

Report Title

Drainage Report

Property Address Land at Scalegill Road

Moor Row Whitehaven Cumbria

Client O'Connor Fencing Ltd

Our Reference 21-305r001

Date July 2021

Prepared by Colin Aimers

BEng Hons CEng MICE CEnv

Kingoor Consulting Ltd

6B Clifford Court Parkhouse Carlisle CA3 OJG

Contents

Introduction	3
Planning Conditions	3
Condition 4	3
Condition 5	4
Condition 6	4
The Site	5
Historic Usage and Site Description	5
Existing Sewer Network	5
Existing Site Drainage	5
Geology	5
Drainage Strategy	6
Foul Drainage	6
Surface Water Drainage	6
Outline Strategy	6
Hydraulic Design	7
Foul Drainage	7
Surface Water Drainage	7
Detailed Engineering	9
Attenuation	9
Hydrobrakes	11
Maintenance of Drainage	12
Operation and Maintenance Requirements	12
Inlets, Outlets, Controls and Inspection Chambers	12
Appendices	14
BGS Geological Records	14

Project Housing Development, Scalegill Road, Moor Row, Whitehaven 21-305r001

Report Drainage Report Page 1 of 18

Percolation Tests	15
Drawings	16
Calculations	17

ProjectHousing Development, Scalegill Road, Moor Row, Whitehaven21-305r001ReportDrainage ReportPage 2 of 18

Introduction

The purpose of this report is to provide support for a planning condition discharge associated with the proposed development on land adjacent at Scalegill Road, Moor Row, Whitehaven, Cumbria.

Research has been undertaken on the site and observations made regarding the existing site and the drainage servicing the site.

Calculations associated with the drainage have been performed by software packages from a recognised resource. Where appropriate copies of calculations are provided in the Appendices of this report.

Planning Conditions

Under consent reference 4/21/2099/001, the following conditions are required to be considered by this document.

Condition 4

- 4. No development shall commence until a surface water drainage scheme has been submitted to and approved in writing by the Local Planning Authority. The drainage scheme must include:
- i. An investigation of the hierarchy of drainage options in the National Planning Practice Guidance (or any subsequent amendment thereof). This investigation shall include evidence of an assessment of ground conditions and the potential for infiltration of surface water;
- ii. A restricted rate of discharge of surface water agreed with the local planning authority (if it is agreed that infiltration is discounted by the investigations);

and

iii. A timetable for its implementation.

The approved scheme shall also be in accordance with the Non-Statutory Technical Standards for Sustainable Drainage Systems (March 2015) or any subsequent replacement national standards.

The development hereby permitted shall be carried out only in accordance with the approved

Project Housing Development, Scalegill Road, Moor Row, Whitehaven

21-305r001

Report Drainage Report

21-305r001

drainage scheme.

Condition 5

5. Full details of the surface water drainage system (incorporating SUDs features as far as practicable) and a maintenance schedule (identifying the responsible parties) must be submitted to the Local Planning Authority for approval prior to development being commenced. Any approved works must be implemented prior to the development being completed and must be maintained thereafter in accordance with the schedule.

Condition 6

6. Foul and surface water must be drained on separate systems.

We consider that this document provides sufficient information to discharge the conditions associated with the outline planning permission.

The Site

Historic Usage and Site Description

The area of the proposed development has historically been used as an arable field and historically has experienced a number of residential developments in recent years around the fringes of the field.

The wider field abuts the C4003 Scalegill Road to the north, with the areas to the south and east having various residential developments present.

Fields are present to the western boundary of the proposed development.

Existing Sewer Network

A public combined sewer system is located on the site servicing the properties adjacent to the site. There is a 150mm dia system located at the site entrance servicing the properties on Scalegill Road, with a 300mm dia combined sewer passing the western boundary of the site possibly installed to alleviate flooding occurring on the historic system within the village.

Existing Site Drainage

The site has no natural drainage and all surface water naturally percolates on the site.

Drawing 21-305 DWG001 indicates the existing drainage arrangements on site. These are appended to this report.

Geology

The superficial geology indicates that the site is overlain by the Diamicton Till generally consisting of clays, and silts.

The solid geology of the site is Mercia Mudstone Formation with areas adjacent to the site having St Bees Sandstone and a Breccia Intrusion. A copy of the geological mapping is appended to this report.

Project Housing Development, Scalegill Road, Moor Row, Whitehaven

21-305r001

Report Drainage Report

Page 5 of 18

A limited geotechnical investigation has been undertaken on the site including hand dug trial pits and percolation tests on the site and a copy of the records are appended to this report.

Drainage Strategy

Foul Drainage

It is proposed that a new foul drainage system shall discharge to the adjacent UU system located on the western boundary of the site.

Surface Water Drainage

Outline Strategy

Report

Drainage Report

It is proposed to discharge the surface water from the development to the adjacent UU system located on the western boundary of the site..

Following a review of the site conditions and tests undertaken (Percolation Tests), there is poor natural percolation which will prevent discharge to ground naturally to occur on the site. Percolation tests were conducted on the site and failed to achieve satisfactory results.

There are no adjacent watercourses present to facilitate discharge.

It is proposed to construct the drainage system at the time of the property construction.

Project Housing Development, Scalegill Road, Moor Row, Whitehaven

Page 6 of 18

21-305r001

Hydraulic Design

Foul Drainage

A preliminary scheme for the foul drainage design has been conducted on the site using Causeway Flow and has been based on the daily requirements of 1500l per day per property.

Drawing 21-305 DWG001 indicates the proposed arrangements for foul water on the site.

Surface Water Drainage

Principally the surface water drainage has been calculated on the impermeable areas of the development.

Modelling has been conducted on the following rainfall events:

- 1 in 30 years
- 1 in 100 years plus 40 % increase due to climate change over a 6 hour period

An assessment of the proposed network has been undertaken to identify the requirements of each property and requirements for the attenuation of water on the site to ensure that runoff from the site does not exceed the limits of Qbar (approx 1 in 2 year rainfall event).

The following parameters were adopted in the analysis. These were obtained from UK SUDS based on the site location and data held by HR Wallingford.

Project Housing Development, Scalegill Road, Moor Row, Whitehaven

21-305r001

Report Drainage Report

Simulation Settings

Return Period (years)	Climate Change Addi (CC %)	itional Area Additional Flow (A %) (Q %)	
15 30 60 120	Storm Durati 180 240 360	ons 480 600 720	960 1440
Skip Steady State	x		
Analysis Speed	Normal	100 year 360 minute (m³)	69
Winter CV	0.840	Check Discharge Volume	\checkmark
Summer CV	0.750	100 year (l/s)	3.7
Ratio-R	0.300	30 year (l/s)	3.0
M5-60 (mm)	20.000	Check Discharge Rate(s)	\checkmark
FSR Region	England and Wales	Additional Storage (m³/ha)	0.0
Rainfall Methodology	FSR	Drain Down Time (mins)	240

The following rates and volumes have been calculated for the predevelopment discharge and volumes from the site.

0

0

0

0

Pre-development Discharge Rate

40

30

100

Site Makeup	Greenfield	Growth Factor 30 year	1.70
Greenfield Method	IH124	Growth Factor 100 year	2.08
Positively Drained Area (ha)	0.190	Betterment (%)	0
SAAR (mm)	1228	QBar	1.8
Soil Index	4	Q 30 year (I/s)	3.0
SPR	0.47	Q 100 year (I/s)	3.7
Region	10		

Pre-development Discharge Volume

Site Makeup Greenfield Return Period (years) 100	
Greenfield Method FSR/FEH Climate Change (%) 0	
Positively Drained Area (ha) 0.190 Storm Duration (mins) 360)
Soil Index 4 Betterment (%) 0	
SPR 0.47 PR 0.5	20
CWI 125.570 Runoff Volume (m³) 69	

Project Housing Development, Scalegill Road, Moor Row, Whitehaven 21-305r001

Report Drainage Report Page 8 of 18

Detailed Engineering

The detailed model presented in this report adopts the following engineering aspects specific to the site.

<u>Attenuation</u>

Attenuation in the form of inline storage, prevent flooding occurring within and outside the site for the 1 in 100 year + 40% climate change event.

Strage is to be formed using lined granular infiltration pits adjacent to Manholes S10.. The following summary is offered associated with the storage.

Node 10 Soakaway Storage Structure

Base Inf Coefficient (m/hr)	0.00000	Invert Level (m)	78.760	Depth (m)	1.000
Side Inf Coefficient (m/hr)	0.00000	Time to half empty (mins)	136	Inf Depth (m)	
Safety Factor	1.0	Pit Width (m)	4.000	Number Required	1
Porosity	0.40	Pit Length (m)	2.000		

The following summary associated with the critical storm event is offered.

Project Housing Development, Scalegill Road, Moor Row, Whitehaven 21-305r001

Report Drainage Report Page 9 of 18

21-305r001

Results for 30 year Critical Storm Duration. Lowest mass balance: 98.21%

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
15 minute winter	1	10	80.082	0.032	1.7	0.0051	0.0000	OK
15 minute summer	2	10	79.832	0.032	1.7	0.0051	0.0000	OK
60 minute winter	3	48	79.505	0.060	0.9	0.0095	0.0000	OK
60 minute winter	4	47	79.505	0.115	2.7	0.0182	0.0000	SURCHARGED
15 minute winter	5	10	80.074	0.024	1.0	0.0038	0.0000	OK
15 minute winter	6	10	79.957	0.032	1.7	0.0051	0.0000	OK
60 minute winter	7	49	79.503	0.379	3.6	0.0602	0.0000	SURCHARGED
15 minute winter	8	10	79.833	0.033	1.7	0.0053	0.0000	OK
60 minute winter	9	49	79.500	0.581	4.1	0.0924	0.0000	SURCHARGED
60 minute winter	10	49	79.497	0.737	4.4	3.1905	0.0000	SURCHARGED
15 minute summer	99	1	78.592	0.000	1.4	0.0000	0.0000	OK

Link Event (Upstream Depth)	US Node	Link	DS Node	Outflow (I/s)	Velocity (m/s)	Flow/Cap	Link Vol (m³)	Discharge Vol (m³)
15 minute winter	1	2.000	4	1.7	0.791	0.214	0.0478	
15 minute summer	2	1.000	3	1.7	0.799	0.217	0.0451	
60 minute winter	3	1.001	4	0.9	0.424	0.114	0.0205	
60 minute winter	4	1.002	7	2.7	0.807	0.344	0.1237	
15 minute winter	5	3.000	6	1.0	0.562	0.127	0.0134	
15 minute winter	6	3.001	7	1.7	0.788	0.214	0.0327	
60 minute winter	7	1.003	9	3.2	0.770	0.413	0.0953	
15 minute winter	8	4.000	9	1.7	0.775	0.216	0.0122	
60 minute winter	9	1.004	10	3.2	0.523	0.403	0.0740	
60 minute winter	10	Hydro-Brake®	99	1.4				8.4

Report Drainage Report Page 10 of 18

Housing Development, Scalegill Road, Moor Row, Whitehaven

Project

Results for 100 year +40% CC Critical Storm Duration. Lowest mass balance: 98.21%

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
120 minute winter	1	92	80.135	0.085	1.1	0.0135	0.0000	OK
120 minute winter	2	92	80.135	0.335	1.1	0.0532	0.0000	SURCHARGED
120 minute winter	3	92	80.134	0.689	1.1	0.1096	0.0000	SURCHARGED
120 minute winter	4	92	80.134	0.744	2.9	0.1183	0.0000	SURCHARGED
120 minute winter	5	92	80.131	0.081	0.6	0.0129	0.0000	OK
120 minute winter	6	92	80.131	0.206	1.0	0.0328	0.0000	SURCHARGED
120 minute winter	7	92	80.131	1.007	3.5	0.1601	0.0000	SURCHARGED
120 minute winter	8	92	80.126	0.326	1.1	0.0519	0.0000	SURCHARGED
120 minute winter	9	92	80.126	1.207	3.4	0.1919	0.0000	SURCHARGED
120 minute winter	10	92	80.120	1.360	4.1	4.7401	0.0000	SURCHARGED
15 minute summer	99	1	78.592	0.000	1.4	0.0000	0.0000	OK

Link Event	US	Link	DS	Outflow	Velocity	Flow/Cap	Link	Discharge
(Upstream Depth)	Node		Node	(I/s)	(m/s)		Vol (m³)	Vol (m³)
120 minute winter	1	2.000	4	1.1	0.697	0.136	0.1674	
120 minute winter	2	1.000	3	1.1	0.684	0.138	0.1652	
120 minute winter	3	1.001	4	1.0	0.417	0.121	0.0252	
120 minute winter	4	1.002	7	2.6	0.750	0.329	0.1237	
120 minute winter	5	3.000	6	0.6	0.489	0.076	0.0543	
120 minute winter	6	3.001	7	1.0	0.682	0.129	0.1197	
120 minute winter	7	1.003	9	2.6	0.726	0.335	0.0953	
120 minute winter	8	4.000	9	1.1	0.686	0.138	0.0436	
120 minute winter	9	1.004	10	2.8	0.496	0.355	0.0740	
120 minute winter	10	Hydro-Brake®	99	1.7				19.5

We consider that no flooding occurs on or off the site during the 1 in 100 year + 40% CC storm event.

Hydrobrakes

A hydrobrake shall be installed on the site for the control of flows at the agreed Qbar rate of 1.8 l/sec..

The following extract from the report indicates the arrangements.

Node 10 Online Hydro-Brake® Control

Flap Valve	X	Objective	(HE) Minimise upstream storage
Replaces Downstream Link	\checkmark	Sump Available	\checkmark
Invert Level (m)	78.760	Product Number	CTL-SHE-0058-1800-1500-1800
Design Depth (m)	1.500	Min Outlet Diameter (m)	0.075
Design Flow (I/s)	1.8	Min Node Diameter (mm)	1200

Project Housing Development, Scalegill Road, Moor Row, Whitehaven 21-305r001

Report Drainage Report Page 11 of 18

Maintenance of Drainage

Operation and Maintenance Requirements

As with all traditional drainage systems, SuDS need to be inspected and maintained regularly to ensure that they operate correctly and efficiently. If SuDS are not properly maintained then there is a risk that the systems will become overloaded during periods of prolonged heavy rainfall, potentially resulting in localised flooding of the development. Recommendations for the SuDS maintenance activities for the privately maintained areas are detailed below.

All maintenance activities should be detailed in the Health and Safety Plan and a risk assessment should be undertaken in accordance with CDM regulations.

Inlets, Outlets, Controls and Inspection Chambers

- Inlets and outlets structures may be surface structures or conveyance pipes with guards or headwalls. They must be free from obstruction at all times.
- SuDS flow control structures can be protected orifices, slots weirs or other controls at or near the surface to be accessible and easy to maintain. They may be in baskets, in small chambers or in the open.
- Inspection Chambers and rodding eyes are used on bends or where pipes come together and allow cleaning of the system if necessary. They should be designed out of the system where possible.

Inlets, Outlets, Controls and Inspection Chambers	Frequency
Regular Maintenance	Monthly
 Inspect surface structures removing obstructions and silt as necessary. Check there is no physical damage. Strim vegetation 1m min. surround structures and keep hard aprons free from silt and debris. Remove cover and inspect ensuring water is flowing freely and that the exit route for water is unobstructed. Remove debris and silt. 	

Project Housing Development, Scalegill Road, Moor Row, Whitehaven

21-305r001

Report Drainage Report

Undertake inspection after leaf fall in autumn	
Occasional Tasks	Annual
Check topsoil levels are 20mm above edges of manholes and chambers to avoid mower damage	
Remedial Works	As Required
Monitor effectiveness of the system and advise / inspect / clean and test if water is standing in the system. This may require specialist cleaning.	

Project Housing Development, Scalegill Road, Moor Row, Whitehaven

21-305r001

Report Drainage Report Page 13 of 18

21-305r001

Appendices

Project

BGS Geological Records

Housing Development, Scalegill Road, Moor Row, Whitehaven

Report Drainage Report Page 14 of 18

Solid Geology

Contains OS data © Crown Copyright and database right 2020

GeoIndex Onshore Data Sources: NERC, Natural England, English Heritage and Ordnance Survey

Map Key

Bedrock geology 1:50,000 scale

- LAKE DISTRICT DEVONIAN MINOR INTRUSION SUITE MICRODIORITE

 KIRK STILE FORMATION MUDSTONE AND SILTSTONE

 FIRST SHALE MEMBER SANDSTONE, SILTSTONE AND MUDSTONE

 PENNINE LOWER COAL MEASURES FORMATION MUDSTONE, SILTSTONE AND SANDSTONE

 FIRST LIMESTONE (CUMBRIA) LIMESTONE

 MILLYEAT MEMBER MUDSTONE, SANDSTONE AND LIMESTONE

 MARSETT SANDSTONE FORMATION CONGLOMERATE

 DEVOKE WATER TUFF MEMBER VOLCANICLASTIC-BRECCIA

 BUTTERMERE FORMATION MUDSTONE AND SANDSTONE

 PENNINE MIDDLE COAL MEASURES FORMATION MUDSTONE, SILTSTONE AND SANDSTONE

 STAINMORE FORMATION MUDSTONE, SILTSTONE AND SANDSTONE

 ST BEES SANDSTONE MEMBER SANDSTONE

 OREBANK SANDSTONE SANDSTONE

 LAKE DISTRICT DEVONIAN MINOR INTRUSION SUITE FELSITE
- WHITEHAVEN SANDSTONE FORMATION SANDSTONE

LAKE DISTRICT DEVONIAN MINOR INTRUSION SUITE - ANDESITE

ST BEES SHALE FORMATION - SILTSTONE AND MUDSTONE, INTERBEDDED

- ST BEES EVAPORITE FORMATION DOLOMITIC LIMESTONE, MUDSTONE AND ANHYDRITE-STONE
- LATTERBARROW SANDSTONE FORMATION SANDSTONE
- HENSINGHAM GRIT SANDSTONE
- BROCKRAM BRECCIA

Selection Results

Bedrock geology 1:50,000 scale

0 0,	•
Description	Details
BROCKRAM - BRECCIA	More Information
PENNINE LOWER COAL MEASURES FORMATION - MUDSTONE, SILTSTONE AND SANDSTONE	More Information
STAINMORE FORMATION - MUDSTONE, SILTSTONE AND SANDSTONE	More Information
BROCKRAM - BRECCIA	More Information
PENNINE LOWER COAL MEASURES FORMATION - MUDSTONE, SILTSTONE AND SANDSTONE	More Information
ST BEES SANDSTONE MEMBER - SANDSTONE	More Information

Superficial Deposits

Contains OS data © Crown Copyright and database right 2020

GeoIndex Onshore Data Sources: NERC, Natural England, English Heritage and Ordnance Survey

Map Key

Superficial deposits 1:50,000 scale

GLACIOFLUVIAL DEPOSITS, DEVENSIAN - SAND AND GRAVEL TILL, DEVENSIAN - DIAMICTON HUMMOCKY (MOUNDY) GLACIAL DEPOSITS, DEVENSIAN - CLAY, SAND AND GRAVEL ALLUVIUM - CLAY, SILT, SAND AND GRAVEL HEAD - CLAY, SILT, SAND AND GRAVEL RIVER TERRACE DEPOSITS, 1 - CLAY, SAND AND GRAVEL ALLUVIAL FAN DEPOSITS - SAND AND GRAVEL MARINE BEACH DEPOSITS - SAND AND GRAVEL PEAT - PEAT

SUPERFICIAL THEME NOT MAPPED [FOR DIGITAL MAP USE ONLY] - UNKNOWN/UNCLASSIFIED ENTRY

Selection Results

Superficial deposits 1:50,000 scale

Description	Details
TILL,	More Information
DEVENSIAN -	
DIAMICTON	

21-305r001

Percolation Tests

Project Housing Development, Scalegill Road, Moor Row, Whitehaven

Report Drainage Report Page 15 of 18

PERCOLATION TESTS

KINGMOOR

Project: Scalegill Road, Moor Row

Project No: 21-305 **Test Date:** 07/07/21

Weather: Damp following period of wet weather.

Equipment Auger / Hand Dug 300 mm

							TIME 75-25	Volume	Area	Infiltration Rate	Percolation
Hole No.	Test	Depth (mm)	Fill Time	TIME @ 75%	TIME @ 25%	Finish	(sec)	m3	m2	m/sec	Rate (sec/mm)
1	1	950	09:17:00	Abandoned	at 11:27 du	e to lack of					

21-305r001

Drawings

Project

Report Drainage Report Page 16 of 18

Housing Development, Scalegill Road, Moor Row, Whitehaven

Kingmoor Consulting Ltd

6B Clifford Court Clifford Way, Parkhouse Carlisle, Cumbria CA3 0JG

FAO:

How to contact us:

United Utilities Water Limited Property Searches Haweswater House Lingley Mere Business Park Great Sankey Warrington WA5 3LP

Telephone:

E-mail:

Your Ref: 21-305

Our Ref: UUPS-ORD-303158

Date: 06/07/2021

Dear Sirs

Location: 40 SCALEGILL ROAD, MOOR ROW, CA24 3JN

I acknowledge with thanks your request dated 01/07/2021 for information on the location of our services.

Please find enclosed plans showing the approximate position of United Utilities' apparatus known to be in the vicinity of this site.

The enclosed plans are being provided to you subject to the United Utilities terms and conditions for both the wastewater and water distribution plans which are shown attached.

If you are planning works anywhere in the North West, please read United Utilities' access statement before you start work to check how it will affect our network. http://www.unitedutilities.com/work-near-asset.aspx.

I trust the above meets with your requirements and look forward to hearing from you should you need anything further.

If you have any queries regarding this matter please contact us.

Yours Faithfully,

Karen McCormack Property Searches Manager

MANHOLE SCHEDULE

	Manhole Number	Cover Level					Manhole Size	Ту	/pes	
	Coordinates	Depth To Invert	Connections		Code	Inverts	Diams	01ZC	Manhole	Cover
	S1	80.800								
		0.750						450	4	A15
E.	81.953		0							
N.	13,244			0	2.000	80.050	100			
	S2									
	UL	80.550								
E.	93.833	0.750						450	4	A15
N.	55.307		0	0	1.000	79.800	100			
				1	1.000	79.445	100			
	S3	00.550								
		80.550						450	4	A15
E.	89.680		1 0					430	4	AlJ
N.	34.612		U	0	1.001	79.445	100			
	C 4			1 2	2.000 1.001	79.672 79.390	100 100			
	S4	80.550	2							
	05.504	1.160						450	4	A15
E.	86.524 35.267		1							
IN.	33.207			0	1.002	79.390	100			
	S5									
		80.800								
E.	66.793	0.750						450	4	A15
N.	16.162		0	0	3.000	80.050	100			
				1	3.000	79.925	100			
	S6	80.800								
		0.875						450	4	A15
E.	68.183		0							
N.	23.457			0	3.001	79.925	100			
	S7			2	3.001 1.002	79.668 79.124	100 100			
	3 7	80.550								
E.	71.045	1.426						450	4	A15
N.	38.482		2	0	1.003	79.124	100			
						, 5,112-7	100			
	S8	80.550								
		0.750						450	4	A15
E.	78.834	2,, 30	0					,50	·	5
N.	49.385			0	4.000	79.800	100			
	S9			1 2	1.003 4.000	78.919 79.706	100 100			
	ر ن	80.550								
E.	73.359	1.631						450	4	A15
N.	50.444		2		1.00.4	70.040	100			
				0 1	1.004	78.919 78.760	100			
	S10	60.555								
		80.550						1000	Л	A 1 F
E.	75.155	1.790	0					1200	4	A15
N.	59.732		U 	0	1.005	78.760	100			
						I			1	

STORM Netw	ork 1									
Pipe	Diameter	Gradient	Pipe	Upstream Manhole			Downstream Manhole			
Code	(mm)	(1:)	Length	Number	Invert	Cover	Number	Invert	Cover	
1.000	100	59	21.108	S2	79.800	80.550	S3	79.445	80.550	
1.001	100	59	3.223	S3	79.445	80.550	S4	79.390	80.550	
1.002	100	59	15.809	S4	79.390	80.550	S7	79.124	80.550	
1.003	100	59	12.184	S7	79.124	80.550	S9	78.919	80.550	
1.004	100	59	9.460	S9	78.919	80.550	S10	78.760	80.550	
1.005	100	59	9.982	S10	78.760	80.550	S99	78.592	79.383	
2.000	100	60	22.492	S1	80.050	80.800	S4	79.672	80.550	
3.000	100	59	7.426	S5	80.050	80.800	S6	79.925	80.800	
3.001	100	60	15.295	S6	79.925	80.800	S7	79.668	80.550	
4.000	100	59	5.576	S8	79.800	80.550	S9	79.706	80.550	

HOUSING DEVELOPMENT, SCALEGILL ROAD
MOOR ROW, WHITEHAVEN

DRAINAGE ARRANGEMENTS MANHOLE AND PIPE SCHEDULES

NOT TO COALE		CONDITIONS	
NOT TO SCALE	FOR PLANNING (2אחוווחאף	
PAPER SIZE	DRAWN BY	CHECKED AND APPROVED	
A1	C AIMERS	C AIMERS	3
PROJECT PHASE	DATE	DATE	
BUILD	JULY 2021	JULY 202	21
DRAWING NUMBER		REVISION	
L 21-305-DWG	3002		Δ
	,00L		$\overline{}$

21-305r001

Calculations

Project

Housing Development, Scalegill Road, Moor Row, Whitehaven

Report Drainage Report Page 17 of 18

File: surface.pfd Network: Storm Network Colin Aimers 07/07/2021 Page 1

Design Settings

Rainfall Methodology FSR
Return Period (years) 100
Additional Flow (%) 0
FSR Region England and Wales
M5-60 (mm) 20.000
Ratio-R 0.300

CV 0.750 Time of Entry (mins) 4.00 Maximum Time of Concentration (mins) 30.00

Maximum Rainfall (mm/hr) 50.0

Minimum Velocity (m/s) 1.00

Connection Type Level Soffits

Minimum Backdrop Height (m) 0.200

Preferred Cover Depth (m) 0.650

Include Intermediate Ground x

Enforce best practice design rules x

Nodes

Name	Area (ha)	T of E (mins)	Cover Level (m)	Diameter (mm)	Easting (m)	Northing (m)	Depth (m)
1	0.005	4.00	80.800	450	81.953	13.244	0.750
2	0.005	4.00	80.550	450	93.833	55.307	0.750
3			80.550	450	89.680	34.612	1.105
4	0.005	4.00	80.550	450	86.524	35.267	1.160
5	0.003	4.00	80.800	450	66.793	16.162	0.750
6	0.002	4.00	80.800	450	68.183	23.457	0.875
7			80.550	450	71.045	38.482	1.426
8	0.005	4.00	80.550	450	78.834	49.385	0.750
9			80.550	450	73.359	50.444	1.631
10	0.007	4.00	80.550	1200	75.155	59.732	1.790
99			79.383	950	68.370	67.054	0.791

<u>Links</u>

Name	US Node	DS Node	Length (m)	ks (mm) / n	US IL (m)	DS IL (m)	Fall (m)	Slope (1:X)	Dia (mm)	T of C (mins)	Rain (mm/hr)
2.000	1	4	22.492	0.600	80.050	79.672	0.378	59.5	100	4.37	50.0
1.000	2	3	21.108	0.600	79.800	79.445	0.355	59.5	100	4.35	50.0
1.001	3	4	3.223	0.600	79.445	79.390	0.055	58.6	100	4.40	50.0
1.002	4	7	15.809	0.600	79.390	79.124	0.266	59.4	100	4.67	50.0
3.000	5	6	7.426	0.600	80.050	79.925	0.125	59.4	100	4.12	50.0
3.001	6	7	15.295	0.600	79.925	79.668	0.257	59.5	100	4.38	50.0
1.003	7	9	12.184	0.600	79.124	78.919	0.205	59.4	100	4.87	50.0
4.000	8	9	5.576	0.600	79.800	79.706	0.094	59.3	100	4.09	50.0
1.004	9	10	9.460	0.600	78.919	78.760	0.159	59.5	100	5.03	50.0
1.005	10	99	9.982	0.600	78.760	78.592	0.168	59.4	100	5.19	50.0

Name	Vel	Cap	Flow	US	DS	Σ Area	Σ Add	Pro	Pro
	(m/s)	(I/s)	(I/s)	Depth	Depth	(ha)	Inflow	Depth	Velocity
				(m)	(m)		(I/s)	(mm)	(m/s)
2.000	1.000	7.9	0.7	0.650	0.778	0.005	0.0	20	0.610
1.000	1.001	7.9	0.7	0.650	1.005	0.005	0.0	20	0.610
1.001	1.008	7.9	0.7	1.005	1.060	0.005	0.0	20	0.614
1.002	1.001	7.9	2.0	1.060	1.326	0.015	0.0	35	0.840
3.000	1.001	7.9	0.4	0.650	0.775	0.003	0.0	15	0.515
3.001	1.000	7.9	0.7	0.775	0.782	0.005	0.0	20	0.610
1.003	1.001	7.9	2.7	1.326	1.531	0.020	0.0	40	0.906
4.000	1.002	7.9	0.7	0.650	0.744	0.005	0.0	20	0.611
1.004	1.000	7.9	3.4	1.531	1.690	0.025	0.0	46	0.961
1.005	1.001	7.9	4.3	1.690	0.691	0.032	0.0	53	1.023

File: surface.pfd Network: Storm Network Colin Aimers 07/07/2021 Page 2

Pipeline Schedule

Link	Length	Slope	Dia	Link	US CL	US IL	US Depth	DS CL	DS IL	DS Depth
	(m)	(1:X)	(mm)	Type	(m)	(m)	(m)	(m)	(m)	(m)
2.000	22.492	59.5	100	Circular	80.800	80.050	0.650	80.550	79.672	0.778
1.000	21.108	59.5	100	Circular	80.550	79.800	0.650	80.550	79.445	1.005
1.001	3.223	58.6	100	Circular	80.550	79.445	1.005	80.550	79.390	1.060
1.002	15.809	59.4	100	Circular	80.550	79.390	1.060	80.550	79.124	1.326
3.000	7.426	59.4	100	Circular	80.800	80.050	0.650	80.800	79.925	0.775
3.001	15.295	59.5	100	Circular	80.800	79.925	0.775	80.550	79.668	0.782
1.003	12.184	59.4	100	Circular	80.550	79.124	1.326	80.550	78.919	1.531
4.000	5.576	59.3	100	Circular	80.550	79.800	0.650	80.550	79.706	0.744
1.004	9.460	59.5	100	Circular	80.550	78.919	1.531	80.550	78.760	1.690
1.005	9.982	59.4	100	Circular	80.550	78.760	1.690	79.383	78.592	0.691

Link	US	Dia	Node	MH	DS	Dia	Node	MH
	Node	(mm)	Type	Туре	Node	(mm)	Type	Type
2.000	1	450	Manhole	Adoptable	4	450	Manhole	Adoptable
1.000	2	450	Manhole	Adoptable	3	450	Manhole	Adoptable
1.001	3	450	Manhole	Adoptable	4	450	Manhole	Adoptable
1.002	4	450	Manhole	Adoptable	7	450	Manhole	Adoptable
3.000	5	450	Manhole	Adoptable	6	450	Manhole	Adoptable
3.001	6	450	Manhole	Adoptable	7	450	Manhole	Adoptable
1.003	7	450	Manhole	Adoptable	9	450	Manhole	Adoptable
4.000	8	450	Manhole	Adoptable	9	450	Manhole	Adoptable
1.004	9	450	Manhole	Adoptable	10	1200	Manhole	Adoptable
1.005	10	1200	Manhole	Adoptable	99	950	Manhole	Adoptable

Manhole Schedule

Node	Easting (m)	Northing (m)	CL (m)	Depth (m)	Dia (mm)	Connections	Link	IL (m)	Dia (mm)
1	81.953	13.244	80.800	0.750	450				
						C	2.000	80.050	100
2	93.833	55.307	80.550	0.750	450	\bigcirc			
						√ (1.000	79.800	100
3	89.680	34.612	80.550	1.105	450	0 €	1.000	79.445	100
						C		79.445	100
4	86.524	35.267	80.550	1.160	450	1		79.672	100
						0 ← 2	1.001	79.390	100
						1 (1.002	79.390	100
5	66.793	16.162	80.800	0.750	450				
						C	3.000	80.050	100
6	68.183	23.457	80.800	0.875	450	9 1	3.000	79.925	100
						1 (3.001	79.925	100

File: surface.pfd Network: Storm Network Colin Aimers

07/07/2021

Page 3

Manhole Schedule

Node	Easting (m)	Northing (m)	CL (m)	Depth (m)	Dia (mm)	Connections	Link	IL (m)	Dia (mm)
7	71.045	38.482	80.550	1.426	450	0 1	3.001	79.668	100
						2	1.002	79.124	100
						1 0	1.003	79.124	100
8	78.834	49.385	80.550	0.750	450				
						0 ←			
						0	4.000	79.800	100
9	73.359	50.444	80.550	1.631	450	<u>%</u> 1	4.000	79.706	100
						2	1.003	78.919	100
						2 0	1.004	78.919	100
10	75.155	59.732	80.550	1.790	1200		1.004	78.760	100
						1 0	1.005	78.760	100
99	68.370	67.054	79.383	0.791	950	1	1.005	78.592	100
						Q			

Simulation Settings

Rainfall Methodology	FSR	Drain Down Time (mins)	240
FSR Region	England and Wales	Additional Storage (m³/ha)	0.0
M5-60 (mm)	20.000	Check Discharge Rate(s)	\checkmark
Ratio-R	0.300	30 year (l/s)	3.0
Summer CV	0.750	100 year (l/s)	3.7
Winter CV	0.840	Check Discharge Volume	\checkmark
Analysis Speed	Normal	100 year 360 minute (m³)	69
Skip Steady State	X		

Storm Durations

15	30	60	120	180	240	360	480	600	720	960	1440

Return Period	Climate Change	Additional Area	Additional Flow	
(years)	(CC %)	(A %)	(Q %)	
30	0	0	0	
100	40	0	0	

Pre-development Discharge Rate

Site Makeup	Greenfield	Growth Factor 30 year	1.70
Greenfield Method	IH124	Growth Factor 100 year	2.08
Positively Drained Area (ha)	0.190	Betterment (%)	0
SAAR (mm)	1228	QBar	1.8
Soil Index	4	Q 30 year (I/s)	3.0
SPR	0.47	Q 100 year (I/s)	3.7
Region	10		

File: surface.pfd Network: Storm Network Colin Aimers

07/07/2021

Page 4

Pre-development Discharge Volume

Site Makeup Greenfield Return Period (years) 100 Greenfield Method FSR/FEH Climate Change (%) 0 Positively Drained Area (ha) 0.190 Storm Duration (mins) 360 Soil Index 4 Betterment (%) 0 SPR 0.47 PR 0.520 CWI 125.570 Runoff Volume (m³) 69

Node 10 Online Hydro-Brake® Control

Flap Valve	Х	Objective	(HE) Minimise upstream storage
Replaces Downstream Link	\checkmark	Sump Available	\checkmark
Invert Level (m)	78.760	Product Number	CTL-SHE-0058-1800-1500-1800
Design Depth (m)	1.500	Min Outlet Diameter (m)	0.075
Design Flow (I/s)	1.8	Min Node Diameter (mm)	1200

Node 10 Soakaway Storage Structure

Base Inf Coefficient (m/hr)	0.00000	Invert Level (m)	78.760	Depth (m)	1.000
Side Inf Coefficient (m/hr)	0.00000	Time to half empty (mins)	136	Inf Depth (m)	
Safety Factor	1.0	Pit Width (m)	4.000	Number Required	1
Porosity	0.40	Pit Length (m)	2 000		

File: surface.pfd Network: Storm Network Colin Aimers

07/07/2021

Page 5

Results for 30 year Critical Storm Duration. Lowest mass balance: 98.21%

Node Event	US	Peak	Level	Depth	Inflow	Node	Flood	Status
	Node	(mins)	(m)	(m)	(I/s)	Vol (m³)	(m³)	
15 minute winter	1	10	80.082	0.032	1.7	0.0051	0.0000	OK
15 minute summer	2	10	79.832	0.032	1.7	0.0051	0.0000	OK
60 minute winter	3	48	79.505	0.060	0.9	0.0095	0.0000	OK
60 minute winter	4	47	79.505	0.115	2.7	0.0182	0.0000	SURCHARGED
15 minute winter	5	10	80.074	0.024	1.0	0.0038	0.0000	OK
15 minute winter	6	10	79.957	0.032	1.7	0.0051	0.0000	OK
60 minute winter	7	49	79.503	0.379	3.6	0.0602	0.0000	SURCHARGED
15 minute winter	8	10	79.833	0.033	1.7	0.0053	0.0000	OK
60 minute winter	9	49	79.500	0.581	4.1	0.0924	0.0000	SURCHARGED
60 minute winter	10	49	79.497	0.737	4.4	3.1905	0.0000	SURCHARGED
15 minute summer	99	1	78.592	0.000	1.4	0.0000	0.0000	OK

Link Event (Upstream Depth)	US Node	Link	DS Node	Outflow (I/s)	Velocity (m/s)	Flow/Cap	Link Vol (m³)	Discharge Vol (m³)
(Opstream Deptin)	Noue		Noue	(1/5)	(111/5)		voi (iii)	voi (iii)
15 minute winter	1	2.000	4	1.7	0.791	0.214	0.0478	
15 minute summer	2	1.000	3	1.7	0.799	0.217	0.0451	
60 minute winter	3	1.001	4	0.9	0.424	0.114	0.0205	
60 minute winter	4	1.002	7	2.7	0.807	0.344	0.1237	
15 minute winter	5	3.000	6	1.0	0.562	0.127	0.0134	
15 minute winter	6	3.001	7	1.7	0.788	0.214	0.0327	
60 minute winter	7	1.003	9	3.2	0.770	0.413	0.0953	
15 minute winter	8	4.000	9	1.7	0.775	0.216	0.0122	
60 minute winter	9	1.004	10	3.2	0.523	0.403	0.0740	
60 minute winter	10	Hydro-Brake®	99	1.4				8.4

File: surface.pfd Network: Storm Network Colin Aimers

07/07/2021

Page 6

Results for 100 year +40% CC Critical Storm Duration. Lowest mass balance: 98.21%

Node Event	US	Peak	Level	Depth	Inflow	Node	Flood	Status
	Node	(mins)	(m)	(m)	(I/s)	Vol (m³)	(m³)	
120 minute winter	1	92	80.135	0.085	1.1	0.0135	0.0000	OK
120 minute winter	2	92	80.135	0.335	1.1	0.0532	0.0000	SURCHARGED
120 minute winter	3	92	80.134	0.689	1.1	0.1096	0.0000	SURCHARGED
120 minute winter	4	92	80.134	0.744	2.9	0.1183	0.0000	SURCHARGED
120 minute winter	5	92	80.131	0.081	0.6	0.0129	0.0000	OK
120 minute winter	6	92	80.131	0.206	1.0	0.0328	0.0000	SURCHARGED
120 minute winter	7	92	80.131	1.007	3.5	0.1601	0.0000	SURCHARGED
120 minute winter	8	92	80.126	0.326	1.1	0.0519	0.0000	SURCHARGED
120 minute winter	9	92	80.126	1.207	3.4	0.1919	0.0000	SURCHARGED
120 minute winter	10	92	80.120	1.360	4.1	4.7401	0.0000	SURCHARGED
15 minute summer	99	1	78.592	0.000	1.4	0.0000	0.0000	OK

Link Event (Upstream Depth)	US Node	Link	DS Node	Outflow (I/s)	Velocity (m/s)	Flow/Cap	Link Vol (m³)	Discharge Vol (m³)
120 minute winter	1	2.000	4	1.1	0.697	0.136	0.1674	- (,
120 minute winter	2	1.000	3	1.1	0.684	0.138	0.1652	
120 minute winter	3	1.001	4	1.0	0.417	0.121	0.0252	
120 minute winter	4	1.002	7	2.6	0.750	0.329	0.1237	
120 minute winter	5	3.000	6	0.6	0.489	0.076	0.0543	
120 minute winter	6	3.001	7	1.0	0.682	0.129	0.1197	
120 minute winter	7	1.003	9	2.6	0.726	0.335	0.0953	
120 minute winter	8	4.000	9	1.1	0.686	0.138	0.0436	
120 minute winter	9	1.004	10	2.8	0.496	0.355	0.0740	
120 minute winter	10	Hydro-Brake®	99	1.7				19.5

Carrisie, CAS 0	
Node Name	10 99
.3 drawing	
lor Scale 200	
er Scale 25	
Datum (m) 77.000	1005
ink Name	1.005
Section Type	100mm
Slope (1:X)	59.4
Cover Level (m)	383
	80.550
nvert Level (m)	78.760
	$\left egin{array}{cccccccccccccccccccccccccccccccccccc$
ength (m)	9.982
	Flow+ v10 1 Convright © 1988-2021 Causeway Technologies Ltd

Node Name		1	4
	<u> </u>		
			7
		l	
A3 drawing			
Hor Scale 200			
Ver Scale 25			
Datum (m) 78.000			
Link Name		2.000	
Section Type		100mm	
Slope (1:X)		59.5	
Cover Level (m)			
		008.08	80.550
		×	×
Invert Level (m)		0 2	
IIIVELL LEVEL (III)		· 50.	
		80.050	
Length (m)		22.492	

	CONSULTING Carlisle, CA3 0JG	07/07/2021		
Node Name		5	6	7
				1
A3 drawing				
Hor Scale 200				
Ver Scale 25				
Datum (m) 77.000				
Link Name		3.000	3.001	
Section Type		100mm	100mm	
Slope (1:X)		59.4	59.5	
Cover Level (m)		80.800	80.800	80.550
		8.08	8.	0 5.
Invert Level (m)		80.050	79.925	
		0.0	79.925	
Length (m)		7.426	15.295	
	С		988-2021 Causeway Technologies Ltd	
	FI	iow + ATO'T CODALIBLIF @ 12	200-2021 Causeway Technologies LLU	

	64/15/6/15 55		<u> </u>
Node Name		8	9
	F	1	
1			
	l l		
1			
		 	
1			
			#
1			
[
1			
1			
1			
[
A3 drawing			
Hor Scale 200			
1101 3cale 200			
Ver Scale 25			
Datum (m) 77.000			
Link Name		4.000	
Link Name		4.000	
Section Type		100mm	
Slope (1:X)		59.3	
Cover Level (m)			0
Cover Level (m)		80.550	80.550
			0
1		∞	\tilde{\tilie{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde
Invert Level (m)		79.800	
		8.6	
		5/	
Length (m)		5.576	
	Flow+ v10.1 Convigent @ 1099.20		