

Drainage Report

Property Address Proposed Industrial Units

Joe McBain Ave Moresby Parks Whitehaven CA28 8EA

Client Metalwork Solutions Ltd

Our Reference 23-186r001

Date April 2023

Prepared by Colin Aimers

BEng Hons CEng MICE CEnv

Kingoor Consulting LtdSuite 4, Atlantic House
Parkhouse Business Park

Carlisle CA3 OLJ

Contents

Introduction	2
The Site	3
Historic Usage	3
Existing Foul Network	3
Existing Site Drainage	3
Geology	3
Drainage Strategy	4
Foul Drainage	4
Outline Strategy	4
Detailed Design	4
Surface Water Drainage	4
Outline Strategy	4
Detailed Design	5
Engineering Elements	7
Appendices	9
BGS Geological Records	9
Drawings	10
Calculations	11

Introduction

The purpose of this report is to provide support for a planning application associated with the proposed development on land adjacent at Joe McBain Ave, Moresby Parks, Whitehaven, CA28 8EA. Research has been undertaken on the site and observations made regarding the existing site and the drainage servicing the site.

Calculations associated with the drainage have been performed by software packages from a recognised resource. Where appropriate copies of calculations are provided in the Appendices of this report.

The Site

Historic Usage

The area of the proposed development has historically been undeveloped and is part of a larger site developed in the 1990's by the North West Development Agency for industrial use. Infrastructure and some limited developments took place during the intervening years, and the site proposed for development has remained fallow with limited maintenance being undertaken on the site.

Existing Foul Network

A private sewer system is located on the site servicing the properties which discharges to the United Utilities foul drainage system located on the site boundary.

Existing Site Drainage

The site has no natural drainage and all surface water is collected and managed via a site wide surface water drainage system which leaves the site and discharges to a watercourse on the site boundary. The drainage system installed as part of the development during the 1990's has no flow controls or attenuation and the condition is to be inspected as part of this development to ensure that it is suitable for future demands on the site.

Geology

The superficial geology indicates that the site is overlain by the Diamicton Till generally consisting of clays, and silts.

The solid geology of the site is Coal Measures.

A copy of the geological mapping is appended to this report.

Drainage Strategy

Foul Drainage

Outline Strategy

It is proposed that the development shall have a connection to the adjacent foul drainage network present on the site boundary.

Detailed Design

Detailed design has been undertaken in Causeway Flow based on the anticipated arrangements for each unit. Allowances of 2500 litres per day per unit have been adopted for the site to discharge to the foul network.

Surface Water Drainage

Outline Strategy

It is proposed to discharge the surface water from the development to the existing surface water drainage present on the site boundary. This is following trial pitting undertaken on the site which indicated that the site cannot accommodate natural percolation to the superficial deposits on the site.

This follows the Hierarchy of Drainage, as stated in the National Planning Practice Guidance, the aim should be to discharge surface water run-off as high up the drainage hierarchy, as reasonably practicable:

- Into the ground (infiltration);
- To a surface water body;
- To a surface water sewer, highway drain, or another drainage system;
- To a combined sewer

At present, drainage located on the site discharges any surface water from the area of the development into the surface water system unattenuated. It would be proposed to attenuate via a

plot storage and release the surface water discharge at greenfield runoff rates to the adjacent surface water system.

The following table presents the areas and greenfield runoff rates for each plot.

Plot	Area [Square Metres]	Greenfield Runoff Rate [litres / second]
1	1953	1.82
2	974	0.93
3	1693	1.54

These have been calculated using online tools published by HR Wallingford and calculations are appended to this report.

Detailed Design

Principally the surface water drainage has been calculated on the impermeable areas of the development.

Areas of each plot are subdivided and modelled in the software to mimic realistic flows in the network. Modelling has been conducted on the following rainfall events:

- 1 in 10 years
- 1 in 30 years
- 1 in 100 years plus 40% increase due to climate change over a 6 hour period

An assessment of the proposed network has been undertaken to identify the requirements of each plot and requirements for the attenuation of water on each plot to ensure that runoff from each plot does not exceed the limits of Qbar (approx 1 in 2 year rainfall event).

The following parameters were adopted in the analysis. These were obtained from UK SUDS based on the site location and data held by HR Wallingford.

. .

Simulation Settings

Rainfall Methodology	FSR	Analysis Speed	Normal
FSR Region	England and Wales	Skip Steady State	Х
M5-60 (mm)	17.000	Drain Down Time (mins)	240
Ratio-R	0.300	Additional Storage (m³/ha)	0.0
Summer CV	0.750	Check Discharge Rate(s)	\checkmark
Winter CV	0.840	30 year (I/s)	7.3

Simulation Settings

100 year (l/s) 9.0 100 year 360 minute (m³) 143 Check Discharge Volume ✓

Storm Durations

15	30	60	120	180	240	360	480	600	720	960	1440

Return Period (years)	Climate Change (CC %)	Additional Area (A %)	Additional Flow (Q %)
10	0	0	0
30	0	0	0
100	40	0	0

The following rates and volumes have been calculated for the predevelopment discharge and volumes from the overall site.

Pre-development Discharge Rate

Site Makeup	Greenfield	Growth Factor 30 year	1.70
Greenfield Method	IH124	Growth Factor 100 year	2.08
Positively Drained Area (ha)	0.462	Betterment (%)	0
SAAR (mm)	1230	QBar	4.3
Soil Index	4	Q 30 year (I/s)	7.3
SPR	0.47	Q 100 year (I/s)	9.0
Region	10		

Project

Pre-development Discharge Volume

Site Makeup	Greenfield	Return Period (years)	100
Greenfield Method	FSR/FEH	Climate Change (%)	0
Positively Drained Area (ha)	0.462	Storm Duration (mins)	360
Soil Index	4	Betterment (%)	0
SPR	0.47	PR	0.509
CWI	125.575	Runoff Volume (m³)	143

Engineering Elements

The detailed model presented in this report adopts the following engineering aspects specific to the site.

Attenuation

Attenuation in the form of engineered crates an attenuation pond downstream of the site shall accommodate all peak flows from the development and prevent flooding occurring within and outside the site.

The following summary is offered for each plot

Plot 1

Node 22 Soakaway Storage Structure

Base Inf Coefficient (m/hr)	0.00000	Invert Level (m)	123.648	Depth (m)	1.200
Side Inf Coefficient (m/hr)	0.00000	Time to half empty (mins)		Inf Depth (m)	
Safety Factor	1.0	Pit Width (m)	5.000	Number Required	1
Porosity	0.95	Pit Length (m)	10.000		

Plot 2

Node 14 Soakaway Storage Structure

Base Inf Coefficient (m/hr)	0.00000	Invert Level (m)	124.068	Depth (m)	1.200
Side Inf Coefficient (m/hr)	0.00000	Time to half empty (mins)		Inf Depth (m)	
Safety Factor	1.0	Pit Width (m)	3.000	Number Required	1
Porosity	0.95	Pit Length (m)	6.000		

Project Proposed Industrial Units, Joe McBain Ave, Moresby Parks 23-186r001

Report Drainage Strategy Report Page 7 of 12

Plot 3

Node 7 Soakaway Storage Structure

Base Inf Coefficient (m/hr)	0.00000	Invert Level (m)	124.702	Depth (m)	1.200
Side Inf Coefficient (m/hr)	0.00000	Time to half empty (mins)		Inf Depth (m)	
Safety Factor	1.0	Pit Width (m)	4.000	Number Required	1
Porosity	0.95	Pit Length (m)	8.000		

Flow Control

Hydrobrakes are to be installed downstream of the attenuation storage on each plot and shall control flows from the site to the existing drainage network. The following summary is presented for the flow control device.

PLOT 1

Node 22 Online Hydro-Brake® Control

Flap Valve	Х	Objective	(HE) Minimise upstream storage
Replaces Downstream Link	\checkmark	Sump Available	✓
Invert Level (m)	123.648	Product Number	CTL-SHE-0050-1500-1800-1500
Design Depth (m)	1.800	Min Outlet Diameter (m)	0.075
Design Flow (I/s)	1.5	Min Node Diameter (mm)	1200

PLOT 2

Node 14 Online Hydro-Brake® Control

Flap Valve	x	Objective	(HE) Minimise upstream storage
Replaces Downstream Link	✓	Sump Available	✓
Invert Level (m)	124.068	Product Number	CTL-SHE-0040-9000-1500-9000
Design Depth (m)	1.500	Min Outlet Diameter (m)	0.075
Design Flow (I/s)	0.9	Min Node Diameter (mm)	1200

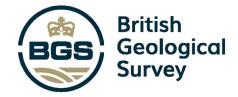
PLOT 3

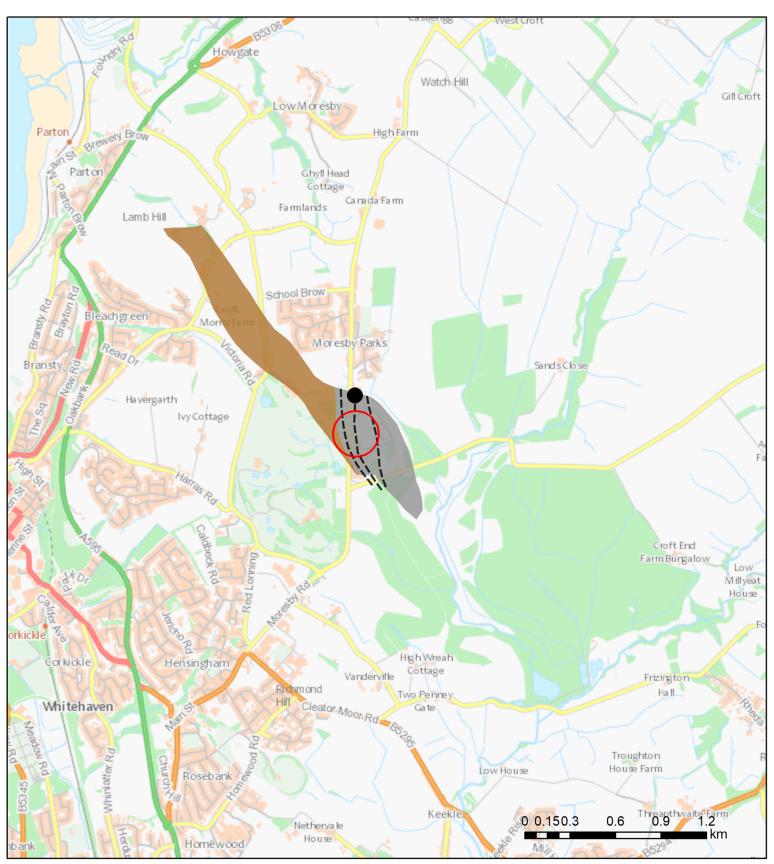
Node 7 Online Hydro-Brake® Control

Flap Valve	Х	Objective	(HE) Minimise upstream storage
Replaces Downstream Link	\checkmark	Sump Available	✓
Invert Level (m)	124.702	Product Number	CTL-SHE-0058-1800-1500-1800
Design Depth (m)	1.500	Min Outlet Diameter (m)	0.075
Design Flow (I/s)	1.8	Min Node Diameter (mm)	1200

Project Proposed Industrial Units, Joe McBain Ave, Moresby Parks 23-186r001

Report Drainage Strategy Report




Appendices

BGS Geological Records

Project Proposed Industrial Units, Joe McBain Ave, Moresby Parks

Solid Geology

Contains OS data © Crown Copyright and database right 2020

GeoIndex Onshore Data Sources: NERC, Natural England, English Heritage and Ordnance Survey

Map Key

Bedrock geology 1:50,000 scale

FIRST SHALE MEMBER - SANDSTONE, SILTSTONE AND MUDSTONE

PENNINE LOWER COAL MEASURES FORMATION - MUDSTONE, SILTSTONE AND SANDSTONE

FIRST LIMESTONE (CUMBRIA) - LIMESTONE

MILLYEAT MEMBER - MUDSTONE, SANDSTONE AND LIMESTONE

BUTTERMERE FORMATION - MUDSTONE AND SANDSTONE

PENNINE MIDDLE COAL MEASURES FORMATION - MUDSTONE, SILTSTONE AND SANDSTONE

STAINMORE FORMATION - MUDSTONE, SILTSTONE AND SANDSTONE

ST BEES SANDSTONE MEMBER - SANDSTONE

OREBANK SANDSTONE - SANDSTONE

ST BEES SHALE FORMATION - SILTSTONE AND MUDSTONE, INTERBEDDED

PENNINE LOWER COAL MEASURES FORMATION - SANDSTONE

PENNINE MIDDLE COAL MEASURES FORMATION - SANDSTONE

WHITEHAVEN SANDSTONE FORMATION - SANDSTONE

ST BEES EVAPORITE FORMATION - DOLOMITIC LIMESTONE, MUDSTONE AND ANHYDRITE-STONE

HENSINGHAM GRIT - SANDSTONE

BROCKRAM - BRECCIA

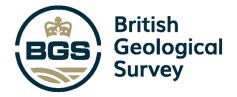
Linear features 1:50,000 scale

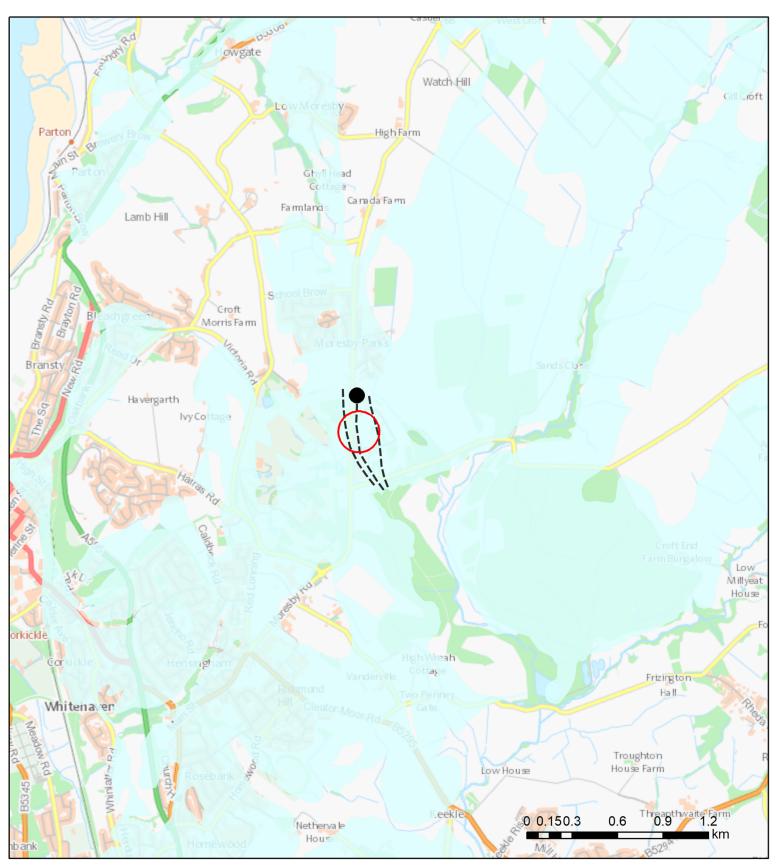
-- Coal_seam_Inf

Glacial_meltwater_channel_Centre_Undiff

- Marine_band

Selection Results


Linear features 1:50,000 scale


Feature
Coal seam, inferred
Coal seam, inferred
Coal seam, inferred

Bedrock geology 1:50,000 scale

Description	Details
PENNINE MIDDLE COAL MEASURES FORMATION - MUDSTONE, SILTSTONE	More Information
AND SANDSTONE	
WHITEHAVEN SANDSTONE FORMATION - SANDSTONE	More Information

Superficial Deposits

Contains OS data © Crown Copyright and database right 2020

GeoIndex Onshore Data Sources: NERC, Natural England, English Heritage and Ordnance Survey

Map Key

Superficial deposits 1:50,000 scale

GLACIOFLUVIAL DEPOSITS, DEVENSIAN - SAND AND GRAVEL

TILL, DEVENSIAN - DIAMICTON

ALLUVIUM - CLAY, SILT, SAND AND GRAVEL

RAISED MARINE DEPOSITS - CLAY AND SILT

RIVER TERRACE DEPOSITS, 1 - CLAY, SAND AND GRAVEL

ALLUVIAL FAN DEPOSITS - SAND AND GRAVEL

MARINE BEACH DEPOSITS - SAND AND GRAVEL

PEAT - PEAT

SUPERFICIAL THEME NOT MAPPED [FOR DIGITAL MAP USE ONLY] - UNKNOWN/UNCLASSIFIED ENTRY

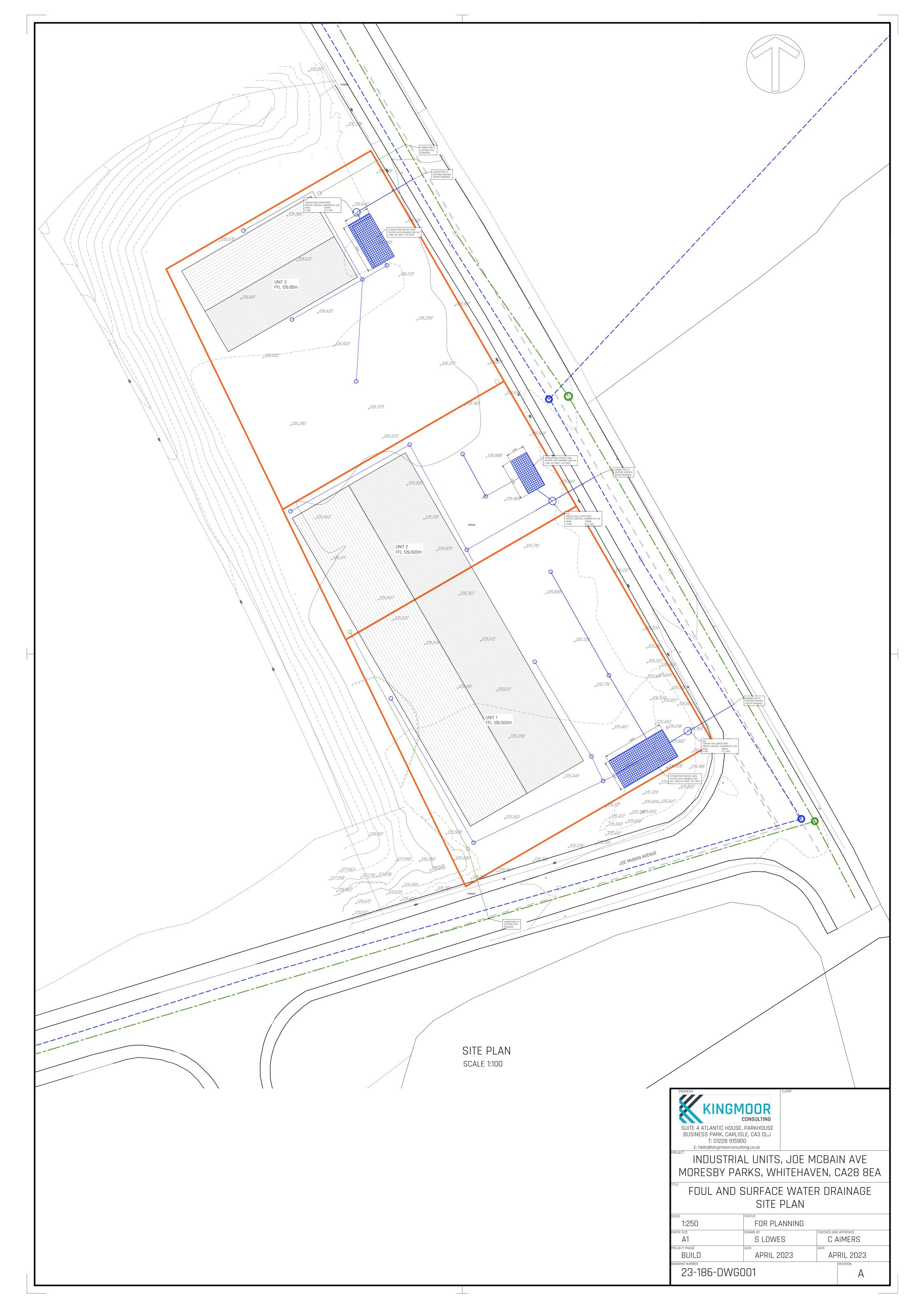
Linear features 1:50,000 scale

- -- Coal_seam_Inf
- Glacial_meltwater_channel_Centre_Undiff
- Marine_band

Selection Results

Linear features 1:50,000 scale

Feature	
Coal seam,	
inferred	
Coal seam,	
inferred	
Coal seam,	
inferred	


Superficial deposits 1:50,000 scale

Description	Details
TILL,	More Information
DEVENSIAN -	
DIAMICTON	

Drawings

23-186 DWG001 - SITE LAYOUT

Calculations

- FLOW REPORT
- FLOW PLAN
- FLOW PROFILE

Print

Close Report

Greenfield runoff rate estimation for sites

www.uksuds.com | Greenfield runoff tool

				www.uns	uus.com	dieeillield (diloi) (
Calculated by:	Colin Aimers				Site Details	
Site name:	Plot 1				Latitude:	54.55297° N
Site location:	Moresby Parks				Longitude:	3.54722° W
	-					
This is an estimatior criteria in line with E				et normal best practice ement for	Reference:	314397988
developments", SCO	30219 (2013) , the Si	uDS Manual C750	3 (Ciria, 2015) and		Date:	Apr 19 2023 19:24
setting consents fo						
Runoff estimat	ion approach	IH124				
Site characteri	stics			Notes		
Total site area (h	a) : 0.1953			(1) Is Q _{BAR} < 2.0 l/s	/bo2	
Methodology				(1) IS QBAR < 2.0 I/S	/IIa:	
Q _{BAR} estimation r	method: Calcu	ulate from SP	R and SAAR	When Q _{BAR} is < 2.0	l/s/ha then lim	niting discharge rates
SPR estimation m	nethod: Calcu	ulate from SO	IL type	are set at 2.0 l/s/	ha.	
Soil characteri	stics Defaul	t Edite	ed			
SOIL type:	4	4		(2) Are flow rates	< 5.0 l/s?	
HOST class:	N/A	N/A		Mb are flow retoo	l +b F	i.0 l/s consent for
SPR/SPRHOST:	0.47	0.47		discharge is usua		·
Hydrological ch	naracteristics	Default	Edited			s possible. Lower where the blockage
SAAR (mm):		1230	1230	risk is addressed	=	_
Hydrological regi	on:	10	10	elements.		
Growth curve fac	ctor 1 year.	0.87	0.87	(3) Is SPR/SPRHOS	T ≤ 0.3?	
Growth curve fac	ctor 30 years:	1.7	1.7			
Growth curve fac	ctor 100 years:	2.08	2.08	_		w enough the use of ffsite would normally
Growth curve fac	ctor 200 years:	2.37	2.37	-	_	face water runoff.

Greenfield runoff rates	Default	Edited
Q _{BAR} (I/s):	1.82	1.82
1 in 1 year (l/s):	1.59	1.59
1 in 30 years (l/s):	3.1	3.1
1 in 100 year (l/s):	3.79	3.79
1 in 200 years (l/s):	4.32	4.32

This report was produced using the greenfield runoff tool developed by HR Wallingford and available at www.uksuds.com. The use of this tool is subject to the UK SuDS terms and conditions and licence agreement, which can both be found at www.uksuds.com/terms-and-conditions.htm. The outputs from this tool are estimates of greenfield runoff rates. The use of these results is the responsibility of the users of this tool. No liability will be accepted by HR Wallingford, the Environment Agency, CEH, Hydrosolutions or any other organisation for the use of this data in the design or operational characteristics of any drainage scheme.

Greenfield runoff rate estimation for sites

www.uksuds.com | Greenfield runoff tool

Site Details Colin Aimers Calculated by: Latitude: 54.55297° N Site name: Plot 2 Longitude: 3.54722° W Site location: Moresby Parks This is an estimation of the greenfield runoff rates that are used to meet normal best practice Reference: 179141370 criteria in line with Environment Agency guidance "Rainfall runoff management for developments", SC030219 (2013), the SuDS Manual C753 (Ciria, 2015) and the non-statutory Apr 19 2023 19:25 standards for SuDS (Defra, 2015). This information on greenfield runoff rates may be the basis for Date: setting consents for the drainage of surface water runoff from sites.

setting consents for the di	alliage of st	dirace water run	on nom sites.	
Runoff estimation ap	proach	IH124		
Site characteristics				Notes
Total site area (ha): 0	.1			(1) lo 0 < 2 0 1/c/ho2
Methodology				(1) Is Q _{BAR} < 2.0 I/s/ha?
Q_{BAR} estimation metho	d: Calcu	ulate from SPF	R and SAAR	When Q _{BAR} is < 2.0 l/s/ha then limiting discharge rates
SPR estimation method	d: Calcu	ulate from SOI	L type	are set at 2.0 l/s/ha.
Soil characteristics	Defau	lt Edite	ed	
SOIL type:	4	4		(2) Are flow rates < 5.0 l/s?
HOST class:	N/A	N/A		Where flow rates are less than 5.0 l/s consent for
SPR/SPRHOST:	0.47	0.47		discharge is usually set at 5.0 l/s if blockage from
Hydrological charact	teristics	Default	Edited	vegetation and other materials is possible. Lower consent flow rates may be set where the blockage
SAAR (mm):		1230	1230	risk is addressed by using appropriate drainage
Hydrological region:		10	10	elements.
Growth curve factor 1 y	/ear:	0.87	0.87	(3) Is SPR/SPRHOST ≤ 0.3?
Growth curve factor 30) years:	1.7	1.7	Where groundwater levels are levy arough the ves of
Growth curve factor 10	0 years:	2.08	2.08	Where groundwater levels are low enough the use of soakaways to avoid discharge offsite would normally
Growth curve factor 20	00 years:	2.37	2.37	be preferred for disposal of surface water runoff.

Greenfield runoff rates	Default	Edited
Q _{BAR} (I/s):	0.93	0.93
1 in 1 year (l/s):	0.81	0.81
1 in 30 years (l/s):	1.59	1.59
1 in 100 year (l/s):	1.94	1.94
1 in 200 years (l/s):	2.21	2.21

This report was produced using the greenfield runoff tool developed by HR Wallingford and available at www.uksuds.com. The use of this tool is subject to the UK SuDS terms and conditions and licence agreement, which can both be found at www.uksuds.com/terms-and-conditions.htm. The outputs from this tool are estimates of greenfield runoff rates. The use of these results is the responsibility of the users of this tool. No liability will be accepted by HR Wallingford, the Environment Agency, CEH, Hydrosolutions or any other organisation for the use of this data in the design or operational characteristics of any drainage scheme.

Greenfield runoff rate estimation for sites

www.uksuds.com | Greenfield runoff tool

Site Details Colin Aimers Calculated by: Latitude: 54.55297° N Site name: Plot 3 Longitude: 3.54722° W Site location: Moresby Parks This is an estimation of the greenfield runoff rates that are used to meet normal best practice Reference: 4036612910 criteria in line with Environment Agency guidance "Rainfall runoff management for developments", SC030219 (2013), the SuDS Manual C753 (Ciria, 2015) and the non-statutory Apr 19 2023 19:26 standards for SuDS (Defra, 2015). This information on greenfield runoff rates may be the basis for Date:

Standards for out of Dena, 2	2010). 11113 11	1101111	ation on gre	sermera rum	off fates may be the basis for
setting consents for the dr	ainage of su	urface	e water rund	off from site	es.
Runoff estimation ap	proach	IH12	24		
Site characteristics					Notes
Total site area (ha): 0	.165				(1) Is Q _{BAR} < 2.0 l/s/ha?
Methodology					(1) 13 QBAR \ 2.0 1/3/11d.
Q _{BAR} estimation metho	d: Calcu	ulate	from SPR	and SAAR	When Q _{BAR} is < 2.0 l/s/ha then limiting discharge rates
SPR estimation method	d: Calcu	ulate	from SOII	type	are set at 2.0 l/s/ha.
Soil characteristics	Defau	lt	Edite	d	
SOIL type:	4		4		(2) Are flow rates < 5.0 l/s?
HOST class:	N/A		N/A		Where flow rates are less than 5.0 l/s consent for
SPR/SPRHOST:	0.47		0.47		discharge is usually set at 5.0 l/s if blockage from
Hydrological charact	teristics	[Default	Edite	vegetation and other materials is possible. Lower consent flow rates may be set where the blockage
SAAR (mm):		12	30	1230	risk is addressed by using appropriate drainage
Hydrological region:		10		10	elements.
Growth curve factor 1 y	ear:	0.8	87	0.87	(3) Is SPR/SPRHOST ≤ 0.3?
Growth curve factor 30	years:	1.7	7	1.7	Where groundwater levels are low enough the use of
Growth curve factor 10	0 years:	2.0	08	2.08	soakaways to avoid discharge offsite would normally
Growth curve factor 20	0 years:	2.3	37	2.37	be preferred for disposal of surface water runoff.

Greenfield runoff rates	Default	Edited
Q _{BAR} (I/s):	1.54	1.54
1 in 1 year (l/s):	1.34	1.34
1 in 30 years (l/s):	2.62	2.62
1 in 100 year (l/s):	3.2	3.2
1 in 200 years (l/s):	3.65	3.65

This report was produced using the greenfield runoff tool developed by HR Wallingford and available at www.uksuds.com. The use of this tool is subject to the UK SuDS terms and conditions and licence agreement, which can both be found at www.uksuds.com/terms-and-conditions.htm. The outputs from this tool are estimates of greenfield runoff rates. The use of these results is the responsibility of the users of this tool. No liability will be accepted by HR Wallingford, the Environment Agency, CEH, Hydrosolutions or any other organisation for the use of this data in the design or operational characteristics of any drainage scheme.