

28 CASTLE STREET, CARLISLE, CUMBRIA CA3 8TP

TEL 01228 527428/522196 EMAIL mail@aldaines.co.uk WEB www.aldaines.co.uk

Drainage Strategy Report

PLOTS 4 AND 5, LAND TO SOUTH OF SOUTHRIGG, NETHERTOWN ROAD, ST BEES

22-C-16767

Rev A November 2022

Contents

ntroduction	3
lanning policy	3
ite plan	4
evelopment Description	5
ermeability and soil profile	5
urrent Foul and surface water Drainage Provision	6
lood Risk Assessment	7
urface water drainage strategy	9
Surface water proposed design1	0
Maintenance1	15
Foul water drainage strategy1	17
Management 1	17
Appendices1	8
	lanning policy ite plan evelopment Description ermeability and soil profile urrent Foul and surface water Drainage Provision ood Risk Assessment urface water drainage strategy Surface water proposed design

1.0 INTRODUCTION

A L Daines & Partners LLP (ALD) have been engaged to undertake a Surface and Foul Water Drainage Strategy, in accordance with the National Planning Policy Framework (NPPF) [1] for the proposed creation of two dwellings at St Bees, Cumbria.

The location details of the proposals are detailed below:

- land south of Southrigg, Nethertown Road, St Bees, Cumbria. CA27 0AY
- National Grid Reference: Eastings 329723 Northings 510912

The purpose of this report is to provide a strategy to manage surface and foul water flows from the site, in support of the planning application, while fulfilling the requirements of the Local Planning Authority (LPA) and the Lead Local Flood Authority (LLFA).

2.0 PLANNING POLICY

NPPF footnote 50 states that "a site-specific flood risk assessment should be provided for all development in Flood Zones 2 and 3. In Flood Zone 1, an assessment should accompany all proposals involving: sites of 1 hectare or more; land which has been identified by the Environment Agency as having critical drainage problems; land identified in a strategic flood risk assessment as being at increased flood risk in future; or land that may be subject to other sources of flooding, where its development would introduce a more vulnerable use."

Paragraph 165 reads "Major developments should incorporate sustainable drainage systems unless there is clear evidence that this would be inappropriate. The systems used should:

a) take account of advice from the lead local flood authority.

b) have appropriate proposed minimum operational standards.

c) have maintenance arrangements in place to ensure an acceptable standard of operation for the lifetime of the development; and

d) where possible, provide multifunctional benefits."

A major development, as per The Town and Country Planning Order 2015, is partly, buy not wholly, categorised as development involving the provision of dwellinghouses where the number of dwellinghouses to be provided is 10 or more and a development carried out on a site having an area of 1 hectare or more.

The Cumbria Minerals and Local Waste Plan – Strategic Flood Risk Assessment (June 2018) references the same criteria for local planning policy.

The site is therefore to be classed as a minor development under the above criteria due to the proposals having fewer than 10 dwellinghouses.

3.0 PLANNING POLICY IN SITE CONTEXT

The site covers 0.34Ha of greenfield land and according to the most recent Environment Agency (EA) flood risk maps, lies entirely within Flood Zone 1.

The NPPF site categorisation Table 1.1 puts a residential development of this nature within the 'More vulnerable' category. Developments in the 'More vulnerable' category are acceptable within Flood Zone 1 and therefore the site-specific Flood Risk Assessment (FRA) need only be brief.

The FRA statement is included within this report.

4.0 SITE PLAN

The proposed development is located on an existing area of greenfield land to the south of South Rigg, Nethertown Road, St Bees as shown on red line bordered plan in *Figure 1*. It should be noted that a previously approved development (4/21/2369/0R1) is located to the northwest of the development site and consists of 3 detached dwellings. The previously approved development is illustrated within *Figure 1* in white,

Figure 1: Aerial photo of site - Google Maps

5.0 DEVELOPMENT DESCRIPTION

The proposed development will utilise a previously approved shared access created off the adopted highway network (Nethertown Road), leading to two serviced self-build plots of 210m². If the plot sizes are amended from those stated above it should be noted that the surface water calculations are to be amended accordingly.

The existing ground is generally open grassed landscape, currently used for grazing land. The development splits a green field and covers approximately 0.34Ha, with each dwelling having its own double garage and driveway off a shared tarmac access road.

The topography of the site is generally sloping from a highpoint in the northeast corner (approx. 37.1m AOD) to the low point adjacent to Nethertown Road in the southwest corner (approx. 36.1m AOD).

6.0 PERMEABILITY AND SOIL PROFILE

British Geological Survey (BGS) and Land Information Systems (LandIS) mapping services have been used determine the following land make-up:

- Bedrock: St Bees Sandstone
- Superficial drift: Glaciofluvial deposits, Devensian Sand and gravel
- Soil: Soilscape 6 Freely draining slightly acidic loamy soils.

This soilscape is similar to that observed during trial hole excavations which show a 300-600mm topsoil generally underlain by gravely, cobbled sand becoming larger boulders.

The trial hole excavation locations can be seen on drawing 22-C-16767-01 submitted as part of the planning application.

Two trial pits were dug to a depth of 2m below ground level to determine the infiltration rate of the ground at the location of the proposed dwellings. These tests were carried out in accordance with the guidance in document BRE 365 Soakaway Design.

1No. trial pit was excavated towards the front of each proposed plot on 14 September 2022. Both trial holes were filled to a depth of 1000mm above the base of the pit and monitored to record infiltration rates. The infiltration rate is calculated as per the BRE 365 requirements.

The percolation tests results were as follows:

•	Plot 4	-	0.06050m/hr
•	Plot 5 and Access	-	0.02941m/hr

The infiltration testing results are shown in Appendix A along with calculated infiltration rates for each pit.

7.0 CURRENT FOUL AND SURFACE WATER DRAINAGE PROVISION

Existing watercourses

There are no open watercourse features within the site, with the nearest one being Pow Beck running north to south approximately 220m beyond the western site boundary. To access this beck from the site would require routes across greenfield, highways, residential plots and the Cumbrian Coast Line railway and is not seen as a feasible route.

Existing sewers

There are no existing United Utilities (UU) owned sewer systems present on the site.

There are no UU sewer assets shown close to the site; however, approximately 54m to the north along Nethertown Road there is a previously approved extension to the combined sewer network. The invert level of the extension is 36.100m AOD.

The UU search records are shown in Appendix B.

8.0 FLOOD RISK ASSESSMENT

As described earlier in the report, the current Environment Agency Flood Map for Planning shows the site to be located wholly within Flood Zone 1.

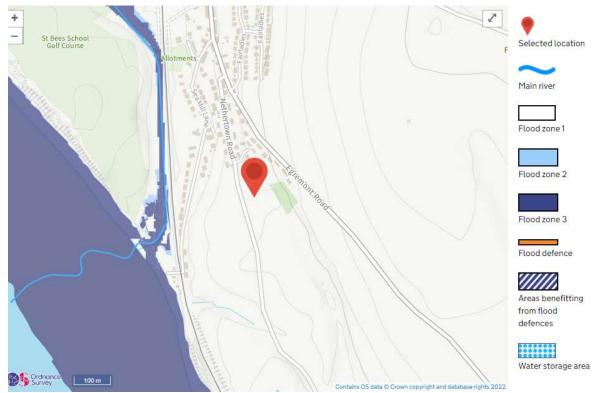


Figure 2: Flood map for planning

A full FRA is therefore not required, although the Environment Agency long term flood risk maps are included below to further inform this report.

The following flood mechanisms have been identified as potential flood hazards: -

1. Flooding from Land.

Flooding from Land

Flooding from Land (pluvial flooding) often occurs because of intense rainfall, which can be of short duration, and which is unable to soak into the ground or enter drainage systems. This can result in quick overland flows cumulating at the lowest parts of a site.

The long-term flood risk from surface water is predominantly low risk (0.1% chance of flooding per year) for Plots 4 and 5. However, it is noted that to the rear of Plot 5 is an area of high risk of surface water flooding (3.3% chance of flooding per year). Also, at the frontage of Plot 5 is an area of low risk of flooding (0.1 - 1% chance of flooding per year). The areas of high-risk flooding are located within a depression in the topography of the ground at 35.825m AOD. The Environment Agency Flood Risk mapping details that the flooding in this location is less than 300mm in depth, and as such the finished flood level associated within Plot 5 is to be a minimum of 300mm above this lowest ground level (minimum of 36.125m AOD) to mitigate against the potential for surface water flooding.

In this instance the proposed design level is actually 36.400m which is 575mm above the lowest point of the field.

The design of the drainage and road systems shall ensure that no additional peak flows leave the site and therefore no increase in flood risk outside of the development boundary will occur.

Figure 3: EA long term flooding from surface water

9.0 SURFACE WATER DRAINAGE STRATEGY

The aim of the strategy is to provide a design which will avoid, reduce and delay the discharge of surface water flows into public sewers and watercourses. This will aid in the protection of watercourses but will also ensure that no knock-on effects are seen beyond the site and that the risk of localised flooding and pollution within the site are reduced as far as possible.

To satisfy these criteria, surface water flows shall be subject to assessment via the hierarchy of drainage in accordance with the LASOO Non-Statutory Technical Standards for Sustainable Drainage: Practice Guidance. The hierarchy is as follows:

Hierarchy options:

- 1. Drain into the ground (infiltration).
- 2. To a surface water body.
- 3. To a surface water sewer, highway drain or another drainage system.
- 4. To a combined sewer.

The drainage strategy for the site is to be developed using the first level on the above hierarchy for the following reasons:

Drain into the ground (infiltration) – proved possible.

The site has been shown through trial hole excavation and percolation tests to be suitable for infiltration.

It is therefore proposed to discharge surface water through a combination of permeable paving and below ground infiltration soakaways. This will ensure that drainage will be achieved as close to source as possible, therefore limiting any change to on-site flow paths and that there is no increased risk of flooding beyond the site boundaries.

10.0 SURFACE WATER PROPOSED DESIGN

In accordance with the earlier mentioned hierarchy of drainage the system has been designed to utilise infiltration-based SuDS components to offer the best solution for surface water drainage.

As per the LASOO guidance the design is required to prevent flooding to any part of the site for storms up to and including the 1:30yr rainfall event, while any exceedance for the 6 hour 1:100yr event should be controlled within the site and should not flood any properties or service areas.

In this case, the infiltration rates of the ground will allow for storage systems to be sized to store the full 1:100yr events without any overland flow or above ground storage.

The slope of the site, from north to south, dictates that the storage structures will be best placed to either the front or rear of the plots of the plots to aid gravity drainage and to keep the storage away from the buildings.

As the previously mentioned surface water flooding occurs to the rear of plot 5, all infiltration systems shall be placed towards the front of both plots to ensure their effectiveness at all times.

Consideration of SuDS components

A range of SuDS components are available and have been considered for use. Their applicability to the site has been addressed below:

- Rainwater harvesting suitable for use on the site, however there is no guarantee the systems will be able to capture flows if already at capacity from previous events. Discounted for site flow calculations.
- Green roofs suitable for use on the site, however due to the nature of the properties and low volume control potential these have been discounted for inclusion within the site flow calculations. Plot owners may still choose to use these and should be encouraged to do so where they would be appropriate.

- Soakaways underlying ground conditions make this a suitable method for providing site drainage close to source and will be used to store and dissipate rainwater from the hardstanding areas. **Viable**
- Water butts suitable for use but their effectiveness is dependent on homeowner maintenance which cannot be enforced. Discounted for site flow calculations.
- Permeable paving underlying ground conditions make this a suitable and cost-effective method of drainage for a large portion of the driveway areas. **Viable**
- Swales Not considered due to their large land uptake and porosity of the ground.
- Filter drains Not required.
- Detention basins Not required due to available ground infiltration rates
- Ponds/wetlands –. Not required due to available ground infiltration rates. Plot owners may introduce these if desired but shall not be used for site flow calculations.
- Underground closed storage crate/tank systems Not required.

<u>Climate change</u>

Environment Agency guidance issued in 2022 estimates that peak rainfall intensity will increase due to climate change over the next 100 years. There is therefore an allowance of 50% attributed to the 30yr and 100yr storm event calculations in line with the Upper End estimate of rainfall increases for small and urban catchments.

Percentage impermeability (PIMP)

All impermeable areas are modelled as 100% PIMP. This will allow for sufficient capacity for all hardstanding areas to be positively drained.

Volumetric Runoff Coefficient (Cv)

Industry standard Cv values vary for summer and winter and account for water volumes which do not enter the drainage system i.e., that is lost through infiltration, depression storage, evaporation, initial wetting etc. Standard values are 0.75 for summer and 0.84 for winter.

In this instance, only areas of impermeable hardstanding are modelled and therefore the standard values have been uplifted to 0.85 and 0.95 respectively for both summer and winter storms. This results in conservative design with no infiltration allowance.

Surface water quality

In the absence of statutory requirements and prescriptive standards, The SuDS Manual provides best industry practice for assessing the pollutant potential of developments and providing mitigation methods to increase run off water quality through the use of SuDS components.

The simple index approach has been utilised here to assess the pollutant hazard indices and proposed treatment components. Note, this has been carried out in conjunction with the above SuDS component suitability assessment for the site.

Table 26.2 from The SuDS Manual below outlines the pollution hazard indices for different land uses.

Land use	Pollution hazard level	Total suspended solids (TSS)	Metals	Hydro- carbons
Residential roofs	Very low	0.2	0.2	0.05
Other roofs (typically commercial/ industrial roofs)	Low	0.3	0.2 (up to 0.8 where there is potential for metals to leach from the roof)	0.05
Individual property driveways, residential car parks, low traffic roads (eg cul de sacs, homezones and general access roads) and non- residential car parking with infrequent change (eg schools, offices) ie < 300 traffic movements/day	Low	0.5	0.4	0.4
Commercial yard and delivery areas, non-residential car parking with frequent change (eg hospitals, retail), all roads except low traffic roads and trunk roads/motorways ¹	Medium	0.7	0.6	0.7
Sites with heavy pollution (eg haulage yards, lorry parks, highly frequented lorry approaches to industrial estates, waste sites), sites where chemicals and fuels (other than domestic fuel oil) are to be delivered, handled, stored, used or manufactured; industrial sites; trunk roads and motorways ¹	High	0.82	0.8²	0.9 ²

Figure 4: SuDS Manual Table 26.2 Pollution hazard indices

This development is to be classed as a mix of 'Very low' and 'low' risk land uses due to the presence of residential roofs and individual property driveways.

This level of risk suggests the following level of pollution control:

Land use	Suspended solids	Metal	Hydrocarbons
Residential roofs	0.2	0.2	0.05
Driveways	0.5	0.4	0.4

Table 26.4 from the SUDS Manual, shown below, details pollution mitigation indices for various SUDS components when discharging to groundwater.

Characteristics of the material overlying the proposed infiltration surface, through which the runoff percolates ¹	TSS	Metals	Hydrocarbons
A layer of dense vegetation undertain by a soli with good contaminant attenuation potential ² of at least 300 mm in depth ³	0.64	0.5	0.6
A soil with good contaminant attenuation potential ² of at least 300 mm in depth ³	0.44	0.3	0.3
Infiltration trench (where a suitable depth of filtration material is included that provides treatment, ie graded gravel with sufficient smaller particles but not single size coarse aggregate such as 20 mm gravel) underlain by a soll with good contaminant attenuation potential ² of at least 300 mm in depth ²	0.4*	0.4	0.4
Constructed permeable pavement (where a suitable filtration layer is included that provides treatment, and including a geotextile at the base separating the foundation from the subgrade) underlain by a soil with good contaminant attenuation potential ² of at least 300 mm in depth ²	0.7	0.6	0.7
Bioretention underlain by a soil with good contaminant attenuation potentia? of at least 300 mm in depth ³	0.8*	0.8	0.8
Proprietary treatment systems ^{s, a}	each of the levels for int	contaminant ty	hat they can address pes to acceptable tions relevant to the

Figure 5: SuDS Manual Table 26.4 SuDS mitigation indicies

Given the small size of the development and the low-risk land use, a balanced view of risk versus reward should be pursued to ensure that while pollution risks are minimized, there are not onerous requirements imposed.

The highest risk elements (albeit still categorised as 'low') originate from the parking and driveways of each plot. It is proposed to provide permeable block paving throughout each plot access and parking, with only the access off the highway and turning head being provided in impermeable tarmac.

The permeable paving mitigation is shown below to exceed the potential risk factors and is therefore deemed satisfactory.

	Suspended solids	Metal	Hydrocarbons
Pollution Hazard	0.5	0.4	0.4
Pollution mitigation	0.7	0.6	0.7
Suitability	Acceptable	Acceptable	Acceptable

The remainder of the hardstanding areas are allocated for residential roofs which are in the 'very low' risk category. These will be treated using 'a soil with good contaminant attenuation potential of at least 300mm depth'. The hazard versus mitigation table below shows this to be adequate.

	Suspended solids	Metal	Hydrocarbons
Pollution Hazard	0.2	0.2	0.05
Pollution mitigation	0.4	0.3	0.3
Suitability	Acceptable	Acceptable	Acceptable

Based on the above assessments, it is proposed that a split drainage system will be utilised for the differing surface uses.

Parking/driveways

All driveways and parking areas, except for the turning head off the highway, shall be designed and constructed as permeable paving effectively maintaining drainage to those areas at source.

As the infiltration rates are acceptable, the system is designed to provide full infiltration as per a Type A system as described in The SuDS Manual section 20.1.9.

Dwellings & turning head off highway

The dwellings and access turning head shall be positively drained to geocellular crate infiltration systems positioned within each plot and beneath the access turning head. These will store storm flows and prevent any discharge from the site up to and including the 1:100yr +50% storm event.

The plot infiltration rate has been stated within section 6.0 of this report, with each Plot system based on its relative infiltration rate, as shown in Appendix A.

As per The SuDS Manual, a safety factor of 2.0 has been applied to these infiltration rate to allow for potential reduction in performance over time either through silting up or lack of capacity due to saturation.

Microdrainage calculations in Appendix C are provided to prove the storage systems are sufficient up to a 1:100yr + 50% storm of 6-hour duration.

Using a proprietary system, the crates would be 0.4m deep with a minimum of 0.6m ground cover. This will maintain at least the stipulated minimum 1m cover to the groundwater table. Note: groundwater level was not encountered in any of the 2No. trial holes which were excavated to a depth of 2m.

Details of above SuDS systems and drainage plan proposals are shown in Appendix D drawings 22-C-16767/01.

11.0 MAINTENANCE

All components shall be maintained in accordance with the relative requirements shown in the SuDS Manual. These intervals should be deemed as a minimum frequency and reference should also be made to the manufacturers guidance to ensure all components are maintained correctly.

Table 13.1 from the SuDS Manual for soakaways has been included below for reference.

Maintenance schedule	Required action	Typical frequency
	Inspect for sediment and debris in pre-treatment components and floor of inspection tube or chamber and inside of concrete manhole rings	Annually
Regular maintenance	Cleaning of gutters and any filters on downpipes	Annually (or as required based on inspections)
	Trimming any roots that may be causing blockages	Annually (or as required
Occasional maintenance	Remove sediment and debris from pre-treatment components and floor of inspection tube or chamber and inside of concrete manhole rings	As required, based on Inspections
	Reconstruct soakaway and/or replace or clean void fill, if performance deteriorates or failure occurs	As required
Remedial actions	Replacement of clogged geotextile (will require reconstruction of soakaway)	As required
Monitoring	Inspect silt traps and note rate of sediment accumulation	Monthly in the first year and then annually
1925	Check soakaway to ensure emptying is occurring	Annually

Figure 6: SuDS Manual table 13.1 Soakaway maintenance

Table 20.15 from the SuDS Manual for permeable paving has been included below for reference.

	Maintenance schedule	Required action	Typical frequency
	Regular maintenance	Brushing and vacuuming (standard cosmetic sweep over whole surface)	Once a year, after autumn leaf fall, or reduced frequency as required, based on site-specific observations of clogging or manufacturer's recommendations – pay particular attention to areas where water runs onto pervious surface from adjacent impermeable areas as this area is most likely to collect the most sediment
20		Stabilise and mow contributing and adjacent areas	As required
	Occasional maintenance	Removal of weeds or management using glyphospate applied directly into the weeds by an applicator rather than spraying	As required – once per year on less frequently used pavements
22		Remediate any landscaping which, through vegetation maintenance or soil slip, has been raised to within 50 mm of the level of the paving	As required
	Remedial Actions	Remedial work to any depressions, rutting and cracked or broken blocks considered detrimental to the structural performance or a hazard to users, and replace lost jointing material	As required
		Rehabilitation of surface and upper substructure by remedial sweeping	Every 10 to 15 years or as required (if infiltration performance is reduced due to significant clogging)
		Initial inspection	Monthly for three months after installation
	Monitoring	Inspect for evidence of poor operation and/or weed growth – if required, take remedial action	Three-monthly, 48 h after large storms in first six months
		Inspect silt accumulation rates and establish appropriate brushing frequencies	Annually
		Monitor inspection chambers	Annually

Figure 7: SuDS Manual table 20.15 Permeable paving maintenance

12.0 FOUL WATER DRAINAGE STRATEGY

All foul water from the proposed Plots 4 and 5 is to be pumped into the extended adopted sewer network which is to be installed as part of a previous application.

A plan of the proposed foul sewer is shown in Appendix D drawing 22-C-16767-01.

13.0 MANAGEMENT

All separate surface and foul water drainage systems within the site are proposed to remain private and be maintained by a newly formed management company contributed to by all three plot owners.

P T Allan BSc (Hons) MSc MCIWEM C.WEM C.Env For and on behalf of <u>A L DAINES & PARTNERS LLP</u>

14.0 APPENDICES

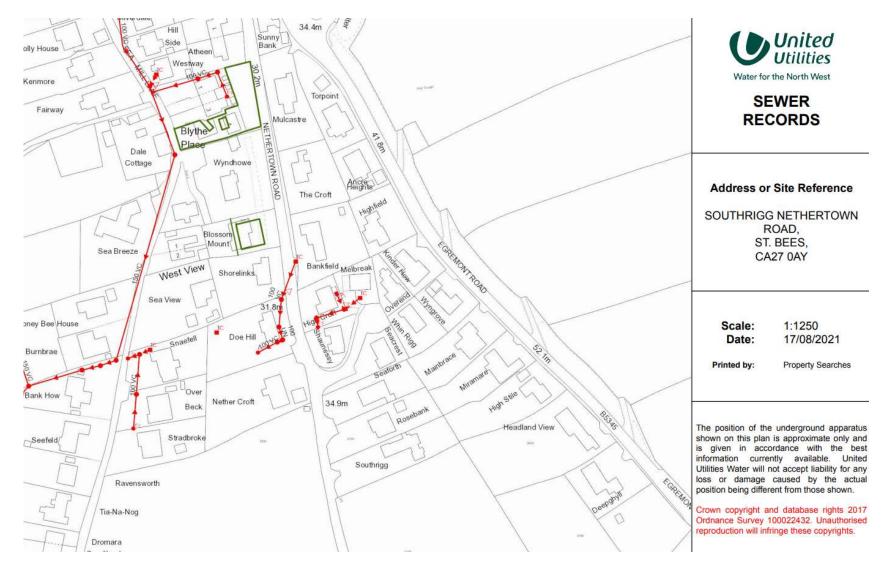
Appendix A – Infiltration Testing Results

Appendix B – United Utilities Sewer Records

Appendix C – Microdrainage calculations

Appendix D – 22-C-16767/01 Proposed drainage plan – see separate document.

APPENDIX A – INFILTRATION TESTING RESULTS


All trial holes on site were 1000mm x 300mm x 2000mm.

Test Number	Date of Test	Time (in mins) from 750mm to 250mm
Plot 4	14/09/22	150 mins
Plot 5 and access	14/09/22	255 mins
road		

The infiltration rates for each plot have been calculated below:

Plot 4	-	0.06050m/hr
Plot 5 and Access	-	0.02941m/hr

APPENDIX B – UNITED UTILITIES SEWER RECORDS

Nov 22 Rev A

APPENDIX C – MICRODRAINAGE CALCULATIONS

Plot 4 Soakaway

A L Daines & P	artners	202				Page	1
28 Castle Stre	et	Ne	thertown I	Rd, St Bee	8	-	
Carlisle		Pl	ot 3 soaka	away		1	10 10
CA3 STP				679516567		Mic	-
Date 03/11/202	2 15:13	De	signed by	SM			
File Plot 4.MD	x	Ch	ecked by			Uld	nago
Micro Drainage	d 17	0.630	twork 2020	0.1.3		-	
1 year Return An Manhole Hea Foul Sewa Nu	Period Sum sal Reduction Hot Start Hot Start Lev dioss Coeff ge per hectar unber of Inpu Number of Off Rainfall) R	<u>simul</u> <u>f</u> <u>simul</u> Factor 1.0((nins) wel (mm) (Global) 0.5(xe (1/s) 0.0) t Hydrograph line Control <u>Synthetic</u> <u>Model</u> agion Englan (mm) wod Risk Warr Analysia	ritical Re or Storm ation Criter 00 Additic 0 MAD 00 Flow per 00 s 0 Number of s 0 Number of s 0 Number of s 0 Number of s 0 Number of Rainfall Do FSR d and Wales 16.000 ning (mm) 30 Timestep F S Status	ia mal Flow - D Factor • Person per of Storage S of Time/Area of Real Time etails Ratio F Cv (Summer) Cv (Winter) 0.0 DVD	t of Total 10m ³ /ha St at Coeffie Day (1/per atructures controls controls 0.274 0.850 0.950 Status OF Status OF	I Flow 0.0 orage 2.0 cient 0.8 c/day) 0.0 1 0 0	00 00 00
	Return Perio	lon(s) (mins)	15, 30, 60), 120, <mark>180</mark> , 1			
S1.000 S1 15	Storm Peri Winter		Surcharge	Flood	First (Z) Overflow	Overflow Act.	Wates Leve (m) 37.65 36.86
	221012-0012-00	-1		- 16 - 1	1000		
DS/MR	Surcharged Depth	Floodad Volume Flow		Balf Drain Time	Flow	Lave	1
PN Name		(m ³) Cap					
			11 U.S. 20176	1.1111.1111			
	-0.098	0.000 0.		125	2.3		
	0.004			140	ALC: NO.		
S1.001 S2				128		OK	
		@1982-	2020 Innov	ryze			

28 Castle Carlisle CA3 8IP Date 03/1		rtners		292				<u></u>	Page 2
CA3 STP	Stree	t		Net	thertown	Rd, St Be	es	0	6
				Plo	ot 3 soak	away			and the second second
Date 03/1									Micro
	1/2022	15:13		Des	signed by	SM			
File Plot	4.MDX			Che	cked by				Drainago
Micro Dra	inage			Net	WORK 202	0.1.3			10
Manho	Are H	al Reduct Hot St ot Start	ion Facto art (min Level (m f (Globa)	<u>fo</u> Simula or 1.00 () () () () 0.50	or Storm tion Crite 0 Additi 0 MA 0 0 Flow per	ria onal Flow DD Factor I	- % of • 10m³, niat Co	Total Fic /ha Storat peffiecier	ge 2.000 st. 0.800
	2	Number of	Online C	ontrols	0 Number 0 Number 0 Number	of Time/Ar	ea Dia	grams 0	
			1 Model	England	Rainfall D FSR and Wales 16.000	Ratio		150	
	Ma	rgin for		lysis 1	Lng (mm) 30 Timestep 1 S Status				
		Return Pe	ation(s)	(years)	15, 30, 6			360 100	
PN Nau		tom Pe	riod Ch	ange	First (X) Surcharge 10/15 Summe	Flood			37.71
\$1.001	S2 360	Winter	30	+50%					37,12
			Volume	Flow /	Overflow (1/s)		Flow		Level Exceeded
	Name	1 miles							
PN 1	81	-0.035					8.3	FLOOD RIS	

28 Castle : Carlisle CA3 8TP	Etract				+ -	ige 3
No. Contraction	Scieer		Nethertown	Rd, St Bees		
TAT OTT			Plot 3 soak	away		Sec. 11
THO DIF					h.	licro
Date 03/11	/2022 15:13		Designed by	SM		
File Plot	4.MDX		Checked by			rainago
Micro Drain	nage		Network 202	0.1.3		
<u>100 year</u>	Areal Reduct	ion Facto	y of Critical 1) for Storm Simulation Criter r 1.000 Addition 0 Mai	ia mal Flow - % of	Total Flow	0.000
	Headloss Coef Sewage per hec Number of In Number of	f (Global) tare (1/s) uput Hydro Online Co	graphs 0 Number ntrols 0 Number	Person per Day of Storage Struc of Time/Area Dia	(l/per/day) tures 1 grams 0	
	Number of (ntrols 0 Number		trois 0	
		11 Model	thetic Rainfall D FSR Ingland and Wales 16.000	Ratio R 0.2	150	
	Margin for		k Warning (mm) 30			
		Ana	lysia Timestep H DTS Status	ON CON	tus OFF	
	Return Pe	Prof.	DIS Status ile(s) (mins) 15, 30, 60 years)	ON Summer and W	inter , 360 , 100	
US/MP PN Name S1.000 S1 S1.001 S2	Return Pe Cii E Re Storm Pe	Prof. ation(s) riod(s) () mate Chan aturn Clim ariod Chan	DIS Status ile(s) (mins) 15, 30, 60 years)	ON Summer and W 0, 120, 180, 240 1, 30 0, 5 First (Y) Firm Flood Ove	inter , 360 , 100 0, 50 st (Z) Overfi	low Leve (m) 37.76
PN Name	Return Pe Cii Storm Pe 1 15 Winter 2 360 Winter	Frof. ation(s) riod(s) () mate Chan sturn Clim ariod Chan 100 + 100 +	DIS Status 11e (s) (mins) 15, 30, 60 years) ge (%) sate First (X) nge Surcharge 50% 100/15 Summe 50%	ON Summer and W 0, 120, 180, 240 1, 30 0, 5 First (Y) First Flood Ove	inter , 360 , 100 0, 50 st (Z) Overfi	low Leve (n) 37.76
PN Name S1.000 S1 S1.001 S7 US/	Return Pe Cii Storm Pe 1 15 Winter 2 360 Winter Surcharged /ME Depth	Frof ation(s) riod(s) (mate Chan ation Cliss ariod Chan 100 + 100 + Flooded Volume F	DIS Status lle(s) (mins) 15, 30, 60 years) ge (%) mate First (X) nge Surcharge 50% 100/15 Summe 50%	ON Summer and W 0, 120, 180, 240 1, 30 0, 5 First (Y) Firs Flood Ove r salf Drain Pipe Time Flow	inter , 360 , 100 0, 50 st (Z) Overfi rflow Act.	(m) 37.76 37.62
PN Name S1.000 S1 S1.001 S2 US/ PN Nac	Return Pe Cii Storm Pe 1 15 Winter 2 360 Winter Burcharged	Frof. ation(s) () mate Chan aturn Clim ariod Chan 100 + 100 + Flooded Volume S (m ³)	DIS Status 11e (s) (mins) 15, 30, 60 years) ge (%) mate First (X) nge Surcharge 50% 100/15 Summe 50% 100/15 Summe 50% 20w / Overflow Cap. (1/s)	ON Summer and W 0, 120, 180, 240 1, 30 0, 5 First (Y) First Flood Ove r alf Drain Pipe Time Flow (mins) (1/s)	inter , 360 , 100 0, 50 st (Z) Overfi rflow Act.	low Leve (n) 37.76 37.62 Level

Plot 5 Soakaway

L Daines & Partne	ers	20		Page 1
8 Castle Street		Nethertown R	d, St Bees	
Carlisle		Plot 3 soaka	way	A second second
A3 BTP				Micro
ate 03/11/2022 15:	15	Designed by	SM	
'ile Plot 5.MDX		Checked by		Drainage
Micro Drainage		Network 2020	.1.3	
Ho Hot St Manhole Headloss Foul Sewage per Number Number Number	duction Factor st Start (mins) art Level (mm) Coeff (Global) : hectare (1/s) of Input Hydrog r of Online Cor of Offline Cor <u>Synt</u>) infall Model	for Storm imulation Criteri 1.000 Addition 0 MADE 0.000 Flow par F 0.000 praphs 0 Number o strols 0 Number o	la hal Flow - % of To) Factor • 10m*/hu Inlet Coel Person per Day (1/ f Storage Structu f Time/Area Diagr f Real Time Contr tails	stal Flow 0.000 a Storage 2.000 ffiecient 0.800 /per/day) 0.000 res 1 ans 0 ols 0
	Anal Profi	Warning (mm) 300 ysia Timestep Fi DTS Status le(s) mins) 15, 30, 60, ears)	Cv (Winter) 0.950 0.0 DVD Status ne Inertia Status ON Summer and Wint 120, 180, 240, 1 1, 30, 1 0, 50,	s OFF s off
	Period Chan	ge Surcharge	Flood Overf	Watar (Z) Ovarflow Leve low Act. (B) 37.65 36.88
	harged Flooded		Balf Drain Pipe	
US/ME De PN Name (Flow / Overflow Cap. (1/s)	Time Flow (mins) (1/s)	Level Status Exceeded
	Shar Alla			
S1.000 S1				OK
81.001 82	-0.864 0.000	0.00	234 0.0	UK
	-0.098 0.000 -0.864 0.000		2.3 234 0.0	

Hot Manhole Headlos Foul Sewage p Number Numb Numb Numb Numb Numb Numb Sumb Sum Si Si S	eriod Sum Reduction Hot Start Start Leve as Coaff (G per hectare or of Input ther of Offi-	P1 De Ch Ne <u>Simula</u> Factor 1.00 (nins) Cobal 0.50 a (1/s) 0.00 Hydrographi ine Controli	or Storm ation Criter: 00 Addition 0 MADI 00 Flow per 1	sM SM 0.1.3 sults by nal Flow - D Factor * Ini	Maximum I % of Total 10m*/ha St. at Coeffie.	Flow 0.000 orage 2.000 cient 0.800	ag ĸ 1
CA3 SIP Date 03/11/2022 1 File Plot 5.MDX Micro Drainage 30 year Return Pe Areal Hot Manhole Headlos Foul Sewage p Number Numb Numb Numb Sinon Si 15 Wir Sinon Si 15 Wir Sinon Si 15 Wir	eriod Sum Reduction Hot Start Start Leve as Coaff (G per hectare or of Input ther of Offi-	Simula Factor 1.00 (nins) 1:00bal) 0.50 (1/s) 0.00 Hydrographi ine Controli	signed by ecked by twork 2020 ritical Re or Storm ation Criter 0 Addition 0 MAD 0 Flow per 1 00	SM 0.1.3 sults by nal Flow - D Factor *	% of Total 10m³/ha Str at Coeffie	Draina Level (Rani Flow 0.000 orage 2.000 clent 0.800	ag ĸ 1
Date 03/11/2022 1 File Plot 5.MDX Micro Drainage 30 year Return Pe Areal Hot Manhole Headlos Foul Sewage p Number Numb Numb Numb Numb Si Sewage p Number Numb Si Sewage p Number Numb Si Sewage p Number Numb Si Sewage p Number Numb Si Sewage p Number Numb Si Sewage p Number Si Sewage p Number Number Si Sewage p Number Number Si Sewage p Number Si Sewage p Number Number Si Sewage p Number Si Sewage p Si Sewage p Number Si Sewage p Si Sewage p Si Sewage p Number Si Sewage p Si Sewage p Sewage p Si Sewage p	eriod Sum Reduction Hot Start Start Leve as Coaff (G per hectare or of Input ther of Offi-	Ch Ne mary of C. <u>fi</u> Simula Factor 1.00 (nins) 1.00bal) 0.50 (1/s) 0.00 Hydrographi ine Controli	ecked by twork 2020 ritical Re or Storm ation Criteri 0 Addition 0 MAD 0 Flow per 1 00).1.3 sults by nal Flow - D Factor * Inj	% of Total 10m³/ha Str at Coeffie	Draina Level (Rani Flow 0.000 orage 2.000 clent 0.800	ag ĸ 1
File Plot 5.MDX Micro Drainage 30 year Return Pe Areal Hot Manhole Headlos Foul Sewage p Number Number Number Number Number Number Number Number Number Number Number Number Store Sl.000 Sl 15 Wir Sl.001 S2 360 Wir	eriod Sum Reduction Hot Start Start Leve as Coaff (G per hectare or of Input ther of Offi-	Ch Ne mary of C. <u>fi</u> Simula Factor 1.00 (nins) 1.00bal) 0.50 (1/s) 0.00 Hydrographi ine Controli	ecked by twork 2020 ritical Re or Storm ation Criteri 0 Addition 0 MAD 0 Flow per 1 00).1.3 sults by nal Flow - D Factor * Inj	% of Total 10m³/ha Str at Coeffie	Draina Level (Rani Flow 0.000 orage 2.000 clent 0.800	ag ĸ 1
Micro Drainage 30 year Return Pe Areal Hot Manhole Headlos Foul Sewage p Number Numb Numb Numb Numb Numb Si Si Sewage p Number Numb Numb Si Sewage p Number Numb Sewage p Number Numb Sewage p Number Numb Sewage p Number Numb Sewage p Number Numb Sewage p Number Sewage p Number Number Sewage p Number Sewage p Sewage p Number Sewage p Sewage p Number Sewage p Sewage p Number Sewage p Sewage p Sewa	Reduction Hot Start Start Leve as Coaff (G per hectare or of Input ther of Onli- mer of Offi-	Ne mary of C <u>fi</u> Simula Factor 1.00 (nins) Dicobal 0.50 (1/s) 0.00 Hydrographi ine Controli	twork 2020 ritical Re or Storm ation Criteri 0 Addition 0 MADI 0 Flow per 1	sults by ia nal Flow - D Factor • Inj	% of Total 10m³/ha Str at Coeffie	Level (Ran) Flow 0.000 orage 2.000 cient 0.800	<u>k</u> 1
30 year Return Pe Areal Hot Manhole Headlos Foul Sewage p Numbs Numbs Numbs Numbs Numbs Numbs Numbs Numbs Sloud State Stor Sloud State Sloud State Slo	Reduction Hot Start Start Leve as Coaff (G per hectare or of Input ther of Onli- mer of Offi-	Mary of C. <u>fi</u> Simula Factor 1.00 (nins) 01 (nm) 1.00bal 10.50 0 (1/s) 0.00 Hydrographi ine Controli	ritical Re or Storm ation Criter 0 Addition 0 MAD 00 Flow per 1 00	sults by ia nal Flow - D Factor • Inj	% of Total 10m³/ha Str at Coeffie	Flow 0.000 orage 2.000 cient 0.800	
30 year Return Pe Areal Hot Manhole Headlos Foul Sewage p Numbs Numbs Numbs Numbs Numbs Numbs Numbs Numbs Sloud State Stor Sloud State Sloud State Slo	Reduction Hot Start Start Leve as Coaff (G per hectare or of Input ther of Onli- mer of Offi-	<u>Simula</u> Factor 1.00 (nins) 1 (mm) 10bal) 0.50 a (1/s) 0.00 Hydrograph ine Control:	or Storm ation Criter 0 Addition 0 MADI 0 00 Flow per 1 00	ia nal Flow - D Factor • Inj	% of Total 10m³/ha Str at Coeffie	Flow 0.000 orage 2.000 cient 0.800	
US/MH PN Name Stor S1.000 S1 15 Wir S1.001 S2 360 Wir	Rec M5-60	odel gion Englan (mm) od Risk Warn Analysis	ning (mm) 300 Timestep Fi 78 Status	of Time/Are of Real Tim Ratio CV (Summer CV (Winter 0.0 DVI ine Inerti: ON	a Diagrams a Controls R 0.274) 0.850) 0.950) Status OF	1 0 0	
FN Name Stor S1.000 S1 15 Wir S1.001 S2 360 Wir	turn Period Climate	i(s) (years) a Change (%)		1	, 30, 100 0, 50, 50	Werflow I	late
							(m)
	ntor 3	0 +50% T	00/15 Summor			37	7.7
	nter 3	0 +50%	ooy to summer				7.1
Surch							
Build	harged Flo	and a	-	lf Brain	line		
US/ME Der				Time	low	Leve.	1
PN Nama ()						tus Exceed	ded
S1.000 S1 -	-0.075 0	000 0.00			8.3 FLOOD	DICK	
		.000 0.92		624		OK	

28 Castle Carlisle CA3 8TP Date 03/11 Tile Plot Micro Drai	Street				18	Page 3
CA3 STP Date 03/11 Tile Plot			Nethertown H	Rd, St Bees	6 D	
ate 03/11 11e Plot			Plot 3 soaka	away		Carlo III
'ile Plot						Micro
	/2022 15:15		Designed by	SM		
Micro Drai	5.MDX		Checked by			Drainago
	nage		Network 2020	0.1.3		
Manhol	Hot St Hot Start e Headloss Coef Sewage per hec Number of D	<u>Sim</u> ion Factor 1. .art (mins) Level (mm) f (Global) 0. tare (1/s) 0. nput Hydrogra) for Storm miation Criter 000 Addition 0 MAR 0 .500 Flow per	ia mal Flow - % D Factor • 1 Inlet Person per D of Storage St	of Total Flo Dm³/ha Storag t Coeffictien ay (1/per/day ructures 1	w 0.000 e 2.000 t 0.800
	Number of Rainfa M5	Offline Contr <u>Synthet</u> 11 Model Region Engl -60 (mm) Flood Risk Wa Analys:	ols 0 Number ic Rainfall D FSR and and Wales 16.000 arning (mm) 30 Is Timestep F	of Real Time atails Ratio R Cv (Summer) Cv (Winter) 0.0 DVD :	Controls 0 0.274 0.850 0.950 Status OFF	
	Return Pe	Profile ration(s) (min priod(s) (year smate Change	ns) 15, 30, 60 rs)	1,		
US/M PN Nam S1.000 S S1.001 S	EH Ra e Storm P 1 15 Winter 12 360 Winter	eriod Change	First (X) Surcharge 100/15 Summe	Flood	first (Z) Ove Overflow A	Wates rflow Leve ct. (m) 37.76 37.63
	10101203-00-2	12002020				
	Surcharged		B / Overflow	alf Drain Pi Time Fl		Level
				(mins) (1/		and a state of the
PN N						
PN N	ama (n)	C State of the second				
PN N	sna (n) 51 0.010	C State of the second		792 1	.6 FLOOD RIS	ĸ

Access area for Plots 4 and 5

US/MEI Return Climate First (X) First (Y) First (Z) Overflow Leve FN Name Storm Period Change Surcharge Flood Overflow Act. (m) S1.000 S1 15 Winter 1 +0% 37.64	L Daine		1812 SM 374		20				I	Page 1
A3 SIP ate 14/11/2022 15:38 11e TURNING HEAD PLOT 4 ADD Generating Designed by SM Checked by Network 2020.1.3 1 year Return Period Summary of Critical Results by Maximum Level (Rank Ior Storm Simulation Criteris A real Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000 Rot Start (mins) 0 MAD Factor * 10m ³ /ha Storage 2.000 Rot Start (ariss) 0.000 Manhole Headioss Coeff (Giobal) 0.500 Flow per Ferson per Day (1/per/day) 0.000 Foul Sewage per hectare (1/s) 0.000 Number of Input Hydrographs 0 Number of Storage Structures 1 Number of Offine Controls 0 Number of Storage Structures 1 Number of Offine Controls 0 Number of Real Time Controls 0 Synthetic Rainfall Details Rainfall Model FSR Ratio R 0.274 Region England and Wise Sv (Summer) 0.950 Margin for Flood Risk Warning (mm) 300.0 UVD Status DFF Analysis Timesof Fine Inertia Status OFF DIS Status ON Profile(s) Summer and Winter Duration(s) (mins) 15, 30, 60, 120, 180, 240, 360 Return Period(s) (years) 1, 30, 100 Climate Change (%) 0, 50, 50 WARNING: Half Drain Time has not been calculated as the structure is too full. Sil.000 Sil 15 Winter 1 +0% Sil.001 Sil 360 Winter 1 +0% Sil.001 Sil 15 Winter 1 +0% Sil.001 Sil 15 Winter 1 +0% Sil.001 Sil 15 Winter 1 +0% Sil.000 Sil -0.102 0.000 0.22 2.0 0K	8 Castle	Street			Nethe	ertown R	d, St Be	es	0.0	
ate 14/11/2022 15:38 le TURNING HEAD PLOT 4 AND lero Drainage Network 2020.1.3 lyear Return Period Summary of Critical Results by Maximum Level (Rank <u>for Storm</u> <u>Simulation Criteria</u> Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000 Bot Start Level (m) 0 MADD Factor * 10m ³ /hs Storage 2.000 Manhole Headloss Coeff (Sichal) 0.500 Flow per Ferson per Day (L/per/day) 0.000 Foul Sewage per hectare (L/S) 0.000 Number of Online Controls 0 Number of Storage Structures 1 Number of Online Controls 0 Number of Storage Structures 1 Number of Online Controls 0 Number of Name 7 0.800 Number of Online Controls 0 Number of Name 7 0.800 Number of Online Controls 0 Number of Storage Structures 1 Number of Online Controls 0 Number of Name 7 0.800 Number of Online Controls 0 Number of Storage Structures 1 Number of Online Controls 0 Number of Storage Structures 1 Number of Online Controls 0 Number of Storage Structures 1 Number of Online Controls 0 Number of Name 7 0.800 Number of Online Controls 0 Number of Storage Structures 1 Number of Online Controls 0 Number of Storage Structures 1 Number of Online Controls 0 Number of Storage Structures 1 Number of Online Controls 0 Number of Name 7 0.800 Nargin for Flood Risk Warning (am) 300.0 UVD Status OFF Analysis Timestop Fine Inertia Status OFF DIS Status ON Profile(s) Summer and Winter DUS Status ON Profile(s) Summer and Winter DIS Status ON Profile(s) Summer and Winter Stora Feriod Change Surcharge Flood Overflow Act. (a) S1.000 S1 15 Winter 1 +0% S1.001 S2 360 Winter 1 +0% S1.001 S2 360 Winter 1 +0% Surcharged Flooded Balf Drain Fips US/ME Depth Volume Flow / Overflow Time Flow Level FN Reme (b) (a) Cap. (L/s) (ains) (L/s) Status Receeded S1.000 S1 -0.102 0.000 0.22 2.0 0K	arlisle				Acces	ss road	soakaway	t		Carl .
ate 14/11/2022 15:38 lie TURNING HEAD PLOT 4 AND Designed by SM Checked by Network 2020.1.3 1 year Return Period Summary of Critical Results by Maximum Level (Rank <u>for Storm</u> <u>Simulation Criteria</u> Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000 Hot Start (mins) 0 MADD Factor * 0m*/ha Storage 2.000 Hanhole Headios Coaff (Global) 0.500 Flow per Person per Day (1/per/day) 0.000 Foul Sawage per hectare (1/s) 0.000 Number of Input Hydrographs 0 Number of Storage Structures 1 Number of Offine Controls 0 Number of Real Time Controls 0 Number of Offine Controls 0 Number of Real Time Controls 0 Marchale Headios Coaff (Global) 0.500 Foul Sawage per hectare (1/s) 0.000 Number of Offine Controls 0 Number of Real Time Controls 0 Number of Offine Controls 0 Number of Real Time Controls 0 Marchale Region England and Wales CV (Summer) 0.850 Margin for Flood Risk Warning (mm) 300.0 DVD Status OFF Analysis Timestep Fine Inertia Status OFF DIS Status ON Profile(s) Summer and Winter Duration(s) (mins) 15, 30, 60, 120, 180, 240, 360 Return Relid(s) (years) 1, 30, 100 Climate Change (%) 0, 50, 50 MARMING: Half Drain Time has not been calculated as the structure is too full. MARMING: Half Drain Time has not been calculated as the structure is too full. S1.000 S1 15 Winter 1 +0% 37.66 S1.001 S2 360 Winter 1 +0% 37.66 S1.001 S2 360 Winter 1 +0% 36.57 Margin Supph Volume Flow / Overflow Time Flow Level FN Neme Storm Period Change Surcharge Fload Overflow Act. (m) S1.000 S1 15 Winter 1 +0% 36.57 Margin Suph Volume Flow / Overflow Time Flow Level FN Neme Storm Period Change Surcharge Fload Overflow Act. (m) S1.000 S1 15 Winter 1 +0% 36.57 Margin Suph Volume Flow / Overflow Time Flow Level FN Neme Storm Period Change Surcharge Fload Overflow Time Flow Level FN Neme Storm Period Change Surcharge Fload Overflow Time Flow Level FN Neme Storm Period Change Surcharge Fload Overflow Time Flow Level FN Neme Storm Period Change Surcharge Fload Overflow Time Flow Level FN Neme Stor	A3 BTP									Micco
Iter lokal No. HEAD FLOT 4 AND Checked By Itero Drainage Network 2020.1.3 1 year Return Period Summary of Critical Results by Maximum Level (Rank <u>for Storm</u> <u>Simulation Criteria</u> Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000 Rot Start (ina) 0 MADD Factor + % of Total Flow 0.000 Hot Start Level (mm) 0 Inlet Coefficient 0.800 Manhole Headioss Coeff (Clobal) 0.500 Flow par Person per Day (1/per/day) 0.000 Foul Sawape per hectare (1/s) 0.000 Number of Input Hydrographs 0 Number of Storage Structures 1 Number of Offline Controls 0 Number of Time/Area Diagrams 0 Number of Offline Controls 0 Number of Rail Time Controls 0 Machole Headiost Coeff (Clobal) 0.500 Number of Offline Controls 0 Number of Rail Time Controls 0 <u>Synthetic Rainfail Dotails</u> Rainfail Model FSR Ratic R 0.274 Region England and Wales CV (Summer) 0.850 MS-60 (mm) 16.000 CV (Winter) 0.850 Nargin for Flood Risk Warning (mm) 300.0 DVD Status OFF DTS Status ON Frofile(s) Summer and Winter Duration(s) (mins) 15, 30, 60, 120, 180, 240, 360 Return Reitod(s) (years) 1, 30, 100 Climate Change (%) 0, 30, 50 NARMING: Half Drain Time has not been calculated as the structure is too full. US/MEI Return Climate First (X) First (X) Overflew Leve FW Neme Storm Period Change Surcharge Flood Overflew Act. (m) S1.000 S1 15 Winter 1 +0% 37.60 S1.001 S2 360 Winter 1 +0% Time Flow Level FW Neme (s) (m) Cap. (1/s) (mins) (1/s) Status Deceeded S1.000 S1 -0.102 0.000 0.22 2.0 0K	ate 14/1	1/2022	15:38		Desi	ned by	SM			
1 year Return Period Summary of Critical Results by Maximum Level (Rank for Storm Simulation Criteria Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000 Rot Start (mins) 0 MuDD Factor + 10m*/ha Storage 2.000 Monthole Headloss Coeff (Global) 0.500 Flow per Person per Day (L/per/day) 0.000 Foul Sewage per hectare (1/s) 0.000 Number of Input Hydrographs 0 Number of Storage Structures 1 Number of Offline Controls 0 Number of Time/Area Diagrams 0 Number of Offline Controls 0 Number of Real Time Controls 0 Number of Offline Controls 0 Number of Real Time Controls 0 Swithstic Rainfall Details Rainfall Model FR Ratio R 0.274 Region England and Wales Cv (Summer) 0.850 M5-60 (mm) 16.000 Cv (Winter) 0.950 Nargin for Flood Risk Warning (mm) 300.0 DVD Status OFF DIS Status ON Frofile(s) Summer and Winter Duration(s) (mins) 15, 30, 60, 120, 180, 240, 360 Return Period(s) (years) 1, 30, 100 Climate Change (%) 0, 50, 50 WARMINE: Half Drain Time has not been calculated as the structure is too full. Surchanged Flooded Balf Drain Fipe US/ME Return Climate First (X) First (Y) First (2) Overflow Iew (M) S1.000 S1 15 Winter 1 +0% Surchanged Flooded Balf Drain Fipe US/ME Depth Volume Flow / Overflow Time Flow Level FN Neme (m) (m) Cap. (1/s) (mins) (1/s) Status Ecceeded S1.000 S1 -0.102 0.000 0.22 2.0 0K	ile TURN	ING HEA	D PLOT 4	AND	Che cl	ted by				ulainay
1 year Return Period Summary of Critical Results by Maximum Level (Rank for Storm Simulation Criteria Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000 Hot Start (mins) 0 MuD Factor + 10m*/ha Storage 2.000 Monthole Headloss Coeff (Global) 0.500 Flow per Person per Day (L/per/day) 0.000 Foul Sewage per hectare (1/s) 0.000 Number of Input Hydrographs 0 Number of Storage Structures 1 Number of Offine Controls 0 Number of Storage Structures 1 Number of Offine Controls 0 Number of Time/Area Diagrams 0 Number of Offine Controls 0 Number of Real Time Controls 0 Synthetic Rainfall Details Rainfall Model FER Ratio R 0.274 Region England and Wales Cv (Summer) 0.850 MD-60 (mm) 16.000 Cv (Winter) 0.950 Nargin for Flood Risk Warning (mm) 300.0 DVD Status OFF Analysis Timester Fine Inertia Status OFF DIS Status ON Frofile(S) Summer and Winter Duration(s) (mins) 15, 30, 60, 120, 180, 240, 360 Return Period(s) (years) 1, 30, 100 Climate Change (%) 0, 50, 50 WARMINE: Half Drain Time has not been calculated as the structure is too full. Surcharged Flooded Balf Drain Fipe US/ME Return Climate First (X) First (Y) First (2) Overflow Iew (M) S1.000 S1 15 Winter 1 +0% Surcharged Flooded Balf Drain Fipe US/ME Depth Volume Flow / Overflow Time Flow Level FN Name (m) (m) Cap. (1/s) (mins) (1/s) Status Ecceeded S1.000 S1 -0.102 0.000 0.22 2.0 0K	icro Dra	10308	2221222200102		0.000.000	11111100	1.3			
Rainfail Model FSR Ratio R 0.274 Region England and Wales CV (Summer) 0.850 M5-60 (mm) 16.000 CV (Winter) 0.950 Margin for Flood Risk Warning (mm) 300.0 DVD Status OFF Analysis Timestep Fine Inertia Status OFF DTS Status ON Profile(s) Summer and Winter Duration(s) (mins) 15, 30, 60, 120, 180, 240, 360 Return Period(s) (years) 1, 30, 100 Climate Change (%) 0, 50, 50 WARNING: Half Drain Time has not been calculated as the structure is too full. Nata US/ME Return Climate First (X) First (Y) First (Z) Overflow Leve FN Name Storm Period Change Surcharge Flood Overflow Act. (m) S1.000 S1 15 Winter 1 +0% 37.64 S1.001 S2 360 Winter 1 +0% 37.64 S1.000 S1 15 Winter 1 +0% 57.64 S1.000 S1 0.000 0.22 2.0 0K	Manho	Area Ho le Headi I Sewage Numb Numb Numb	l Reductio Hot Star t Start Le oss Coeff per hecta mer of Inpumber of On	n Factor t (mins) vel (mm) (Global) re (1/s) st Hydrog nline Con	for imulation 1.000 0.500 1 0.000 raphs 0 trols 0	Storm on Criteri Addition MADI Flow par I Number o	la hal Flow -) Factor ' Person per f Storage f Time/Ar	- % of To • 10m³/ha hiet Coef r Day (1/ Structus ea Diagr:	tal Flow Storage flecient per/day) res 1 ms 0	0.000 2.000 0.800
Duration(s) (mins) 15, 30, 60, 120, 180, 240, 360 Return Period(s) (years) Climate Change (%) WARNING: Half Drain Time has not been calculated as the structure is too full. WARNING: Half Drain Time has not been calculated as the structure is too full. WARNING: Half Drain Time has not been calculated as the structure is too full. Wate US/MEI Storm Period Change Surcharge Flood Overflow Act. (m) S1.000 S1 15 Winter 1 +0% S1.001 S2 360 Winter 1 +0% Surcharged Flooded Balf Drain Pipe US/MEI PN Name (m) (m ³) Cap. (l/s) (mins) (l/s) Status Exceeded S1.000 S1 -0.102 0.000 0.22 2.0 OK		Mar	1 M5-61	Model Region Er 0 (mm) 00d Risk	gland a Warning ysis Tir	FSR nd Wales 16.000 (mm) 300 estep Fi	Ratio Cv (Summe Cv (Winte 0.0 DV ne Inerti	r) 0.850 r) 0.950 7D Status		
Name Nature Name Nat		R	eturn Peri	ion(s) (.od(s) (y	mins) 19 pars)	3 0, 60 ,	120, 180	0, 240, 3 1, 30, 1	60	
PN Name Storm Period Change Surcharge Flood Overflow Act. (m) S1.000 S1 15 Winter 1 +0% 37.64 S1.001 S2 360 Winter 1 +0% 36.97 Surcharged Flooded Balf Drain Pipe US/ME Depth Volume Flow / Overflow Time Flow Level FN Name (m) (m ³) Cap. (1/s) (mins) (1/s) Status Exceeded S1.000 S1 -0.102 0.000 0.22 2.0 0K	WARN	(NG: Hal)	C Drain Ti	me has no	it been	calculate	d as the	structure	is too	full. Water
S1.001 S2 360 Winter 1 +0% 36.97 Surcharged Flooded Ealf Drain Pipe US/ME Depth Volume Flow / Overflow Time Flow Level FN Name (m) (m ³) Cap. (1/s) (mins) (1/s) Status Exceeded S1.000 S1 -0.102 0.000 0.22 2.0 OK										
Surcharged Flooded Ealf Drain Pipe US/ME Depth Volume Flow / Overflow Time Flow Level FN Name (m) (m ³) Cap. (1/s) (mins) (1/s) Status Exceeded S1.000 S1 -0.102 0.000 0.22 2.0 OK										37.648
US/MH Depth Volume Flow / Overflow Time Flow Level FN Name (m) (m ³) Cap. (1/s) (mins) (1/s) Status Exceeded S1.000 S1 -0.102 0.000 0.22 2.0 OK	\$1.001	SZ 360	Winter	1	+0%					36.976
US/ME Depth Volume Flow Time Flow Level FN Name (m) (m ³) Cap. (1/s) (mins) (1/s) Status Exceeded S1.000 S1 -0.102 0.000 0.22 2.0 OK										
FN Name (m) (m ³) Cap. (1/s) (mins) (1/s) Status Exceeded S1.000 S1 -0.102 0.000 0.22 2.0 OK		5	Burcharged	Flooded			Balf Drai	n Pipe		
FN Name (m) (m ³) Cap. (1/s) (mins) (1/s) Status Exceeded S1.000 S1 -0.102 0.000 0.22 2.0 OK		US/MH	Depth	Volume	Flow /	Overflow	Time	Flow		
	PN	Name	(m)	(m ³)	Cap.	(1/s)	(mins)	(1/s)	Status B	bebeeoxd
	S1 000	51	-0 102	0,000	0 22			2.0	OK	
©1982-2020 Innovyze				-10		10.02				

		Partners		242				F	age 2
8 Cast1	e Str	eet		Ne	thertown	Rd, St B	ees	10	
arlisle				Ac	cess road	d soakawa	У		Card 1
A3 BTP									Micro
ate 14/	11/20	22 15:38		De	signed by	SM			
ile TUR	NING	HEAD PLOT	4 AND	Ch	ecked by				Drainag
licro Dr	ainad	le	02-2000-0	Ne	twork 202	20.1.3			
30 year	Retu	rn Period	Summar		ritical F or Storm	Results b	y Maxin	num Level	(Rank
	14				tion Crite	A DATE OF THE OWNER AND A DATE.			
		real Reduct Hot St		1.1	0 M7	ADD Factor			
		Hot Start			0.			effiecient	
		adloss Coef		1) 0.50	0 Flow per	Person pe	r Day (1/per/day)	0.000
Fo	wil Sew	age per hec	tare (1/	s) 0.00	0				
	9	Number of I Number of Number of (Online Offline	Control: Control:	s O Number s O Number	of Time/An of Real T	rea Diag	grams 0	
		1000 C 1000 C			Rainfall		a gogoa		
		Rainfa	11 Model		FSI And Male	R Ratio	D R 0.2		
		MO	-60 (mm)			0 Cv (Winto			
		Margin for							
			A		S Status	Fine Inert	ia Stat	us OFF	
			D-	file(s)		Evenen e	and Wi	ntor	
		Dur		CS U 10 CC 65 ACT		50, 120, 18			
		Return Pe					1, 30,		
		C11	mate Cha	inge (%)			0, 50	, 50	
WAR	NING:	Half Drain	Time has	not be	an calcula	ted as the	structu	te is too	full.
									Water
	US/MEL					First (Y)			
PN	Namo	Storm	Period	Change	Surcharge	Flood	Overfl	ow Act.	(m)
S1.000	51	15 Winter	30	+50%					37.703
\$1.001	52	360 Winter	30	+50%					37.632
		Surcharged	Florend			Balf Drain	Pine		
	US/MH	Depth							Level
PN	Namo		(m ¹)	Cap.	(1/s)	(mins)	(1/=)	Status	
				-					
2012380	S1 S2	100000000					7.1	FLOOD RISK	
S1.000		-0.110	0.000	0.10			0.3	- Da	
S1.000 S1.001									

a danta	100 C	Partners		292				P	age 3
8 Casti	e Str	eet		Ne	thertown	Rd, St B	ees	Û D	
arlisle				Ac	cess road	i soakawa	Y		Carol 1
A3 STP				1.0					Micro
	11/20	22 15:38		De	signed by	SM			
10123064	1000	HEAD PLOT	4 AND		ecked by				Drainag
	2811132	2012/02/12/22/02	4 1442.	18-2 8-235				5.	1
icro Dr	ainag	je		Ne	twork 202	0.1.3			
<u>100 ye</u> a	ir Ret	turn Peric	d Sunna	1)	Critical for Storr	<u>0</u>	by Max	imum Lev	el (Ran)
	А	real Reduct	ion Fact			the second second second second	- % of T	otal Flow	0.000
	62	Hot St	art (nin	51	O MA				
		Hot Start						ffiecient	
		adloss Coef				Person pe	r Day (1	/per/day)	0.000
Fo	Al Sew	age per hec	tare (1/	s) 0.00	10				
	2	Number of In Number of Number of (Online Offline	Control: Control:	s O Number s O Number	of Time/An of Real T:	rea Diag	rams 0	
					Rainfall I			134	
		Rainfa	11 Model		FSI		R 0.27		
		MIS	-60 (mm)		d and Wales	CV (Summa CV (Winte			
		10	on turnt		10.000	a ca farmer		U	
		Margin for		alysis	ing (mm) 3 Timestep S Status				
		Return Pe	ation(s)	(years)	15, 30, 6		and Wir 0, 240, 1, 30, 0, 50,	360 100	
1475-121	NING:	Half Drain	Time has	not be	an calculat	ted as the	structu	re is too	full.
mass.									Water
mar									
	US/MEL		Return	Climate	First (X)	First (Y)	First (E) Overflo	w Level
	US/ME Name				First (X) Surcharge				
PN	Namo	Storm	Period	Change	Surcharge				(m)
PN 51.000	Namo S1	Storm 15 Winter	Period 100	Change +50%	Surcharge				(m) 37.727
PN 51.000	Namo S1	Storm	Period 100	Change +50%	Surcharge				(m) 37.727
PN 51.000	Namo S1 S2	Storm 15 Winter 180 Winter	Period 100 100	Change +50% +50%	Burcharge	Flood	Overflo		(m) 37.727
PN S1.000 S1.001	Namo S1 S2	Storm 15 Winter 180 Winter Surcharged	Period 100 100 Flooded	Change +50% +50%	Burcharge	Flood Half Drain	Overflo		(m) 37.727 37.648
PN 51.000 51.001	Namo S1 S2 US/MEI	Storm 15 Winter 180 Winter Surcharged Depth	Period 100 100 Flooded Volume	Change +50% +50% Flow /	Surcharge	Flood Half Drain Time	Overflo Pipe Flow	w Act.	(m) 37.727 37.648 Level
PN 51.000 51.001	Namo S1 S2	Storm 15 Winter 180 Winter Surcharged Depth	Period 100 100 Flooded Volume	Change +50% +50% Flow /	Burcharge	Flood Half Drain	Overflo Pipe Flow	w Act.	(m) 37.727 37.648 Level
PN 51.000 51.001	Namo S1 S2 US/MH Namo	Storm 15 Winter 180 Winter Surcharged Depth (m)	Period 100 100 Flooded Volume (n ³)	Change +50% +50% Flow / Cap.	Surcharge Overflow (1/s)	Flood Half Drain Time	Overflo Pipe Flow (1/s)	w Act.	(m) 37.727 37.648 Level
PN 51.000 51.001 PN	Namo S1 S2 US/MEI Namo S1	Storm 15 Winter 180 Winter Surcharged Depth (m) -0.023	Period 100 100 Flooded Volume (m ³) 0.000	Change +50% +50% Flow / Cap. 1.00	Surcharge Overflow (l/s)	Flood Half Drain Time	Overflo Pipe Flow (1/s)	w Act. Status	(m) 37.727 37.648 Level
PN 51.000 51.001 PN 51.000	Namo S1 S2 US/MEI Namo S1	Storm 15 Winter 180 Winter Surcharged Depth (m) -0.023	Period 100 100 Flooded Volume (m ³) 0.000	Change +50% +50% Flow / Cap. 1.00	Surcharge Overflow (l/s)	Flood Half Drain Time	Overflo Pipe Flow (1/s) 9.0 F	w Act. Status LOOD RISK	(m) 37.727 37.648 Level
PN 51.000 51.001 PN 51.000	Namo S1 S2 US/MEI Namo S1	Storm 15 Winter 180 Winter Surcharged Depth (m) -0.023	Period 100 100 Flooded Volume (m ³) 0.000	Change +50% +50% Flow / Cap. 1.00	Surcharge Overflow (l/s)	Flood Half Drain Time	Overflo Pipe Flow (1/s) 9.0 F	w Act. Status LOOD RISK	(m) 37.727 37.648 Level
PN 51.000 51.001 PN 51.000	Namo S1 S2 US/MEI Namo S1	Storm 15 Winter 180 Winter Surcharged Depth (m) -0.023	Period 100 100 Flooded Volume (m ³) 0.000	Change +50% +50% Flow / Cap. 1.00	Surcharge Overflow (l/s)	Flood Half Drain Time	Overflo Pipe Flow (1/s) 9.0 F	w Act. Status LOOD RISK	(m) 37.727 37.648 Level
PN 51.000 51.001 PN 51.000	Namo S1 S2 US/MEI Namo S1	Storm 15 Winter 180 Winter Surcharged Depth (m) -0.023	Period 100 100 Flooded Volume (m ³) 0.000	Change +50% +50% Flow / Cap. 1.00	Surcharge Overflow (l/s)	Flood Half Drain Time	Overflo Pipe Flow (1/s) 9.0 F	w Act. Status LOOD RISK	(m) 37.727 37.648 Level
PN 51.000 51.001 PN 51.000	Namo S1 S2 US/MEI Namo S1	Storm 15 Winter 180 Winter Surcharged Depth (m) -0.023	Period 100 100 Flooded Volume (m ³) 0.000	Change +50% +50% Flow / Cap. 1.00	Surcharge Overflow (l/s)	Flood Half Drain Time	Overflo Pipe Flow (1/s) 9.0 F	w Act. Status LOOD RISK	(m) 37.727 37.648 Level
PN 51.000 51.001 PN 51.000	Namo S1 S2 US/MEI Namo S1	Storm 15 Winter 180 Winter Surcharged Depth (m) -0.023	Period 100 100 Flooded Volume (m ³) 0.000	Change +50% +50% Flow / Cap. 1.00	Surcharge Overflow (l/s)	Flood Half Drain Time	Overflo Pipe Flow (1/s) 9.0 F	w Act. Status LOOD RISK	(m) 37.727 37.648 Level
PN 51.000 51.001 PN 51.000	Namo S1 S2 US/MEI Namo S1	Storm 15 Winter 180 Winter Surcharged Depth (m) -0.023	Period 100 100 Flooded Volume (m ³) 0.000	Change +50% +50% Flow / Cap. 1.00	Surcharge Overflow (l/s)	Flood Half Drain Time	Overflo Pipe Flow (1/s) 9.0 F	w Act. Status LOOD RISK	(m) 37.727 37.648 Level