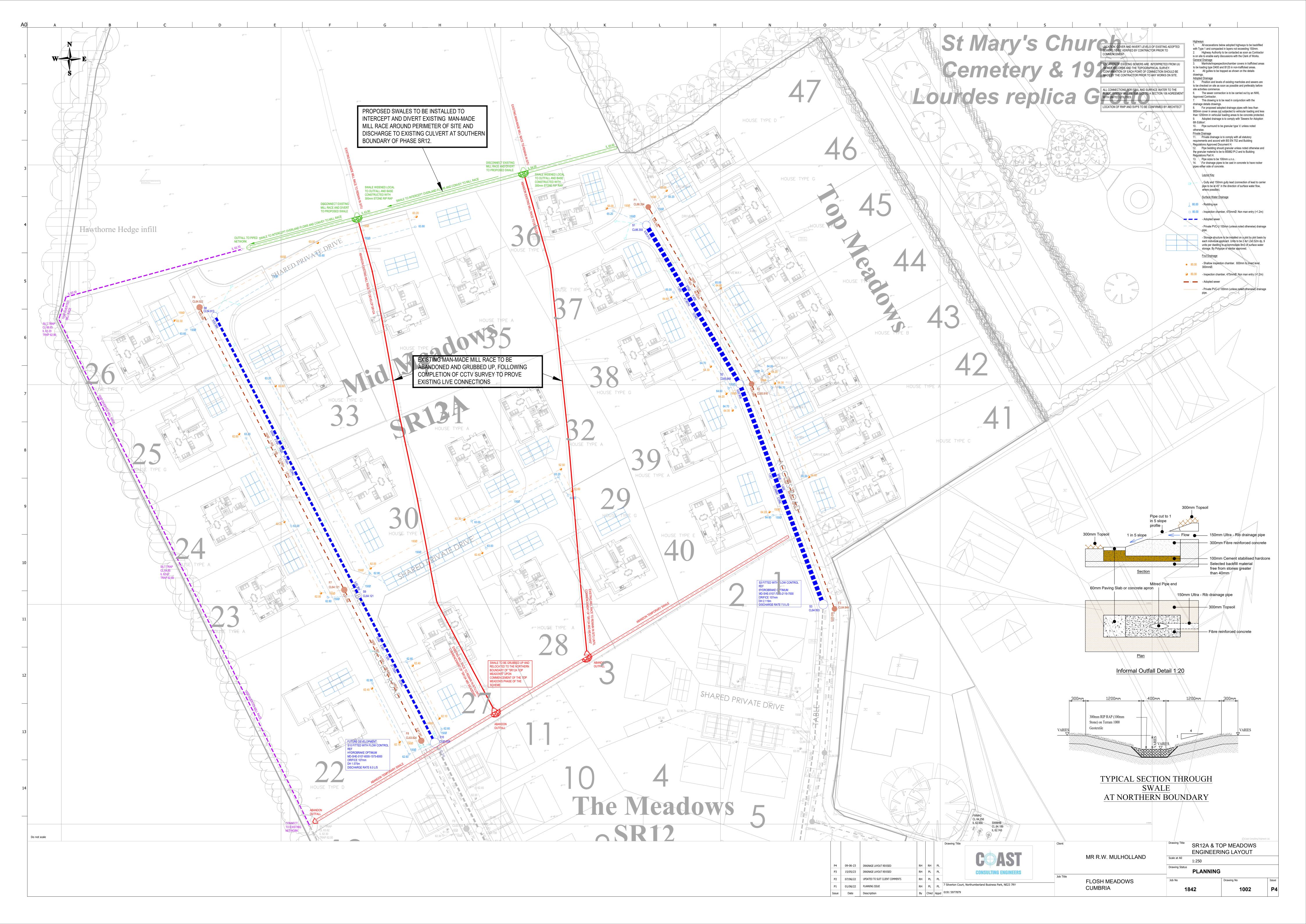
Inertia Status

Profile(s) Summer and Winter
Duration(s) (mins) 15, 30, 60, 120, 180, 240, 360
Return Period(s) (years)
Climate Change (%) 50

											Water	
	US/MH			Return	Climate	First	(X)	First (Y)	First (Z)	Overflow	Level	
PN	Name	S	torm	Period	Change	Surch	arge	Flood	Overflow	Act.	(m)	
1.000	1	360	Winter	100	+50%	100/180	Summer				64.689	
1.001	2	360	Winter	100	+50%						64.689	
1.002	3 нв	360	Winter	100	+50%		Summer				64.690	
1.003	4	60	Summer	100	+50%	100/30	Summer				62.851	
1.004	5	120	Summer	100	+50%	100/15	Summer				62.788	
1.005	6	180	Summer	100	+50%	100/15	Summer				62.729	
1.006	7	360	Summer	100	+50%	100/15	Summer				62.700	
2.000	8	360	Winter	100	+50%	100/180	Summer				63.794	
2.001	9	360	Winter	100	+50%	100/60	Summer				63.794	
2.002	10 HB	360	Winter	100	+50%	100/15	Summer				63.792	
2.003	11	360	Summer	100	+50%	100/120	Summer				62.691	
2.004	12	360	Summer	100	+50%	100/60	Summer				62.685	
2.005	13	360	Summer	100	+50%	100/60	Summer				62.680	
1.007	14	360	Summer	100	+50%	100/60	Summer				62.674	
1.008	15	360	Summer	100	+50%	100/30	Summer				62.656	
					©198	2-2020	Innovy	ze				

Coast Consulting Engineers Ltd		Page 11
Suite 6, Vita House	FLOSH MEADOWS	
Fish Quay	CLEATOR	
North Shields NE30 1JA	1:100 +50%	Micro
Date 09/06/2023	Designed by RH	Drainage
File 230609 REVISED SURFACE W	Checked by PL	prairiage
Innovyze	Network 2020.1	

 $\underline{\text{Summary of Critical Results by Maximum Level (Rank 1) for 180518 SW1.SWS}}$


PN	US/MH Name	Surcharged Depth (m)		Flow / Cap.	Overflow (1/s)	Half Drain Time (mins)	Pipe Flow (1/s)	Status	Level Exceeded
1.000	1	0.701	0.000	0.01		99	7.6	SURCHARGED	
1.001	2	0.806	0.000	0.01			6.5	SURCHARGED	
1.002	3 HB	1.691	0.000	0.18			6.7	FLOOD RISK	
1.003	4	0.037	0.000	0.77		25	28.3	SURCHARGED	
1.004	5	0.124	0.000	1.00			35.6	SURCHARGED	
1.005	6	0.169	0.000	1.01		110	36.3	SURCHARGED	
1.006	7	0.252	0.000	0.91		149	31.3	SURCHARGED	
2.000	8	0.683	0.000	0.06		62	14.5	SURCHARGED	
2.001	9	0.904	0.000	0.09			21.5	SURCHARGED	
2.002	10 HB	1.168	0.000	0.06			5.9	FLOOD RISK	
2.003	11	0.136	0.000	0.15		160	15.3	SURCHARGED	
2.004	12	0.232	0.000	0.26		199	21.6	SURCHARGED	
2.005	13	0.268	0.000	0.26			21.7	SURCHARGED	
1.007	14	0.306	0.000	0.38			36.0	SURCHARGED	
1.008	15	0.362	0.000	0.39		254	36.2	SURCHARGED	

Coast Consulting Engineers Ltd		Page 12
Suite 6, Vita House	FLOSH MEADOWS	
Fish Quay	CLEATOR	
North Shields NE30 1JA	1:100 +50%	Micro
Date 09/06/2023	Designed by RH	Drainage
File 230609 REVISED SURFACE W	Checked by PL	prairiage
Innovyze	Network 2020.1	

 $\underline{\text{Summary of Critical Results by Maximum Level (Rank 1) for 180518 SW1.SWS}}$

PN	US/ME Name		Storm		Climate Change	First Surcl	t (X) narge	First (• •	First Overf	 Overflow Act.	Water Level (m)
3.000	16	360	Summer	100	+50%	100/30	Summer					62.640
1.009	17 H	3 3 6 0	Summer	100	+50%	100/15	Summer					62.639
1.010	18	3 240	Summer	100	+50%							61.920

	US/MH	Surcharged Depth			Overflow	Half Drain Time	Pipe Flow		Level
PN	Name	(m)	(m³)	Cap.	(1/s)	(mins)	(1/s)	Status	Exceeded
3.000	16	0.365	0.000	0.16		254	13.9	SURCHARGED	
1.009	17 HB	0.487	0.000	0.50		273	32.0	SURCHARGED	
1.010	18	-0.123	0.000	0.66			32.0	OK	

Coast Consulting Engineers Ltd
7 Silverton Court
Northumberland Business Park
NE23 7RY
Tel. 0191 597 7879