

Drainage Report

Property Address Land Adj 6 Rose Gardens

Gilgarren Workington Cumbria CA14 4RB

Client Mr Kevin Wirga

Our Reference 22-320r001

Date August 2022

Prepared by Colin Aimers

BEng Hons CEng MICE CEnv

Director

colin.aimers@kingmoorconsulting.co.uk

Contents

Introduction	2
Site Description	2
Geology	2
Superficial Deposits	2
Solid Geology	3
Surface Water	3
Foul Water	5
Proposed Drainage Strategy	5
Foul Water	5
Surface Water	5
Site Permeability	5
Detailed Assessment and Design	6
Foul Water	6
Surface Water	6
Maintenance of Drainage	10
Operation and Maintenance Requirements	10
Planning Conditions	12
Condition 5	12
Condition 6	12
Condition 7	12
Appendices	14
BGS Records	14
Hydraulic Calculations	15
Drawings	16

Introduction

The purpose of this report is to present the detailed design of the proposed foul and surface water drainage design for the development of residential development at land adjacent to 6 Rose Gardens, Gillgarren, Workington, (thereafter referred to as 'The Site'). The report has been commissioned by owners, for the purposes of discharging planning conditions and providing engineering design for surface and foul water drainage on the site.

Research has been undertaken on the site and observations made regarding the existing site and its former history.

The report should be read in conjunction with the documents referenced to it, generally appended to this report, and all works has been designed in accordance with the following standards:

- CIRIA Publication C753 The SuDS Manual
- CIRIA Publication C768 Guidance on the Construction of SuDS

Calculations associated with the drainage have been performed using analysis packages and where appropriate copies of calculations are provided in this report.

Site Description

The site currently comprises an existing wall area adjacent to no 6 Rose Gardens, Gilgarren. It is presently scrub land and is approximately 450m2 in area. The site is bounded to the north by 6 Rose Gardens, to the east by the U4006 Unclassified Road, fields to the south and woodland to the west.

A small quarry is present along the western boundary of the site, and it would appear this has been used for stone quarrying for local building work. It is approx 4-6m deep and the extents are unmapped on published mapping.

Geology

Superficial Deposits

The published superficial geology by The British Geological Survey shows the site is composed of

Project Land Adj 6 Rose Gardens, Gilgarren, Workington 22-320r001

Report Drainage Report Page 2 of 17

Devensian Till. This is typically a silty clay.

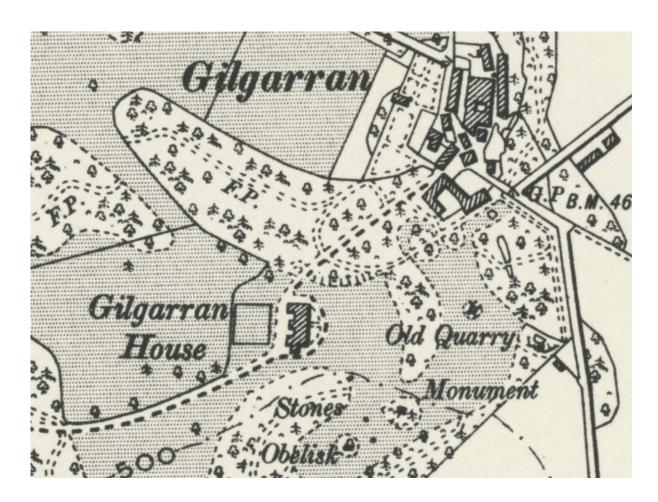
Solid Geology

The solid geology as published by the British Geological Survey shows the site to be underlain by the Whitehaven Sandstones. This was verified in the adjacent quarry where outcrops of the Whitehaven Sandstone are present.

Published geology maps from the BGS are appended to this report.

Surface Water

Project


The site is generally flat and enclosed by the walled garden.

The site has an extensive history associated with its management of water across a wider estate of Gilgarran House. The woodland adjacent to the site was planted and managed, with a number of surface water features present to regulate flows of water which eventually discharge to the Gilgarran Beck.

An extract of the Ordnance Survey map of 1896 indicating the grounds and local arrangements is presented below.

Land Adj 6 Rose Gardens, Gilgarren, Workington

It is understood that the outfall from the ornamental ponds below the site was disturbed by the construction of a dwelling (Corner Wood) which replaced a former box drain with a modern pipe, limiting the flow from the ponds to Gilgarran Beck.

In addition, it is understood that as a consequence of works upstream of the engineered aquifer to the drainage on the public road have resulted in additional flows into the site. These activities are outside the control of the applicant but have an ongoing impact on the wider area of Gilgarran.

Project Land Adj 6 Rose Gardens, Gilgarren, Workington

Report Drainage Report Page 4 of 17

Foul Water

The site is not serviced by the United Utilities Public Sewer network and it is believed that adjacent properties on Rose Gardens are serviced by a private sewer which is piped to a treatment system in Home Farm. It is not known if this is an adopted system or remains private.

Records obtained from UU indicate that the public sewer services areas of the village including Gilgarran Park to the west of the site and the foul network are pumped from the village to a nearby sewage works.

Proposed Drainage Strategy

Foul Water

It is proposed that the proposed development shall consider dealing with the foul waste from the property via a packaged treatment plant discharging to the adjacent culvert to the site.

Surface Water

It is proposed that the development shall discharge any surface water from hard surfaces of the property shall be carried around the property and discharge to the existing arrangements present on site. Attenuation proposed on the system shall limit the discharge rates to the quarry area at the Greenfield runoff rates.

Any roads, pavements and other landscaped features will discharge to ground adjacent and naturally percolate to the quarry area.

Site Permeability

Testing has been carried out on the site and the site is unsuitable for natural percolation, therefore we consider the options to discharge to the adjacent watercourse are the only option based on the hierarchy of drainage as defined in the National Planning Practice Guidelines

Project Land Adj 6 Rose Gardens, Gilgarren, Workington

22-320r001

Report Drainage Report

Page 5 of 17

Detailed Assessment and Design

Foul Water

A design has been conducted associated with the proposed foul network and analysis undertaken in Causeway Flow. Results are appended to this report.

Drawing 22-320 DWG001 indicates the proposed arrangements for the foul drainage on the site and will be subject to final detailed design to comply with the requirements of the Building Regulations.

Surface Water

Principally the surface water drainage has been calculated on the impermeable areas of the site, including roofs, hard surfacing, parking areas and roads. Areas are subdivided into zones and drainage runs, manholes and drains to allow each area to discharge into the system.

Modelling has been conducted on the following rainfall events:

- 1 in 1 year
- 1 in 30 years
- 1 in 100 years plus 40 % increase due to climate change over a 6 hour period

The following allowances associated with rainfall events have been obtained from UK Suds Online Tools.

SAAR 1225mm
M5-60 Rainfall Depth : 20mm
'r' Ratio M5-60/M5-2 day: 0.4
Hydro Region: 10

The following parameters were adopted in the analysis.

Design Settings

Rainfall Methodology	FSR	Maximum Time of Concentration (mins)	30.00
Return Period (years)	100	Maximum Rainfall (mm/hr)	50.0
Additional Flow (%)	40	Minimum Velocity (m/s)	1.00
FSR Region	England and Wales	Connection Type	Level Soffits
M5-60 (mm)	20.000	Minimum Backdrop Height (m)	0.200
Ratio-R	0.300	Preferred Cover Depth (m)	0.600
CV	0.750	Include Intermediate Ground	X
Time of Entry (mins)	4.00	Enforce best practice design rules	X

Calculations have been conducted to assess the requirements for attenuation on the site to prevent flooding based on the 1 in 100 year event + 40% climate change allowance based on the greenfield runoff rates for the site.

The following sections provide a summary output from the Causeway Flow analysis performed on the site system.

Pre-Development Discharge Rate

Pre-development Discharge Rate

Site Makeup	Greenfield	Region	10
Greenfield Method	IH124	Growth Factor 100 year	2.48
Positively Drained Area (ha)	0.115	Betterment (%)	0
SAAR (mm)	1225	QBar	1.1
Soil Index	4	Q 100 year (I/s)	
SPR	0.47		

Project Land Adj 6 Rose Gardens, Gilgarren, Workington 22-320r001

Report Drainage Report Page 7 of 17

Pre-Development Discharge Volume

Pre-development Discharge Volume

Site Makeup	Greenfield	Return Period (years)	100
Greenfield Method	FSR/FEH	Climate Change (%)	0
Positively Drained Area (ha)	0.115	Storm Duration (mins)	360
Soil Index	4	Betterment (%)	0
SPR	0.47	PR	0.520
CWI	125.563	Runoff Volume (m³)	42

Attenuation Design

Node 12 Soakaway Storage Structure

Base Inf Coefficient (m/hr)	0.00000	Invert Level (m)	143.469	Depth (m)	0.900
Side Inf Coefficient (m/hr)	0.00000	Time to half empty (mins)	244	Inf Depth (m)	
Safety Factor	1.0	Pit Width (m)	1.800	Number Required	1
Porosity	0.95	Pit Length (m)	6.000		

Flow Controls

Node 12 Online Head/Flow Control

Flap Valve	X	Replaces Do	wnstrean	n Link ✓	Invert Level (m)	143.469
				Head (m)		
				1.200		

Report Drainage Report Page 8 of 17

Outfall Rates / Volume

1 in 100 Y + 40% Climate Change

Link Event (Upstream Depth)	US Node	Link	DS Node	Outflow (I/s)	Velocity (m/s)	Flow/Cap	Link Vol (m³)	Discharge Vol (m³)
240 minute winter	1	1.000	2	0.6	0.531	0.076	0.0405	
240 minute winter	2	1.001	3	0.8	0.604	0.100	0.0382	
240 minute winter	3	1.002	5	0.7	0.454	0.086	0.0301	
240 minute winter	4	2.000	5	0.2	0.416	0.025	0.0143	
240 minute winter	5	1.003	6	1.2	0.593	0.152	0.0583	
240 minute winter	6	1.004	7	1.4	0.471	0.180	0.0723	
240 minute winter	7	1.005	12	2.8	0.851	0.355	0.0530	
240 minute winter	8	3.000	9	0.6	0.580	0.076	0.0335	
240 minute winter	9	3.001	10	0.6	0.376	0.076	0.0702	
240 minute winter	10	3.002	7	1.6	0.576	0.158	0.0841	
240 minute winter	11	4.000	10	0.6	0.460	0.034	0.0210	
240 minute winter	12	Head/Flow		1.0				21.0

Land Adj 6 Rose Gardens, Gilgarren, Workington

Project

Report Drainage Report Page 9 of 17

Maintenance of Drainage

Operation and Maintenance Requirements

As with all traditional drainage systems, SuDS need to be inspected and maintained regularly to ensure that they operate correctly and efficiently. If SuDS are not properly maintained then there is a risk that the systems will become overloaded during periods of prolonged heavy rainfall, potentially resulting in localised flooding of the development. Recommendations for the SuDS maintenance activities for the privately maintained areas are detailed below.

All maintenance activities should be detailed in the Health and Safety Plan and a risk assessment should be undertaken in accordance with CDM regulations.

- Inlets and outlets structures may be surface structures or conveyance pipes with guards or headwalls. They must be free from obstruction at all times.
- SuDS flow control structures can be protected orifices, slots weirs or other controls at or near the surface to be accessible and easy to maintain. They may be in baskets, in small chambers or in the open.
- Inspection Chambers and rodding eyes are used on bends or where pipes come together and allow cleaning of the system if necessary. They should be designed out of the system where possible.

Inlets, Outlets, Controls and Inspection Chambers	Frequency
Regular Maintenance	Monthly
 Inspect surface structures removing obstructions and silt as necessary. Check there is no physical damage. Strim vegetation 1m min. surround structures and keep hard aprons free from silt and debris. Remove cover and inspect ensuring water is flowing freely and that the exit route for water is unobstructed. Remove debris and silt. Undertake inspection after leaf fall in autumn 	
Occasional Tasks	Annual

Project Land Adj 6 Rose Gardens, Gilgarren, Workington

22-320r001

Report Drainage Report

Check topsoil levels are 20mm above edges of manholes and chambers to avoid mower damage	
Remedial Works	As Required
Monitor effectiveness of the system and advise / inspect / clean and test if water is standing in the system. This may require specialist cleaning.	

Land Adj 6 Rose Gardens, Gilgarren, Workington

Project

Report Drainage Report Page 11 of 17

Planning Conditions

In respect to the discharge of planning conditions associated with the proposed development addressed by this report, the following conditions were applied to the project under consent reference 19/2125 by Copeland Borough Council..

Condition 5

No development shall commence until a surface water drainage scheme has been submitted to and approved in writing by the Local Planning Authority. The drainage scheme must include:

i) An investigation of the hierarchy of drainage options in the National Planning Practice Guidance (or any subsequent amendment thereof). This investigation shall include evidence of an assessment of the ground conditions and the potential for infiltration of surface water.

ii) A restricted rates of discharge of surface water agreed with local planning authority (if it is agreed that infiltration is discounted by the investigations); and

iii) a timetable for its implementation

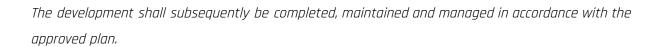
The approved scheme shall also be in accordance with the Non Statutory Technical Standards for Sustainable Drainage Systems [March h2015] or any subsequent replacement national standard.

The development hereby permitted shall be carried out only in accordance with the approved drainage scheme.

Condition 6

Foul and surface water shall be drained on separate systems.

Condition 7


Prior to occupation of the development a suitable drainage management and maintenance plan for the lifespan of the development shall be submitted to the local planning authority and agreed in writing. The sustainable drainage management and maintenance plan shall include as a minimum:

- a. Arrangements for adoption by an appropriate public body or statutory undertaker,
- b. management maintenance by a residents management company
- c. arrangements for inspection and ongoing maintenance if all aspects of the drainage system to secure the operation of the surface water drainage scheme throughout its lifespan.

Project Land Adj 6 Rose Gardens, Gilgarren, Workington 22-320r001

Report Drainage Report Page 12 of 17

We consider that this report fulfils the requirements of the above planning conditions.

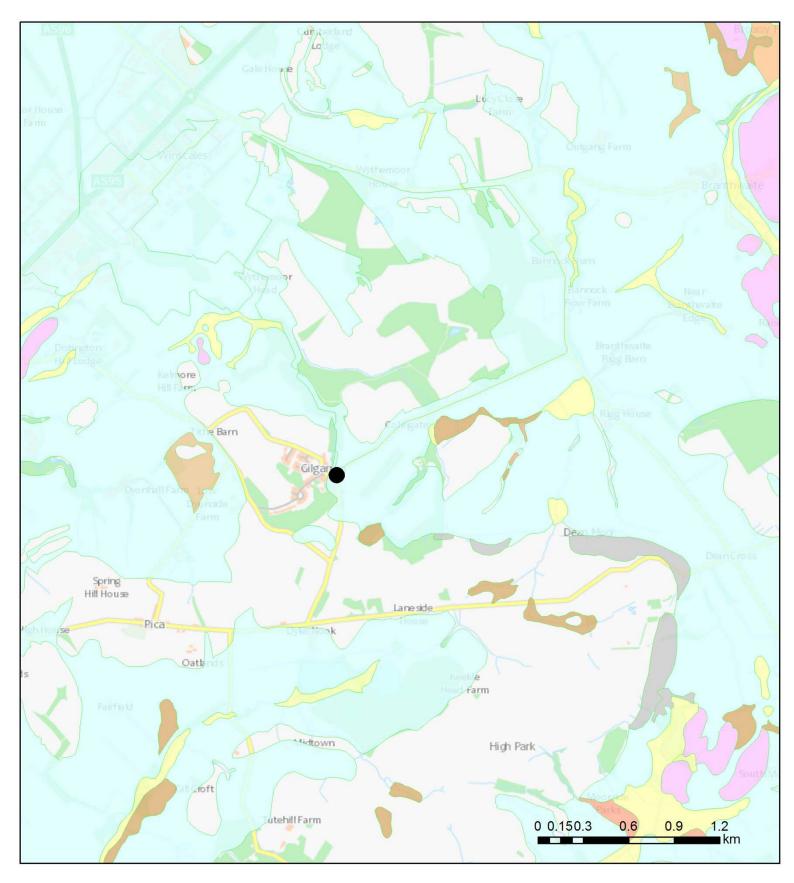
Land Adj 6 Rose Gardens, Gilgarren, Workington

Project

Report Drainage Report Page 13 of 17

Appendices

BGS Records


Land Adj 6 Rose Gardens, Gilgarren, Workington

Project

Report Drainage Report Page 14 of 17

Drift Geology

Contains OS data © Crown Copyright and database right 2019

GeoIndex Onshore Data Sources: NERC, Natural England, English Heritage and Ordnance Survey

Map Key

PEAT - PEAT

Superficial deposits 1:50,000 scale

GLACIOFLUVIAL DEPOSITS, DEVENSIAN - SAND AND GRAVEL TILL, DEVENSIAN - DIAMICTON ALLUVIUM - CLAY, SILT, SAND AND GRAVEL RAISED MARINE DEPOSITS - CLAY AND SILT RAISED MARINE BEACH DEPOSITS - SAND AND GRAVEL RIVER TERRACE DEPOSITS, 1 - CLAY, SAND AND GRAVEL ALLUVIAL FAN DEPOSITS - SAND AND GRAVEL LACUSTRINE ALLUVIUM - CLAY AND SILT MARINE BEACH DEPOSITS - SAND AND GRAVEL

SUPERFICIAL THEME NOT MAPPED [FOR DIGITAL MAP USE ONLY] - UNKNOWN/UNCLASSIFIED ENTRY

Solid Geology

Contains OS data © Crown Copyright and database right 2019

GeoIndex Onshore Data Sources: NERC, Natural England, English Heritage and Ordnance Survey

Map Key

Bedrock geology 1:50,000 scale

- KIRK STILE FORMATION MUDSTONE AND SILTSTONE
- FIRST SHALE MEMBER SANDSTONE, SILTSTONE AND MUDSTONE
- PENNINE LOWER COAL MEASURES FORMATION MUDSTONE, SILTSTONE AND SANDSTONE
- FIRST LIMESTONE (CUMBRIA) LIMESTONE
- LOWESWATER FORMATION WACKE
- SKIDDAW GROUP MUDSTONE, SILTSTONE AND SANDSTONE
- PENNINE MIDDLE COAL MEASURES FORMATION MUDSTONE, SILTSTONE AND SANDSTONE
- STAINMORE FORMATION MUDSTONE, SILTSTONE AND SANDSTONE
- OREBANK SANDSTONE SANDSTONE
- PENNINE LOWER COAL MEASURES FORMATION SANDSTONE
- PENNINE MIDDLE COAL MEASURES FORMATION SANDSTONE
- WHITEHAVEN SANDSTONE FORMATION SANDSTONE
- HENSINGHAM GRIT SANDSTONE
- BROCKRAM BRECCIA

Hydraulic Calculations

Land Adj 6 Rose Gardens, Gilgarren, Workington

Project

Report Drainage Report Page 15 of 17

File: FLOW.pfd Network: Surface Network Colin Aimers 05/08/2022 Page 1

Design Settings

Rainfall Methodology FSR Return Period (years) 100 Additional Flow (%) 40

FSR Region England and Wales

M5-60 (mm) 20.000 Ratio-R 0.300 CV 0.750

Time of Entry (mins) 4.00

Maximum Time of Concentration (mins) 30.00

Maximum Rainfall (mm/hr) 50.0

Minimum Velocity (m/s) 1.00

Connection Type Level Soffits

Minimum Backdrop Height (m) 0.200

Preferred Cover Depth (m) 0.600

Include Intermediate Ground x

Enforce best practice design rules x

Nodes

Name	Area (ha)	T of E (mins)	Cover Level (m)	Diameter (mm)	Easting (m)	Northing (m)	Depth (m)
1	0.005	4.00	144.800	225	40.781	51.017	0.700
2	0.003	4.00	144.800	225	41.458	56.152	0.788
_	0.002	4.00		_			
3			144.800	225	38.354	59.917	0.870
4	0.002	4.00	144.800	225	35.957	57.292	0.700
5	0.005	4.00	144.800	225	34.727	58.639	0.935
6	0.004	4.00	144.800	225	27.930	61.700	1.061
7			144.800	225	19.165	58.760	1.217
8	0.005	4.00	144.800	225	35.160	46.276	0.700
9			144.800	225	31.800	43.613	0.773
10	0.005	4.00	144.800	225	26.122	50.563	0.924
11	0.005	4.00	144.800	225	27.711	52.730	0.700
12			144.800	225	14.180	63.340	1.331

<u>Links</u>

Name	US Node	DS Node	Length (m)	ks (mm) / n	US IL (m)	DS IL (m)	Fall (m)	Slope (1:X)	Dia (mm)	T of C (mins)	Rain (mm/hr)
1.000	1	2	5.179	0.600	144.100	144.012	0.088	58.9	100	4.09	50.0
1.001	2	3	4.880	0.600	144.012	143.930	0.082	59.5	100	4.17	50.0
1.002	3	5	3.846	0.600	143.930	143.865	0.065	59.2	100	4.23	50.0
2.000	4	5	1.824	0.600	144.100	144.069	0.031	58.8	100	4.03	50.0
1.003	5	6	7.454	0.600	143.865	143.739	0.126	59.2	100	4.35	50.0
1.004	6	7	9.245	0.600	143.739	143.583	0.156	59.3	100	4.51	50.0
1.005	7	12	6.770	0.600	143.583	143.469	0.114	59.4	100	4.62	50.0
3.000	8	9	4.287	0.600	144.100	144.027	0.073	58.7	100	4.07	50.0
3.001	9	10	8.975	0.600	144.027	143.876	0.151	59.4	100	4.22	50.0
4.000	11	10	2.687	0.600	144.100	143.876	0.224	12.0	100	4.02	50.0

Name	Vel (m/s)	Cap (I/s)	Flow (I/s)	US Depth	DS Depth	Σ Area (ha)	Σ Add Inflow	Pro Depth	Pro Velocity
				(m)	(m)		(I/s)	(mm)	(m/s)
1.000	1.006	7.9	0.9	0.600	0.688	0.005	0.0	24	0.683
1.001	1.000	7.9	1.3	0.688	0.770	0.007	0.0	28	0.742
1.002	1.003	7.9	1.3	0.770	0.835	0.007	0.0	28	0.744
2.000	1.006	7.9	0.4	0.600	0.631	0.002	0.0	15	0.518
1.003	1.003	7.9	2.7	0.835	0.961	0.014	0.0	40	0.908
1.004	1.002	7.9	3.4	0.961	1.117	0.018	0.0	46	0.963
1.005	1.001	7.9	6.3	1.117	1.231	0.033	0.0	68	1.111
3.000	1.007	7.9	0.9	0.600	0.673	0.005	0.0	23	0.670
3.001	1.001	7.9	0.9	0.673	0.824	0.005	0.0	24	0.680
4.000	2.243	17.6	0.9	0.600	0.824	0.005	0.0	16	1.199

File: FLOW.pfd Network: Surface Network Colin Aimers 05/08/2022 Page 2

<u>Links</u>

Name	US	DS	Length	ks (mm) /	US IL	DS IL	Fall	Slope	Dia	T of C	Rain
	Node	Node	(m)	n	(m)	(m)	(m)	(1:X)	(mm)	(mins)	(mm/hr)
3.002	10	7	10.751	0.600	143.876	143.583	0.293	36.7	100	4.36	50.0

Name	Vel	Cap	Flow	US	DS	Σ Area	Σ Add	Pro	Pro
	(m/s)	(I/s)	(I/s)	Depth	Depth	(ha)	Inflow	Depth	Velocity
				(m)	(m)		(I/s)	(mm)	(m/s)
3 002	1 277	10.0	2.8	0.824	1 117	0.015	0.0	36	1 098

Pipeline Schedule

Link	Length (m)	Slope (1:X)	Dia (mm)	Link Type	US CL (m)	US IL (m)	US Depth (m)	DS CL (m)	DS IL (m)	DS Depth (m)
1.000	5.179	58.9	100	Circular	144.800	144.100	0.600	144.800	144.012	0.688
1.001	4.880	59.5	100	Circular	144.800	144.012	0.688	144.800	143.930	0.770
1.002	3.846	59.2	100	Circular	144.800	143.930	0.770	144.800	143.865	0.835
2.000	1.824	58.8	100	Circular	144.800	144.100	0.600	144.800	144.069	0.631
1.003	7.454	59.2	100	Circular	144.800	143.865	0.835	144.800	143.739	0.961
1.004	9.245	59.3	100	Circular	144.800	143.739	0.961	144.800	143.583	1.117
1.005	6.770	59.4	100	Circular	144.800	143.583	1.117	144.800	143.469	1.231
3.000	4.287	58.7	100	Circular	144.800	144.100	0.600	144.800	144.027	0.673
3.001	8.975	59.4	100	Circular	144.800	144.027	0.673	144.800	143.876	0.824
4.000	2.687	12.0	100	Circular	144.800	144.100	0.600	144.800	143.876	0.824
3.002	10.751	36.7	100	Circular	144.800	143.876	0.824	144.800	143.583	1.117

Link	US	Dia	Node	MH	DS	Dia	Node	MH
	Node	(mm)	Type	Type	Node	(mm)	Type	Type
1.000	1	225	Manhole	Adoptable	2	225	Manhole	Adoptable
1.001	2	225	Manhole	Adoptable	3	225	Manhole	Adoptable
1.002	3	225	Manhole	Adoptable	5	225	Manhole	Adoptable
2.000	4	225	Manhole	Adoptable	5	225	Manhole	Adoptable
1.003	5	225	Manhole	Adoptable	6	225	Manhole	Adoptable
1.004	6	225	Manhole	Adoptable	7	225	Manhole	Adoptable
1.005	7	225	Manhole	Adoptable	12	225	Manhole	Adoptable
3.000	8	225	Manhole	Adoptable	9	225	Manhole	Adoptable
3.001	9	225	Manhole	Adoptable	10	225	Manhole	Adoptable
4.000	11	225	Manhole	Adoptable	10	225	Manhole	Adoptable
3.002	10	225	Manhole	Adoptable	7	225	Manhole	Adoptable

Manhole Schedule

Node	Easting (m)	Northing (m)	CL (m)	Depth (m)	Dia (mm)	Connections	Link	IL (m)	Dia (mm)
1	40.781	51.017	144.800	0.700	225				
						0	1.000	144.100	100
2	41.458	56.152	144.800	0.788	225	1	1.000	144.012	100
						1 0	1.001	144.012	100
3	38.354	59.917	144.800	0.870	225	1	1.001	143.930	100
						0 0	1.002	143.930	100

15

Kingmoor Consulting Ltd 6B Clifford Court Parkhouse Carlisle, CA3 0JG File: FLOW.pfd Network: Surface Network Colin Aimers 05/08/2022 Page 3

Manhole Schedule

Node	Easting (m)	Northing (m)	CL (m)	Depth (m)	Dia (mm)	Connections	Link	IL (m)	Dia (mm)
4	35.957	57.292	144.800	0.700	225	•			
						0	2.000	144.100	100
5	34.727	58.639	144.800	0.935	225	1	2.000	144.069	100
						0 2	1.002	143.865	100
						ì 0	1.003	143.865	100
6	27.930	61.700	144.800	1.061	225	1	1.003	143.739	100
						0	1.004	143.739	100
7	19.165	58.760	144.800	1.217	225	, 1	3.002	143.583	100
						2 2	1.004	143.583	100
						1 0	1.005	143.583	100
8	35.160	46.276	144.800	0.700	225				
						0	3.000	144.100	100
9	31.800	43.613	144.800	0.773	225	1	3.000	144.027	100
						0	3.001	144.027	100
10	26.122	50.563	144.800	0.924	225	0, 1	4.000	143.876	100
						2	3.001	143.876	100
						² 0	3.002	143.876	100
11	27.711	52.730	144.800	0.700	225			444400	400
12	1/1100	62.240	144 000	1 221	225	0 0	4.000	144.100	100
12	14.180	63.340	144.800	1.331	225		1.005	143.469	100

Simulation Settings

Rainfall Methodology	FSR	Skip Steady State	x
FSR Region	England and Wales	Drain Down Time (mins)	240
M5-60 (mm)	20.000	Additional Storage (m³/ha)	0.0
Ratio-R	0.300	Check Discharge Rate(s)	\checkmark
Summer CV	0.750	100 year (l/s)	2.2
Winter CV	0.840	Check Discharge Volume	\checkmark
Analysis Speed	Normal	100 year 360 minute (m³)	42
30 60 120	Storm Duratio 180 240 360	ons 480 600 720	960 1440

File: FLOW.pfd Network: Surface Network Colin Aimers 05/08/2022 Page 4

Return Period (years)	Climate Change (CC %)	Additional Area (A %)	Additional Flow (Q %)
10	0	0	0
30	0	0	0
100	40	0	0

Pre-development Discharge Rate

Site Makeup	Greenfield	Region	10
Greenfield Method	IH124	Growth Factor 100 year	2.48
Positively Drained Area (ha)	0.115	Betterment (%)	0
SAAR (mm)	1225	QBar	1.1
Soil Index	4	Q 100 year (I/s)	
SPR	0.47		

Pre-development Discharge Volume

Site Makeup	Greenfield	Return Period (years)	100
Greenfield Method	FSR/FEH	Climate Change (%)	0
Positively Drained Area (ha)	0.115	Storm Duration (mins)	360
Soil Index	4	Betterment (%)	0
SPR	0.47	PR	0.520
CWI	125.563	Runoff Volume (m³)	42

Node 12 Online Head/Flow Control

Flap Valve	x	Replaces Do	wnstrean	n Link ✓	Invert Level (m)	143.469
		(m)	(I/s)	Head (m) 1.200	(I/s)	

Node 12 Soakaway Storage Structure

Base Inf Coefficient (m/hr)	0.00000	Invert Level (m)	143.469	Depth (m)	0.900
Side Inf Coefficient (m/hr)	0.00000	Time to half empty (mins)	244	Inf Depth (m)	
Safety Factor	1.0	Pit Width (m)	1.800	Number Required	1
Porosity	0.95	Pit Length (m)	6.000		

Other (defaults)

Entry Loss (manhole)	0.250	Entry Loss (junction)	0.000	Apply Recommended Losses	X
Exit Loss (manhole)	0.250	Exit Loss (junction)	0.000	Flood Risk (m)	0.300

Approval Settings

Node Size	\checkmark	Maximum Cover Depth (m)	3.000
Node Losses	\checkmark	Backdrops	\checkmark
Link Size	\checkmark	Minimum Backdrop Height (m)	
Minimum Diameter (mm)	150	Maximum Backdrop Height (m)	1.500
Link Length	\checkmark	Full Bore Velocity	\checkmark
Maximum Length (m)	100.000	Minimum Full Bore Velocity (m/s)	
Coordinates	\checkmark	Maximum Full Bore Velocity (m/s)	3.000
Accuracy (m)	1.000	Proportional Velocity	\checkmark
Crossings	\checkmark	Return Period (years)	
Cover Depth	\checkmark	Minimum Proportional Velocity (m/s)	0.750
Minimum Cover Depth (m)		Maximum Proportional Velocity (m/s)	3.000

File: FLOW.pfd Network: Surface Network Colin Aimers 05/08/2022 Page 5

Approval Settings

Surcharged Depth √
Return Period (years)

Maximum Surcharged Depth (m) 0.100
Flooding √
Return Period (years) 30

Time to Half Empty x
Discharge Rates ✓
Discharge Volume ✓
100 year 360 minute (m³)

Rainfall

Event	Peak Intensity	Average Intensity	Event	Peak Intensity	Average Intensity
40 45	(mm/hr)	(mm/hr)		(mm/hr)	(mm/hr)
10 year 15 minute summer	192.806	54.557	30 year 360 minute summer	35.178	9.053
10 year 15 minute winter	135.303	54.557	30 year 360 minute winter	22.867	9.053
10 year 30 minute summer	130.321	36.876	30 year 480 minute summer	27.920	7.379
10 year 30 minute winter	91.453	36.876	30 year 480 minute winter	18.550	7.379
10 year 60 minute summer	90.826	24.003	30 year 600 minute summer	23.001	6.291
10 year 60 minute winter	60.342	24.003	30 year 600 minute winter	15.716	6.291
10 year 120 minute summer	57.664	15.239	30 year 720 minute summer	20.598	5.520
10 year 120 minute winter	38.311	15.239	30 year 720 minute winter	13.843	5.520
10 year 180 minute summer	44.990	11.577	30 year 960 minute summer	17.043	4.488
10 year 180 minute winter	29.245	11.577	30 year 960 minute winter	11.289	4.488
10 year 240 minute summer	35.975	9.507	30 year 1440 minute summer	12.485	3.346
10 year 240 minute winter	23.901	9.507	30 year 1440 minute winter	8.390	3.346
10 year 360 minute summer	27.947	7.192	100 year +40% CC 15 minute summer	441.486	124.925
10 year 360 minute winter	18.166	7.192	100 year +40% CC 15 minute winter	309.815	124.925
10 year 480 minute summer	22.300	5.893	100 year +40% CC 30 minute summer	304.460	86.152
10 year 480 minute winter	14.816	5.893	100 year +40% CC 30 minute winter	213.656	86.152
10 year 600 minute summer	18.452	5.047	100 year +40% CC 60 minute summer	214.603	56.713
10 year 600 minute winter	12.608	5.047	100 year +40% CC 60 minute winter	142.577	56.713
10 year 720 minute summer	16.587	4.446	100 year +40% CC 120 minute summer	135.791	35.885
10 year 720 minute winter	11.148	4.446	100 year +40% CC 120 minute winter	90.216	35.885
10 year 960 minute summer	13.811	3.637	100 year +40% CC 180 minute summer	104.615	26.921
10 year 960 minute winter	9.149	3.637	100 year +40% CC 180 minute winter	68.003	26.921
10 year 1440 minute summer	10.216	2.738	100 year +40% CC 240 minute summer	82.776	21.875
10 year 1440 minute winter	6.866	2.738	100 year +40% CC 240 minute winter	54.994	21.875
30 year 15 minute summer	243.818	68.992	100 year +40% CC 360 minute summer	63.377	16.309
30 year 15 minute winter	171.101	68.992	100 year +40% CC 360 minute winter	41.197	16.309
30 year 30 minute summer	166.387	47.082	100 year +40% CC 480 minute summer	50.006	13.215
30 year 30 minute winter	116.763	47.082	100 year +40% CC 480 minute winter	33.223	13.215
30 year 60 minute summer	116.589	30.811	100 year +40% CC 600 minute summer	40.997	11.214
30 year 60 minute winter	77.459	30.811	100 year +40% CC 600 minute winter	28.011	11.214
30 year 120 minute summer	73.902	19.530	100 year +40% CC 720 minute summer	36.560	9.799
30 year 120 minute winter	49.099	19.530	100 year +40% CC 720 minute winter	24.571	9.799
30 year 180 minute summer	57.313	14.749	100 year +40% CC 960 minute summer	30.041	7.911
30 year 180 minute winter	37.255	14.749	100 year +40% CC 960 minute winter	19.900	7.911
30 year 240 minute summer	45.598	12.050	100 year +40% CC 1440 minute summer	21.775	5.836
30 year 240 minute winter	30.295	12.050	100 year +40% CC 1440 minute winter	14.634	5.836

File: FLOW.pfd Network: Surface Network Colin Aimers

05/08/2022

Page 6

Results for 10 year Critical Storm Duration. Lowest mass balance: 98.86%

Node Event	US	Peak	Level	Depth	Inflow	Node	Flood	Status
	Node	(mins)	(m)	(m)	(I/s)	Vol (m³)	(m³)	
15 minute winter	1	10	144.128	0.028	1.3	0.0011	0.0000	OK
15 minute summer	2	10	144.046	0.034	1.8	0.0014	0.0000	OK
15 minute summer	3	10	143.965	0.035	1.8	0.0014	0.0000	OK
15 minute summer	4	10	144.118	0.018	0.5	0.0007	0.0000	OK
120 minute winter	5	90	143.924	0.059	1.2	0.0024	0.0000	OK
120 minute winter	6	90	143.924	0.185	1.6	0.0074	0.0000	SURCHARGED
120 minute winter	7	90	143.923	0.340	2.8	0.0136	0.0000	SURCHARGED
15 minute summer	8	10	144.129	0.029	1.3	0.0012	0.0000	OK
15 minute summer	9	10	144.055	0.028	1.3	0.0011	0.0000	OK
120 minute winter	10	90	143.923	0.047	1.2	0.0019	0.0000	OK
15 minute summer	11	10	144.119	0.018	1.3	0.0007	0.0000	OK
120 minute winter	12	90	143.922	0.453	2.5	4.6614	0.0000	OK

Link Event (Upstream Depth)	US Node	Link	DS Node	Outflow (I/s)	Velocity (m/s)	Flow/Cap	Link Vol (m³)	Discharge Vol (m³)
15 minute winter	1	1.000	2	1.3	0.625	0.165	0.0108	
15 minute summer	2	1.001	3	1.8	0.753	0.229	0.0117	
15 minute summer	3	1.002	5	1.8	0.575	0.227	0.0121	
15 minute summer	4	2.000	5	0.5	0.538	0.063	0.0017	
120 minute winter	5	1.003	6	1.2	0.664	0.153	0.0472	
120 minute winter	6	1.004	7	1.6	0.526	0.202	0.0723	
120 minute winter	7	1.005	12	2.5	0.864	0.316	0.0530	
15 minute summer	8	3.000	9	1.3	0.720	0.164	0.0078	
15 minute summer	9	3.001	10	1.3	0.523	0.165	0.0224	
120 minute winter	10	3.002	7	1.2	0.519	0.120	0.0617	
15 minute summer	11	4.000	10	1.3	0.648	0.074	0.0057	
120 minute winter	12	Head/Flow		0.8				7.9

File: FLOW.pfd Network: Surface Network Colin Aimers

05/08/2022

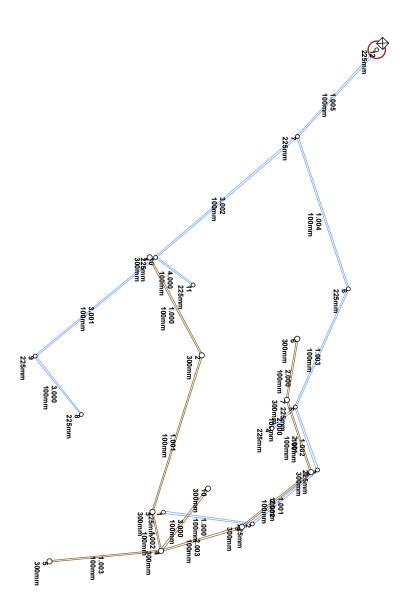
Page 7

Results for 30 year Critical Storm Duration. Lowest mass balance: 98.86%

Node Event	US	Peak	Level	Depth	Inflow	Node	Flood	Status
	Node	(mins)	(m)	(m)	(I/s)	Vol (m³)	(m³)	
15 minute winter	1	10	144.133	0.033	1.7	0.0013	0.0000	OK
15 minute summer	2	10	144.052	0.040	2.4	0.0016	0.0000	OK
180 minute winter	3	132	144.045	0.115	0.6	0.0046	0.0000	SURCHARGED
15 minute winter	4	10	144.122	0.022	0.7	0.0009	0.0000	OK
180 minute winter	5	132	144.045	0.180	1.2	0.0072	0.0000	SURCHARGED
180 minute winter	6	132	144.045	0.306	1.5	0.0122	0.0000	SURCHARGED
180 minute winter	7	132	144.044	0.461	2.5	0.0184	0.0000	SURCHARGED
15 minute winter	8	10	144.134	0.033	1.7	0.0013	0.0000	OK
15 minute summer	9	10	144.059	0.032	1.7	0.0013	0.0000	OK
180 minute winter	10	132	144.044	0.168	1.2	0.0067	0.0000	SURCHARGED
15 minute winter	11	10	144.121	0.021	1.7	0.0008	0.0000	OK
180 minute winter	12	132	144.042	0.573	2.3	5.9027	0.0000	OK

Link Event (Upstream Depth)	US Node	Link	DS Node	Outflow (I/s)	Velocity (m/s)	Flow/Cap	Link Vol (m³)	Discharge Vol (m³)
15 minute winter	1	1.000	2	1.7	0.660	0.215	0.0134	
15 minute summer	2	1.001	3	2.4	0.801	0.305	0.0146	
180 minute winter	3	1.002	5	0.6	0.454	0.076	0.0301	
15 minute winter	4	2.000	5	0.7	0.590	0.088	0.0022	
180 minute winter	5	1.003	6	1.2	0.613	0.152	0.0583	
180 minute winter	6	1.004	7	1.3	0.481	0.167	0.0723	
180 minute winter	7	1.005	12	2.3	0.818	0.295	0.0530	
15 minute winter	8	3.000	9	1.7	0.772	0.215	0.0095	
15 minute summer	9	3.001	10	1.7	0.561	0.216	0.0273	
180 minute winter	10	3.002	7	1.2	0.482	0.120	0.0841	
15 minute winter	11	4.000	10	1.7	0.692	0.096	0.0069	
180 minute winter	12	Head/Flow		0.8				11.7

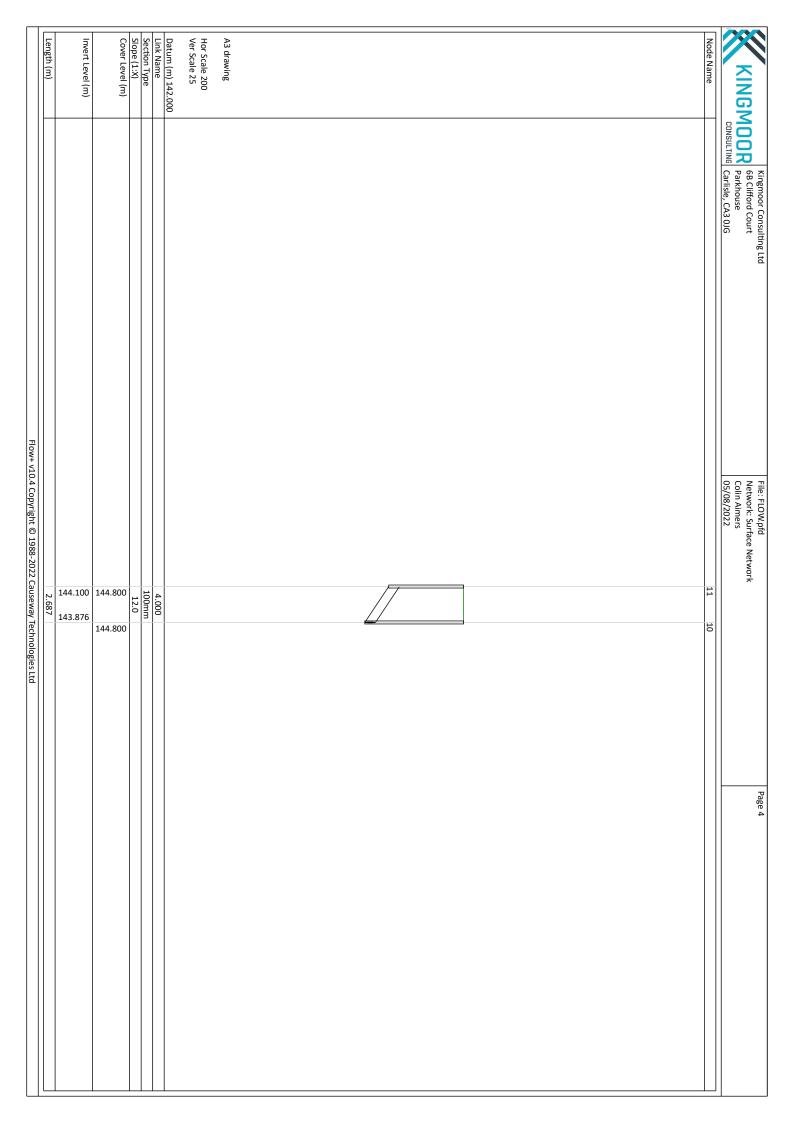
File: FLOW.pfd Network: Surface Network Colin Aimers


05/08/2022

Page 8

Results for 100 year +40% CC Critical Storm Duration. Lowest mass balance: 98.86%

Node Event	US	Peak	Level	Depth	Inflow	Node	Flood	Status
	Node	(mins)	(m)	(m)	(I/s)	Vol (m³)	(m³)	
240 minute winter	1	188	144.454	0.354	0.6	0.0141	0.0000	SURCHARGED
240 minute winter	2	188	144.454	0.442	0.8	0.0177	0.0000	SURCHARGED
240 minute winter	3	188	144.453	0.523	0.8	0.0209	0.0000	SURCHARGED
240 minute winter	4	188	144.453	0.353	0.3	0.0141	0.0000	SURCHARGED
240 minute winter	5	188	144.453	0.588	1.4	0.0235	0.0000	SURCHARGED
240 minute winter	6	188	144.453	0.714	1.6	0.0285	0.0000	SURCHARGED
240 minute winter	7	188	144.452	0.869	2.9	0.0347	0.0000	SURCHARGED
240 minute winter	8	188	144.452	0.352	0.6	0.0141	0.0000	SURCHARGED
240 minute winter	9	188	144.452	0.425	0.6	0.0170	0.0000	SURCHARGED
240 minute winter	10	188	144.452	0.576	1.8	0.0230	0.0000	SURCHARGED
240 minute winter	11	188	144.452	0.352	0.6	0.0141	0.0000	SURCHARGED
240 minute winter	12	188	144.449	0.980	2.8	9.2783	0.0000	OK


Link Event (Upstream Depth)	US Node	Link	DS Node	Outflow (I/s)	Velocity (m/s)	Flow/Cap	Link Vol (m³)	Discharge Vol (m³)
240 minute winter	1	1.000	2	0.6	0.531	0.076	0.0405	
240 minute winter	2	1.001	3	0.8	0.604	0.100	0.0382	
240 minute winter	3	1.002	5	0.7	0.454	0.086	0.0301	
240 minute winter	4	2.000	5	0.2	0.416	0.025	0.0143	
240 minute winter	5	1.003	6	1.2	0.593	0.152	0.0583	
240 minute winter	6	1.004	7	1.4	0.471	0.180	0.0723	
240 minute winter	7	1.005	12	2.8	0.851	0.355	0.0530	
240 minute winter	8	3.000	9	0.6	0.580	0.076	0.0335	
240 minute winter	9	3.001	10	0.6	0.376	0.076	0.0702	
240 minute winter	10	3.002	7	1.6	0.576	0.158	0.0841	
240 minute winter	11	4.000	10	0.6	0.460	0.034	0.0210	
240 minute winter	12	Head/Flow		1.0				21.0

Length (m)	Invert Level (m)	Cover Level (m)	Slope (1:X)	Link Name	A3 drawing Hor Scale 200 Ver Scale 25 Datum (m) 142.000	Node Name	KINGMOOR
							6B Clifford Court Parkhouse CONSULTING Carlisle, CA3 01G
5.179	144.100		58.9	1.000		12	
	144.012 144.012	144.800	n 100mm 59.5			2	
	143.930 143.930	144 900	59.2			ω	Network: St Colin Aimer. 05/08/2022
	143.865 143.865	144.800	59.2			G	Network: Surface Network Colin Aimers 05/08/2022
	143.739 143.739	144.800		ω I		6	
9.245			59.3	1.004			
	143.583 143.583	144.800				7	
6.770			59.4	1.005			
	143.469	144.800				12	

Length (m)	Invert Level (m)	Cover Level (m)	Slope (1:X)	Link Name	Hor Scale 200 Ver Scale 25 Datum (m) 142.000	A3 drawing	Node Name	KINGMOOR
								Kingmoor Consulting Ltd OR 6B Clifford Court Parkhouse SULTING Carlisle, CA3 0.JG
4.28/ Flow+ v10.4 Copyright © 19	144.027	144.800	58.7				8	File: FLOW.pfd Network: Surface Network Colin Almers 05/08/2022
4.28/ 8.9/5 10.4 Copyright © 1988-2022 Causeway Technologies Ltd	143.876 143.876			3.001			10	e Network
10./51 gies Ltd	143.583		36.7	3.002			7	
		144.800					7	Page 3

File: FLOW.pfd Network: Foul Network Colin Aimers 05/08/2022 Page 1

Design Settings

Frequency of use (kDU) 1.00
Flow per dwelling per day (I/day) 150
Domestic Flow (I/s/ha) 0.0
Industrial Flow (I/s/ha) 0.0
Additional Flow (%) 0

Minimum Velocity (m/s) 1.00
Connection Type Level Soffits
Minimum Backdrop Height (m) 0.200
Preferred Cover Depth (m) 0.450
Include Intermediate Ground x

Nodes

Name	Dwellings	Cover Level	Manhole Type	Easting (m)	Northing (m)	Depth (m)
		(m)				
1	1	144.800	Adoptable	26.118	50.222	0.550
2		144.800	Adoptable	31.757	53.230	0.630
3	1	144.800	Adoptable	40.760	50.386	0.749
4		144.800	Adoptable	43.005	50.881	0.778
5		144.800	Adoptable	43.610	44.437	0.859
6	1	144.800	Adoptable	30.805	58.747	0.550
7	2	144.800	Adoptable	34.316	58.148	0.595
8		144.800	Adoptable	38.476	59.547	0.650
9		144.800	Adoptable	41.628	55.549	0.714
10	1	144.800	Adoptable	39.421	53.600	0.550

<u>Links</u>

Name	US	DS	Length	ks (mm) /	US IL	DS IL	Fall	Slope	Dia
	Node	Node	(m)	n	(m)	(m)	(m)	(1:X)	(mm)
1.000	1	2	6.391	1.500	144.250	144.170	0.080	79.9	100
1.001	2	3	9.442	1.500	144.170	144.051	0.119	79.3	100
1.002	3	4	2.299	1.500	144.051	144.022	0.029	79.3	100
1.003	4	5	6.472	1.500	144.022	143.941	0.081	79.9	100
2.000	6	7	3.562	1.500	144.250	144.205	0.045	79.1	100
2.001	7	8	4.389	1.500	144.205	144.150	0.055	79.8	100
2.002	8	9	5.091	1.500	144.150	144.086	0.064	79.5	100
2.003	9	4	4.867	1.500	144.086	144.022	0.064	76.0	100
3.000	10	4	4.499	1.500	144.250	144.022	0.228	19.7	100

Name	Pro Vel @ 1/3 Q (m/s)	Vel (m/s)	Cap (I/s)	Flow (I/s)	US Depth (m)	DS Depth (m)	Σ Area (ha)	Σ Dwellings (ha)	Σ Units (ha)	Σ Add Inflow (ha)	Pro Depth (mm)	Pro Velocity (m/s)
1.000	0.044	0.744	5.8	0.0	0.450	0.530	0.000	1	0.0	0.0	2	0.074
1.001	0.044	0.747	5.9	0.0	0.530	0.649	0.000	1	0.0	0.0	2	0.074
1.002	0.044	0.747	5.9	0.0	0.649	0.678	0.000	2	0.0	0.0	2	0.074
1.003	0.074	0.744	5.8	0.0	0.678	0.759	0.000	6	0.0	0.0	4	0.124
2.000	0.044	0.748	5.9	0.0	0.450	0.495	0.000	1	0.0	0.0	2	0.074
2.001	0.074	0.745	5.8	0.0	0.495	0.550	0.000	3	0.0	0.0	3	0.100
2.002	0.074	0.746	5.9	0.0	0.550	0.614	0.000	3	0.0	0.0	3	0.100
2.003	0.076	0.763	6.0	0.0	0.614	0.678	0.000	3	0.0	0.0	3	0.103
3.000	0.093	1.503	11.8	0.0	0.450	0.678	0.000	1	0.0	0.0	1	0.093

File: FLOW.pfd Network: Foul Network Colin Aimers 05/08/2022 Page 2

Pipeline Schedule

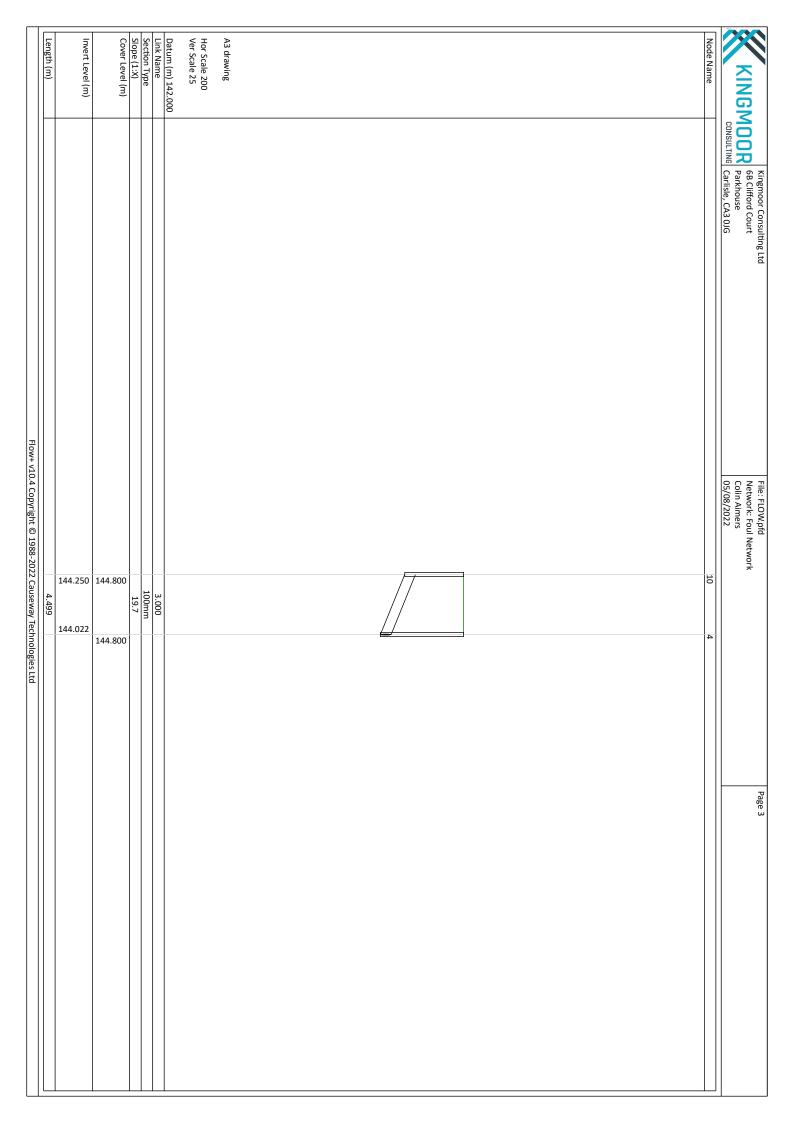
Link	Length	Slope	Dia	Link	US CL	US IL	US Depth	DS CL	DS IL	DS Depth
	(m)	(1:X)	(mm)	Type	(m)	(m)	(m)	(m)	(m)	(m)
1.000	6.391	79.9	100	Circular	144.800	144.250	0.450	144.800	144.170	0.530
1.001	9.442	79.3	100	Circular	144.800	144.170	0.530	144.800	144.051	0.649
1.002	2.299	79.3	100	Circular	144.800	144.051	0.649	144.800	144.022	0.678
1.003	6.472	79.9	100	Circular	144.800	144.022	0.678	144.800	143.941	0.759
2.000	3.562	79.1	100	Circular	144.800	144.250	0.450	144.800	144.205	0.495
2.001	4.389	79.8	100	Circular	144.800	144.205	0.495	144.800	144.150	0.550
2.002	5.091	79.5	100	Circular	144.800	144.150	0.550	144.800	144.086	0.614
2.003	4.867	76.0	100	Circular	144.800	144.086	0.614	144.800	144.022	0.678
3.000	4.499	19.7	100	Circular	144.800	144.250	0.450	144.800	144.022	0.678

Link	US Node	Dia (mm)	Node Type	MH Type	DS Node	Dia (mm)	Node Type	MH Type
1.000	1	300	Manhole	Adoptable	2	300	Manhole	Adoptable
1.001	2	300	Manhole	Adoptable	3	300	Manhole	Adoptable
1.002	3	300	Manhole	Adoptable	4	300	Manhole	Adoptable
1.003	4	300	Manhole	Adoptable	5	300	Manhole	Adoptable
2.000	6	300	Manhole	Adoptable	7	300	Manhole	Adoptable
2.001	7	300	Manhole	Adoptable	8	300	Manhole	Adoptable
2.002	8	300	Manhole	Adoptable	9	300	Manhole	Adoptable
2.003	9	300	Manhole	Adoptable	4	300	Manhole	Adoptable
3 000	10	300	Manhole	Adontable	4	300	Manhole	Adontable

Manhole Schedule

Node	Easting (m)	Northing (m)	CL (m)	Depth (m)	Dia (mm)	Connections	Link	IL (m)	Dia (mm)
1	26.118	50.222	144.800	0.550	300	~°°			
						C	1.000	144.250	100
2	31.757	53.230	144.800	0.630	300	1	1.000	144.170	100
						1			
						C	1.001	144.170	100
3	40.760	50.386	144.800	0.749	300	1	1.001	144.051	100
						1 >0			
						C	1.002	144.051	100
4	43.005	50.881	144.800	0.778	300	² \ 1	3.000	144.022	100
						2		144.022	100
						3 3		144.022	100
						ŏ C		144.022	100
5	43.610	44.437	144.800	0.859	300		1.003	143.941	100
6	30.805	58.747	144.800	0.550	300	\longrightarrow_0			
						C	2.000	144.250	100

File: FLOW.pfd Network: Foul Network

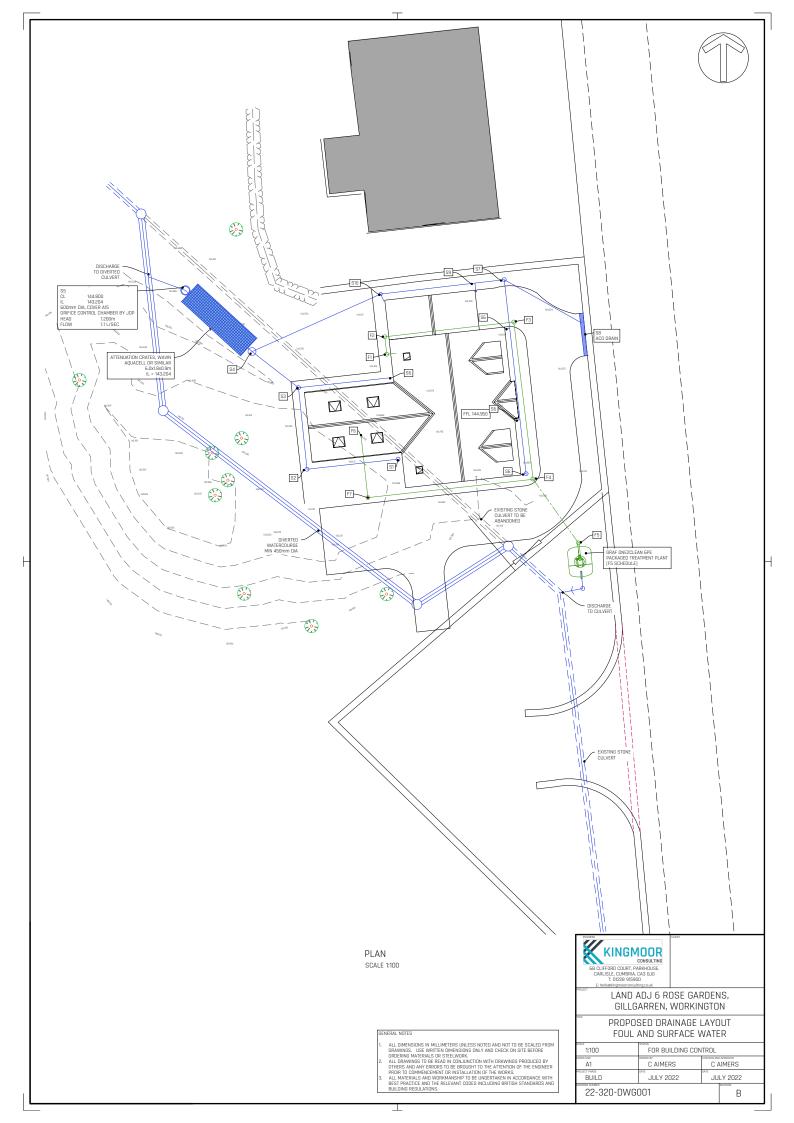

Colin Aimers 05/08/2022 Page 3

Manhole Schedule

Node	Easting (m)	Northing (m)	CL (m)	Depth (m)	Dia (mm)	Connections	Link	IL (m)	Dia (mm)
7	34.316	58.148	144.800	0.595	300	1	2.000	144.205	100
						0	2.001	144.205	100
8	38.476	59.547	144.800	0.650	300	1	2.001	144.150	100
						1 0	2.002	144.150	100
9	41.628	55.549	144.800	0.714	300	. 1	2.002	144.130	100
9	41.026	33.349	144.800	0.714	300		2.002	144.000	100
						ŏ 0	2.003	144.086	100
10	39.421	53.600	144.800	0.550	300				
						0	3.000	144.250	100
						U	3.000	144.230	100

Length (m)	Invert Level (m)	Cover Level (m)	Section Type Slope (1:X)	Link Name	A3 drawing Hor Scale 200 Ver Scale 25	Node Name	KINGMOOR
							Kingmoor Consulting Ltd MOOR 6B Clifford Court Parkhouse CONSULTING CATISIE, CA3 0JG
6.391 9.442 2.299 Flow+ v10.4 Copyright © 1988-2022 Causeway Technologies Ltd	144.170 144.170	144.800	100mm 100mm 79.9 79.3			1 2	File: FLOW.pfd Network: Foul Network Colin Aimers 05/08/2022
2.299 6.472 ay Technologies Ltd	144.022	144.800	79.3 79.9			3 4 5	
							Page 1

Length (m)	Invert Level (m)	Cover Level (m)	Slope (1:X)	Link Name	A3 drawing Hor Scale 200 Ver Scale 25	Node Name	KINGMOOR
						CONSULTING Carlisle, CA3 0.1G	68 Clifford Court
4.389 5.091	144.250 144.205 144.205 144.150 144.150 144.086	144.800	79.1 79.8 79.5	2.001 2.002		6 7 8 9	Network City Aircogn Network
4.867	144.022	144.800	76.0	003		4	



Drawings

Project

Land Adj 6 Rose Gardens, Gilgarren, Workington

Report Drainage Report Page 16 of 17

FOUL WATER MANHOLE SCHEDULE

Manhole Number	Cover Level					Pipe		Manhole Size	Types		
Coordinates	Depth To Soffit		Connections		Code	Inverts	Diams	Size	Manhole	Cover	
F1	144.8	00									
E. 23.		50	\downarrow		4000	444050	400	300	4	A15	
F2	144.8	nn .	<u> </u>	1	1.000	144.250 144.210	100				
E. 26.8 N. 26.3	0.4							300	4	A15	
4. ZUI.	143			0	1.001	144.210 144.125	100				
F3	144.8		\bigcirc		11001	144.125	100				
E. 33.1 N. 27.4		75	\downarrow	0	1.002	144.125	100	300	4	A15	
				1	1.002	143.976	100				
F4	144.8		\triangleleft								
E. 34. N. 15.6		24	\downarrow	0	1.003	143.976	100	300	4	A15	
F5	144.8	00	1	1	1.003	143.902	100				
E. 38. N. 10.9		98						300	4	A15	
F6	144.8	00	\bigcirc								
E. 21.8 N. 18.8		50	\bigvee	0	2.000	144.250	100	300	Unknown	A15	
F7	144.8	00	<u></u>	1	2.000	144.192	100				
E. 22.4 N. 14.3		08	(1)					300	Unknown	A15	

SURFACE WATER MANHOLE SCHEDULE

S1		144.800								
E.	24.660	0.800	$\mid \psi \mid$					225	4	A15
N.	17.181		0	0	3.000	143.900	100			
S2				1	3.000	143.784	100			
32		144.800								
E.	17.842	0.916	$\downarrow \downarrow$					225	4	A15
N.	16.425		. 0	0	3.001	143.784	100			
S3				1	3.001	143.680	100			
53		144.800	\sim							
E.	17.200	1.020						225	4	A15
N.	22.537		Ď	0	3.002	143.680	100			
				1 2	3.002 1.003	143.606 143.318	100 100			
S4		144.800	4							
E.	13.723	1.382	2					225	4	A15
N.	25.235		ď	0	1.004	143,318	100			
				1	1.004	143.204	100			
S5		144.800								
E.	8.739	1.496	\cup					225	4	A15
N.	29.815									
			1							
S6		144.800								
_		0.800						225	4	A15
E. N.	34.249 16.093		*		4000	143.900	400			
				1	1.000	143.654	100			
S7		144.800	\sim	2	2.000	143.654	100			
		1.046						225	4	A15
E.	32.611 30.622		1							
	GOIDEE			0	1.001	143.654	100			
S8		144.800								
		0.800	(1)					225	4	A15
E.	38.416 27.380		*							
N.	27.000			0	2.000	143.900 143.616	100			
S9		144.800								
		1.084	()					225	4	A15
E.	30.417		*							
N.	30.366			0	1.002	143.616 143.496	100			
S10		144.800								
		144.800						225	4	A15
E.	23.361		*							
N.	29.543			0	1.003	143.496	100			

SURFACE WATER PIPE SCHEDULE

STORM Netw	ork 1									
Pipe	Diameter	Gradient	Pipe		Jpstream Manho	ole	Downstream Manhole			
Code	(mm)	[1:]	Length	Number	Invert	Cover	Number	Invert	Cover	
1.000	100	59	14.621	S6	143.900	144.800	S7	143.654	144.800	
1.001	100	58	2.209	S7	143.654	144.800	S9	143.616	144.800	
1.002	100	59	7.104	S9	143.616	144.800	S10	143.496	144.800	
1.003	100	59	10.557	S10	143.496	144.800	S4	143,318	144.800	
1.004	100	59	6.769	S4	143.318	144.800	S5	143.204	144.800	
2.000	100	27	6.649	SB	143.900	144.800	S7	143.654	144.800	
3.000	100	59	6.860	S1	143.900	144.800	S2	143.784	144.800	
3.001	100	59	6.146	S2	143.784	144.800	S3	143.680	144.800	
3.002	100	59	4.401	S3	143.680	144.800	S4	143.606	144.800	

FOUL WATER PIPE SCHEDULE

	FUUL Networ	K I								
Г	Pipe	Diameter	Gradient	Pipe		Jpstream Manho			wnstream Manl	
L	Code	(mm)	[1:]	Length	Number	Invert	Cover	Number	Invert	Cover
Г	1.000	100	78	3.137	F1	144.250	144.800	F2	144.210	144.800
	1.001	100	79	6.755	F2	144.210	144.800	F3	144.125	144.800
	1.002	100	80	11.868	F3	144.125	144.800	F4	143,976	144.800
	1.003	100	79	5.846	F4	143.976	144.800	F5	143.902	144.800
L	2.000	100	80	4.624	F6	144.250	144.800	F7	144.192	144.800

LAND ADJ 6 ROSE GARDENS, GILLGARREN, WORKINGTON

PROPOSED DRAINAGE LAYOUT DRAINAGE SCHEDULES

STALE	STATUS	
NOT TO SCALE	FOR BUILDING CONTROL	
PAPER SIZE	DRAWN BY	CHECKED AND APPROVED
A1	C AIMERS	C AIMERS
PROJECT PHASE	DATE	DATE
BUILD	JULY 2022	JULY 2022
DRAWING NUMBER		REVISION
22-320-DWG002		В

I

Kingmoor Consulting Ltd

6B Clifford Court

Parkhouse, Carlisle

Cumbria

T: 01228 915900

E: hello@kingmoorconsulting.co.uk