

Report Title

Property Address

Detailed Drainage Report

Partfield Park Drigg Holmrook Whitehaven

Mr & Mrs Usher

Client

Our Reference

Date

Prepared by

Checked by

October 2024

24-429r001C

Josh Gemmell BEng Hons

Colin Aimers BEng Hons CEng MICE CEnv Director colin.aimers@kingmoorconsulting.co.uk

Kingmoor Consulting Ltd, Suite 4, Atlantic House, Fletcher Way, Parkhouse, Carlisle, Cumbria, CA3 OLJ

CONTENTS

INTRODUCTION	2
PROPOSED DEVELOPMENT	2
THE SITE	2
EXISTING DRAINAGE	2
GEOLOGY	3
SUPERFICIAL DEPOSITS	3
SOLID GEOLOGY	3
DRAINAGE STRATEGY	3
FOUL DRAINAGE	3
SURFACE WATER DRAINAGE	4
DETAILED DESIGN	5
FOUL DRAINAGE	5
SURFACE WATER DRAINAGE	6
APPENDICES	8
APPENDIX A - BGS GEOLOGICAL RECORDS	8
APPENDIX B - CESSPOOL INFORMATION	9
APPENDIX C - DRAWINGS	10
APPENDIX D - PHOTOGRAPHS	11
APPENDIX E - CALCULATIONS	26

INTRODUCTION

The purpose of this report is to provide technical design for the drainage at the proposed development of holiday lodges at Partfield Park, Drigg, Holmrook, Whitehaven, thereafter known as the site. This follows the detailed site review by Kingmoor Consulting Ltd.

Research has been undertaken on the site and observations made regarding the existing site and the drainage servicing the site.

Calculations associated with the drainage have been performed by software packages from a recognised resource. Where appropriate copies of calculations are provided in the Appendices of this report.

PROPOSED DEVELOPMENT

It is proposed to develop 8 no. leisure lodges and 8 no. touring pitches to facilitate campervans for short term occupation at the site, in addition to a shop/office and toilet/shower block. New drainage shall be installed to service the development alongside the replacement of existing drainage presently servicing the wider site.

This site has obtained planning permission under consent ref 4/21/2411 by Cumberland Council.

THE SITE

EXISTING DRAINAGE

The existing site drainage has been investigated where it is possible and we have identified the key surface and foul drainage serving the site.

All Surface water currently goes to ground, a ditch is present on the eastern edge of the site, before draining to the south via a culvert under the adjacent B5344. A field drain from the adjacent field to the north also flows into the eastern boundary but is currently blocked and requires work done to repair the pipework underground.

An existing pond that is built in the neighbouring garden has an overflow pipe installed which also flows into this ditch. It appears this overflow pipe is rarely in use as the pond water level is a distance

below the inlet of the overflow pipe.

There is a band of wet ground stretching across an area of the site, however, surface water appears to drain sufficiently elsewhere on the site, and does not appear to flood the site.

There is no existing foul drainage serving the site.

GEOLOGY

SUPERFICIAL DEPOSITS

The published superficial geology by The British Geological Survey shows the site is overlain by Diamicton Till present comprising Clays and Silts.

SOLID GEOLOGY

The solid geology as published by the British Geological Survey shows the site to be underlain with sandstones.

Copies of all BGS information are appended to this report.

DRAINAGE STRATEGY

FOUL DRAINAGE

It is proposed that the proposed development shall be serviced by a suitably sized foul storage tank. [Cess Pit]. This will be placed to service the whole site with one large tank. It will provide storage for all of the proposed lodges and the toilet/shower block.

The tank shall meet the requirements of BS 6297:2007+A1:2008, which provides guidance and recommendations for the design and installation of cesspools and drainage fields for wastewater treatment. In addition, a Elsan tank shall be provided for the discharge of chemical toilet waste on site. No waste will be treated on site, it will be removed by routine monitoring.

Project Partfield Park, Drigg, Holmrook, Whitehaven

SURFACE WATER DRAINAGE

It is proposed to discharge the surface water from the development to a new attenuation pond located at the south of the site. The proposed french drain crossing the site shall discharge into the existing ditch.

This follows the Hierarchy of Drainage, as stated in the National Planning Practice Guidance, the aim should be to discharge surface water run-off as high up the drainage hierarchy, as reasonably practicable:

- Into the ground (infiltration) *Available*
- To a surface water body *Available*
- To a surface water sewer, highway drain, or another drainage system *Not available*
- To a combined sewer *Not available*

DETAILED DESIGN

FOUL DRAINAGE

For the purposes of capacity, the following loads shall be adopted for foul drainage.

Property	Nature of Property	Equivalent Population [People]	
Proposed			
Lodges 1-8	Residential	24	
Toilet/Shower Block	Communal	20	
	TOTAL	48	

To allow us to calculate the required size of the foul storage tank, we have based this on the requirements stated in British Water document Loads and Flows 4, with the tank size being calculated based on the site's requirements.

The following assumptions have been made :

- 8 Serviced Lodges 120L per person, per day
 Type 1 2 bedrooms (4 population equivalent)
 Type 2 1 bedroom (2 population equivalent)
- 8 Non-Serviced Pitches
 - 2 Berth 2 population equivalent
 - 4 Berth 4 population equivalent
 - 20 litres per person (Toilets), load 2 flushes per person
 - 40 litres per person (Shower), load 1 per person, per day

Below is a summary table from the calculations of the foul storage tank which will indicate how these values/sizes have been calculated.

LOAD	POPULATION (person)	TOTAL/ per day [Litres]	TOTAL/ per month [35% occupancy]	TOTALS [Litres]
120L per person	16 pop (TYPE 1) 8 pop (TYPE 2)	1920L 960L TOTAL - 2880L	2880L @ 10.5 days = <u>30240L per month</u>	30240L
20L per person (Toilets), load - 2 flushes per person, per day. 40L per person (Shower), load - 1 per person, per day.	<u>2 Berth</u> - 12 people	720L	720L @ 10.5 days = <u>7560L per month</u>	37800L
-	<u>4 Berth -</u> 8 people	480L	480L @ 10.5 days = <u>5040L per month</u>	42840L

The proposed cesspool tank will be manufactured by SPEL. It is proposed to use a tank which will be sized at 55,000L capacity. This shall also contain a high level alarm to trigger at 80% capacity.

SURFACE WATER DRAINAGE

Principally the surface water drainage shall be calculated on the impermeable areas of the development, and shall discharge to the proposed attenuation pond on the site. Access roads, paths etc to be constructed on the site shall percolate naturally to the ground.

It is proposed that the new surface water system shall be installed to drain the impermeable surface areas and the new shop/office block. This is proposed to drain into a new attenuation pond located at the southern side of the site. This will provide adequate storage capacity and allow water to discharge at the permissible rate of flow (QBar) with the installation of a hydrobrake.

Project Partfield Park, Drigg, Holmrook, Whitehaven

All roof area surface water from the lodges is proposed to drain to ground.

A new french drain system is proposed to be installed across the length of the site to deal with the current wet ground, it is proposed that this will discharge into the existing ditch. This will allow the removal of water from the waterlogged area.

APPENDICES

APPENDIX A - BGS GEOLOGICAL RECORDS

Solid Geology

Contains OS data $\ensuremath{\textcircled{}}$ Crown Copyright and database right 2020

GeoIndex Onshore Data Sources: NERC, Natural England, English Heritage and Ordnance Survey

Map Key

Bedrock geology 1:50,000 scale

 WILMSLOW SANDSTONE FORMATION - SANDSTONE

 ESKDALE INTRUSIONS - GRANITE

 BIRKER FELL ANDESITE FORMATION - BASALTIC-ANDESITE

 BIRKER FELL ANDESITE FORMATION - ANDESITE

 BIRKER FELL ANDESITE FORMATION - LAVA, ANDESITIC

 DEVOKE WATER TUFF MEMBER - PYROCLASTIC-ROCK, BASALTIC

 SKIDDAW GROUP - MUDSTONE

 SKIDDAW GROUP - SILTSTONE AND SANDSTONE

 ST BEES SANDSTONE MEMBER - SANDSTONE

 FLEMING HALL TUFF FORMATION - TUFF, ANDESITIC

 SELLAFIELD MEMBER - SANDSTONE

ESKDALE INTRUSIONS - MICROGRANITE

BIRKER FELL ANDESITE FORMATION - VOLCANICLASTIC-SANDSTONE

Selection Results

Bedrock geology 1:50,000 scale

Description	Details
SELLAFIELD	More Information
MEMBER -	
SANDSTONE	

Superficial Deposits

Contains OS data © Crown Copyright and database right 2020

GeoIndex Onshore Data Sources: NERC, Natural England, English Heritage and Ordnance Survey

Map Key

Superficial deposits 1:50,000 scale

GLACIOFLUVIAL DEPOSITS, DEVENSIAN - SAND AND GRAVEL GLACIOFLUVIAL ICE CONTACT DEPOSITS, DEVENSIAN - SAND, GRAVEL AND BOULDERS GLACIOFLUVIAL DELTAIC (AND/OR SUBAQUEOUS FAN) DEPOSITS - SAND TILL, DEVENSIAN - DIAMICTON GLACIOLACUSTRINE DEPOSITS, DEVENSIAN - CLAY AND SILT TALUS - ROCK FRAGMENTS, ANGULAR, UNDIFFERENTIATED SOURCE ROCK ALLUVIUM - CLAY, SILT, SAND AND GRAVEL TIDAL RIVER OR CREEK DEPOSITS - CLAY, SILT AND SAND **RAISED MARINE DEPOSITS - CLAY AND SAND BLOWN SAND - SAND RAISED MARINE DEPOSITS - SAND, GRAVEL AND BOULDERS** HEAD - CLAY, SILT, SAND AND GRAVEL **RIVER TERRACE DEPOSITS (UNDIFFERENTIATED) - SAND AND GRAVEL** RIVER TERRACE DEPOSITS (UNDIFFERENTIATED) - GRAVEL, SAND AND SILT **ALLUVIAL FAN DEPOSITS - GRAVEL** ALLUVIAL FAN DEPOSITS - SAND AND GRAVEL LACUSTRINE DEPOSITS - CLAY AND SILT MARINE BEACH DEPOSITS - SAND AND GRAVEL **TIDAL FLAT DEPOSITS - CLAY AND SILT** PEAT - PEAT

Selection Results

Superficial deposits 1:50,000 scale

Description	Details
TILL,	More Information
DEVENSIAN -	
DIAMICTON	

APPENDIX B - CESSPOOL INFORMATION

SPEL Tankstor® Below Ground Tanks

Overview

SPEL Tankstor[®] tanks are manufactured for many applications and in a wide range of specifications to handle such substances as water, sewage, farm effluent, petroleum products and chemicals.

Our modern plant, equipment and quality assurance procedures ensure market-leading quality.

Being manufactured in glass reinforced plastics, SPEL tanks are lightweight, easy to handle and install. They are not susceptible to rust, exhibit excellent corrosion resistant properties and have a life expectancy in excess of 50 years.

Product Range

H Series | Horizontal Tanks

200 Series (1.2m inside diameter): 1,000 – 10,000L capacity

300 Series (1.8m inside diameter): 4,000 – 40,000L capacity

400 Series (2.6m inside diameter): 13,650 – 100,000L capacity

500 Series (3.5m inside diameter): 60,000 – 200,000L capacity

600 Series (4.0m inside diameter): 100,000 – 300,000L capacity

V Series | Vertical Tanks

200 Series (1.2m inside diameter): 1,700 - 5,000L capacity

300 Series (1.8m inside diameter): 5,000 – 15000L capacity

400 Series (2.6m inside diameter): 10,000 – 36,500L capacity

500 Series (3.5m inside diameter): 50,400 – 90,100L capacity

600 Series (4m inside diameter): 65,668 – 115,930L capacity

Applications

Stormwater attenuation

Fire fighting sprinkler reservoirs

Potable water storage

Septic/settlement tanks

Cesspools

Silage effluent holding tanks

SPEL RainSave rainwater reservoirs

Accidental spillage containment

Transformer oil dump tanks

Packaged pumping chambers

Chemical spill tanks

Shell Design

Designed with reference to BS EN 13121. All tank shells carry the SPEL 25 Year Warranty and life expectancy in excess of 50 years.

Shell Specifications

Different tank shell specifications are available dependent upon tank invert levels, ground conditions and ground water levels.

Inlet/Outlet Connections

Pipe connections available to accommodate most standard sizes.

Horizontal Tank Dimensions

<u> </u>
$\overline{0}$
\mathbf{O}
\bigcirc
\bigcirc
\bigcirc
·
\bigcirc
\Box
$\overline{\mathcal{O}}_{-}$

Tank capacity	200 Series	300 Series	400 Series	500 Series	600 Series
litres	length mm	length mm	length mm	length mm	4.0m Inside diameter length mm
1,000	1,160				
2,000	2,040				
3,000	2,930				
4,000	3,810	1,950			
5,000	4,700				
6,000	5,578	2,755			
7,000	6,470				
7,300		3,200			
8,000	7,346	3,535			
9,000	8,236				
9,270		4,015			
10,000	9,120	4,285			
12,000	10,888	5,070			
13,650	12,347	5,755			
16,000		6,700			
17,000		7,060			
18,200		7,615	4,000		
20,000		8,255	4,400		
25,000		10,215	5,250		
27,300			5,700		
30,000		12,175	6,170		
35,000		14,155			
36,400			7,400		
40,000		16,120			
40,600			8,200		
45,000				5,390	
45,500			9,050		
50,000			9,950		
60,000			11,830	6,960	
70,000			13,710	8,520	
75,000			14,700	9,040	
80,000			15,600	10,040	
90,000					
90,400			17,560		
100,000				11,140	8,710
120,000					10,310
125,000				13,840	
140,000				46.240	11,891
150,000				16,340	12,690
170,000				17,540	13,485
175,000				19.040	14,320
180,000				18,940	15.079
190,000				15,440	15,079
200,000				21 540	15,671
200,000				21,340	18 259
240,000					10,239
250,000					20 651
260,000					20,051
270,000					21,450
280,000					22,230
290,000					23,020
300,000					23,650
					24,000

Note: Intermediate sizes are available.

SPEL Products Lancaster Road, Shrewsbury, Shropshire SY1 3NQ

(01743) 445 200 | info@spelproducts.co.uk

Below Ground Vertical Tank Dimensions

200 Series 1.2m inside diameter o/a Depth mm Tank Capacity L		300 Series 1.8m inside diameter Tank Capacity L	400 Series 2.6m inside diameter Tank Capacity L	500 Series 3.5m inside diameter Tank Capacity L	600 Series 4.0m inside diameter Tank Capacity L
	VT200	VT300	VT400	VT500	VT600
2,000	2,100				
2,500	2,600	5,500			
3,000	3,200	6,700	11,400		
3,500	3,800	8,000	14,000	23,200	
4,000	4,300	9,300	16,700	28,000	36,000
4,500	4,900	10,500	19,300	32,800	42,200
5,000	5,500	11,800	22,000	37,600	48,500
5,500	6,000	13,100	24,600	42,400	54,800
6,000	6,600	14,400	27,300	47,200	61,100
6,500	7,200	15,600	29,900	52,100	67,400
7,000	7,700	16,900	32,600	56,900	73,700
7,500	8,300	18,200	35,200	61,700	79,900
8,000	8,800	19,500	37,900	66,500	86,200

Note: Intermediate sizes are available.

Section 02 SPEL Tankstor

SPEL Tankstor[®] Tank

Example Installation

For a full list of additional accessories, see page 2.14

APPENDIX C - DRAWINGS

	KEYImage: LodgesImage: PitchesImage: PitchesImage: Toilets/shower AND shop
+ Water Level 18.37	
POND	
	 GENERAL NOTES ALL DIMENSIONS IN MILLIMETERS UNLESS NOTED AND NOT TO BE SCALED FROM DRAWINGS. USE WRITTEN DIMENSIONS ONLY AND CHECK ON SITE BEFORE ORDERING MATERIALS OR STEELWORK. ALL DRAWINGS TO BE READ IN CONJUNCTION WITH DRAWINGS PRODUCED BY OTHERS AND ANY ERRORS TO BE BROUGHT TO THE ATTENTION OF THE ENGINEER PRIOR TO COMMENCEMENT OR INSTALLATION OF THE WORKS. ALL MATERIALS AND WORKMANSHIP TO BE UNDERTAKEN IN ACCORDANCE WITH BEST PRACTICE AND THE RELEVANT CODES INCLUDING BRITISH STANDARDS AND BUILDING REGULATIONS. THIS WORK MAY BE REQUIRED TO COMPLY WITH THE BUILDING SAFETY ACT 2023. IF WORK REQUIRES MORE THAN ONE CONTRACTOR TO UNDERTAKE THE WORKS, THE CLIENT IS REQUIRED TO APPOINT A PRINCIPAL DESIGNER TO COORDINATE DESIGN WORKS, AND ENSURE THAT ALL DESIGN AND WORKS ARE CONSTRUCTED IN ACCORDANCE WITH THE BUILDING REGULATIONS. IT CANNOT BE ASSUMED THAT KINGMOOR CONSULTING LTD ARE BY DEFAULT THE PRINCIPAL DESIGNER UNLESS APPOINTED SPECIFICALLY FOR THIS ROLE.
	ENGINEER ENGINE
r F	A1J GEMMELLC AIMERSROJECT PHASE BUILDDATE OCTOBER 2024DATE OCTOBER 2024DATE OCTOBER 2024RAWING NUMBER 24-429-DWG001REVISION B

 \neg

TYPICAL FRENCH DRAIN SCALE 1:10

> POND DETAIL SCALE 1:15

GENERAL NOTES

- ALL DIMENSIONS IN MILLIMETERS UNLESS NOTED AND NOT TO BE SCALED FROM DRAWINGS. USE WRITTEN DIMENSIONS ONLY AND CHECK ON SITE BEFORE ORDERING MATERIALS OR STEELWORK.
- ALL DRAWINGS TO BE READ IN CONJUNCTION WITH DRAWINGS PRODUCED BY OTHERS AND ANY ERRORS TO BE BROUGHT TO THE ATTENTION OF THE ENGINEER PRIOR TO COMMENCEMENT OR INSTALLATION OF THE WORKS. ALL MATERIALS AND WORKMANSHIP TO BE UNDERTAKEN IN ACCORDANCE WITH BEST PRACTICE AND THE RELEVANT CODES INCLUDING BRITISH STANDARDS AND
- BUILDING REGULATIONS. THIS WORK MAY BE REQUIRED TO COMPLY WITH THE BUILDING SAFETY ACT 2023. IF WORK REQUIRES MORE THAN ONE CONTRACTOR TO UNDERTAKE THE WORKS, THE CLIENT IS REQUIRED TO APPOINT A PRINCIPAL DESIGNER TO COORDINATE DESIGN WORKS, AND ENSURE THAT ALL DESIGN AND WORKS ARE CONSTRUCTED IN ACCORDANCE WITH THE BUILDING REGULATIONS. IT CANNOT BE ASSUMED THAT KINGMOOR CONSULTING LTD ARE BY DEFAULT THE PRINCIPAL DESIGNER UNLESS APPOINTED SPECIFICALLY FOR THIS ROLE.

PARTFIELD PARK, DRIGG,

HOLMROOK, WHITEHAVEN

DRAINAGE DETAILS

AS NOTED	FOR PLANNING CONSENT				
PAPER SIZE					
AI	J GEMMELL C AIMERS				
		DATE			
BUILD	UCTUBER 2024	OCTOBER 2024 OCTOBER 2024			
		REVISION			
24-429-DWG	l B				

	Manhole Number	Cover Level		Pipe			Manhole Size	Ţ	/pes	
	Coordinates	Depth To Soffit	Connections		Code	Inverts	Diams		Manhole	Cover
	S1	19.450						600	4	Unspec
E.	307401.271 500184.384	0,,00			1000	10 550	150			Unspec
				1	1.000	18.550	150			
	S2	19.000								
E.	307398.297 500174.076	0.750			1001	10,100	150	600	4	Unspec
				1	1.001	18.100	150			
	S3	18.100								
E.	307400.133	0.750						600	4	Unspec
N.	500134,446			0	1.002	17.200	150			
	S4	17.600			1.002	16,935	150			
E.	307420.671	0.750						600	4	Unspec
IN.	200123.312			0	1.003	16.700	150			
	S5	17.460			1.003	16.447	UCI			
E. N.	307440.659 500132.411	0.863			1004	15 4 4 7	150	600	4	Unspec
				1	1.004	16.413	150			
	S99	17.460								
E. N.	307440.765 500129.035	0.897						1200	4	Unspec

STORM Network	1	
---------------	---	--

STURM NELW									
Pipe	Diameter	Gradient	Pipe	Upstream Manhole Downstream Manhole				hole	
Code	(mm)	(1:)	Length	Number	Invert	Cover	Number	Invert	Cover
1.000	150	80	10.728	S1	18.55	19.45	S2	18.42	19.00
1.001	150	80	39.673	S2	18.10	19.00	S3	17.60	18.10
1.002	150	80	21.169	S3	17.20	18.10	S4	16.94	17.60
1.003	150	80	20.226	S4	16.70	17.60	S5	16.45	17.46
1.004	150	99	3.378	S5	16.45	17.46	S99	16.41	17.46

		1
	KEV	
	SURFACED AF	REA
	FUUIPAIH	
NUATION —		
POND		
S4		
◇		
	GENERAL NOTES	
	 ALL DIMENSIONS IN MILLIMETERS UNLESS NOTED AN DRAWINGS. USE WRITTEN DIMENSIONS ONLY AND C 	ND NOT TO BE SCALED FROM CHECK ON SITE BEFORE
	 ORDERING MATERIALS OR STEELWORK. 2. ALL DRAWINGS TO BE READ IN CONJUNCTION WITH E OTHERS AND ANY ERRORS TO BE BROUGHT TO THE AT DELOD TO COMMENCEMENT OF INOTALL ATION OF THE 	DRAWINGS PRODUCED BY
	3. ALL MATERIALS AND WORKMANSHIP TO BE UNDERTA BEST PRACTICE AND THE RELEVANT CODES INCLUDIN	WURKS. KEN IN ACCORDANCE WITH IG BRITISH STANDARDS AND
	 THIS WORK MAY BE REQUIRED TO COMPLY WITH THE IF WORK REQUIRES MORE THAN ONE CONTRACTOR TO THE CLIENT IS REQUIRED TO APPOINT A PRINCIPAL DI 	BUILDING SAFETY ACT 2023. D UNDERTAKE THE WORKS, ESIGNER TO COORDINATE
	DESIGN WORKS, AND ENSURE THAT ALL DESIGN AND IN ACCORDANCE WITH THE BUILDING REGULATIONS. THAT KINGMOOR CONSULTING LTD ARE BY DEFAULT T	WORKS ARE CONSTRUCTED IT CANNOT BE ASSUMED THE PRINCIPAL DESIGNER
	UNLESS APPOINTED SPECIFICALLY FOR THIS ROLE.	
	KINGMOOR	
	CONSULTING SUITE 4 ATLANTIC HOUSE, PARKHOUSE BUSINESS PARK, CARLISLE, CA3 OLJ	
l l	T: 01228 915900	
	E: hello@kingmoorconsulting.co.uk	
	E: hello@kingmoorconsulting.co.uk PROJECT PARTFIELD PARK, C HOLMROOK, WHITEH	IRIGG, HAVEN
	E: hello@kingmoorconsulting.co.uk PROJECT PARTFIELD PARK, D HOLMROOK, WHITEH	IRIGG, HAVEN E
	E: hello@kingmoorconsulting.co.uk PROJECT PARTFIELD PARK, C HOLMROOK, WHITEH TITLE SITE ENTRANC SCALE	DRIGG, HAVEN E
	E: hello@kingmoorconsulting.co.uk PROJECT PARTFIELD PARK, C HOLMROOK, WHITEH TITLE SITE ENTRANC SCALE AS NOTED PAPER SIZE DRAWN BY HOLMICH	DRIGG, HAVEN E DNSENT
	E: hello@kingmoorconsulting.co.uk PROJECT PARTFIELD PARK, D HOLMROOK, WHITEH SITE ENTRANC SCALE AS NOTED PAPER SIZE A1 PROJECT PHASE BUILD DATE DATE DATE OCTOBER 2024	DRIGG, HAVEN E DNSENT CHECKED AND APPROVED C AIMERS DATE OCTOBER 2024

APPENDIX D - PHOTOGRAPHS

Project Partfield Park, Drigg, Holmrook, Whitehaven

24-429r001C

24-429r001C

24-429r001C

24-429r001C

24-429r001C

24-429r001C

24-429r001C

24-429r001C

24-429r001C

Report Detailed Drainage Report

Page 20 of 27

24-429r001C

Report Detailed Drainage Report

Page 21 of 27

24-429r001C

Report Detailed Drainage Report

Page 22 of 27

24-429r001C

24-429r001C

24-429r001C

Report Detailed Drainage Report

Page 25 of 27

APPENDIX E - CALCULATIONS

See separate documents

Josh Gemmell

Calculated by:

Greenfield runoff rate estimation for sites

www.uksuds.com | Greenfield runoff tool

Aug 27 2024 08:59

Site Details

Site name:	Partfield Park	Latitude:	54.37907° N
Site location:	Drigg	Longitude:	3.43973° W
This is an estimatic criteria in line with	n of the greenfield runoff rates that Environment Agency guidance "Rainfa	are used to meet normal best practice Reference: all runoff management for	2722025021

criteria in line with Environment Agency guidance "Rainfall runoff management for developments", SC030219 (2013), the SuDS Manual C753 (Ciria, 2015) and the non-statutory standards for SuDS (Defra, 2015). This information on greenfield runoff rates may be the basis for setting consents for the drainage of surface water runoff from sites.

Runoff estimation	approach	IH124					
Site characteristic	S		Notes				
Total site area (ha): 0.568			(1) Is Q _{BAR} < 2.0 l/s/ha?				
Methodology			_				
Q _{BAR} estimation method:	Calculate from S	SPR and SAAR	When Q _{BAR} is < 2.0 l/s/ha then limiting discharge rates are set at 2.0 l/s/ha.				
SPR estimation method:	Calculate from S	SOIL type					
Soil characteristic	S Default	Edited	(2) Are flow rates < 5.0 l/s?				
SOIL type:	4	4	Where flow rates are less than 5.0 l/s consent				
HOST class:	N/A	N/A	for discharge is usually set at 5.0 l/s if blockage				
SPR/SPRHOST:	0.47	0.47	from vegetation and other materials is possible Lower consent flow rates may be set where th				
Hydrological characteristics	Default	Edited	blockage risk is addressed by using appropriate drainage elements.				
SAAR (mm):	1075	1075					
Hydrological region:	10	10	(3) Is SPR/SPRHOST ≤ 0.3?				
Growth curve factor 1 year:	0.87	0.87	Where groundwater levels are low enough the				
Growth curve factor 30 years:	1.7	1.7	use of soakaways to avoid discharge offsite				
Growth curve factor 100 years:	2.08	2.08	surface water runoff.				
Growth curve factor 200	2.37	2.37					

years:

Q _{BAR} (I/s):	4.53	4.53
1 in 1 year (l/s):	3.94	3.94
1 in 30 years (l/s):	7.7	7.7
1 in 100 year (l/s):	9.42	9.42
1 in 200 years (l/s):	10.74	10.74

This report was produced using the greenfield runoff tool developed by HR Wallingford and available at www.uksuds.com. The use of this tool is subject to the UK SuDS terms and conditions and licence agreement , which can both be found at www.uksuds.com/terms-and-conditions.htm. The outputs from this tool are estimates of greenfield runoff rates. The use of these results is the responsibility of the users of this tool. No liability will be accepted by HR Wallingford, the Environment Agency, CEH, Hydrosolutions or any other organisation for the use of this data in the design or operational characteristics of any drainage scheme.

Design Settings

Rainfall Methodology	FSR	Maximum Time of Concentration (mins)	30.00
Return Period (years)	100	Maximum Rainfall (mm/hr)	50.0
Additional Flow (%)	40	Minimum Velocity (m/s)	1.00
FSR Region	England and Wales	Connection Type	Level Soffits
M5-60 (mm)	20.000	Minimum Backdrop Height (m)	0.200
Ratio-R	0.400	Preferred Cover Depth (m)	0.750
CV	0.750	Include Intermediate Ground	\checkmark
Time of Entry (mins)	4.00	Enforce best practice design rules	\checkmark

<u>Nodes</u>

Name	Area (ha)	T of E (mins)	Cover Level (m)	Diameter (mm)	Easting (m)	Northing (m)	Depth (m)
1	0.011	4.00	19.450	600	307401.271	500184.384	0.900
2	0.017	4.00	19.000	600	307398.297	500174.076	0.900
3	0.011	4.00	18.100	600	307400.133	500134.446	0.900
4	0.007	4.00	17.600	600	307420.671	500129.315	0.900
5			17.460	600	307440.659	500132.411	1.013
99			17.460	1200	307440.765	500129.035	1.047

Pipeline Schedule

Link	Length (m)	Slope (1:X)	Dia (mm)	Link Type	US CL (m)	US IL (m)	US Depth (m)	DS CL (m)	DS IL (m)	DS Depth (m)
1.000	10.728	80.0	150	Circular	19.450	18.550	0.750	19.000	18.416	0.434
1.001	39.673	80.0	150	Circular	19.000	18.100	0.750	18.100	17.604	0.346
1.002	21.169	80.0	150	Circular	18.100	17.200	0.750	17.600	16.935	0.515
1.003	20.226	80.0	150	Circular	17.600	16.700	0.750	17.460	16.447	0.863
1.004	3.378	99.3	150	Circular	17.460	16.447	0.863	17.460	16.413	0.897

Link	US	Dia	Node	МН	DS	Dia	Node	МН
	Node	(mm)	Туре	Туре	Node	(mm)	Туре	Туре
1.000	1	600	Manhole	Adoptable	2	600	Manhole	Adoptable
1.001	2	600	Manhole	Adoptable	3	600	Manhole	Adoptable
1.002	3	600	Manhole	Adoptable	4	600	Manhole	Adoptable
1.003	4	600	Manhole	Adoptable	5	600	Manhole	Adoptable
1.004	5	600	Manhole	Adoptable	99	1200	Manhole	Adoptable

Manhole Schedule

Node	Easting (m)	Northing (m)	CL (m)	Depth (m)	Dia (mm)	Connections	Li	nk	IL (m)	Dia (mm)
1	307401.271	500184.384	19.450	0.900	600					
						\bigcirc				
						o [√] () 1.0	000	18.550	150
2	307398.297	500174.076	19.000	0.900	600	1 1	1.0	000	18.416	150
						ϕ				
						° C) 1.0	001	18.100	150
3	307400.133	500134.446	18.100	0.900	600		L 1.0	001	17.604	150
						⊖→₀				
) 1.(002	17.200	150
4	307420.671	500129.315	17.600	0.900	600	1	L 1.0	002	16.935	150
						1				
) 1.(003	16.700	150
5	307440.659	500132.411	17.460	1.013	600	1	L 1.0	003	16.447	150
						1-0				
						ŏ C) 1.(004	16.447	150
99	307440.765	500129.035	17.460	1.047	1200		L 1.0	004	16.413	150

Simulation Settings

Rainfall Methodology	FSR	Winter CV	0.840	Check Discharge Rate(s)	\checkmark
FSR Region	England and Wales	Analysis Speed	Normal	100 year (l/s)	9.4
M5-60 (mm)	20.000	Skip Steady State	х	Check Discharge Volume	\checkmark
Ratio-R	0.400	Drain Down Time (mins)	240	100 year 360 minute (m ³)	181
Summer CV	0.750	Additional Storage (m³/ha)	0.0		

 Storm Durations

 15
 30
 60
 120
 180
 240
 360
 480
 600
 720
 960
 1440

Return Period (years)	Climate Change (CC %)	Additional Area (A %)	Additional Flow (Q %)	Return Period (years)	Climate Change (CC %)	Additional Area (A %)	Additional Flow (Q %)
10	0	0	0	100	50	0	0
30	0	0	0				

Kingmoor Consulting Ltd	File: 24-429 Flow.pfd Page 2									
	Network: Storm Network									
	Josh Gemmell									
	28/08/2024									
· · ·										
Pre-development Discharge Rate										
Site Makeup Greenfield SAAR	nm) 1075 Region 10 QBar 4.5									
Greenfield Method IH124 Soil	dex 4 Growth Factor 100 year 2.08 Q 100 year (I/s) 9.4									
Positively Drained Area (ha) 0.568	SPR 0.47 Betterment (%) 0									
Dre de	elemment Discharge Velume									
<u>Pre-de</u>	alopment Discharge Volume									
Site Makeup Greenfield Soil Index	4 Return Period (years) 100 Betterment (%) 0									
Greenfield Method FSR/FEH SPF	0.47 Climate Change (%) 0 PR 0.510									
Positively Drained Area (ha) 0.568 CW	125.188 Storm Duration (mins) 360 Runoff Volume (m ³) 181									
Node 9	Online Hydro-Brake [®] Control									
Elan Valve x	Objective (HE) Minimise unstream storage									
Replaces Downstream Link	Sumn Available V									
Invert Level (m) 16 413	Product Number CTI-SHE-0104-4500-0750-4500									
Design Depth (m) 0.750	Min Outlet Diameter (m) 0.150									
Design Flow (I/s) 4.5	Min Node Diameter (mm) 1200									
Node !	Soakaway Storage Structure									
Base Inf Coefficient (m/hr) 0.00000	Porosity 1.00 Pit Width (m) 3.500 Inf Depth (m)									
Side Inf Coefficient (m/hr) 0.00000 In	ert Level (m) 16.447 Pit Length (m) 6.500 Number Required 1									
Safety Factor 1.0 Time to half	mpty (mins) 19 Depth (m) 1.500									
	Approval Settings									
Node Size √ Ma	timum Cover Depth (m) 3.000 Surcharged Depth \checkmark									
Node Losses 🗸	Backdrops 🗸 Return Period (years)									
Link Size ✓ Minim	m Backdrop Height (m) Maximum Surcharged Depth (m) 0.100									
Minimum Diameter (mm) 150 Maxim	m Backdrop Height (m) 1.500 Flooding \checkmark									
Link Length 🗸	Full Bore Velocity ✓ Return Period (years) 30									
Maximum Length (m) 100.000 Minimun	Full Bore Velocity (m/s) Time to Half Empty x									
Coordinates 🗸 Maximun	Full Bore Velocity (m/s) 3.000 Discharge Rates √									
Accuracy (m) 1.000	Proportional Velocity V Discharge Volume V									
Crossings √	Return Period (years) 100 year 360 minute (m ³)									
Cover Depth ✓ Minimum Pr	portional Velocity (m/s) 0.750									
Minimum Cover Depth (m) Maximum Pr	portional Velocity (m/s) 3.000									

File: 24-429 Flow.pfd Network: Storm Network Josh Gemmell 28/08/2024

Results for 10 year Critical Storm Duration. Lowest mass balance: 99.30%

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
15 minute summer	1	10	18.592	0.042	3.2	0.0119	0.0000	ОК
15 minute winter	2	10	18.167	0.067	8.1	0.0191	0.0000	ОК
15 minute winter	3	10	17.283	0.083	11.2	0.0236	0.0000	ОК
15 minute summer	4	10	16.795	0.095	12.9	0.0270	0.0000	ОК
30 minute winter	5	24	16.579	0.132	9.8	3.0471	0.0000	ОК
30 minute winter	99	24	16.576	0.163	4.6	0.1846	0.0000	ОК

Link Event	US	Link	DS	Outflow	Velocity	Flow/Cap	Link	Discharge
(Upstream Depth)	Node		Node	(I/s)	(m/s)		Vol (m³)	Vol (m³)
15 minute summer	1	1.000	2	3.2	0.810	0.161	0.0424	
15 minute winter	2	1.001	3	8.0	1.056	0.401	0.2998	
15 minute winter	3	1.002	4	11.0	1.129	0.554	0.2065	
15 minute summer	4	1.003	5	12.9	1.403	0.648	0.2217	
30 minute winter	5	1.004	99	4.6	0.424	0.256	0.0575	
30 minute winter	99	Hydro-Brake [®]		4.4				7.4

File: 24-429 Flow.pfd Network: Storm Network Josh Gemmell 28/08/2024

Results for 30 year Critical Storm Duration. Lowest mass balance: 99.30%

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
15 minute winter	1	10	18.598	0.048	4.0	0.0134	0.0000	ОК
15 minute winter	2	10	18.177	0.077	10.2	0.0219	0.0000	ОК
15 minute winter	3	10	17.297	0.097	14.1	0.0275	0.0000	ОК
15 minute summer	4	10	16.812	0.112	16.4	0.0317	0.0000	ОК
30 minute winter	5	25	16.637	0.190	12.5	4.3800	0.0000	SURCHARGED
30 minute winter	99	25	16.633	0.220	4.8	0.2491	0.0000	ОК

Link Event	US	Link	DS	Outflow	Velocity	Flow/Cap	Link	Discharge
(Upstream Depth)	Node		Node	(I/s)	(m/s)		Vol (m³)	Vol (m³)
15 minute winter	1	1.000	2	4.0	0.860	0.201	0.0499	
15 minute winter	2	1.001	3	10.1	1.119	0.507	0.3572	
15 minute winter	3	1.002	4	13.9	1.187	0.699	0.2477	
15 minute summer	4	1.003	5	16.3	1.425	0.820	0.2783	
30 minute winter	5	1.004	99	4.8	0.441	0.267	0.0595	
30 minute winter	99	Hydro-Brake [®]		4.5				9.6

File: 24-429 Flow.pfd Network: Storm Network Josh Gemmell 28/08/2024

Results for 100 year +50% CC Critical Storm Duration. Lowest mass balance: 99.30%

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
15 minute winter	1	10	18.619	0.069	7.8	0.0196	0.0000	OK
15 minute winter	2	10	18.227	0.127	19.9	0.0359	0.0000	ОК
15 minute winter	3	11	17.752	0.552	27.4	0.1564	0.0000	SURCHARGED
15 minute winter	4	12	17.290	0.590	28.9	0.1671	0.0000	SURCHARGED
30 minute winter	5	30	16.954	0.507	22.3	11.6796	0.0000	SURCHARGED
30 minute winter	99	30	16.951	0.538	5.3	0.6086	0.0000	ОК

Link Event	US	Link	DS	Outflow	Velocity	Flow/Cap	Link	Discharge
(Upstream Depth)	Node		Node	(I/s)	(m/s)		Vol (m³)	Vol (m³)
15 minute winter	1	1.000	2	7.8	1.022	0.392	0.0819	
15 minute winter	2	1.001	3	19.6	1.245	0.987	0.6328	
15 minute winter	3	1.002	4	24.3	1.379	1.221	0.3727	
15 minute winter	4	1.003	5	27.7	1.574	1.394	0.3561	
30 minute winter	5	1.004	99	5.3	0.514	0.299	0.0595	
30 minute winter	99	Hydro-Brake [®]		4.5				18.9

Kingmoor Consulting Ltd Suite 4 Atlantic House Parkhouse, Carlisle Cumbria, CA3 OLJ T: 01228 915900 E: hello@kinamoorconsultina.co.uk