

28 CASTLE STREET, CARLISLE, CUMBRIA CA3 8TP

TEL 01228 527428/522196 EMAIL mail@aldaines.co.uk WEB www.aldaines.co.uk

Drainage Strategy Report and Flood Risk Assessment

THOMAS GRAHAM, EGREMONT

16080

MAY 23

Contents

Introduction	
Planning policy	
Planning Policy in Site Context	4
Site plan	4
Development Description	
Permeability and soil profile	
Current Foul and surface water Drainage Provision	
Flood Risk Assessment (FRA)	6-7
Surface water drainage strategy	
Surface water proposed design	
Maintenance	
Foul water drainage strategy	
Management	

Appendices

A - Infiltration testing	14-16
B - Greenfield Runoff Rate Calculations	17-22
C - United Utilities sewer records	23-28
D - Micro Drainage Calculations	
E - Treatment Systems - Manufacturers Specification Sheets	40-43

INTRODUCTION

A L Daines & Partners (ALD) have been instructed to undertake a Surface and Foul Water Drainage Strategy and Flood Risk Assessment, in accordance with the National Planning Policy Framework (NPPF) [1], for the proposed 2.67ha commercial development accessed via Vale View, Egremont.

The purpose of this report is to provide a strategy to manage surface and foul water flows from the site, in support of the planning application, while fulfilling the requirements of the Local Planning Authority (LPA) and the Lead Local Flood Authority (LLFA).

PLANNING POLICY

NPPF footnote 55 states that "a site-specific flood risk assessment should be provided for all development in Flood Zones 2 and 3. In Flood Zone 1, an assessment should accompany all proposals involving: sites of 1 hectare or more; land which has been identified by the Environment Agency as having critical drainage problems; land identified in a strategic flood risk assessment as being at increased flood risk in future; or land that may be subject to other sources of flooding, where its development would introduce a more vulnerable use."

Paragraph 169 reads "Major developments should incorporate sustainable drainage systems unless there is clear evidence that this would be inappropriate. The systems used should:

a) take account of advice from the lead local flood authority.
b) have appropriate proposed minimum operational standards.
c) have maintenance arrangements in place to ensure an acceptable standard of operation for the lifetime of the development; and
d) where possible, provide multifunctional benefits."

A major development, as per The Town and Country Planning Order 2015, is partly, but not wholly, categorised as development involving the provision of a building or buildings where the floor space to be created by the development is 1,000 square metres or more and a development carried out on a site having an area of 1 hectare or more.

The Cumbria Minerals and Local Waste Plan – Strategic Flood Risk Assessment (June 2018) references the same criteria for local planning policy.

The site is therefore classified as a major development under the above criteria due to the proposals having a site area greater than 1ha and a floor area over 1000m².

PLANNING POLICY IN SITE CONTEXT

The site covers 2.67ha of greenfield site, and according to the most recent Environment Agency (EA) flood risk maps, lies entirely within Flood Zone 1.

The NPPF site categorisation Table 2 places a commercial development of this nature within the 'less vulnerable' category. Developments in the 'less vulnerable' category are acceptable within Flood Zone 1 and therefore the site-specific Flood Risk Assessment (FRA) need only be brief, see page 6.

SITE PLAN

The proposed development is located on an existing area of greenfield land to the east of Urban Fitness and to the west of the A595 at Egremont, Cumbria as shown on red line bordered plan in *Figure 1*.

Figure 1: Aerial photo of site - Google Maps

DEVELOPMENT DESCRIPTION

The proposed development will see one new access created off the Vale View, Egremont, leading to an industrial park to be built on the existing 2.67ha greenfield site. The existing ground is generally open grassed landscape which is currently grazed by livestock.

The proposed development hardstanding areas are split as follows:

- Total hardstanding area = 1.367ha
- Permeable Paving / greenspace = 1.303ha

The land generally runs in a westerly direction, with the high point located at the East of the site at 62.53m AOD and the low point at 46m AOD at the southwestern aspect of the site. The land is currently used for agricultural grazing purposes as open pasture with an existing field access onto the highway of Vale View.

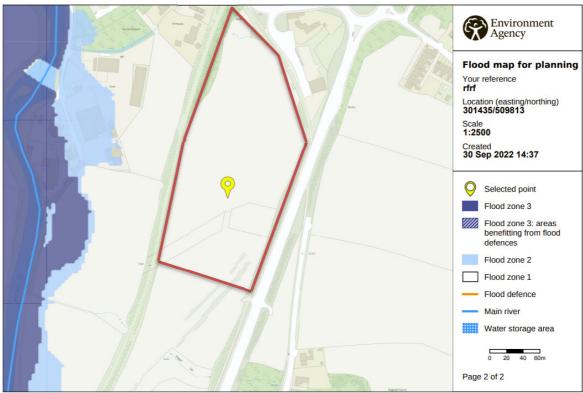
PERMEABILITY AND SOIL PROFILE

British Geological Survey (BGS) and Land Information Systems (LandIS) mapping services have been used determine the following land make-up:

- Bedrock: St Bees Sandstone
- Superficial drift: Till, Devensian Diamicton
- Soil: Soilscape 6 Freely draining slightly acid loamy soils (as demonstrated within Appendix A, this result is inaccurate following a series of percolation testing undertaken on site)

CURRENT FOUL AND SURFACE WATER DRAINAGE PROVISION

Existing watercourses


The ordinary watercourse Beggar Gill flows along the northern boundary of the site prior to entering the river Ehen approximately 250m downstream. The current land use drains surface water into Beggar Gill. The development is proposing to discharge surface water into Beggar Gill as the preferred method of surface water disposal. The discharge rate for the surface water is to be at a maximum equal to the greenfield runoff rate for the development site.

Combined surface and foul water

There is an existing combined foul and surface water sewer adjacent to the northern boundary of the site within the carriageway of Vale View. The foul water from the development site is proposed to be pumped into the existing foul sewer. Find attached within *Appendix C* the United Utilities maps illustrating the locations of the sewer network in the vicinity of the development site.

FLOOD RISK ASSESSMENT (FRA)

As described earlier in the report, the current Environment Agency Flood Map for Planning shows the site to be located wholly within Flood Zone 1 as is illustrated within *Figure 2* below and is classified as less vulnerable.

© Environment Agency copyright and / or database rights 2021. All rights reserved. © Crown Copyright and database right 2021. Ordnance Survey licence number 100024198.

Figure 2: Flood map for planning

A full FRA is therefore not required, although the Environment Agency long term flood risk maps are included below to further inform this report.

Figure 3: EA long term flooding from surface water

The long-term flood risk from surface water is very low (0.1%) with no areas of the site showing any form of heightened flood risk.

Figure 4: EA long term flood risk from river or sea

The long-term flood risk from rivers or sea is very low (0.1%) with no areas of the site showing any form of heightened flood risk. Therefore, the risk to the new development is seen to be negligible.

SURFACE WATER DRAINAGE STRATEGY

The aim of the strategy is to provide a design which will avoid, reduce, and delay the discharge of surface water flows into public sewers and watercourses. This will aid in the protection of watercourses but will also ensure that no knock-on effects are seen beyond the site and that the risk of localised flooding and pollution within the site are reduced as far as possible.

To satisfy these criteria, surface water flows shall be subject to assessment via the hierarchy of drainage in accordance with the LASOO Non-Statutory Technical Standards for Sustainable Drainage: Practice Guidance. The hierarchy is as follows:

Hierarchy options:

- 1. Drain into the ground (infiltration).
- 2. To a surface water body.
- 3. To a surface water sewer, highway drain or another drainage system.
- 4. To a combined sewer.

The drainage strategy for the site is to be developed using the second level on the above hierarchy for the following reasons:

Drain into the ground (infiltration)

Four trial holes in accordance with the BRE 365 method were undertaken on site to test for infiltration. The results, as detailed within Appendix A of this report, have shown that the site is not suitable for infiltration as the method of surface water disposal. As such it is not proposed to discharge surface water via a soakaway.

Surface Water Body – highest viable drainage option route.

The ordinary water course Beggar Gill flows to the north of the development site. Due to the impermeability of the soil, as stated above, discharge into this system is proposed at a maximum of the greenfield run off rate (11.9/s) with attenuation provided on site to accommodate a 1 in 100 year plus 50% to account for climate change storm event. This is in line with the requirements of the Cumbria Development Design Guide.

Surface water sewer, highway drain or another drainage system

N/A

To a combined sewer

Foul water only is to be pumped into the existing combined sewer on Vale View, Egremont.

SURFACE WATER PROPOSED DESIGN

The greenfield run off calculations, via the ICP SuDS Mean Annual Flood method, for the site have been split into 4 distinct areas to provide their own flow controls and treatment systems. The areas are shown on drawing 21-C-16080-011 in *Appendix B*. The runoff rates are summarised below:

Area	QBar (l/s)
Area 1	5.1
Area 2	1.5
Area 3	3.6
Area 4	1.7
Total	11.9

In accordance with the earlier mentioned hierarchy of drainage options, the system has been designed to utilise permeable paving where possible and attenuation tanks to store surface water prior to discharge into Beggar Gill. Please find attached in *Appendix B* the greenfield runoff rate calculations. As per the LASOO guidance, the peak runoff rate from the development for the 1 in 1yr rainfall event and the 1 in 100yr rainfall event should not exceed the peak greenfield runoff for the same event. The design is also required to prevent flooding to any part of the site for storms up to and including the 1:30yr rainfall event, while any exceedance for the 6 hour 1:100yr event should be controlled within the site and should not flood any properties or service areas.

Consideration of SuDS components

A range of SuDS components are available and have been considered for use. Their applicability to the site has been addressed below:

- Rainwater harvesting suitable for use on the site, however due to the use of the site there is no guarantee the systems have sufficient capacity for use during extreme events, therefore they have been discounted for site flow calculations.
- Soakaways discounted due to poor infiltration demonstrated on site.
- Permeable paving suitable for use on site parking areas. Poor infiltration rates will limit volumes able to be distributed so these shall not be used to take flows from additional hardstanding areas.
- Swales Due to the extent of the hardstanding areas within the site there is not sufficient land available to allow safe construction and maintenance of swales. In addition, due to the steep topography of the site this feature has been discounted.
- Detention basins Considered unsuitable due to large land uptake required and the steep nature of the site slopes and gradients discounted.
- Ponds/wetlands Considered unsuitable due to large land uptake required and the steep nature of the site slopes and gradients discounted.
- Underground closed storage crate/tank systems Considered viable for use however should not be used in preference to open SuDS systems where these are available. Viable

Climate change

Environment Agency guidance issued in 2022 estimates that peak rainfall intensity will increase due to climate change over the next 100 years. There is therefore an allowance of 50% attributed to the 30yr and 100yr storm event calculations in line with the Upper End estimate of rainfall increases for small and urban catchments.

Percentage impermeability (PIMP)

All impermeable area is modelled as 100% PIMP. This will allow for sufficient capacity for all hardstanding areas to be positively drained.

Volumetric Runoff Coefficient (Cv)

Industry standard Cv values vary for summer and winter and account for water volumes which do not enter the drainage system i.e., that is lost through infiltration, depression storage, evaporation, initial wetting etc. Standard values are 0.75 for summer and 0.84 for winter.

In this instance, only hardstanding areas are modelled and therefore the standard values have been uplifted to 0.85 and 0.95 respectively for both summer and winter storms. This results in conservative design with no infiltration allowance.

Surface water quality

The SuDS Manual provides best industry practice for assessing the pollutant potential of developments and providing mitigation methods to increase run off water quality using SuDS components.

The simple index approach has been utilised to assess the pollutant hazard indices and proposed treatment components. Note, this has been carried out in conjunction with the above SuDS component suitability assessment for the site and as such many features have already been discounted.

Table 26.2 from The SuDS Manual below outlines the pollution hazard indices for different land uses.

Pollution hazard indices for different land use classifications				
Land use	Pollution hazard level	Total suspended solids (TSS)	Metals	Hydro- carbons
Residential roofs	Very low	0.2	0.2	0.05
Other roofs (typically commercial/ industrial roofs)	Low	0.3	0.2 (up to 0.8 where there is potential for metals to leach from the roof)	0.05
Individual property driveways, residential car parks, low traffic roads (eg cul de sacs, homezones and general access roads) and non- residential car parking with infrequent change (eg schools, offices) ie < 300 traffic movements/day	Low	0.5	0.4	0.4
ommercial yard and delivery areas, on-residential car parking with equent change (eg hospitals, retail), all ads except low traffic roads and trunk ads/motorways ¹	Medium	0.7	0.6	0.7
Sites with heavy pollution (eg haulage ards, lorry parks, highly frequented orry approaches to industrial estates, vaste sites), sites where chemicals and uels (other than domestic fuel oil) are o be delivered, handled, stored, used or manufactured; industrial sites; trunk oads and motorways ¹	High	0.8²	0.8²	0.9²

Figure 5 SuDS Manual Table 26.2 Pollution hazard indices

This development is to be classed as a 'Medium' risk land use due to the presence of commercial yards with delivery areas and non-residential car parking. Due to the site layout and differing levels of pollution hazard, it is proposed to treat each area separately and therefore keep each SuDS 'train' separate. This ensures that flows are treated relative to their pollution indices and that flows are treated prior to the proposed attenuation areas; therefore, preventing any pollution build up.

This level of risk demands the following level of pollution control:

Land use	Suspended solids	Metal	Hydrocarbons
Other roofs	0.3	0.2	0.05
Parking/access road	0.7	0.6	0.7
Commercial Yard	0.7	0.6	0.7
Areas			

As per section 26.7.1 each SuDS component should be included in the total mitigation with a reduction of 50% for every additional component after the first. The highest risk element comes from the commercial yard areas and access roads, which are to be constructed using concrete / tarmac surfacing. As the loadings present will not allow for permeable surfacing, it is proposed to treat the runoff via a proprietary separator prior to entry into the below ground storage. As can be seen below, this mitigation provides sufficient treatment for these elements.

Land use	Suspended solids	Metal	Hydrocarbons
Commercial Yard Area / parking and access roads	0.7	0.6	0.7
Kingspan AquaTreat Separator	0.85	0.64	0.99

The shop and storage roof areas are categorised with a lower level of risk and therefore shall be routed through an ACO V Septor to ensure efficient removal of pollutants.

Land use	Suspended solids	Metal	Hydrocarbons
Other Roofs	0.3	0.2	0.05
ACO V-Septor	0.5	0.5	0.4

The above table shows that an ACO V-Septor would provide sufficient pollutant removal for the other roof area categories on the development site. The introduction of further treatment would be deemed inappropriate for a development of this scale.

The manufacturers specification sheets for the proprietary treatment systems stated above are located within *Appendix E*.

Surface water drainage proposals

Based on the above assessments, it is proposed that drainage system will convey flows from the commercial development via gravity, to Beggar Gill. The system will accept all storm events up to 1:100yr + 50% allowance for climate change.

Max site outflow: 11.9l/s (QBar)

Storage provision: Underground geocellular crate system

Treatment systems: Various proprietary systems as described above.

MAINTENANCE

All components shall be maintained in accordance with the relative requirements shown in the SuDS Manual. These intervals should be deemed as a minimum frequency and reference should also be made to the manufacturers guidance to ensure all components are maintained correctly.

Table 21.3 from the SuDS Manual for attenuation tanks has been included below for reference.

21.3	Maintenance schedule	Required action	Typical frequency	
		Inspect and Identify any areas that are not operating correctly. If required, take remedial action	Monthly for 3 months, then annually	
		Remove debris from the catchment surface (where it may cause risks to performance)	Monthly	
	fr s	For systems where rainfall infiltrates into the tank from above, check surface of filter for blockage by sediment, algae or other matter; remove and replace surface infiltration medium as necessary.	Annualiy	
		Remove sediment from pre-treatment structures and/ or Internal forebays	Annually, or as required	
	Remedial actions	Repair/rehabilitate inlets, outlet, overflows and vents	As required	
	Monitoring	Inspect/check all inlets, outlets, vents and overflows to ensure that they are in good condition and operating as designed	Annually	
		Survey Inside of tank for sediment build-up and remove if necessary	Every 5 years or as required	

Figure 7 SuDS Manual table 21.3 Attenuation storage maintenance

FOUL WATER DRAINAGE STRATEGY

All foul water from the development site will be pumped via a new rising main towards the combined sewer network within Vale View, to the north of the development site.

MANAGEMENT

All separate surface and foul water drainage systems within the site are proposed to remain private and be maintained by the site owner.

APPENDIX A – INFILTRATION TESTING

The infiltration tests were undertaken on Wednesday 5 October 2022. The weather conditions consisted of persistent showers in the morning with dry, brighter weather conditions in the afternoon.

Infiltration Test 1

Trial Hole 1000mm x 1700mm x 1000mm

Time	Time Elapsed (min)	Water Depth (mm)
Abandoned due to ingress of water before test could take place		

Infiltration Test 2

Trial Hole 1000mm x 1700mm x 1000mm

Time	Time Elapsed (min)	Water Depth (mm)
11:16	0	1000
11:21	5	950
11:42	26	950
12:02	46	950
12:32	76	950
13:02	106	950
13:32	136	950

Test abandoned at 14:00 due to a lack of infiltration.

Infiltration Test 3

Trial Hole 1000mm x 1700mm x 1000mm

Time	Time Elapsed (min)	Water Depth (mm)
Abandoned due to ingress of water before test could take place		

Infiltration Test 4

Trial Hole 1000mm x 1700mm x 1000mm

Time	Time Elapsed (min)	Water Depth (mm)
11:19	0	1000
11:25	6	1000
11:40	21	940
12:05	46	940
12:35	76	940
13:05	106	940
13:30	136	940

Test abandoned at 14:00 due to a lack of infiltration.

Figure A1: Photograph of infiltration testing undertaken on site (Trial Hole 4)

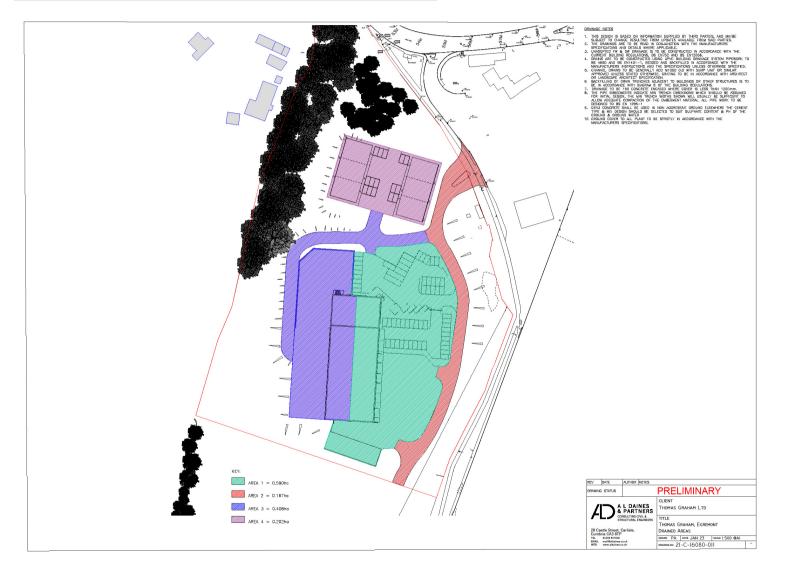


Figure A2: Photograph of a trial hole dug on site (Trial Hole 2)

Figure A3: Photograph of a trial hole dug on site (Trial Hole 1)

APPENDIX B – GREENFIELD RUNOFF CALCULATIONS

May 2023 Rev A

Overall Site

A L Daines & Partners		Page 1
28 Castle Street		
Carlisle		
CA3 8TP		
Date 06/04/2023 08:30	Designed by petera	Micro
File	Checked by	Drainage
Micro Drainage	Source Control 2020.1.3	
MICIO DIAINAge	Source control 2020.1.3	
ICP SUD	S Mean Annual Flood	
	Input	
Return Period (year	rs) 100 Soil 0.450 na) 1.365 Urban 0.000	
	un) 1257 Region Number Region 10	
	Results 1/s	
	BAR Rural 11.9	
	BAR Urban 11.9	
	2100 100 24 7	
	2100 years 24.7	
	Q1 year 10.3	
	Q30 years 20.2	
	2100 years 24.7	
@198	32-2020 Innovyze	

A L Daines & Partners		Page 1
28 Castle Street		
Carlisle		
CA3 8TP		Micro
Date 06/04/2023 08:29	Designed by petera	Drainage
File	Checked by	Drainage
Micro Drainage	Source Control 2020.1.3	
ICP SUD	S Mean Annual Flood	
	Input	
	11000	
Return Period (year		
	na) 0.590 Urban 0.000 mm) 1257 Region Number Region 10	
Book (1	any 1257 magion manager magion 10	
	Results 1/s	
	DEAR Rural 5.1	
	BAR Urban 5.1	
	2100 10 7	
· · · · · · · · · · · · · · · · · · ·	0100 years 10.7	
	Q1 year 4.5	
	Q30 years 8.7	
	0100 years 10.7	
	2 2020 Tapourizo	
©198	82-2020 Innovyze	

A L Daines & Partners		Page 1
28 Castle Street		
Carlisle		
CA3 8TP		Micro
Date 06/04/2023 08:29	Designed by petera	Drainario
File	Checked by	Drainage
Micro Drainage	Source Control 2020.1.3	
ICP SUD	S Mean Annual Flood	
	Terret	
	Input	
Return Period (year	rs) 100 Soil 0.450	
	ha) 0.167 Urban 0.000	
SAAR (I	am) 1257 Region Number Region 10	
	Results 1/s	
	QBAR Rural 1.5	
	QBAR Urban 1.5	
	Q100 years 3.0	
	Ql year 1.3	
	Q30 years 2.5	
	Q100 years 3.0	
@198	82-2020 Innovyze	

Carlisle CA3 8TP Date 06/04/2023 08:29 File Checked by Designed by petera Checked by	A L Daines & Partners		Page 1
CA3 BTP Designed by petera Designed by petera Nicro Drainage Source Control 2020.1.3 Inter of the second by the	28 Castle Street		
Date 06/04/2023 08:29 Designed by petera Checked by IICTO Drainage ICP SUDS Mean Annual Flood Input Return Period (years) 100 Soli 0.450 Area (ha) 0.408 Urban 0.000 BARR (mm) 1257 Region Number Region 10 Results 1/s (DBAR Rural 3.6 (D100 years 7.4 () years 5.0 ()100 years 7.4 () years	Carlisle		
Inter of volve 2023 00129 [Designed by performance of volve 2023 00129 [Decided by Decided of Volve 2020 10] [Decided by Decided of Volve 2020 10] [Decided by Decided of Volve 2020 10] [Decided o	CA3 8TP		Micco
File Checked by Drawing of the control 2020.1.3 ICP SUDS Mean Annual Flood Input Input Marco Datanage 0.00 Return Period (years) 100 Soli 0.450 BAR Numal 1.5 Urban 0.00 Soli 0.450 BAR Numal 3.6 Urban 3.6 0100 years 7.4 010 years 5.0 0100 years 7.4	Date 06/04/2023 08:29	Designed by petera	Desinado
ICP SUDS Mean Annual Flood Input Return Period (years) 100 Soli 0.450 Area (ah) 0.408 Urban 0.000 SAAR (mm) 1257 Region Number Region 10 Bescher Ve QBAR Nural 3.6 Q100 years 7.4 Q1 year 3.1 Q20 years 7.4	File		Diamage
InputReturn Period (sing 1.00)0.010.00Date (m) 1.27 Region Number Region 10 Leure 1.6 0.10 years 1.60.10 years 2.60.10 years 2.60.10 years 3.60.10 years 3.61.10 years 3.61.11 years 3.6 <t< td=""><td>Micro Drainage</td><td>Source Control 2020.1.3</td><td></td></t<>	Micro Drainage	Source Control 2020.1.3	
InputReturn Period (sing 1.00)0.010.00Date (m) 1.27 Region Number Region 10 Leure 1.6 0.10 years 1.60.10 years 2.60.10 years 2.60.10 years 3.60.10 years 3.61.10 years 3.61.11 years 3.6 <t< td=""><td></td><td></td><td></td></t<>			
Return Period (years)10Sol10.400JARA (m)1257 Region Number Region 10Beults126GaRA Umal 3.6GaRA Umal 3.6GaRA Umal 3.6GaRA Umal 3.6Gara 1.6Gara 1.6Gara 2.6Gara 3.6Gara 3.6Gara 3.6Gara 4.6Gara 3.6Gara 5.6Gara 5.6Gara 6.6Gara 5.6Gara 6.7Gara 5.6Gara 6.8Gara 6.8 <td>ICP SUD</td> <td>S Mean Annual Flood</td> <td></td>	ICP SUD	S Mean Annual Flood	
Return Period (years)10Sol10.400JARA (m)1257 Region Number Region 10Beults126GaRA Umal 3.6GaRA Umal 3.6GaRA Umal 3.6GaRA Umal 3.6Gara 1.6Gara 1.6Gara 2.6Gara 3.6Gara 3.6Gara 3.6Gara 4.6Gara 3.6Gara 5.6Gara 5.6Gara 6.6Gara 5.6Gara 6.7Gara 5.6Gara 6.8Gara 6.8 <td></td> <td></td> <td></td>			
Area (ha) 0.008 Utban 0.000 BAAR (mm) 1257 Region Number Region 10 Results 1/s (BAA Rural 3.6 (BAA Utban 3.6 (100 years 7.4 (1) year 3.1 (30 years 6.0 (100 years 7.4		Input	
Area (ha) 0.008 Utban 0.000 BAAR (mm) 1257 Region Number Region 10 Results 1/s (BAA Rural 3.6 (BAA Utban 3.6 (100 years 7.4 (1) year 3.1 (30 years 6.0 (100 years 7.4	Return Period (year	s) 100 Soil 0.450	
Rewlts 1/s QBAR Rural 3.6 QBAR Gran 3.6 Q100 years 7.4 Q30 years 7.3			
QBAR Rural 3.6 QHAR Urban 3.6 Q100 years 7.4 Q1 year 3.1 Q30 years 6.0 Q100 years 7.4	SAAR (n	um) 1257 Region Number Region 10	
QBAR Rural 3.6 QHAR Urban 3.6 Q100 years 7.4 Q1 year 3.1 Q30 years 6.0 Q100 years 7.4		Results 1/s	
GBAR Urban 3.6 Q100 years 7.4 Q1 year 3.1 Q30 years 6.0 Q100 years 7.4			
Q100 years 7.4 Q3 years 6.0 Q100 years 7.4			
01 year 3.1 030 years 7.4			
030 years 6.0 0100 years 7.4		Q100 years 7.4	
030 years 6.0 0100 years 7.4		01 year 3.1	
61982-2020 TRACAVE		Q100 years 7.4	
61982-2020 Талочия			
01982-2020 Талочия			
01982-2020 Талочия			
01982-2020 Innovvze			
01982-2020 Тапсичия			
01982-2020 Innovva			
01982-2020 TRDOVV28			
01982-2020 TRDOVV28			
01982-2020 Innovve			
01982-2020 Innovvze			
01982-2020 Innovvze			
01982-2020 Innovvze			
©1982-2020 Innovvze			
@1982-2020 Innovvze			
@1982-2020 Innovvze			
@1982-2020 Innovvze			
©1982-2020 Innovvze			
WE COM A CONST ATTEND TO AN	@198	32-2020 Innovyze	

A L Daines & Partners		Page 1
28 Castle Street		
Carlisle		
CA3 8TP		Micro
Date 06/04/2023 08:30	Designed by petera	Drainage
File	Checked by	Brainage
Micro Drainage	Source Control 2020.1.3	
TCP SUD	S Mean Annual Flood	
107 300	5 Mean Annuar F1000	
	Input	
Return Period (year Area (h	rs) 100 Soil 0.450 na) 0.200 Urban 0.000	
	m) 1257 Region Number Region 10	
	Provide 1/2	
	Results 1/s	
	QBAR Rural 1.7	
	QBAR Urban 1.7	
	Q100 years 3.6	
	Q1 year 1.5 Q30 years 3.0	
	Q100 years 3.6	
	32-2020 Innovyze	
6196	vr-voro runovyne	

APPENDIX C – UNITED UTILITIES SEWER RECORDS

How to contact us:

United Utilities Water Limited Property Searches Haweswater House Lingley Mere Business Park Great Sankey Warrington WA5 SLP

A L Daines & Partners LLP

28 Castle Street, Carlisie, CA3 8TP

FAO:

Telephone: 0370 7510101

E-mail: propertysearches@uupic.co.uk

Your Ref: t graham, egremont Our Ref: UUPS-ORD-261426 Date: 23/03/2021

Dear Sirs

Location: t graham egremont

I acknowledge with thanks your request dated 18/03/2021 for information on the location of our services.

Please find enclosed plans showing the approximate position of United Utilities' apparatus known to be in the vicinity of this site.

The enclosed plans are being provided to you subject to the United Utilities terms and conditions for both the wastewater and water distribution plans which are shown attached.

If you are planning works anywhere in the North West, please read United Utilities' access statement before you start work to check how it will affect our network. <u>http://www.unitedutilities.com/work-near-asset.aspx</u>.

I trust the above meets with your requirements and look forward to hearing from you should you need anything further.

If you have any queries regarding this matter please contact us.

Yours Faithfully,

allalis

Earen No?comack Property/Jearches/Manager

UUWaterLtd/041/03-15

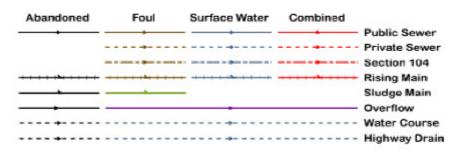
United Utilities Water Limited Registered in England & Wales No. 2300078 Registered Office Haweswater House, Lingley Mere Business Park, Lingley Green Avenue, Great Sankey, Warrington, WA5 3LP

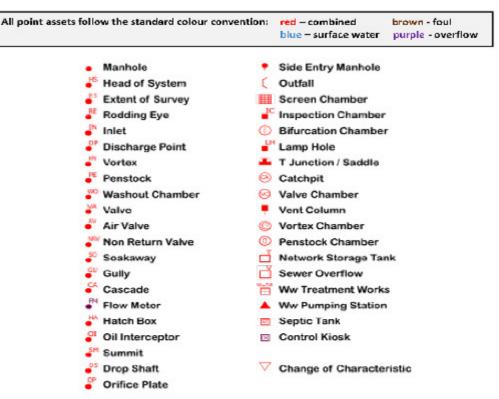
TERMS AND CONDITIONS - WASTEWATER AND WATER DISTRIBUTION PLANS

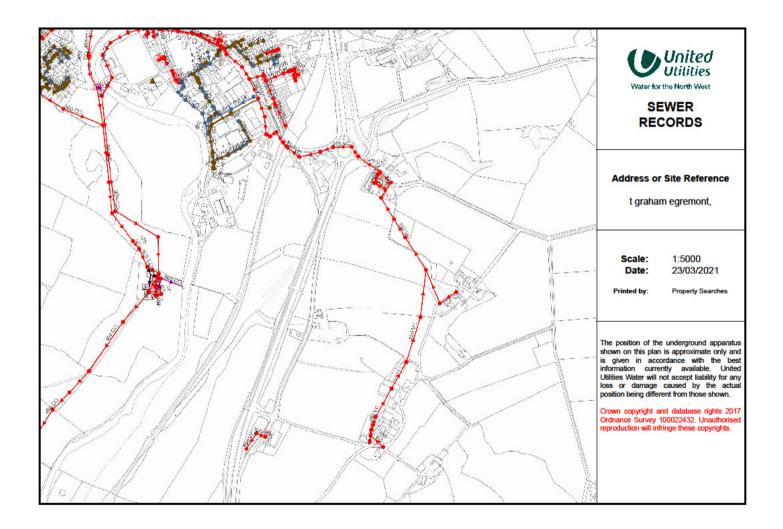
These provisions apply to the public sewerage, water distribution and telemetry systems (including sewers which are the subject of an agreement under Section 104 of the Water Industry Act 1991 and mains installed in accordance with the agreement for the self construction of water mains) (UUWL apparatus) of United Utilities Water Limited "(UUWL)".

TERMS AND CONDITIONS:

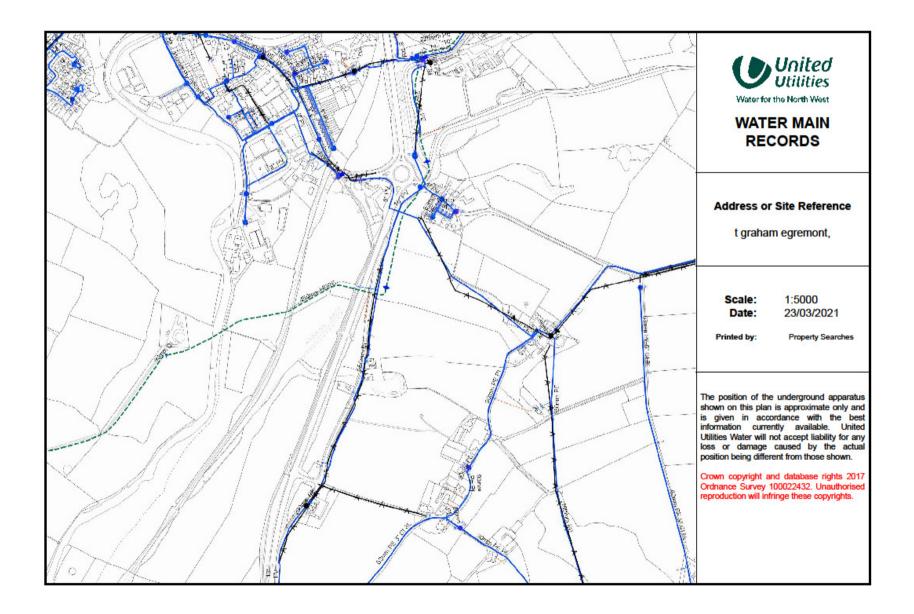
- This Map and any information supplied with it is issued subject to the provisions contained below, to the exclusion of all others
 and no party relies upon any representation, warranty, collateral contract or other assurance of any person (whether party to this
- agreement or not) that is not set out in this agreement or the documents referred to in it. This Map and any information supplied with it is provided for general guidance only and no representation, undertaking or warranty as to its accuracy, completeness or being up to date is given or implied.
- In particular, the position and depth of any UUWL apparatus shown on the Map are approximate only. UUWL strongly recommends that a comprehensive survey is undertaken in addition to reviewing this Map to determine and ensure the precise location of any UUWL apparatus. The exact location, positions and depths should be obtained by excavation trial holes.
- The location and position of private drains, private sewers and service pipes to properties are not normally shown on this Map but their presence must be anticipated and accounted for and you are strongly advised to carry out your own further enquiries and investigations in order to locate the same.
- The position and depth of UUWL apparatulus is subject to change and therefore this Map is issued subject to any removal or change in location of the same. The onus is entirely upon you to confirm whether any changes to the Map have been made
- subsequent to issue and prior to any works being carried out.


 This Map and any information shown on it or provided with it must not be relied upon in the event of any development, construction or other works (including but not limited to any excavations) in the vicinity of UUWL apparatus or for the purpose of
- determining the suitability of a point of connection to the sewerage or other distribution systems.
 No person or legal entity, including any company shall be relieved from any liability howsoever and whensoever arising for any damage caused to UUWL apparatus by reason of the actual position and/or depths of UUWL apparatus being different from
- those shown on the Map and any information supplied with it.
 If any provision contained herein is or becomes legally invalid or unenforceable, it will be taken to be severed from the remaining provisions which shall be unaffected and continue in full force and affect.
 This agreement shall be governed by English law and all parties submit to the exclusive jurisdiction of the English courts, save that nothing will prevent UUWL from bringing proceedings in any other competent jurisdiction, whether concurrently or otherwise.


UUWaterLtd/041/03-15


Jnited Utilities Water Limited Registered in England & Wales No. 2300078 Registered Office Haweswater House, Lingley Mere Business Park, Jingley Green Avenue, Great Sankey, Warrington, WA5 3LP

Wastewater Symbology



Clean Water Symbology

APPENDIX D – MICRO DRAINAGE CALCULATIONS

A L Daines & Partners		Page 1
28 Castle Street		
Carlisle		
CA3 8TP		Micro
Date 02/05/2023 09:28	Designed by petera	Drainage
File MD CALCS SM.MDX	Checked by	
Micro Drainage	Network 2020.1.3	
Free Flowing	Outfall Details for Storm	
ortfall ortfall o	. Level I. Level Min D,L W	
	(m) (m) I. Level Min D,L W (m) (m) I. Level (mm) (mm)	
-	(m)	
2 OOF OUTFALL	49.000 48.025 0.000 0 0	
5.005 OOFALL	43.000 48.025 0.000 0 0	
Simulatio	on Criteria for Storm	
Volumetric Runoff Coeff (0.750 Additional Flow - % of Total Fl	ow 0.000
Areal Reduction Factor 1 Hot Start (mins)	1.000 MADD Factor * 10m ³ /ha Stora 0 Inlet Coefficie	ge 2.000
Hot Start Level (mm)	0 Inlet Coefficie 0 Flow per Person per Day (1/per/da	y) 0.000
Manhole Headloss Coeff (Global)	0.500 Run Time (min	is) 60
Foul Sewage per hectare (1/s) (0.000 Output Interval (min	s) 1
Number of Input Hydrogr	aphs 0 Number of Storage Structures 4	
Number of Online Cont	rols 4 Number of Time/Area Diagrams 0	
Number of Offline Cont	rols 0 Number of Real Time Controls 0	
Synthet	ic Painfall Details	
synchec	ic Rainfall Details	
Rainfall Model	FSR Profile Type Sum	
Return Period (years)	100 Cv (Summer) 0.1	750
Region Engla M5-60 (mm)	nd and Wales Cv (Winter) 0.1 22.000 Storm Duration (mins)	
M5-60 (mm) Ratio R	0.196	
A1 Q2	32-2020 Innovyze	
W1 30		

A L Daines & Pa	artner	s					Page 2
28 Castle Stree		-					
Carlisle							
CA3 8TP							
	ate 02/05/2023 09:28 Designed 1						Micro
File MD CALCS			Checked				Drainage
Micro Drainage				2020.1.	3		
mero brainage			HELBOIR	202011			
		Onli	Ine Controls	s for St	orm		
Hydro-Brak	e@ Opt	imum Man)	nole: SW09,	DS/PN:	3.002, V	olume (m³): 11.2
			Unit Reference		0107-5100-	1000-5100	
			esign Head (m)		0107-5100-	1.000	
			ign Flow (1/s)			5.1	
			Flush-Flo			alculated	
			Objective Application		se upstrea	n storage Surface	
			Sump Available			Yes	
			Diameter (mm)			107	
			vert Level (m)			53.660	
M1		-	Diameter (mm) Diameter (mm)			150 1200	
		Control	l Points	Head (m)	Flow (1/s)	
	De	asign Point	(Calculated)	1.000	5.	1	
			Flush-Flow				
	M	an Flow or	Kick-Flo® er Head Range) 4. · 4.		
						-	
The hydrologica	al calcu	lations ha	ve been based	on the H	ead/Discha	rge relatio	
Hydro-Brake@ Op	al calcu stimum a	lations ha	ve been based d. Should an	on the H	ead/Dischar	rge relatio	other than a
	al calcu stimum a	lations ha	ve been based d. Should an	on the H	ead/Dischar	rge relatio	other than a
Hydro-Brake® Op Hydro-Brake Opt invalidated	al calcu btimum a imum@ b	ulations ha us specifie we utilised	we been based d. Should an then these s	on the H other typ torage ro	ead/Dischar e of contro uting calco	rge relation ol device o ulations wi	other than a 111 be
Hydro-Brake@ Op Hydro-Brake Opt	al calcu btimum a imum@ b	ulations ha us specifie we utilised	we been based d. Should an then these s	on the H other typ torage ro	ead/Dischar e of contro uting calco	rge relation ol device o ulations wi	other than a 111 be
Hydro-Brake@ Op Hydro-Brake Opt invalidated Depth (m) Flow 0.100	al calcu otimum a imum@ b r (1/s) 3.6	lations ha is specifie we utilised Depth (m) 1.200	ve been based d. Should and then these s Flow (1/s) De 5.6	on the H other typ torage ro mpth (m) 1 3.000	ead/Dischar e of contro uting calco Flow (1/s) 8.5	nge relation ol device of ulations with Depth (m) 7.000	Ther than a till be Flow (1/s)
Hydro-Brake@ Op Hydro-Brake Opt invalidated Depth (m) Flow 0.100 0.200	al calcu otimum a :imum@ b r (1/s) 3.6 5.0	Depth (m) 1.200 1.400	ve been based d. Should an then these s Flow (1/s) De 5.6 6.0	on the H other typ torage ro pth (m) 1 3.000 3.500	ead/Dischar e of contro uting calco Flow (1/s) 8.5 9.2	Depth (m) 7.000 7.500	<pre>pther than a iii be Flow (l/s) 12.8 13.2</pre>
Hydro-Brake@ Op Hydro-Brake Opt invalidated Depth (m) Flow 0.100	al calcu otimum a imum@ b r (1/s) 3.6	Depth (m) 1.200 1.600	ve been based d. Should an then these s Flow (1/s) De 5.6 6.0 6.3	on the H other typ torage ro mpth (m) 1 3.000	ead/Dischar e of contro uting calco Flow (1/s) 8.5 9.2 9.8	rge relation ol device of ulations with Depth (m) 7.000 7.500 8.000	<pre>pther than a ill be Flow (1/s) 12.8 13.2 13.6</pre>
Hydro-Brake@ Op Hydro-Brake Opt invalidated Depth (m) Flow 0.100 0.200 0.300	al calcu otimum a imum@ b (1/s) 3.6 5.0 5.1	Depth (m) 1.200 1.600 1.800	ve been based d. Should an then these s Flow (1/s) De 5.6 6.0 6.3 6.7	on the H other typ torage ro pth (m) 1 3.000 3.500 4.000	ead/Discha: e of contri- uting calco Flow (1/s) 8.5 9.2 9.8 10.3	rge relation ol device of ulations with Depth (m) 7.000 7.500 8.000	Flow (1/s) 12.8 13.2 13.6 14.0
Hydro-Brake 0 Op Hydro-Brake Opt invalidated Depth (m) Flow 0.100 0.200 0.300 0.400 0.500 0.600	al calcu otimum a imum@ b (1/s) 3.6 5.0 5.1 5.0 4.9 4.5	Depth (m) 1.200 1.400 1.600 1.800 2.200	we been based d. Should an then these si Flow (1/s) De 5.6 6.0 6.3 6.7 7.0 7.4	on the H other typ torage ro 	ead/Dischar e of contruting calco Flow (1/s) 8.5 9.2 9.8 10.3 10.9 11.4	rge relation ol device (plations with Depth (m) 7.000 7.500 8.000 8.500	Flow (1/s) 12.8 13.2 13.6 14.0 14.4
Hydro-Brake 0 Op Hydro-Brake Opt invalidated Depth (m) Flow 0.100 0.200 0.300 0.400 0.500 0.600 0.800	al calcu timum a imum@ b 3.6 5.0 5.1 5.0 5.1 5.0 4.9 4.5 4.6	Depth (m) 1.200 1.400 1.600 1.800 2.000 2.200 2.400	we been based d. Should an then these si Flow (1/s) Da 5.6 6.0 6.3 6.7 7.0 7.4 7.7	on the H ther typ torage ro 	ead/Dischar e of contri- uting calco Flow (1/s) 8.5 9.2 9.8 10.3 10.9 11.4 11.9	rge relation of device of ulations with Depth (m) 7.000 7.500 8.000 8.000 9.000	Flow (1/s) 12.8 13.2 13.6 14.0 14.4
Hydro-Brake 0 Op Hydro-Brake Opt invalidated Depth (m) Flow 0.100 0.200 0.300 0.400 0.500 0.600	al calcu otimum a imum@ b (1/s) 3.6 5.0 5.1 5.0 4.9 4.5	Depth (m) 1.200 1.400 1.600 1.800 2.000 2.200 2.400	we been based d. Should an then these si Flow (1/s) De 5.6 6.0 6.3 6.7 7.0 7.4	on the H other typ torage ro 	ead/Dischar e of contruting calco Flow (1/s) 8.5 9.2 9.8 10.3 10.9 11.4	rge relation of device of ulations with Depth (m) 7.000 7.500 8.000 8.000 9.000	<pre>bther than a ll1 be Flow (l/s) l2.8 l3.2 l3.6 l4.0 l4.4</pre>
Hydro-Brake 0 Op Hydro-Brake Opt invalidated Depth (m) Flow 0.100 0.200 0.300 0.400 0.500 0.600 0.800 1.000	al calcu timum@ b imum@ b 3.6 5.0 5.1 5.0 4.9 4.5 4.5 5.1	lations ha is specifie w utilised Depth (m) 1.200 1.400 1.600 1.800 2.000 2.200 2.400 2.600	we been based d. Should an then these si Flow (1/s) Da 5.6 6.0 6.3 6.7 7.0 7.4 7.7	on the H bther typ torage ro 3.000 3.500 4.000 4.500 5.000 5.500 6.000 6.500	ead/Discha: e of contro uting calco Flow (1/s) 8.5 9.2 9.8 10.3 10.9 11.4 11.9 12.3	rge relation of device of ulations with Depth (m) 7.000 7.500 8.000 8.000 9.000 9.500	<pre>bther than a ll1 be Flow (1/s) l2.8 l3.2 l3.6 l4.0 l4.4 l4.8</pre>
Hydro-Brake 0 Op Hydro-Brake Opt invalidated Depth (m) Flow 0.100 0.200 0.300 0.400 0.500 0.600 0.800 1.000	al calcu timum@ b imum@ b 3.6 5.0 5.1 5.0 4.9 4.5 4.5 5.1	Depth (m) 1.200 1.400 1.600 1.800 2.000 2.400 2.600 1.100 1.100 1.200 1.200 1.400 1.600 1.200 1.400 1.6000 1.6000 1.6000 1.600 1.6000 1.6000 1.6000 1.600	we been based d. Should an then these si Flow (1/s) De 5.6 6.0 6.3 6.7 7.0 7.4 7.7 8.0 hole: SW05,	on the H ther typ torage ro pth (m) 1 3.000 3.500 4.000 4.500 5.000 5.500 6.000 6.500 DS/PN:	ead/Dischar a of contruting calco flow (1/s) 8.5 9.2 9.8 10.3 10.9 11.4 11.9 12.3 4.004, Vo	rge relation of device of ulations with Depth (m) 7.000 7.500 8.000 8.500 9.500 9.500	Flow (1/s) 12.8 13.2 13.6 14.0 14.4 14.8
Hydro-Brake 0 Op Hydro-Brake Opt invalidated Depth (m) Flow 0.100 0.200 0.300 0.400 0.500 0.600 0.800 1.000	al calcu timum@ b imum@ b 3.6 5.0 5.1 5.0 4.9 4.5 4.5 5.1	Depth (m) 1.200 1.400 1.600 1.600 2.000 2.200 2.400 2.600 1.100 1.100 1.8000 1.8000 1.8000 1.8000 1.8000 1.8000 1.8000 1.800	we been based d. Should an then these si Flow (1/s) De 5.6 6.0 6.3 6.7 7.0 7.4 7.7 8.0 nole: SW05, Unit Reference	on the H ther typ torage ro pth (m) 1 3.000 3.500 4.000 4.000 4.500 5.500 6.000 6.500 DS/PN: MD-SHE-	ead/Dischar a of contruting calco flow (1/s) 8.5 9.2 9.8 10.3 10.9 11.4 11.9 12.3 4.004, Vo	rge relation of device of ulations with Depth (m) 7.000 7.500 8.000 8.500 9.500 9.500 0.000 9.500	<pre>bther than a ll1 be Flow (1/s) l2.8 l3.2 l3.6 l4.0 l4.4 l4.8</pre>
Hydro-Brake 0 Op Hydro-Brake Opt invalidated Depth (m) Flow 0.100 0.200 0.300 0.400 0.500 0.600 0.800 1.000	al calcu timum@ b imum@ b 3.6 5.0 5.1 5.0 4.9 4.5 4.5 5.1	lations ha is specifie w utilised Depth (m) 1.200 1.400 1.600 1.800 2.000 2.400 2.400 2.400 2.600 2.400 2.600	ve been based d. Should an then these s Flow (1/s) De 5.6 6.0 6.3 6.7 7.0 7.4 7.7 8.0 nole: SW05, Unit Reference esign Head (m)	on the H bther typ torage ro 3.000 3.500 4.500 5.500 5.500 6.500 DS/PN: a MD-SHE-	ead/Dischar a of contruting calco flow (1/s) 8.5 9.2 9.8 10.3 10.9 11.4 11.9 12.3 4.004, Vo	rge relation of device of ulations with Depth (m) 7.000 7.500 8.000 8.500 9.500 9.500	<pre>bther than a ll1 be Flow (1/s) l2.8 l3.2 l3.6 l4.0 l4.4 l4.8</pre>
Hydro-Brake 0 Op Hydro-Brake Opt invalidated Depth (m) Flow 0.100 0.200 0.300 0.400 0.500 0.600 0.800 1.000	al calcu timum@ b imum@ b 3.6 5.0 5.1 5.0 4.9 4.5 4.5 5.1	lations ha is specifie w utilised Depth (m) 1.200 1.400 1.600 1.800 2.000 2.400 2.400 2.400 2.600 2.400 2.600	we been based d. Should an then these si Flow (1/s) De 5.6 6.0 6.3 6.7 7.0 7.4 7.7 8.0 nole: SW05, Unit Reference	on the H pther typ torage ro 	ead/Dischar a of contru- uting calco Flow (1/s) 8.5 9.2 9.8 10.3 10.9 11.4 11.9 12.3 4.004, Vo 0062-1500-1	rge relation of device (ulations with r. 000 7. 000 8. 000 8. 500 9. 000 9. 500 0. 000 9. 500 0. 000 0. 000 0. 700	<pre>bther than a ll1 be Flow (1/s) l2.8 l3.2 l3.6 l4.0 l4.4 l4.8</pre>
Hydro-Brake 0 Op Hydro-Brake Opt invalidated Depth (m) Flow 0.100 0.200 0.300 0.400 0.500 0.600 0.800 1.000	al calcu timum@ b imum@ b 3.6 5.0 5.1 5.0 4.9 4.5 4.5 5.1	lations ha is specifie w utilised Depth (m) 1.200 1.400 1.600 1.800 2.000 2.400 2.400 2.400 2.600 2.400 2.600	ve been based d. Should an then these si Flow (1/s) De 5.6 6.0 6.3 6.7 7.0 7.4 7.7 8.0 nole: SW05, Unit Reference seign Head (m) ign Flow (1/s) Flush-Flo [*] Objective	on the H other typ torage ro pth (m) 1 3.000 3.500 4.000 4.500 5.500 6.000 6.500 DS/PN: MD-SHE-	ead/Dischar a of contru- uting calco Flow (1/s) 8.5 9.2 9.8 10.3 10.9 11.4 11.9 12.3 4.004, Vo 0062-1500-1	rge relation pepth (m) 7.000 7.500 8.000 8.500 9.500 0.000 9.500 0.100 0.700 1.5 alculated m storage	<pre>bther than a ll1 be Flow (1/s) l2.8 l3.2 l3.6 l4.0 l4.4 l4.8</pre>
Hydro-Brake 0 Op Hydro-Brake Opt invalidated Depth (m) Flow 0.100 0.200 0.300 0.400 0.500 0.600 0.800 1.000	al calcu timum@ b imum@ b 3.6 5.0 5.1 5.0 4.9 4.5 4.5 5.1	lations ha is specifie w utilised Depth (m) 1.200 1.400 1.600 1.800 2.000 2.200 2.400 2.400 2.600 .imum Mani Des	ve been based d. Should am then these s Flow (1/s) De 5.6 6.0 6.3 6.7 7.0 7.4 7.7 8.0 nole: SW05, Unit Reference asign Head (m) ign Flow (1/s) Flush-Flo ⁰ Objective Application	on the H pther typ torage ro pth (m) 1 3.000 3.500 4.500 5.500 5.500 0.500 DS/PN: MD-SHE-	ead/Dischar a of contru- uting calco flow (1/s) 8.5 9.2 9.8 10.3 10.9 11.4 11.9 12.3 4.004, Vo 0062-1500-1	rge relation 1 device (1 de	<pre>bther than a ll1 be Flow (1/s) l2.8 l3.2 l3.6 l4.0 l4.4 l4.8</pre>
Hydro-Brake 0 Op Hydro-Brake Opt invalidated Depth (m) Flow 0.100 0.200 0.300 0.400 0.500 0.600 0.800 1.000	al calcu timum@ b imum@ b 3.6 5.0 5.1 5.0 4.9 4.5 4.5 5.1	lations ha is specifie w utilised Depth (m) 1.200 1.400 1.600 1.800 2.000 2.200 2.400 2.400 2.600 .imum Mani Des	ve been based d. Should an then these si Flow (1/s) De 5.6 6.0 6.3 6.7 7.0 7.4 7.7 8.0 nole: SW05, Unit Reference seign Head (m) ign Flow (1/s) Flush-Flo [*] Objective	on the H pther typ torage ro pth (m) 1 3.000 3.500 4.500 5.000 6.500 DS/PN: MD-SHE-	ead/Dischar a of contru- uting calco flow (1/s) 8.5 9.2 9.8 10.3 10.9 11.4 11.9 12.3 4.004, Vo 0062-1500-1	rge relation pepth (m) 7.000 7.500 8.000 8.500 9.500 0.000 9.500 0.100 0.700 1.5 alculated m storage	<pre>bther than a ll1 be Flow (1/s) l2.8 l3.2 l3.6 l4.0 l4.4 l4.8</pre>
Hydro-Brake@ Op Hydro-Brake Opt invalidated Depth (m) Flow 0.100 0.200 0.300 0.400 0.500 0.600 0.800 1.000 <u>Hydro-Brak</u>	al calcu otimum@ b imum@ b 3.6 5.0 4.9 4.5 4.5 5.1 5.0 4.9 4.5 4.5 5.1	lations ha is specifie w utilised Depth (m) 1.200 1.400 1.600 1.800 2.000 2.400 2.400 2.400 2.600 :imum Mani Des	ve been based d. Should am then these s Flow (1/s) De 5.6 6.0 6.3 6.7 7.0 7.4 7.7 8.0 hole: SW05, Unit Reference asign Head (m) ign Flow (1/s) Flush-Flo Objective Application Sump Available Diameter (mm) vert Level (m)	on the H bther typ torage ro (pth (m) 1 3.000 4.000 4.500 5.000 6.500 DS/PN: MD-SHE-	ead/Dischar a of contru- uting calco flow (1/s) 8.5 9.2 9.8 10.3 10.9 11.4 11.9 12.3 4.004, Vo 0062-1500-1	rge relations with the second	Flow (1/s) 12.8 13.2 13.6 14.0 14.4 14.8
Hydro-Brake Op Hydro-Brake Opt invalidated Depth (m) Flow 0.100 0.200 0.300 0.400 0.500 0.600 0.600 0.800 1.000 <u>Hydro-Brak</u>	al calcu timum@ b imum@ b (1/s) 3.6 5.0 4.9 4.5 4.5 4.5 5.1 be@ Opt	Depth (m) 1.200 1.200 1.400 1.600 1.800 2.000 2.400 2.400 2.600 1.mum Mani Des Immuter Pipe	ve been based d. Should an then these s Flow (1/s) De 5.6 6.0 6.3 6.7 7.0 7.4 7.7 8.0 hole: SW05, Unit Reference seign Head (m) ign Flow (1/s) Flush-Flo ⁰ Objective Application Sump Available Diameter (mm) vert Level (m)	on the H pther typ torage ro pth (m) 1 3.000 3.500 4.500 5.500 5.500 DS/PN: MD-SHE-	ead/Dischar a of contru- uting calco flow (1/s) 8.5 9.2 9.8 10.3 10.9 11.4 11.9 12.3 4.004, Vo 0062-1500-1	rge relation of device of ulations with 7.000 7.500 8.000 8.500 9.000 9.500 0.000 9.500 0.000 1.5 0.700 1.5 alculated m storage Surface Surface 55.065 75	Flow (1/s) 12.8 13.2 13.6 14.0 14.4 14.8
Hydro-Brake Op Hydro-Brake Opt invalidated Depth (m) Flow 0.100 0.200 0.300 0.400 0.500 0.600 0.600 0.800 1.000 <u>Hydro-Brak</u>	al calcu timum@ b imum@ b (1/s) 3.6 5.0 4.9 4.5 4.5 4.5 5.1 be@ Opt	Depth (m) 1.200 1.200 1.400 1.600 1.800 2.000 2.400 2.400 2.600 1.mum Mani Des Immuter Pipe	ve been based d. Should am then these s Flow (1/s) De 5.6 6.0 6.3 6.7 7.0 7.4 7.7 8.0 hole: SW05, Unit Reference asign Head (m) ign Flow (1/s) Flush-Flo Objective Application Sump Available Diameter (mm) vert Level (m)	on the H pther typ torage ro pth (m) 1 3.000 3.500 4.500 5.500 5.500 DS/PN: MD-SHE-	ead/Dischar a of contru- uting calco flow (1/s) 8.5 9.2 9.8 10.3 10.9 11.4 11.9 12.3 4.004, Vo 0062-1500-1	rge relations with the second	Flow (1/s) 12.8 13.2 13.6 14.0 14.4 14.8
Hydro-Brake@ Op Hydro-Brake Opt invalidated Depth (m) Flow 0.100 0.200 0.300 0.400 0.500 0.600 0.600 0.800 1.000 <u>Hydro-Brak</u>	al calcu timum@ b imum@ b (1/s) 3.6 5.0 4.9 4.5 4.5 4.5 5.1 be@ Opt	Depth (m) 1.200 1.200 1.400 1.600 1.800 2.000 2.400 2.400 2.600 1.mum Mani Des Immuter Pipe	ve been based d. Should an then these s Flow (1/s) De 5.6 6.0 6.3 6.7 7.0 7.4 7.7 8.0 hole: SW05, Unit Reference seign Head (m) ign Flow (1/s) Flush-Flo ⁰ Objective Application Sump Available Diameter (mm) vert Level (m)	on the H pther typ torage ro pth (m) 1 3.000 3.500 4.500 5.500 5.500 DS/PN: MD-SHE-	ead/Dischar a of contru- uting calco flow (1/s) 8.5 9.2 9.8 10.3 10.9 11.4 11.9 12.3 4.004, Vo 0062-1500-1	rge relation of device of ulations with 7.000 7.500 8.000 8.500 9.000 9.500 0.000 9.500 0.000 1.5 0.700 1.5 alculated m storage Surface Surface 55.065 75	Flow (1/s) 12.8 13.2 13.6 14.0 14.4 14.8
Hydro-Brake@ Op Hydro-Brake Opt invalidated Depth (m) Flow 0.100 0.200 0.300 0.400 0.500 0.600 0.600 0.800 1.000 <u>Hydro-Brak</u>	al calcu timum@ b imum@ b (1/s) 3.6 5.0 4.9 4.5 4.5 4.5 5.1 be@ Opt	Depth (m) 1.200 1.400 1.400 1.600 2.000 2.400 2.400 2.600 1.1mum Manh Des.	ve been based d. Should an then these s Flow (1/s) De 5.6 6.0 6.3 6.7 7.0 7.4 7.7 8.0 hole: SW05, Unit Reference seign Head (m) ign Flow (1/s) Flush-Flo ⁰ Objective Application Sump Available Diameter (mm) vert Level (m)	on the H pther typ torage ro pth (m) 1 3.000 3.500 4.500 5.000 6.500 DS/PN: MD-SHE-	ead/Discha: e of contru- uting calco flow (1/s) 8.5 9.2 9.8 10.3 10.9 11.4 11.9 12.3 4.004, VC 0062-1500-1 cc se upstream	rge relation of device of ulations with 7.000 7.500 8.000 8.500 9.000 9.500 0.000 9.500 0.000 1.5 0.700 1.5 alculated m storage Surface Surface 55.065 75	Flow (1/s) 12.8 13.2 13.6 14.0 14.4 14.8

A Contract of Doot						Dama D
A L Daines & Part	ners					Page 3
28 Castle Street						
Carlisle						
CA3 8TP						Micro
Date 02/05/2023 0	9:28	Designed	i by peter	а		Drainage
File MD CALCS SM.	MDX	Checked	ру			Diamaye
Micro Drainage		Network	2020.1.3			
Hydro-Brake@	Optimum Manho	le: SW05,	DS/PN: 4.0	004, Volu	ume (m³)	: 67.1
	Control H	Points	Head (m) Fl	low (1/s)		
	Design Point (Calculated	0.700	1.5		
	besign roine (Flush-Flom		1.5		
		Kick-Flo0		1.2		
	Mean Flow over	Head Range	-	1.3		
				in a set		
The hydrological c Hydro-Brake@ Optim						
Hydro-Brake Optimu						
invalidated				,		
Depth (m) Flow (1)	/s) Depth (m) Fl	ow (1/s) Dep	pth (m) Flow	(1/s) De	apth (m)	Flow (1/s)
0.100	1.4 1.200	1.9	3.000	2.9	7,000	4.3
	1.5 1.400	2.1	3.500	3.1	7.500	4.5
0.300	1.5 1.600	2.2	4.000	3.3	8.000	4.6
	1.4 1.800	2.3	4.500	3.5	8.500	4.8
1	1.3 2.000	2.4	5.000	3.7	9.000	4.9
1	1.4 2.200 1.6 2.400	2.5	5.500	3.9	9.500	5.0
	1.8 2.600	2.7	6.500	4.2		
Hydro-Brake@	Optimum Manho	le: SW16,	DS/PN: 6.	004, Vol	ume (m³): 8.1
		it Reference	MD-SHE-009	5-3600-070		
		ign Head (m)			0.700	
	Desig	n Flow (1/s) Flush-Flo ^m		C-1-	3.6 sulated	
			Minimise			
		Application			Surface	
	Sur	np Available			Yes	
		iameter (mm)			95	
		rt Level (m)			49.200	
1	um Outlet Pipe D: gested Manhole D:				150 1200	
aug	gesced Mainore D.	rameter (mm)			1200	
	Control H	Points	Head (m) Fl	low (1/s)		
	Design Point (Calculated) Flush-Flo ^m		3.6		
		Flush-Flow Kick-Flow		3.6		
	Mean Flow over			3.1		
The hydrological c						
Hydro-Brake@ Optim						
Hydro-Brake Optimu invalidated	me be utilised th	nen these st	orage routi	ng calcula	cions wil	LI DO
111VALIGATO						
Depth (m) Flow (1)	/s) Depth (m) Fl	ow (1/s) Dep	pth (m) Flow	(1/s) De	apth (m)	Flow (l/s)
	3.0 0.300 3.6 0.400	3.5	0.500	3.1	0.800	3.8
0.200	3.6 0.400	3.4	0.000	3.4	1.000	4.2
1	©1	982-2020 I	nnovyze			

A I Dairea a	Darteare						Dago 4		
A L Daines & D							Page 4		
28 Castle Str	eet								
Carlisle							and the second		
CA3 8TP							Micro		
Date 02/05/20	Date 02/05/2023 09:28 Designed by petera								
File MD CALCS SM.MDX Checked by							Drainage		
Micro Drainag	Micro Drainage Network 2020.1.3								
Hydro-Bra	ake@ Opt:	Lmum Manho	ole: SW16,	DS/PN: 6.	004, Vol	lume (m³): 8.1		
Depth (m) Flo	DW (1/s) D	epth (m) Fl	Low (1/s) D	apth (m) Flo	w (1/s) D	epth (m)	Flow (1/s)		
1.200	4.6	2,400	6.4	5.000	9.0	8.000	11.3		
1.400	5.0	2,600	6.6	5,500	9.4	8.500	11.6		
1.600	5.3	3.000	7.1	6.000	9.8	9.000	12.0		
1.800	5.6	3.500	7.6	6.500 7.000	10.2	9.500	12.3		
2,200	6.1	4,500	8.6	7.500	10.9				
Hydro-Bra	ake@ Opt:	Lmum Manho	ole: SW19,	DS/PN: 7.	001, Vol	lume (m³): 7.5		
				MD-SHE-006	2-1200-02				
			ign Head (m			0.200			
		Desig	n Flow (1/s Flush-Flo		Cal	culated			
				e Minimise					
			Applicatio	n	-	Surface			
			mp Availabl			Yes			
			iameter (mm			62 52,500			
,	Minimum Out		rt Level (m iameter (mm			52.500			
			iameter (mm			1200			
		Control	Points	Head (m) F	LOW (1/S)				
	Des	ign Point	(Calculated)		1.2				
			Flush-Flo		1.2				
	Mon		Kick-Flot Head Range		1.1				
	794 4	in stow over	near nang		0.9				
The hydrologic	cal calcul	ations have	been based	on the Head	/Discharg	e relatio	nship for the		
Hydro-Brake@ (
Hydro-Brake Op invalidated	ptimum@ be	utilised t	hen these s	torage routi	ng calcul	ations wi	11 be		
invalidated									
Depth (m) Flo	ow (1/s) D	epth (m) Fl	low (1/s) D	epth (m) Flo	w (l/s) D	epth (m)	Flow (l/s)		
0,100	1.2	1,200	2.7	3,000	4.2	7,000	6.4		
0.200	1.2	1,400	2.9	3.500	4.5	7.500	6.6		
0.300	1.4	1.600	3.1	4.000	4.8	8.000	6.8		
0.400	1.6	1.800	3.3	4.500	5.1	8.500	7.0		
0.500	1.8	2.000	3.4	5.000	5.4	9.000	7.2		
0.600	2.0	2.200	3.6	5.500	5.7	9.500	7.4		
0.800	2.2	2.400	3.7	6.000 6.500	5.9				
1.000	2.3	2.600	3.3	0.000	0.2				
		©1	982-2020	Innovyze					
				-					

A L Daines 4 Partners Page 5 28 Castle Street Designed by petera Designed by petera Call Street Checked by Designed by petera File MD CALCS SM.MDX Checked by Designed by petera Date 02/05/2023 09:28 Designed by petera Checked by Micro Drainage Network 2020.1.3 Designed by petera Derous Car Park Manhole: SW10, DS/PN: 3.001 Infiltration Coefficiant Base (m/hr) 0.00000 Width (m) 38.0 Matwork 2020.1.3 Derous Car Park Manhole: SW10, DS/PN: 3.001 Infiltration Coefficiant Base (m/hr) 0.00000 Natwork 2020.1.3 Matwork 2020.1.3 Derous Car Park Manhole: SW10, DS/PN: 3.001 Infiltration Coefficiant Base (m/hr) 0.00000 Derout 0.30 Paperation (m/hr) 3 Invert Level (m) 33.50 Matwork 10/3 B3.70 Depth (m) Area (m²) Inf. Area (m²) O.000 Cellular Storage Manhole: SW10, DS/PN: 3.002 Invert Level (m) 45.475 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.00000				
Carlisie Designed by petra Checked by Micro Drainage Network 2020.1.3 Decomposition of the petra Micro Drainage Network 2020.1.3 Decomposition of the petra Micro Drainage Decomposition of the petra Decomposition (mathemposition of the petra Decomposition (mathemposition (mathem	A L Daines & Partners		Page 5	
CAS BTP Designed by petra Checked by Micro Drainage Network 2020.1.3 Storage Structures for Storm Micro Drainage Network 2020.1.3 Designed by petra Checked by Micro Drainage Network 2020.1.3 Decous Car Park Manhole: SW10, DS/PN: 3.001 Midro Designed by petra Designed by Petra Designed by Petra	28 Castle Street			
Date 02/05/2023 09:28 Designed by petera Checked by Designed by checked by Micro Drainage Network 2020.1.3 Storage Structures for Storm Dorous Car Park Manhole: SW10, DS/PN: 3.001 Infiltration Coefficient Base (m/hr) 0.0000 Width (m) 38.0 Mambrane Percolation (mm/hr) 1000 Length (m) 85.0 Mambrane Percolation (mm/hr) 1000 Length (m) 85.0 Metwork 2020.1.3 Mambrane Percolation (mm/hr) 1000 Length (m) 85.0 Mambrane Percolation (mm/hr) 1000 Length (m) 85.0 Metwork 2020.1.3 Mambrane Percolation (m/hr) 1000 Metwork 2020.1.3 Mambrane Percolation (m/hr) 1000 Dispecticly 36.0 Invert Lavel (m) 53.660 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.00000 Depth (m) Area (m ²) O.00 O.00 Network 2020.1.1 Invert Lavel (m) 53.660 Safety Factor 2.0 Invert Lavel (m) 49.475 Safety Factor 2.0 In	Carlisle			
Date 02/05/2023 09128 Designed by peters Define 02 Micro Drainage Network 2020.1.3 Metwork 2020.1.3 Storage Structures for Storm Derous Car Park Manhole: SW10, DS/PN: 3.001 Midth (m) 38.0 Langth (m) 8.00 Midth (m) 38.0 Metwork 2020.1.3 Derous Car Park Manhole: SW10, DS/PN: 3.001 Midth (m) 38.0 Metwork 2020.1.3 Midth (m) 38.0 Midth (m) 400 Midth (m) 38.0 Midth (m) 38.0 Midth (m) 51.560 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.00000 Depth (m) Area (m²) Inf. Area (m²) 0.00 One filter f	CA3 8TP		Micco	
Micro Drainage Network 2020.1.3 Storage Structures for Storm Derous Car Park Manhole: SW10, DS/PN: 3.001 Infiltration Coefficient Base (m/hr) 0.00000 With (m) 38.0 Memory 2.0 Depression Storage (m) 5 Storage Manhole: SW09, DS/PN: 3.001 Infiltration Coefficient Base (m/hr) 0.00000 Memory 2.0 Depression Storage (m) 5 Storage Manhole: SW09, DS/PN: 3.002 Derosity 0.30 Exportion (m/kdy) 3 Invert Level (m) 53.660 Safety Factor 2.0 Intert Level (m) 53.660 Safety Factor 2.0 Intert Level (m) 53.660 Safety Factor 2.0 Intert Level (m) 49.475 Safety Factor 2.0<	Date 02/05/2023 09:28	Designed by petera		
Micro Drainage Network 2020.1.3 Storage Structures for Storm Porous Car Park Manhole: SW10, DS/PN: 3.001 Infiltration Coefficient Base (m/hr) 0.00000 Width (m) 38.0 Membrane Percolation (mm/hr) Network 2020.1.3 Membrane Percolation (mm/hr) Invert Level (m) 53.660 Safety Factor 2.0 Invert Level (m) 53.660 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.00000 Depth (m) Area (m ²) On 650.0 0.00 Sigpt (m) Area (m ²) One of 50.0 0.00 Cellular Storage Manhole: SW16, DS/PN: 6.004 Invert Level (m) 49.475 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.00000 Depth (m) Area (m ²)	File MD CALCS SM.MDX	Checked by	Drainage	
Storage structures for store Derose car park Manhole: SW10, DS/PN: 3.001 Infiltration Coefficient Base (m/n) 0.0000 Midth (m) 38.0 Max Percolation (m/n) 0.000 Light (m) 38.0 Max Percolation (m/n) 0.000 Stopo (m) 30.0 Max Percolation (m/n) 0.000 Dispension Storage (m) 30.0 Max Percolation (m) 0.000 Dispension Storage (m) 30.0 Max Percolation (m) 0.0000 Depression Storage (m) 30.0 Max Percolation (m) 0.0000 Perconsit 0.0000 Definitiation Coefficient Base (m/n) 0.00000 Perconsit 0.00 0.000 0.00 0.00 0.000 0.00 0.00 0.000 0.00 0.00 0.000 0.00 0.00 0.000 0.00 0.00 0.000 0.00 0.00 0.000 0.00 0.00 0.000 0.00 0.00 0.000 0.00 0.00		-		
Jonds Car Park Manhole: SW10, DS/PN: 3.001Millingtion Coefficient Base (m/h) 0.0000Ninth (m) 34.0Max Percolation (m/h) 1000Longth (m) 34.0Max Percolation (m/h) 10002.00Percent 0.13S97.2Signe (m) 3.3Statur ParcoPercent Vol (m) 3.3.000Restrance Barto (m/day) 3Inter Level (m) 3.3.605Satety ParcoPercent Vol (m) 3.3.000Percent 0.000Deluter Storage Manhole: SW09, DS/PN: 3.000Constration (m/day) 3Inter Level (m) 3.5.605Satety ParcoMillingtion Coefficient Base (m/hr) 0.00000Percent 0.03Deft (m) Area (m) Inf. Area (m) Restration Coefficient Base (m/hr) 0.00000Percent 0.03Octo 0.000.010.00.00.000.000.010.00.000.000.010.00.000.000.010.00.000.000.010.00.000.000.010.00.000.000.010.00.000.010.010.00.000.010.010.00.000.010.010.00.000.010.010.00.000.010.010.00.000.010.010.00.000.010.010.00.000.010.010.00.000.010.000.00.000.010.000.00.000.010.000.00.000.010.00		ALLOVIA DEDITIO		
Jonds Car Park Manhole: SW10, DS/PN: 3.001Millingtion Coefficient Base (m/h) 0.0000Ninth (m) 34.0Max Percolation (m/h) 1000Longth (m) 34.0Max Percolation (m/h) 10002.00Percent 0.13S97.2Signe (m) 3.3Statur ParcoPercent Vol (m) 3.3.000Newbrane Bepro1Detrict Loval (m) 3.3.000Percent (m)/ds/9Antipercent Vol (m) 4.0000Percent (m)/ds/9Antiperce	Storage	Structures for Storm		
<pre>Infiltration Coefficient Base (m/hr) 0.0000</pre>				
Infiltration Coefficient Base (m/hr) 0.0000 intervence (m)				
Infiltration Coefficient Base (m/hr) 0.0000 intervence (m) (m) (m) 85.0 Max Percolation (1/s) 87.2 Slope (1:3) 46.0 Max Percolation (1/s) 87.2 Slope (1:3) 46.0 Sterrostiy 0.30 Percostiy 0.30 Percostiy 0.30 Perpersion Storage (ms) 0.000 Invert Level (m) 53.860 Sterrostorage (ms) 400 Cellular Storage Manhole: SW09, DS/PN: 3.002 Invert Level (m) 53.660 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.0000 Opth (m) Ares (m²) Inf. Ares (n²) Opth (m) Ares (m²) Inf. Ares (n²) Opth (m) Ares (m²) Inf. Ares (m²)	Porous Car Park	Manhole: SW10, DS/PN: 3.001		
Membrane Percolation (im/h) 1000 Length (m) 85.0 Max Percolation (im/h) 897.2 Slope (1x) 46.0 Safety Factor 2.0 Depression Storage (mm) 5 Porosity 0.30 Rvaporation (mm/day) 3 Invert Level (m) 53.660 Safety Factor 2.0 Invert Level (m) 53.660 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.0000 Poresity 0.95 0.16 Depth (m) Area (m²) Inf. Area (m²) Depth (m) Area (m²) Inf. Area (m²) 0.000 650.0 0.0 0.961 0.0 0.0 0.960 650.0 0.0 0.961 0.0 0.0 Cellular Storage Manhole: SW16, DS/FN: 6.004 Invert Level (m) 49.475 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.0000 Poresity 0.95 Infiltration Coefficient Side (m/hr) 0.000 0.000 650.0 0.0 0.961 0.0 0.0 0.000 650.0 0.0 0.961 0.0 0.0 0.000 650.0 0.0 0.961 0.0 0.0				
Max Percolation (1/s) 897.2 Slopé (1:X) 46.0 Safety Factor 2.0 Depression Storage (nm) 5 3 Porestiv 0.30 Evaporation (mm/day) 3 Invert Level (n) 53.620 Membrane Depth (nm) 400 Cellular Storage Manhole: SW09, DS/PN: 3.002 Invert Level (m) 53.660 Invert Level (m) 53.660 Note: Cellular Storage Manhole: SW09, DS/PN: 3.002 Depth (m) Area (m ²) Invert Level (m) 53.660 One (m) 0.961 0.0 One (m) 1.0 0.0 One (m) Area (m ²) Inf. Area (m ²) One (m) Area (m ²) Inf. Area (m ²) One (m) 0.0 0.0 One (m) 0.0 0.0 One (m) 0.0 0.0 <td cols<="" td=""><td>Infiltration Coefficient Base</td><td>(m/hr) 0.00000 Width (m)</td><td>38.0</td></td>	<td>Infiltration Coefficient Base</td> <td>(m/hr) 0.00000 Width (m)</td> <td>38.0</td>	Infiltration Coefficient Base	(m/hr) 0.00000 Width (m)	38.0
Safety Factor 2.0 Depression Storings (mm) 43 Invert Level (m) 53.820 Numbrane Depth (mm) 400 Cellular Storage Manhole: SW09, DS/PN: 3.002 Invert Level (m) 53.660 Safety Factor 2.0 Intert Level (m) 53.660 Safety Factor 2.0 Intert Level (m) 53.660 Safety Factor 2.0 Intert Level (m) Area (m ²) Inf. Area (m ²) 0.000 Safety Factor 2.0 Intert Level (m) 49.475 Safety Factor 2.0 On the set of th				
Invert Level (m) 53.820 Membrane Depth (mm) 400 <u>Cellular Storage Manhole: SW09, DS/PN: 3.002</u> Invert Level (m) 53.660 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.00000 Depth (m) Area (m²) Inf. Area (m²) 0.000 650.0 0.0 0.960 650.0 0.0 <u>Cellular Storage Manhole: SW16, DS/PN: 6.004</u> Invert Level (m) 49.475 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.00000 Depth (m) Area (m²) Inf. Area (m²) 0.000 650.0 0.0 <u>Cellular Storage Manhole: SW16, DS/PN: 6.004</u> <u>Invert Level (m) 49.475 Safety Factor 2.0</u> Infiltration Coefficient Base (m/hr) 0.00000 Depth (m) Area (m²) Inf. Area (m²) 0.960 650.0 0.0 <u>Cellular Storage Manhole: SW19, DS/PN: 7.001</u> <u>Invert Level (m) 52.500 Safety Factor 2.0</u> Infiltration Coefficient Side (m/hr) 0.00000 Depth (m) Area (m²) Inf. Area (m²) <u>Divert Level (m) 52.500 Safety Factor 2.0</u> Infiltration Coefficient Side (m/hr) 0.00000 Depth (m) Area (m²) Inf. Area (m²) <u>Divert Level (m) 52.500 Safety Factor 2.0</u> Infiltration Coefficient Side (m/hr) 0.00000 Depth (m) Area (m²) Inf. Area (m²) <u>Divert Level (m) Area (m²) Inf. Area (m²)</u> <u>Divert (m) Area (m²) Inf. Area (m²) <u>Divert (m) Area (m²) Inf. Area (m²)</u></u>				
Invert Level (m) 53.820 Membrane Depth (mm) 400 <u>Cellular Storage Manhole: SW09, DS/PN: 3.002</u> Invert Level (m) 53.660 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.00000 Depth (m) Area (m²) Inf. Area (m²) 0.000 650.0 0.0 0.960 650.0 0.0 <u>Cellular Storage Manhole: SW16, DS/PN: 6.004</u> Invert Level (m) 49.475 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.00000 Depth (m) Area (m²) Inf. Area (m²) 0.000 650.0 0.0 <u>Cellular Storage Manhole: SW16, DS/PN: 6.004</u> <u>Invert Level (m) 49.475 Safety Factor 2.0</u> Infiltration Coefficient Base (m/hr) 0.00000 Depth (m) Area (m²) Inf. Area (m²) 0.960 650.0 0.0 <u>Cellular Storage Manhole: SW19, DS/PN: 7.001</u> <u>Invert Level (m) 52.500 Safety Factor 2.0</u> Infiltration Coefficient Side (m/hr) 0.00000 Depth (m) Area (m²) Inf. Area (m²) <u>Divert Level (m) 52.500 Safety Factor 2.0</u> Infiltration Coefficient Side (m/hr) 0.00000 Depth (m) Area (m²) Inf. Area (m²) <u>Divert Level (m) 52.500 Safety Factor 2.0</u> Infiltration Coefficient Side (m/hr) 0.00000 Depth (m) Area (m²) Inf. Area (m²) <u>Divert Level (m) Area (m²) Inf. Area (m²)</u> <u>Divert (m) Area (m²) Inf. Area (m²) <u>Divert (m) Area (m²) Inf. Area (m²)</u></u>	Sarety	Factor 2.0 Depression Storage (mm)	3	
Invert Level (m) 53.660 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.0000 Porenity 0.95 Depth (m) Area (m²) Inf. Area (m²) Depth (m) Area (m²) Inf. Area (m²) 0.000 650.0 0.0 0.961 0.0 0.0 0.960 650.0 0.0 0.961 0.0 0.0 Cellular Storage Manhole: SW16, DS/PN: 6.004 Invert Level (m) 49.475 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.00000 Poresity 0.95 Infiltration Coefficient Base (m/hr) 0.00000 Poresity 0.95 Infiltration Coefficient Base (m/hr) 0.00000 0.0 0.0 Open (m) Area (m²) Inf. Area (m²) Depth (m) Area (m²) 0.0 0.0 Open (m) Area (m²) Infiltration Coefficient Base (m/hr) 0.961 0.0 0.0 Open (m) S2.500 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.9000 Poresity 0.3 Infiltration Coeff	Invert Lev	vel (m) 53.820 Membrane Depth (mm)	400	
Invert Level (m) 53.660 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.0000 Porenity 0.95 Depth (m) Area (m²) Inf. Area (m²) Depth (m) Area (m²) Inf. Area (m²) 0.000 650.0 0.0 0.961 0.0 0.0 0.960 650.0 0.0 0.961 0.0 0.0 Cellular Storage Manhole: SW16, DS/PN: 6.004 Invert Level (m) 49.475 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.00000 Poresity 0.95 Infiltration Coefficient Base (m/hr) 0.00000 Poresity 0.95 Infiltration Coefficient Base (m/hr) 0.00000 0.0 0.0 Open (m) Area (m²) Inf. Area (m²) Depth (m) Area (m²) 0.0 0.0 Open (m) Area (m²) Infiltration Coefficient Base (m/hr) 0.961 0.0 0.0 Open (m) S2.500 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.9000 Poresity 0.3 Infiltration Coeff				
Infiltration Coefficient Base (m/hr) 0.0000 Persity 0.95 Infiltration Coefficient Side (m/hr) 0.00000 Depth (m) Ares (m ²) Inf. Ares (m ²) 0.000 550.0 0.0 Cellular Storage Manhole: SW16, DS/FN: 6.004 Invert Lavel (m) 49.475 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.00000 Depth (m) Ares (m ²) Inf. Ares (m ²) 0.000 550.0 0.0 Cellular Storage Manhole: SW16, DS/FN: 6.004 Invert Lavel (m) 49.475 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.00000 Depth (m) Ares (m ²) Inf. Ares (m ²) 0.000 550.0 0.0 Cellular Storage Manhole: SW19, DS/FN: 7.001 Invert Lavel (m) 52.500 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.00000 Depth (m) Ares (m ²) Inf. Ares (m ²) 0.000 550.0 0.0 Cellular Storage Manhole: SW19, DS/FN: 7.001 Invert Lavel (m) 52.500 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.00000 Depth (m) Ares (m ²) Inf. Ares (m ²) Depth (m) Ares (m ²) Inf. Ares (m ²) Depth (m) Ares (m ²) Inf. Ares (m ²) 0.000 350.0 0.0 0.960 350.0 0.0 0.961 0.0 0.0 Depth (m) Ares (m ²) Inf. Ares (m ²) Depth (m) Ares (m ²) Inf. Ares (m ²) 0.000 350.0 0.0 0.961 0.0 0.0 Depth (m) Ares (m ²) Inf. Ares (m ²) Depth (m) Ares (m ²) Inf. Ares (m ²) Depth (m) Ares (m ²) Inf. Ares (m ²) 0.960 350.0 0.0 Depth (m) Ares (m ²) Inf. Ares (m ²) Depth (m) Ares (m ²) Inf. Ares (m ²) 0.960 350.0 0.0 Depth (m) Ares (m ²) Inf. Ares (m ²) Depth (m) Ares (m ²) Inf. Ares (m ²) 0.961 0.0 0.0 Depth (m) Ares (m ²) Inf. Ares (m ²) Depth (m) Ares (m ²) Inf. Ares (m ²) 0.960 350.0 0.0 Depth (m) Ares (m ²) Inf. Ares (m ²) Depth (m) Ares (m ²) Inf. Ares (m ²) Depth (m) Ares (m ²) Inf. Ares (m ²) 0.960 350.0 0.0 Depth (m) Ares (m ²) Inf. Ares (m ²) Depth (m) Ares (m ²) Inf. Ares (m ²) Depth (m) Ares (m ²) Inf. Ares (m ²) Depth (m) Ares (m ²) Inf. Ares (m ²) Depth (m) Ares (m ²) Inf. Ares (m ²) Depth (m) Ares (m ²) Inf. Ares (m ²) Depth (m) Ares (m ²	Cellular Storage	Manhole: SW09, DS/PN: 3.002		
Infiltration Coefficient Base (m/hr) 0.0000 Persity 0.95 Infiltration Coefficient Side (m/hr) 0.00000 Depth (m) Ares (m ²) Inf. Ares (m ²) 0.000 550.0 0.0 Cellular Storage Manhole: SW16, DS/FN: 6.004 Invert Lavel (m) 49.475 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.00000 Depth (m) Ares (m ²) Inf. Ares (m ²) 0.000 550.0 0.0 Cellular Storage Manhole: SW16, DS/FN: 6.004 Invert Lavel (m) 49.475 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.00000 Depth (m) Ares (m ²) Inf. Ares (m ²) 0.000 550.0 0.0 Cellular Storage Manhole: SW19, DS/FN: 7.001 Invert Lavel (m) 52.500 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.00000 Depth (m) Ares (m ²) Inf. Ares (m ²) 0.000 550.0 0.0 Cellular Storage Manhole: SW19, DS/FN: 7.001 Invert Lavel (m) 52.500 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.00000 Depth (m) Ares (m ²) Inf. Ares (m ²) Depth (m) Ares (m ²) Inf. Ares (m ²) Depth (m) Ares (m ²) Inf. Ares (m ²) 0.000 350.0 0.0 0.960 350.0 0.0 0.961 0.0 0.0 Depth (m) Ares (m ²) Inf. Ares (m ²) Depth (m) Ares (m ²) Inf. Ares (m ²) 0.000 350.0 0.0 0.961 0.0 0.0 Depth (m) Ares (m ²) Inf. Ares (m ²) Depth (m) Ares (m ²) Inf. Ares (m ²) Depth (m) Ares (m ²) Inf. Ares (m ²) 0.960 350.0 0.0 Depth (m) Ares (m ²) Inf. Ares (m ²) Depth (m) Ares (m ²) Inf. Ares (m ²) 0.960 350.0 0.0 Depth (m) Ares (m ²) Inf. Ares (m ²) Depth (m) Ares (m ²) Inf. Ares (m ²) 0.961 0.0 0.0 Depth (m) Ares (m ²) Inf. Ares (m ²) Depth (m) Ares (m ²) Inf. Ares (m ²) 0.960 350.0 0.0 Depth (m) Ares (m ²) Inf. Ares (m ²) Depth (m) Ares (m ²) Inf. Ares (m ²) Depth (m) Ares (m ²) Inf. Ares (m ²) 0.960 350.0 0.0 Depth (m) Ares (m ²) Inf. Ares (m ²) Depth (m) Ares (m ²) Inf. Ares (m ²) Depth (m) Ares (m ²) Inf. Ares (m ²) Depth (m) Ares (m ²) Inf. Ares (m ²) Depth (m) Ares (m ²) Inf. Ares (m ²) Depth (m) Ares (m ²) Inf. Ares (m ²) Depth (m) Ares (m ²				
Infiltration Coefficient Side (m/hr) 0.0000 Depth (m) Area (m²) Inf. Area (m²) Depth (m) Area (m²) Inf. Area (m²) 0.000 650.0 0.0 0.960 650.0 0.0 Cellular Storage Manhole: SW16, DS/PN: 6.004 Invert Lavel (m) 49.475 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.00000 Depth (m) Area (m²) Inf. Area (m²) 0.961 0.0 0.961 0.0 Opth (m) Area (m²) Inf. Area (m²) Infiltration Coefficient Base (m/hr) 0.00000 Depth (m) Area (m²) Inf. Area (m²) 0.961 0.0 0.961 0.0 Opth (m) Area (m²) Inf. Area (m²) Infiltration Coefficient Base (m/hr) 0.00000 Depth (m) Area (m²) Inf. Area (m²) Opth (m) Area (m²) Inf. Area (m²) Opth (m) Area (m²) Inf. Area (m²) O.000 0.951 O.000				
Depth (m) Area (m ²) Inf. Area (m ²) Depth (m) Area (m ²) Inf. Area (m ²) 0.000 650.0 0.0 0.960 650.0 0.0 O.961 0.0 Cellular Storage Manhole: SW16, DS/PN: 6.004 Invert Lavel (m) 49.475 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.00000 Depth (m) Area (m ²) Inf. Area (m ²) Depth (m) Area (m ²) Inf. Area (m ²) 0.000 650.0 0.0 0.961 0.0 0.0 0.000 650.0 0.0 0.961 0.0 0.0 0.000 650.0 0.0 0.961 0.0 0.0 O.961 0.0 0.0 0.961 0.0 0.0 O.961 0.0 0.0 O.961 0.0 0.0 Inf. Area (m ²) Depth (m) Area (m ²) Inf. Area (m ²) Infiltration Coefficient Side (m/hr) 0.00000 Porosity 0.955 Infiltration Coefficient Side (m/hr) 0.00000 Porosity 0.95 Depth (m) Area (m ²) Inf. Area (m ²) <td></td> <td></td> <td></td>				
0.000 650.0 0.0 0.961 0.0 0.0 Cellular Storage Manhole: SW16, DS/PN: 6.004 Invert Level (m) 49.475 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.00000 Depth (m) Area (m ²) Inf. Area (m ²) Depth (m) Area (m ²) Inf. Area (m ²) 0.000 650.0 0.0 0.960 650.0 0.0 Osepth (m) Area (m ²) Inf. Area (m ²) 0.961 0.0 Osepth (m) Area (m ²) Inf. Area (m ²) Osepth (m) Area (m ²) Inf. Area (m ²) Osepth (m) Area (m ²) Inf. Area (m ²) Invert Level (m) 52.500 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.00000 Depth (m) Area (m ²) Inf. Area (m ²) Infiltration Coefficient Base (m/hr) 0.00000 Depth (m) Area (m ²) Inf. Area (m ²) 0.000 0.000 Osepth (m) Area (m ²) Inf. Area (m ²) 0.000 0.000 Osepth (m) Area (m ²) Inf. Area (m ²) 0.00	Infiltration Coefficient	Side (m/hr) 0.00000		
0.960 650.0 0.0 Cellular Storage Manhole: SW16, DS/PN: 6.004 Invert Level (m) 49.475 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.00000 Poreaity 0.95 Infiltration Coefficient Base (m/hr) 0.00000 Depth (m) Area (m ²) Inf. Area (m ²) 0.000 650.0 0.0 0.961 0.0 0.0 Output (m) Area (m ²) Inf. Area (m ²) 0.000 650.0 0.0 0.960 650.0 0.0 0.961 0.0 0.0 Cellular Storage Manhole: SW19, DS/PN: 7.001 Invert Level (m) 52.500 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.00000 Depth (m) Area (m ²) Inf. Area (m ²) Depth (m) Area (m ²) Inf. Area (m ²) 0.000 350.0 0.0 0.961 0.0 0.0 0.960 350.0 0.0 0.961 0.0 0.0	Depth (m) Area (m ²) Inf. Are	ea (m ²) Depth (m) Area (m ²) Inf. Area ((m ²)	
Cellular Storage Manhole: SW16, DS/PN: 6.004 Invert Level (m) 49.475 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.0000 Depth (m) Area (m²) Inf. Area (m²) 0.000 650.0 0.0 0.960 650.0 0.0 0.960 650.0 0.0 Cellular Storage Manhole: SW19, DS/PN: 7.001 Invert Level (m) 52.500 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.00000 Porosity 0.95 Infiltration Coefficient Side (m/hr) Infiltration Coefficient Side (m/hr) 0.00000 Porosity 0.95 Infiltration Coefficient Side (m/hr) 0.00000 Depth (m) Area (m²) Inf. Area (m²) Pepth (m) Area (m²) Inf. Area (m²) 0.961 0.0 0.000 350.0 0.0 0.961 0.0 0.0	0.000 650.0	0.0 0.961 0.0	0.0	
Invert Level (m) 49.475 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.00000 Porosity 0.95 Infiltration Coefficient Side (m/hr) 0.00000 Porosity 0.95 Depth (m) Area (m²) Inf. Area (m²) Depth (m) Area (m²) Inf. Area (m²) 0.000 650.0 0.0 0.961 0.0 0.0 0.960 650.0 0.0 0.961 0.0 0.0 Cellular Storage Manhole: SW19, DS/PN: 7.001 Invert Level (m) 52.500 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.0000 Porosity 0.95 Infiltration Coefficient Side (m/hr) 0.0000 Porosity 0.95 Depth (m) Area (m²) Inf. Area (m²) 0.000 350.0 0.0 0.961 0.0 0.0 0.000 350.0 0.0 0.961 0.0 0.0 0.960 350.0 0.0 0.961 0.0 0.0	0.960 650.0	0.0		
Invert Level (m) 49.475 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.00000 Porosity 0.95 Infiltration Coefficient Side (m/hr) 0.00000 Porosity 0.95 Depth (m) Area (m²) Inf. Area (m²) Depth (m) Area (m²) Inf. Area (m²) 0.000 650.0 0.0 0.961 0.0 0.0 0.960 650.0 0.0 0.961 0.0 0.0 Cellular Storage Manhole: SW19, DS/PN: 7.001 Invert Level (m) 52.500 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.0000 Porosity 0.95 Infiltration Coefficient Side (m/hr) 0.0000 Porosity 0.95 Depth (m) Area (m²) Inf. Area (m²) 0.000 350.0 0.0 0.961 0.0 0.0 0.000 350.0 0.0 0.961 0.0 0.0 0.960 350.0 0.0 0.961 0.0 0.0				
Infiltration Coefficient Base (m/hr) 0.0000 Depth (m) Area (m ²) Inf. Area (m ²) 0.000 650.0 0.0 0.960 650.0 0.0 Cellular Storage Manhole: SW19, DS/PN: 7.001 Invert Level (m) 52.500 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.00000 Depth (m) Area (m ²) Inf. Area (m ²) 0.000 350.0 0.0 0.961 0.0 0.0 0.961 0.0 0.0	Cellular Storage	Manhole: SW16, DS/PN: 6.004		
Infiltration Coefficient Base (m/hr) 0.0000 Depth (m) Area (m ²) Inf. Area (m ²) 0.000 650.0 0.0 0.960 650.0 0.0 Cellular Storage Manhole: SW19, DS/PN: 7.001 Invert Level (m) 52.500 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.00000 Depth (m) Area (m ²) Inf. Area (m ²) 0.000 350.0 0.0 0.961 0.0 0.0 0.961 0.0 0.0				
Infiltration Coefficient Side (m/hr) 0.0000 Depth (m) Area (m ²) Inf. Area (m ²) Depth (m) Area (m ²) Inf. Area (m ²) 0.000 650.0 0.0 0.960 650.0 0.0 Cellular Storage Manhole: SW19, DS/PN: 7.001 Invert Level (m) 52.500 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.00000 Porosity 0.95 Infiltration Coefficient Side (m/hr) 0.00000 Depth (m) Area (m ²) Inf. Area (m ²) Depth (m) Area (m ²) Inf. Area (m ²) 0.000 350.0 0.0 0.961 0.0 0.0				
0.000 650.0 0.0 0.960 650.0 0.0 <u>Cellular Storage Manhole: SW19, DS/PN: 7.001</u> Invert Level (m) 52.500 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.00000 Depth (m) Area (m ²) Inf. Area (m ²) 0.000 350.0 0.0 0.961 0.0 0.0 0.961 0.0 0.0				
0.000 650.0 0.0 0.960 650.0 0.0 <u>Cellular Storage Manhole: SW19, DS/PN: 7.001</u> Invert Level (m) 52.500 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.00000 Depth (m) Area (m ²) Inf. Area (m ²) 0.000 350.0 0.0 0.961 0.0 0.0 0.961 0.0 0.0				
0.960 650.0 0.0 <u>Cellular Storage Manhole: SW19, DS/PN: 7.001</u> Invert Level (m) 52.500 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.00000 Porosity 0.95 Infiltration Coefficient Side (m/hr) 0.00000 Depth (m) Area (m ²) Inf. Area (m ²) 0.000 350.0 0.0 0.961 0.0 0.0	Depth (m) Area (m ²) Inf. Are	a (m ²) Depth (m) Area (m ²) Inf. Area ((m ²)	
0.960 650.0 0.0 <u>Cellular Storage Manhole: SW19, DS/PN: 7.001</u> Invert Level (m) 52.500 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.00000 Porosity 0.95 Infiltration Coefficient Side (m/hr) 0.00000 Depth (m) Area (m ²) Inf. Area (m ²) 0.000 350.0 0.0 0.961 0.0 0.0	0.000 650.0	0.0 0.961 0.0		
Invert Level (m) 52.500 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.00000 Porosity 0.95 Infiltration Coefficient Side (m/hr) 0.00000 Depth (m) Area (m ²) Inf. Area (m ²) Depth (m) Area (m ²) Inf. Area (m ²) 0.000 350.0 0.0 0.960 350.0 0.0 0.961 0.0 0.0			0.0	
Invert Level (m) 52.500 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.00000 Porosity 0.95 Infiltration Coefficient Side (m/hr) 0.00000 Depth (m) Area (m ²) Inf. Area (m ²) Depth (m) Area (m ²) Inf. Area (m ²) 0.000 350.0 0.0 0.960 350.0 0.0 0.961 0.0 0.0		I		
Infiltration Coefficient Base (m/hr) 0.00000 Porosity 0.95 Infiltration Coefficient Side (m/hr) 0.00000 Depth (m) Area (m ²) Inf. Area (m ²) 0.000 350.0 0.0 0.960 350.0 0.0 0.960 350.0 0.0	Cellular Storage	Manhole: SW19, DS/PN: 7.001		
Infiltration Coefficient Base (m/hr) 0.00000 Porosity 0.95 Infiltration Coefficient Side (m/hr) 0.00000 Depth (m) Area (m ²) Inf. Area (m ²) 0.000 350.0 0.0 0.960 350.0 0.0 0.960 350.0 0.0				
Infiltration Coefficient Side (m/hr) 0.00000 Depth (m) Area (m ²) Inf. Area (m ²) Depth (m) Area (m ²) Inf. Area (m ²) 0.000 350.0 0.0 0.960 350.0 0.0 0.960 350.0 0.0				
Depth (m) Area (m ²) Inf. Area (m ²) 0.000 350.0 0.0 0.961 0.0 0.0 0.960 350.0 0.0				
0.000 350.0 0.0 0.961 0.0 0.0 0.960 350.0 0.0	Infiltration Coefficient	Side (m/nr) 0.00000		
0.960 350.0 0.0	Depth (m) Area (m ²) Inf. Are	a (m ²) Depth (m) Area (m ²) Inf. Area ((m ²)	
0.960 350.0 0.0				
			0.0	
©1982-2020 Innovyze	0.960 350.0	0.0		
©1982-2020 Innovyze				
GIAST-2020 TUHOAASE	e100	2 2020 Incourse		
	619	22-2020 Innovyze		

A L Daines & Partne	15			Page 6		
28 Castle Street				Tuge 0		
Carlisle				L		
CA3 8TP				and the second		
Date 02/05/2023 09:	28	Designed by pete		Micro		
File MD CALCS SM.MD		Designed by pete	:1a	Drainage		
	/A	Checked by				
Micro Drainage Network 2020.1.3						
1 year Return Period Summary of Critical Results by Maximum Level (Rank 1)						
		for Storm				
	51:	mulation Criteria				
	c Runoff Coeff	0.750 Foul Sew	age per hectare (1			
		1.000 Additional F				
1	art Level (mm)	0 MADD Fac	Inlet Coeffieci	~		
1		0.500 Flow per Perso				
Number (of Input Hydrogr	aphs 0 Number of Sto	orage Structures 4			
		rols 4 Number of Tim				
Numbe r	of Offline Cont	rols 0 Number of Rea	al Time Controls 0			
Manada	for Flord Dist 5	arning (me) 300 c	DUD Status OFF			
Margin		Varning (mm) 300.0 sis Timestep Fine I	DVD Status OFF			
		DIS Status ON	intern benetab orr			
	Profile (s)		Summer and W	Intor		
Durati		30, 60, 120, 180, 3				
Return Perio			1, 30,			
Climate	e Change (%)		0, 50	0, 50		
				Water		
US/ME PN Name Storm		First (X) Fir		Water Overflow Level		
-	Return Climate Period Change		st (Y) First (Z) O lood Overflow	Water Overflow Level		
PN Name Storm 3.000 SW11 15 Winter	Period Change	Surcharge F		Water Overflow Level Act. (m) 54.122		
FN Name Storm 3.000 SW11 15 Winter 3.001 SW10 60 Summer	Period Change 1 +0% 1 +0%	Surcharge F		Water Dverflow Level Act. (m) 54.122 53.972		
PN Name Storm 3.000 SW11 15 Winter	Period Change 1 +0% 1 +0% 1 +0% 1 +0%	Surcharge F. 100/30 Summer 30/60 Winter		Water Overflow Level Act. (m) 54.122		
PN Name Storm 3.000 SW11 15 Winter 3.001 SW10 60 Summer 3.002 SW09 720 Winter 4.000 SW01 15 Winter	Period Change t 1 +0% t 1 +0% t 1 +0% t 1 +0%	Surcharge F. 100/30 Summer 30/60 Winter		Water Dverflow Level Act. (m) 54.122 53.972 53.813		
PN Name Storm 3.000 SW11 15 Winter 3.001 SW10 60 Summer 3.002 SW09 720 Winter 4.000 SW01 15 Winter	Period Change 1 +0% 1 +0% 1 +0% 1 +0% 1 +0%	Surcharge F. 100/30 Summer 30/60 Winter		Water Dverflow Level Act. (m) 54.122 53.972 53.813 55.813 55.812 55.412		
FN Name Storm 3.000 SW11 15 Winter 3.001 SW10 60 Summer 3.002 SW09 720 Winter 4.000 SW01 15 Winter 4.001 SW02 240 Winter 4.002 SW03 240 Winter 4.003 SW04 240 Winter	Period Change r 1 +0% r 1 +0%	Surcharge F. 100/30 Summer 30/60 Winter		Water Dverflow Level Act. (m) 54.122 53.972 53.813 55.845 55.412 55.412 55.412		
FN Name Storm 3.000 SW11 15 Winter 3.001 SW10 60 Summer 3.002 SW09 720 Winter 4.000 SW01 15 Winter 4.001 SW02 240 Winter 4.002 SW03 240 Winter 5.000 SW07 240 Winter	Period Change t 1 +0% t 1 +0%	Surcharge F. 100/30 Summer 30/60 Winter 30/30 Summer		Water bverflow Level Act. (n) 54.122 53.972 53.813 55.845 55.412 55.412 55.412 55.412 55.412		
FN Name Storm 3.000 SW11 15 Winter 3.001 SW10 60 Summer 3.002 SW09 720 Winter 4.000 SW01 15 Winter 4.001 SW02 240 Winter 4.002 SW03 240 Winter 4.003 SW04 240 Winter	Period Change t 1 +0% t 1 +0%	Surcharge F. 100/30 Summer 30/60 Winter 30/30 Summer 30/15 Summer		Water Dverflow Level Act. (m) 54.122 53.972 53.813 55.845 55.412 55.412 55.412		
FN Name Storm 3.000 SW11 15 Winten 3.001 SW10 60 Summer 3.002 SW09 720 Winten 4.000 SW01 15 Winten 4.001 SW02 240 Winten 4.002 SW03 240 Winten 5.000 SW07 240 Winten 5.001 SW06 240 Winten 5.001 SW06 240 Winten 3.003 SW08 720 Winten	Period Change r 1 +0% r 1 +0% r 1 +0% r 1 +0% r 1 +0% r 1 +0% r 1 +0% r 1 +0% r 1 +0% r 1 +0% r 1 +0% r 1 +0% r 1 +0% r 1 +0% r 1 +0% r 1 +0%	Surcharge F. 100/30 Summer 30/60 Winter 30/30 Summer 30/15 Summer 1/15 Summer		Water Description Act. (m) 54.122 53.972 53.813 55.845 55.412		
FN Name Storm 3.000 SW11 15 Winten 3.001 SW10 60 Summer 3.002 SW09 720 Winten 4.000 SW01 15 Winten 4.001 SW02 240 Winten 4.002 SW03 240 Winten 4.003 SW04 240 Winten 5.000 SW07 240 Winten 5.001 SW06 240 Winten 4.004 SW05 240 Winten 3.003 SW08 720 Winten 3.003 SW08 700 Winten 3.003 SW08 710 Winten	Period Change r 1 +0%	Surchargo F. 100/30 Summer 30/60 Winter 30/30 Summer 30/15 Summer 1/15 Summer		Water Level Act. (m) 54.122 53.972 53.813 55.845 55.412 55.412 55.412 55.412 55.412 55.412 55.412 55.412 55.412 55.412 55.412 55.412 55.412 55.412 55.412 55.412 55.412 55.412		
FN Name Storm 3.000 SW11 15 Winter 3.001 SW10 60 Summer 3.002 SW09 720 Winter 4.000 SW01 15 Winter 4.001 SW02 240 Winter 4.002 SW03 240 Winter 5.000 SW07 240 Winter 5.001 SW06 240 Winter 3.003 SW08 720 Winter 6.000 SW12 15 Winter 6.001 SW13 15 Winter	Period Change r 1 +00	Surchargo F. 100/30 Summer 30/60 Winter 30/30 Summer 30/15 Summer 1/15 Summer		Water Verflow Level Act. (m) 54.122 53.913 55.845 55.412 53.527 52.994 52.994 52.9978 52.978		
FN Name Storm 3.000 SW11 15 Winten 3.001 SW10 60 Summer 3.002 SW09 720 Winten 4.000 SW01 15 Winten 4.001 SW02 240 Winten 4.002 SW03 240 Winten 4.003 SW04 240 Winten 5.000 SW07 240 Winten 5.001 SW06 240 Winten 4.004 SW05 240 Winten 3.003 SW08 720 Winten 3.003 SW08 700 Winten 3.003 SW08 710 Winten	Period Change r 1 +0%	Surchargo F. 100/30 Summer 30/60 Winter 30/30 Summer 30/15 Summer 1/15 Summer		Water Level Act. (m) 54.122 53.972 53.813 55.845 55.412 55.412 55.412 55.412 55.412 55.412 55.412 55.412 55.412 55.412 55.412 55.412 55.412 55.412 55.412 55.412 55.412 55.412		
PN Name Storm 3.000 SW11 15 Winten 3.001 SW10 60 Summan 3.002 SW09 720 Winten 4.000 SW01 15 Winten 4.001 SW02 240 Winten 4.002 SW03 240 Winten 4.003 SW04 240 Winten 5.000 SW07 240 Winten 5.001 SW05 240 Winten 4.004 SW05 240 Winten 6.000 SW12 15 Winten 6.001 SW13 15 Winten 6.002 SW14 15 Winten 6.003 SW15 360 Winten 6.004 SW16 360 Winten	Period Change r 1 +0%	Surchargo F. 100/30 Summer 30/60 Winter 30/15 Summer 1/15 Summer 1/15 Summer 1/15 Summer		Water Level Act. (m) 54.122 53.972 53.813 55.845 55.412 55		
PN Name Storm 3.000 SW11 15 Winten 3.001 SW10 60 Summer 3.002 SW09 720 Winten 4.000 SW01 15 Winten 4.001 SW02 240 Winten 4.002 SW03 240 Winten 4.003 SW04 240 Winten 5.000 SW07 240 Winten 5.001 SW06 240 Winten 4.003 SW08 720 Winten 6.004 SW05 240 Winten 6.001 SW12 15 Winten 6.001 SW13 15 Winten 6.002 SW14 15 Winten 6.004 SW15 360 Winten 6.004 SW15 360 Winten 6.004 SW16 360 Winten 3.004 SW17 720 Winten	Period Change r 1 +00	Surchargo F. 100/30 Summer 30/60 Winter 30/15 Summer 1/15 Summer 1/05 Summer 1/15 Summer		Water Level Act. (m) 54.122 53.972 53.813 55.845 55.412 55.45 55.57 52.		
FN Name Storm 3.000 SW11 15 Winter 3.001 SW10 60 Summar 3.002 SW09 720 Winter 4.000 SW01 15 Winter 4.001 SW02 240 Winter 4.002 SW03 240 Winter 4.003 SW04 240 Winter 5.001 SW05 240 Winter 5.001 SW05 240 Winter 3.003 SW05 240 Winter 6.000 SW12 15 Winter 6.001 SW13 15 Winter 6.002 SW14 15 Winter 6.003 SW15 360 Winter 6.004 SW15 360 Winter 3.004 SW17 70 Winter 7.000 SW20 15 Winter	Period Change r 1 +0%	Surcharge F. 100/30 Summer 30/60 Winter 30/15 Summer 1/15 Summer 1/15 Summer 1/15 Summer		Water by for the second state of the second st		
PN Name Storm 3.000 SW11 15 Winten 3.001 SW10 60 Summer 3.002 SW09 720 Winten 4.000 SW01 15 Winten 4.001 SW02 240 Winten 4.002 SW03 240 Winten 4.003 SW04 240 Winten 5.000 SW07 240 Winten 5.001 SW06 240 Winten 4.003 SW08 720 Winten 6.004 SW05 240 Winten 6.001 SW12 15 Winten 6.001 SW13 15 Winten 6.002 SW14 15 Winten 6.004 SW15 360 Winten 6.004 SW15 360 Winten 6.004 SW16 360 Winten 3.004 SW17 720 Winten	Period Change r 1 +0%	Surcharge F. 100/30 Summer 30/60 Winter 30/30 Summer 30/15 Summer 30/15 Summer 1/15 Summer 100/180 Winter 1/15 Summer 100/240 Winter 100/240 Winter		Water Level Act. (m) 54.122 53.972 53.813 55.845 55.412 55.45 55.57 52.		
PN Name Storm 3.000 SW11 15 Winten 3.001 SW10 60 Summer 3.002 SW09 720 Winten 4.000 SW01 15 Winten 4.001 SW02 240 Winten 4.002 SW03 240 Winten 4.003 SW04 240 Winten 5.000 SW07 240 Winten 5.001 SW05 240 Winten 3.003 SW08 720 Winten 6.000 SW12 15 Winten 6.001 SW13 15 Winten 6.002 SW14 15 Winten 6.003 SW15 360 Winten 6.004 SW16 360 Winten 3.004 SW17 720 Winten 7.001 SW19 720 Winten	Period Change r 1 +0%	Surcharge F. 100/30 Summer 30/60 Winter 30/30 Summer 30/15 Summer 30/15 Summer 1/15 Summer 100/180 Winter 1/15 Summer 100/240 Winter 100/240 Winter		Water Level (m) 54.122 53.972 53.813 55.845 55.412 52.57 52.994 52.077 52.994 52.077 52.958 64.537 64.537 64.537 52.617		
PN Name Storm 3.000 SW11 15 Winten 3.001 SW10 60 Summer 3.002 SW09 720 Winten 4.000 SW01 15 Winten 4.001 SW02 240 Winten 4.002 SW03 240 Winten 4.003 SW04 240 Winten 5.000 SW07 240 Winten 5.001 SW05 240 Winten 3.003 SW08 720 Winten 6.000 SW12 15 Winten 6.001 SW13 15 Winten 6.002 SW14 15 Winten 6.003 SW15 360 Winten 6.004 SW16 360 Winten 3.004 SW17 720 Winten 7.001 SW19 720 Winten	Period Change r 1 +0%	Surcharge F. 100/30 Summer 30/60 Winter 30/30 Summer 30/15 Summer 30/15 Summer 1/15 Summer 100/180 Winter 1/15 Summer 100/240 Winter 100/240 Winter		Water Level S4.122 53.972 53.813 55.845 55.412 55.412 55.412 55.412 55.412 55.412 55.412 55.412 55.412 55.412 55.412 55.412 55.412 55.412 55.412 55.412 55.412 55.412 55.412 53.527 52.994 52.078 99.627 49.538 49.537 48.644 53.075 52.617		
PN Name Storm 3.000 SW11 15 Winten 3.001 SW10 60 Summer 3.002 SW09 720 Winten 4.000 SW01 15 Winten 4.001 SW02 240 Winten 4.002 SW03 240 Winten 4.003 SW04 240 Winten 5.000 SW07 240 Winten 5.001 SW05 240 Winten 3.003 SW08 720 Winten 6.000 SW12 15 Winten 6.001 SW13 15 Winten 6.002 SW14 15 Winten 6.003 SW15 360 Winten 6.004 SW16 360 Winten 3.004 SW17 720 Winten 7.001 SW19 720 Winten	Period Change r 1 +0%	Surcharge F. 100/30 Summer 30/60 Winter 30/30 Summer 30/15 Summer 30/15 Summer 1/15 Summer 100/180 Winter 1/15 Summer 100/240 Winter 100/240 Winter		Water Level S4.122 53.972 53.813 55.845 55.412 55.412 55.412 55.412 55.412 55.412 55.412 55.412 55.412 55.412 55.412 55.412 55.412 55.412 55.412 55.412 55.412 55.412 55.412 53.527 52.994 52.078 99.627 49.538 49.537 48.644 53.075 52.617		
PN Name Storm 3.000 SW11 15 Winten 3.001 SW10 60 Summer 3.002 SW09 720 Winten 4.000 SW01 15 Winten 4.001 SW02 240 Winten 4.002 SW03 240 Winten 4.003 SW04 240 Winten 5.000 SW07 240 Winten 5.001 SW05 240 Winten 3.003 SW08 720 Winten 6.000 SW12 15 Winten 6.001 SW13 15 Winten 6.002 SW14 15 Winten 6.003 SW15 360 Winten 6.004 SW16 360 Winten 3.004 SW17 720 Winten 7.001 SW19 720 Winten	Period Change r 1 +0%	Surcharge F. 100/30 Summer 30/60 Winter 30/30 Summer 30/15 Summer 30/15 Summer 1/15 Summer 100/180 Winter 1/15 Summer 100/240 Winter 100/240 Winter		Water Level S4.122 53.972 53.813 55.845 55.412 55.412 55.412 55.412 55.412 55.412 55.412 55.412 55.412 55.412 55.412 55.412 55.412 55.412 55.412 55.412 55.412 55.412 55.412 53.527 52.994 52.078 99.627 49.538 49.537 48.644 53.075 52.617		
PN Name Storm 3.000 SW11 15 Winten 3.001 SW10 60 Summer 3.002 SW09 720 Winten 4.000 SW01 15 Winten 4.001 SW02 240 Winten 4.002 SW03 240 Winten 4.003 SW04 240 Winten 5.000 SW07 240 Winten 5.001 SW05 240 Winten 3.003 SW08 720 Winten 6.000 SW12 15 Winten 6.001 SW13 15 Winten 6.002 SW14 15 Winten 6.003 SW15 360 Winten 6.004 SW16 360 Winten 3.004 SW17 720 Winten 7.001 SW19 720 Winten	Period Change r 1 +0%	Surcharge F. 100/30 Summer 30/60 Winter 30/30 Summer 30/15 Summer 30/15 Summer 1/15 Summer 100/180 Winter 1/15 Summer 100/240 Winter 100/240 Winter		Water Level S4.122 53.972 53.813 55.845 55.412 55.412 55.412 55.412 55.412 55.412 55.412 55.412 55.412 55.412 55.412 55.412 55.412 55.412 55.412 55.412 55.412 55.412 55.412 53.527 52.994 52.078 99.627 49.538 49.537 48.644 53.075 52.617		
PN Name Storm 3.000 SW11 15 Winten 3.001 SW10 60 Summer 3.002 SW09 720 Winten 4.000 SW01 15 Winten 4.001 SW02 240 Winten 4.002 SW03 240 Winten 4.003 SW04 240 Winten 5.000 SW07 240 Winten 5.001 SW05 240 Winten 3.003 SW08 720 Winten 6.000 SW12 15 Winten 6.001 SW13 15 Winten 6.002 SW14 15 Winten 6.003 SW15 360 Winten 6.004 SW16 360 Winten 3.004 SW17 720 Winten 7.001 SW19 720 Winten	Period Change r 1 +00 r 1 +0	Surcharge F. 100/30 Summer 30/60 Winter 30/30 Summer 30/15 Summer 30/15 Summer 1/15 Summer 100/180 Winter 1/15 Summer 100/240 Winter 100/240 Winter		Water Level S4.122 53.972 53.813 55.845 55.412 55.412 55.412 55.412 55.412 55.412 55.412 55.412 55.412 55.412 55.412 55.412 55.412 55.412 55.412 55.412 55.412 55.412 55.412 53.527 52.994 52.078 99.627 49.538 49.537 48.644 53.075 52.617		

A L Dat	nes a	Partners							Page 7
28 Cast									
Carlisl									1. S. 1. S. 1.
CA3 8TP									
		023 09:28		D	esigned 1	y petera			Micro
1		S SM.MDX			hecked by				Drainage
					etwork 20				
Micro D	railla	je		DO	ELWOIK 20	120.1.3			
1 year	Retur	n Period	Summary	of C	ritical i	Results by	Max 1	mum Level	(Rank 1)
- 1					or Storm				(
				-		-			
		Surcharged			Overflow	Half Drain	Pipe Flow		· · · · · 1
PN	US/ME Name	Depth (m)	(m ³)			Time (mins)	(1/s)	Status	Level Exceeded
				-		(,			
	SW11	-0.328					23.6	OR	
	SW10 SW09		0.000			12	39.5	OF	
	SW01	-0.245				224	3.3		
4.001	SW02	-1.133	0.000	0.00			1.9	OB	
	SW03		0.000				2.1	OR	
	SW04 SW07		0.000				2.4	OR	
	SW06		0.000				1.6	OF	
	SW05		0.000				1.5	SURCHARGED	
	SW08		0.000				6.2	OB	
	SW12 SW13		0.000				16.4	OF	
1	SW14		0.000				44.6	OF	
	SW15		0.000				11.5	OB	
	SW16		0.000			168		SURCHARGED	
	SW17 SW20		0.000				9.6 24.5	OF	
	SW19		0.000			408			
	SW18		0.000				10.8	OF	
				1000	0000 70				
			•	91982-	-2020 Inn	ючуzе			

										-	-
			Partner	CS .						Page	8
	stle	Stre	et								
Carli	sle										2.8
CA3 8	TP	110								Mic	m
Date	02/05	/202	23 09:2	28		Designe	ed by p	petera			inage
File	MD CA	LCS	SM. MDI	C		Checked	1 by			טוט	nage
Micro	Drai	nage	2			Network	c 2020.	.1.3			
		-									
30 ye	ar Re	tur	n Peri	od Sum	mary of	Critic	al Res	sults by	Maximum I	evel (R	ank 1)
		And a star			1	for St	orm				
						ulation		and the second second second			
					Coeff 0				r hectare		
		AI			(mins)	000 A			<pre>% of Total 10m*/ha Sto</pre>		
				rt Leve	-	0			et Coeffie	-	
3	fanhole	Hea	dloss 0	Coeff (G	lobal) 0	.500 Flo	w per P	erson per	Day (1/per,	(day) 0.0	00
		N							Structures		
									a Diagrams a Controls		
			- and the second second	v. v. i.i.	and contra	and a la	uniter of	- towned a time	concrois		
		1	targin f	or Floo	d Risk W	arning (mm) 300	.0 DVD	Status OF	F	
					Analys	is Times	tep Fi	ne Inertia	Status OF	F	
						DTS Sta	tus	ON			
				Profile	2 (5)				Summer and	Winter	
			Duratio			30, 60,	120, 18		60, 480, 60		
	Re	turn	Period	(s) (yea	ars)					0, 100	
			Climate	Change	(*)				0,	50, 50	
	WARNIN	G: H	alf Dra	in Time	has not	been cal	lculated	d as the st	ructure is	too full	
	US/MH			Boturn	Climato	First	(10)	First (V)	First (Z)	Overflow	Water
PN	Name		torm		Change				Overflow		(m)
					and and		65				
			Winter								54.261
			Winter			100/30 30/60					54.224
			Winter			30/60	WINCEL				54.221
			Winter								55.871
			Winter								55.871
4.003	SW04	480	Winter	30	+50%						55.871
			Winter	30	+50%	30/30					55.872
			Winter			30/15					55.872
			Winter			1/15	Summer				55.871
			Winter								53.528 53.065
			Winter		+50%						52.174
			Winter		+50%						49.867
			Winter			100/180	Winter				49.866
			Winter				Summer				49.866
			Winter								48.645
			Winter				Minte				53.149
			Winter			100/240	winter				52.929
3.005	0410	120	witter.	30	1001						40.214
					@1.0.0	0.0000	Terrer				
					@198	2-2020	TUHOAA	ze			

A L Dati	nes a	Partners							Page 9			
28 Cast									raye 5			
Carlisl												
CA3 8TP									and the second			
		023 09:28		De	and amount of	n potors			Micro			
					-	by petera			Drainage			
The mb childs shrinba												
Micro D	icro Drainage Network 2020.1.3											
20 110 27	Botu	rn Dortod	C		ritioni	Bogulte b	Max		1 (Ropk 1)			
50 year	Recu	in Period	Summar		or Storn		Y Max.	IIIUII Leve	1 (Rank 1)			
				-	or acorn	<u>.</u>						
		Surcharged	Flooded			Half Drain	Pipe					
	US/ME	-		-	Overflow		Flow		Level			
PN	Name	(m)	(m ³)	Cap.	(1/s)	(mins)	(1/s)	Status	Exceeded			
3,000	SW11	-0.189	0.000	0.56			85.8	OK				
3.001	SW10	-0.046	0.000	0.19		408	30.1					
	SW09		0.000					SURCHARGED				
	SW01		0.000				12.2					
	SW02 SW03		0.000				3.8	OK				
	SW04						2.1	OK				
5.000	SW07	0.347	0.000	0.06				SURCHARGED				
	SW06		0.000					SURCHARGED				
	SW05 SW08		0.000				6.5	SURCHARGED				
	SW12		0.000				60.0	OK				
1	SW13		0.000				123.0	OK	:			
	SW14						25.8	OK				
	SW15 SW16		0.000			680	25.5	OK				
	SW17		0.000			000	9.7					
	SW20		0.000	0.24			90.1	OK	:			
	SW19		0.000				1.7					
3.005	SW18	-0.136	0.000	0.33			11.3	OK				
				b1982 -	2020 Inr	ovyze						
						-						

US/MH Return Climate Prind First (X) First (Y) First (Z) Overflow Level Act. 3.000 SW11 720 Winter 100 +50% Surcharge Flood Overflow Act. (m) 3.001 SW10 720 Winter 100 +50% 100/30 Summer 54.37 3.002 SW09 720 Winter 100 +50% 30/60 Winter 54.37 4.001 SW02 600 Winter 100 +50% 30/60 Winter 56.04 4.002 SW03 600 Winter 100 +50% 56.04 56.04 4.002 SW04 600 Winter 100 +50% 30/30 Summer 56.04 4.003 SW04 600 Winter 100 +50% 30/30 Summer 56.04 5.001 SW06 600 Winter 100 +50% 30/30 Summer 56.05 5.001 SW06 600 Winter 100 +50% 30/15 Summer 56.05 6.000 SW117 100		ninon	6 T	artno							Dage	10
Carlisle CA3 STP Date 02/05/2023 09:28 File MD CALCS SM.MDX Checked by Micro Drainage Network 2020.1.3 100 year Return Period Summary of Critical Results by Maximum Level (Rank 1) for Storm Simulation Critoria Volumetric Runoff Coaff 0.750 Fool Sewage per hectare (1/s) 0.000 Areal Reduction Factor 1.000 Additional First - % of Total First (1/s) 0.000 Hot Start (mins) 0 Hot Start (mins) 15, 30, 60, 120, 180, 240, 360, 480, 600, 720 Hot Start Starts ON Hot Start Start (X) Frofile(S) US/ME Return Climate First (X) First (Y) First (E) Overflow Act. 0 Hot Start Inter 100 +50% 10/30 Summer Hot Start Inter 100 +50% 10/	20 Ud.				. 8						Page	10
CA3 STP Date 02/05/2023 09:28 Designed by petera Checked by Difference Micro Drainage Network 2020.1.3 Designed by maximum Level (Rank 1) for Storm Intervent Critical Results by Maximum Level (Rank 1) for Storm Simulation Critoria Network 2020.1.3 Seture Critoria Number of Input Hydrographe 0 Mubber of Storage Structures 4 Number of Critical Naming (ma) 300.0 DVD Status OFF Nation For Lood Risk Maring (ma) 300.0 DVD Status OFF Nation For Lood Risk Maring (ma) 300.0 DVD Status OFF Daration(s) (mari 15, 30, 60, 120,			acre	eL								
Date 02/05/2023 09:28 File MD CALCS SM.MDX Micro Drainage Network 2020.1.3 100 year Return Period Summary of Critical Results by Maximum Level (Rank 1) for Storm Simulation Critoria Volumetric Runoff Coeff 0.750 Simulation Critoria Volumetric Runoff Coeff 0.750 Foul Sewage per hectare (1/s) 0.000 Hot Start (mins) 0 MADD Factor 100% Additional Fire - v of Total Firew 0.000 Hot Start (mins) 0 Mathole Readies Coeff (Global) 0.500 Flow per Person per Day (1/per/day) 0.000 Number of Input Hydrographs 0 Number of Coff 0.750 Number of Coff 0.750 Number of Coff 0.500 Flow per Person per Day (1/per/day) 0.000 Number of Coff 0.500 Flow per Person per Day (1/per/day) 0.000 Number of Coff 0.500 Flow per Person per Day (1/per/day) 0.000 Number of Coff Coff 0.500 Flow per Person per Day (1/per/day) 0.000 Number of Coff Coff 0.100, 150, 240, 360, 480, 600, 720 Daration(3) (mins) 15, 30, 60, 120, 180, 240, 360, 480, 600, 720 Climate Change (%) NUMERINE: Half Drain Time has not been Calculated as the structure is too full. NAMUNINE: Half Drain Time has not been Calculated as the structure is too full. Note of Store Stor												اسر 📹
Date 02/05/2023 09:28 Designed by peters Description D											— Mie	TO
Micro Drainage Network 2020.1.3 100 year Return Period Summary of Critical Results by Maximum Level (Rank 1) for Storm Simulation Criteria Volumetric Runoff Coeff 0.750 Foul Sewage per hectare (1/s) 0.000 Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000 Hot Start (mms) 0 Manhole Headloss Coeff (clobal) 0.500 Flow per Person per Day (//per/day) 0.000 Manhole Goeff (clobal) 0.500 Flow per Person per Day (//per/day) 0.000 Number of Input Hydrographs 0 Number of Storage Structures 4 Number of Offline Controls 4 Number of Time/Area Diagrams 0 Number of Offline Controls 0 Number of Real Time Controls 0 Number of Offline Controls 0 Number of Real Time Controls 0 Number of Offline Controls 0, 120, 180, 240, 360, 480, 600, 720 Dirstatus ON Profile(s) Summer and Winter Duration(s) (mins) 15, 30, 60, 120, 180, 240, 360, 480, 600, 720 Return Period(s) (years) 1, 30, 100 Climate Change (%) 0, 50, 50 900 SW11 720 Winter 100 +504 100 250 Winter 100 +504 100 250 Winter 100 +504 100 30/60 Winter 100 +504 100 30/60 Winter 100 +504 100 30/60 Winter 100 +504 100 300 4 600 Winter 100 +504 100 300 600 Winter 100 +504 100 300 600 Winter 100 +504 100 300 800 600 Winter 100 +504 100 300 600 Winter 100 +504 100 300 800 600 Winter 100 +504 100 300 800 60							-		etera		Dra	inarie
100 year Return Period Summary of Critical Results by Maximum Level (Rank 1) for Storm Simulation Criteria Volumetric Runoff Conff 0.750 Foul Sewage per hectare (1/s) 0.000 Areal Reduction Factor 1.000 Additional Flow - V of Total Flow 0.000 MADD Factor 1.100*/hol Storage 2.000 Both Start Level (mm) MADD Factor 1.100*/hol Storage 2.000 Manhole Headloss Coeff (Global) 0.500 Flow per Ferson per Day (1/per/day) 0.000 Number of Input Hydrographs 0 Number of Storage Structures 4 Number of Offline Controls 0 Number of Real Time Controls 0 Margin for Flood Risk Warning (mm) 300.0 DV Status OFF Duration(s) (mins) 15, 30, 60, 120, 180, 240, 360, 480, 600, 720 Number of Storage Field Change (s) Nature VS/ME Return Climate First (X) First (Y) First (Z) Overflow Act. (material Status OFF Number of Storage Structure is too full. VS/ME Return Climate First (X) First (Y) First (Z) Overflow Act. (material Colspan="2") Numage Store Retried Change Storage F	File	MD CA	LCS	SM.MD)	C C		Checked 1	БУ				moge
1) for Storm Simulation Criteria Simulation Criteria Volumetric Runoff Coeff 0.750 Foul Sewage per hectare (1/s) 0.000 Areal Reduction Factor 1.000 / Additional Flow - V of Total Flow 0.000 Bot Start (sins) 0 MADD Factor 1.100*/has Storage 2.000 Hot Start (sins) 0 MADD Factor 1.100*/has Storage 2.000 Manbole Headloss Coeff (Global) 0.500 Flow per Ferson per Day (1/per/day) 0.000 Number of Online Controls 4 Number of Storage Structures 4 Number of Online Controls 0 Number of Storage Structures 4 Number of Online Controls 0 Number of Storage Structures 4 Number of Online Controls 0 Number of Storage Structures 4 Number of Online Controls 0 Number of Storage Structures 4 Duration(s) (mins) 15, 30, 60, 120, 180, 240, 360, 480, 600, 720 Raturn Period(s) (years) 0, 50, 50 WARNINC: Half Drain Time has not been calculated as the structure is too full. Storm Period Change First (X) First (Y) First (E) Overflow Lower Storm Period Change Surcharge Flood Overflow Lower Storm Period Change Surcharge Flo	Micro	Micro Drainage Network 2020.1.3										
Volumetric Runoff Costf 0.750 Foul Swaps per hectare (1/s) 0.000 Areal Reduction Factor 1.000 Additional Flow - k of Total Flow 0.000 Hot Start (mins) 0 Manhole Headloss Coeff (Global) 0.500 Flow per Person per Day (1/per/day) 0.000 Number of Input Hydrographs 0 Number of Storage Structures 4 Number of Online Controls 4 Number of Time/Area Diagrams 0 Number of Offline Controls 0 Number of Real Time Controls 0 Margin for Flood Risk Warning (mm) 300.0 DVD Status OFF DIS Status ON Profile(s) Summer and Winter Duration(s) (mins) 15, 30, 60, 120, 180, 240, 360, 480, 600, 720 Return Period(s) (years) 1, 30, 100 Climate Change (%) 0, 50, 50 WARNING: Helf Drain Time has not been calculated as the structure is too full. US/ME Return Climate FN Name Storm Period Change Storage Store Period Change Store Store Store Store Store Store Store Store Store Store Store Store Store Store <t< td=""><td><u>100</u></td><td>year</td><td>Ret</td><td>urn Pe</td><td>riod S</td><td></td><td></td><td></td><td>esults b</td><td>y Maximum</td><td>1 Level</td><td>(Rank</td></t<>	<u>100</u>	year	Ret	urn Pe	riod S				esults b	y Maximum	1 Level	(Rank
US/MH Return Climate First (X) First (Y) First (Z) Overflow Level Name Storm Period Change Surcharge Flood Overflow Act. (m) 3.000 SW11 720 Winter 100 +50% 100/30 Summer 54.37 3.001 SW01 720 Winter 100 +50% 30/60 Winter 54.37 4.000 SW01 600 Winter 100 +50% 30/60 Winter 54.37 4.001 SW02 600 Winter 100 +50% 30/60 Winter 54.37 4.001 SW02 600 Winter 100 +50% 30/60 Winter 56.04 4.002 SW03 600 Winter 100 +50% 30/30 Summer 56.04 5.001 SW06 600 Winter 100 +50% 30/30 Summer 56.04 5.001 SW05 600 Winter 100 +50% 30/15 Summer 56.04 6.001 SW12 15 Winter 100		Re	Ar b Hea N b b	eal Red Hot Hot Sta dloss C umber o Number o Number o dargin f Duratio Period Climate	Auction 1 Start Int Leve Scoff (G f Input of Offic for Floo Profile n(s) (m) (s) (ye: Change	Coeff 0 Factor 1 (mins) 1 (mm) lobal) 0 Hydrogra ine Contr ine Contr ine Contr d Risk W Analys a(s) ins) 15, ars) (%)	.750 .000 Add 0 .500 Flow y cols 4 Numb cols 0 Numb cols 3 Numb cols 3 Numb cols 4 Numb cols 4 Numb cols 4 Numb cols 4 Numb cols 4 Numb	Foul itions MADD per Pe ser of ser of ser of 0 300. p Fin s C	Sewage pe al Flow - Factor * Inl arson per : Storage S Time/Area Real Time 0 DVD e Inertia N	<pre>% of Total l0m*/ha St et Coeffic Day (1/per, structures b Controls Status OF Status OF Status OF Status OF (0, 480, 60 1, 3</pre>	Flow 0. orage 2. cient 0. (day) 0. 4 0 0 F F Winter 10, 720 10, 100	000 000 800
3.000 SW11 720 Winter 100 +50% 564.37% 3.001 SW10 720 Winter 100 +50% 30/60 Winter 54.37% 3.002 SW09 720 Winter 100 +50% 30/60 Winter 54.37% 4.000 SW01 600 Winter 100 +50% 30/60 Winter 56.04% 4.001 SW02 600 Winter 100 +50% 56.04% 56.04% 4.002 SW04 600 Winter 100 +50% 56.04% 56.04% 5.001 SW06 600 Winter 100 +50% 30/30 Summer 56.05% 5.001 SW06 600 Winter 100 +50% 30/15 Summer 56.05% 6.001 SW05 600 Winter 100 +50% 30/15 Summer 56.05% 6.001 SW05 600 Winter 100 +50% 53.05% 53.05% 6.001 SW12 15 Winter		maction and	G: H	alf Dra	in line	has not	been calcu	lated	as the st	ructure is	too ful	1.
3.001 SW10 720 Winter 100 +50% 30/60 Winter 54.37 3.002 SW01 600 Winter 100 +50% 30/60 Winter 54.37 4.000 SW01 600 Winter 100 +50% 56.04 4.001 SW02 600 Winter 100 +50% 56.04 4.002 SW03 600 Winter 100 +50% 56.044 4.003 SW04 600 Winter 100 +50% 56.044 5.001 SW07 600 Winter 100 +50% 30/15 Summer 56.054 5.001 SW06 600 Winter 100 +50% 30/15 Summer 56.043 5.001 SW06 600 Winter 100 +50% 30/15 Summer 56.043 3.003 SW08 60 Winter 100 +50% 1/15 Summer 56.043 6.001 SW12 15 Winter 100 +50% 53.083 53.083 6.001 SW12 15 Winter 100 +50% 50.014 50.014 6.002 SW14 720 Wi		US/MH			Return	Climate	First ()	X)	First (Y)	First (Z)	Overflo	Water F Level
3.002 SW09 720 Winter 100 +50% 30/60 Winter 56.04 4.001 SW02 600 Winter 100 +50% 56.04 4.002 SW03 600 Winter 100 +50% 56.04 4.003 SW04 600 Winter 100 +50% 56.04 4.003 SW04 600 Winter 100 +50% 56.04 5.001 SW06 600 Winter 100 +50% 30/30 Summer 56.05 5.001 SW06 600 Winter 100 +50% 30/15 Summer 56.05 5.001 SW06 600 Winter 100 +50% 30/15 Summer 56.05 6.001 SW114 7 100 +50% 1/15 Summer 56.05 6.001 SW12 15 Winter 100 +50% 53.05 53.05 6.001 SW13 15 Winter 100 +50% 50.01 50.01 6.002 SW14 720 Winter 100 +50% 10/180 Winter 50.01 6.003 SW15 720 Winter 100 +50% 1/15 Summer 50.01 6.003 SW16 720 Winter 100 <td< td=""><td></td><td>US/MH</td><td></td><td></td><td>Return</td><td>Climate</td><td>First ()</td><td>X)</td><td>First (Y)</td><td>First (Z)</td><td>Overflo</td><td>Water F Level</td></td<>		US/MH			Return	Climate	First ()	X)	First (Y)	First (Z)	Overflo	Water F Level
4.000 SW01 600 Winter 100 +50% 56.043 4.001 SW02 600 Winter 100 +50% 56.043 4.002 SW03 600 Winter 100 +50% 56.043 4.003 SW04 600 Winter 100 +50% 56.043 5.000 SW07 600 Winter 100 +50% 30/30 Summer 56.053 5.001 SW06 600 Winter 100 +50% 30/15 Summer 56.054 4.004 SW05 600 Winter 100 +50% 1/15 Summer 56.054 3.003 SW08 60 Winter 100 +50% 1/15 Summer 56.054 3.003 SW08 60 Winter 100 +50% 53.523 53.523 6.001 SW12 15 Winter 100 +50% 53.063 6.001 SW13 15 Winter 100 +50% 50.011 6.002 SW14 720 Winter 100 +50% 10/180 Winter 50.011 3.004 SW17 720 Winter 100 +50% 1/15 Summer 50.011 3.004 SW17 720 Winter 100 +50%	PN 3.000	US/MH Name SW11	8 720	torm Winter	Return Period 100	Climate Change +50%	First () Surchar	X) ge	First (Y)	First (Z)	Overflo	Water K Level (m) 54.379
4.001 SW02 600 Winter 100 +50% 56.043 4.002 SW03 600 Winter 100 +50% 56.043 5.000 SW04 600 Winter 100 +50% 56.043 5.000 SW06 600 Winter 100 +50% 30/30 Summer 56.053 5.001 SW06 600 Winter 100 +50% 30/15 Summer 56.054 4.004 SW05 600 Winter 100 +50% 30/15 Summer 56.054 3.003 SW08 60 Winter 100 +50% 1/15 Summer 56.044 3.003 SW08 60 Winter 100 +50% 53.053 53.523 6.001 SW12 15 Winter 100 +50% 53.053 50.014 6.001 SW13 15 Winter 100 +50% 50.012 50.012 6.003 SW16 720 Winter 100 +50% 1/15 Summer 50.012 3.004 SW17 720 Winter 100 +50% 1/15 Summer 50.012 3.004 SW19 720 Winter 100 +50% 1/25 Summer 53.053 3.005 SW18 720 Winter	PN 3.000 3.001	US/MH Name SW11 SW10	9 720 720	torm Winter Winter	Return Period 100 100	Climate Change +50% +50%	First () Surchar	x) ge	First (Y)	First (Z)	Overflo	Water K Level (m) 54.379 54.379
4.002 SW03 600 Winter 100 +50% 56.043 4.003 SW04 600 Winter 100 +50% 30/30 Summer 56.043 5.001 SW07 600 Winter 100 +50% 30/15 Summer 56.054 5.001 SW06 600 Winter 100 +50% 30/15 Summer 56.054 4.004 SW05 600 Winter 100 +50% 1/15 Summer 56.043 3.003 SW08 60 Winter 100 +50% 1/15 Summer 56.043 3.003 SW08 60 Winter 100 +50% 1/15 Summer 56.043 6.001 SW12 15 Winter 100 +50% 53.523 53.053 6.001 SW12 15 Winter 100 +50% 53.053 50.014 6.002 SW14 720 Winter 100 +50% 10/180 Winter 50.013 6.004 SW16 720 Winter 100 +50% 1/15 Summer 50.013 3.004 SW16 720 Winter 100 +50% 1/15 Summer 50.013 3.004 SW17 720 Winter 100 +50% 1/15 Summer 53.053	PN 3.000 3.001 3.002	US/MH Name SW11 SW10 SW09	8 720 720 720	Winter Winter Winter Winter	Return Period 100 100 100	Climate Change +50% +50% +50%	First () Surchar	x) ge	First (Y)	First (Z)	Overflo	Water V Lovel (m) 54.379 54.379 54.379
5.001 SW06 600 Winter 100 +50% 30/15 Summer 56.054 4.004 SW05 600 Winter 100 +50% 1/15 Summer 56.064 3.003 SW08 60 Winter 100 +50% 53.523 53.523 6.001 SW12 15 Winter 100 +50% 53.083 6.001 SW13 15 Winter 100 +50% 50.011 6.002 SW14 720 Winter 100 +50% 50.011 6.003 SW15 720 Winter 100 +50% 50.011 6.004 SW16 720 Winter 100 +50% 1/15 Summer 50.011 3.004 SW17 720 Winter 100 +50% 48.647 7.000 SW20 15 Winter 100 +50% 53.177 7.001 SW19 720 Winter 100 +50% 53.053 3.005 SW18 720 Winter 100 +50% 48.217	PN 3.000 3.001 3.002 4.000	US/MH Name SW11 SW10 SW09 SW01	9 720 720 720 600	Winter Winter Winter Winter Winter	Return Period 100 100 100 100	Climate Change +50% +50% +50%	First () Surchar	x) ge	First (Y)	First (Z)	Overflo	Water K Level (m) 54.379 54.379
5.001 SW06 600 Winter 100 +50% 30/15 Summer 56.054 4.004 SW05 600 Winter 100 +50% 1/15 Summer 56.064 3.003 SW08 60 Winter 100 +50% 53.523 53.523 6.001 SW12 15 Winter 100 +50% 53.083 6.001 SW13 15 Winter 100 +50% 50.011 6.002 SW14 720 Winter 100 +50% 50.011 6.003 SW15 720 Winter 100 +50% 50.011 6.004 SW16 720 Winter 100 +50% 1/15 Summer 50.011 3.004 SW17 720 Winter 100 +50% 48.647 7.000 SW20 15 Winter 100 +50% 53.177 7.001 SW19 720 Winter 100 +50% 53.053 3.005 SW18 720 Winter 100 +50% 48.217	PN 3.000 3.001 3.002 4.000 4.001 4.002	US/MH Name SW11 SW10 SW09 SW01 SW02 SW02 SW03	9 720 720 600 600 600	Winter Winter Winter Winter Winter Winter	Return Period 100 100 100 100 100	Climate Change +50% +50% +50% +50%	First () Surchar 100/30 Su 30/60 W1	X) ge immer inter	First (Y)	First (Z)	Overflo	Water Water (m) 54.379 54.379 54.377 56.049
4.004 SW05 600 Winter 100 +50% 1/15 Summer 56.043 3.003 SW08 60 Winter 100 +50% 53.524 6.000 SW12 15 Winter 100 +50% 53.524 6.001 SW12 15 Winter 100 +50% 53.083 6.001 SW13 15 Winter 100 +50% 50.014 6.002 SW14 720 Winter 100 +50% 50.012 6.003 SW15 720 Winter 100 +50% 1/15 Summer 50.012 6.004 SW16 720 Winter 100 +50% 1/15 Summer 50.012 3.004 SW16 720 Winter 100 +50% 1/15 Summer 50.012 3.004 SW17 720 Winter 100 +50% 1/15 Summer 53.172 7.000 SW20 15 Winter 100 +50% 53.052 3.005 SW18 720 Winter 100 +50% 48.217	PN 3.000 3.001 3.002 4.000 4.001 4.002	US/MH Name SW11 SW10 SW09 SW01 SW02 SW02 SW03	9 720 720 600 600 600	Winter Winter Winter Winter Winter Winter	Return Period 100 100 100 100 100	Climate Change +50% +50% +50% +50%	First () Surchar 100/30 Su 30/60 W1	X) ge immer inter	First (Y)	First (Z)	Overflo	Water w Level (m) 54.379 54.377 56.049 56.049 56.049 56.049
3.003 SW08 60 Winter 100 +50% 53.524 6.000 SW12 15 Winter 100 +50% 53.085 6.001 SW13 15 Winter 100 +50% 50.016 6.002 SW14 720 Winter 100 +50% 50.012 6.003 SW15 720 Winter 100 +50% 50.012 6.004 SW16 720 Winter 100 +50% 1/15 Summer 50.012 6.004 SW16 720 Winter 100 +50% 1/15 Summer 50.012 3.004 SW17 720 Winter 100 +50% 100/240 Winter 53.172 7.001 SW19 720 Winter 100 +50% 100/240 Winter 53.052 3.005 SW18 720 Winter 100 +50% 48.217	PN 3.000 3.001 3.002 4.000 4.000 4.002 4.003 5.000	05/MH Name SW11 SW10 SW09 SW01 SW02 SW03 SW04 SW04 SW07	720 720 720 600 600 600 600 600	Vinter Winter Winter Winter Winter Winter Winter Winter	Return Period 100 100 100 100 100 100 100	Climate Change +50% +50% +50% +50% +50%	First () Surchar 100/30 Su 30/60 W1 30/30 Su	x) ge immer inter	First (Y)	First (Z)	Overflo	Water Water (m) 54.379 54.379 54.377 56.049 56.049 56.049 56.049 56.049 56.049
6.000 SW12 15 Winter 100 +50% 53.089 6.001 SW13 15 Winter 100 +50% 52.200 6.002 SW14 720 Winter 100 +50% 50.011 6.003 SW15 720 Winter 100 +50% 100/180 Winter 50.011 6.004 SW16 720 Winter 100 +50% 1/15 Summer 50.012 3.004 SW17 720 Winter 100 +50% 48.647 7.000 SW20 15 Winter 100 +50% 53.177 7.001 SW19 720 Winter 100 +50% 53.053 3.005 SW18 720 Winter 100 +50% 48.217	PN 3.000 3.001 3.002 4.000 4.001 4.002 4.003 5.000	US/MH Name SW11 SW10 SW09 SW01 SW02 SW03 SW03 SW03 SW04 SW07 SW06	720 720 720 600 600 600 600 600 600	Winter Winter Winter Winter Winter Winter Winter Winter	Return Feriod 100 100 100 100 100 100 100	Climate Change +50% +50% +50% +50% +50% +50% +50%	First () Surchar 100/30 Su 30/60 W1 30/30 Su 30/30 Su 30/15 Su	x) ge immer immer immer	First (Y)	First (Z)	Overflo	Water W Lovel (m) 54.379 54.379 54.377 56.049 56.049 56.049 56.049 56.050 56.050
6.001 SW13 15 Winter 100 +50% 52.20 6.002 SW14 720 Winter 100 +50% 50.01 6.003 SW15 720 Winter 100 +50% 100/180 Winter 50.01 6.004 SW15 720 Winter 100 +50% 1/15 Summer 50.01 3.004 SW17 720 Winter 100 +50% 1/15 Summer 53.17 7.000 SW20 15 Winter 100 +50% 100/240 Winter 53.053 3.005 SW18 720 Winter 100 +50% 48.21	PN 3.000 3.001 3.002 4.000 4.001 4.002 4.003 5.000 5.001 4.004	US/MH Name SW11 SW10 SW09 SW01 SW02 SW03 SW04 SW07 SW06 SW05	720 720 720 600 600 600 600 600 600 600	Winter Winter Winter Winter Winter Winter Winter Winter Winter	Return Period 100 100 100 100 100 100 100 100	Climate Change +50% +50% +50% +50% +50% +50% +50% +50%	First () Surchar 100/30 Su 30/60 W1 30/30 Su 30/30 Su 30/15 Su	x) ge immer immer immer	First (Y)	First (Z)	Overflo	Water Water (m) 54.379 54.379 54.377 56.049 56.049 56.049 56.049 56.049 56.049
6.003 SW15 720 Winter 100 +50% 100/180 Winter 50.012 6.004 SW16 720 Winter 100 +50% 1/15 Summer 50.012 3.004 SW17 720 Winter 100 +50% 48.642 7.000 SW20 15 Winter 100 +50% 53.175 7.001 SW19 720 Winter 100 +50% 53.055 3.005 SW18 720 Winter 100 +50% 48.217	PN 3.000 3.001 3.002 4.000 4.001 4.002 4.003 5.000 5.001 4.004 3.003	05/MH Name SW11 SW10 SW09 SW01 SW02 SW03 SW04 SW03 SW04 SW05 SW05 SW08	720 720 720 600 600 600 600 600 600 600 600	Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter	Return Period 100 100 100 100 100 100 100 100 100	Climate Change +50% +50% +50% +50% +50% +50% +50% +50%	First () Surchar 100/30 Su 30/60 W1 30/30 Su 30/30 Su 30/15 Su	x) ge immer immer immer	First (Y)	First (Z)	Overflo	Water (m) 54.379 54.379 54.377 56.049 56.049 56.049 56.050 56.050 56.049
6.004 SW16 720 Winter 100 +50% 1/15 Summer 50.012 3.004 SW17 720 Winter 100 +50% 48.64 7.000 SW20 15 Winter 100 +50% 53.172 7.001 SW19 720 Winter 100 +50% 53.052 3.005 SW18 720 Winter 100 +50% 48.217	PN 3.000 3.001 3.002 4.000 4.001 4.002 4.003 5.000 5.001 4.004 3.003 6.000	US/MH Name SW11 SW09 SW01 SW02 SW03 SW04 SW07 SW06 SW05 SW08 SW05 SW08 SW08 SW13	8 720 720 600 600 600 600 600 600 600 15 15	Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter	Return Period 100 100 100 100 100 100 100 100 100 10	Climato Change +50% +50% +50% +50% +50% +50% +50% +50%	First () Surchar 100/30 Su 30/60 W1 30/30 Su 30/30 Su 30/15 Su	x) ge immer immer immer	First (Y)	First (Z)	Overflo	Water W Level (m) 54.379 54.379 54.377 56.049 56.049 56.049 56.049 56.050 56.050 56.050 56.050 56.049 53.528 53.089 52.207
3.004 SW17 720 Winter 100 +50% 48.64 7.000 SW20 15 Winter 100 +50% 53.17 7.001 SW19 720 Winter 100 +50% 53.05 3.005 SW18 720 Winter 100 +50% 48.21	PN 3.000 3.001 3.002 4.000 4.001 4.003 5.000 5.000 5.000 4.004 3.003 6.000 6.001	US/ME Name SW11 SW09 SW01 SW02 SW03 SW04 SW05 SW06 SW05 SW06 SW05 SW08 SW12 SW12 SW14	8 720 720 600 600 600 600 600 600 600 15 15 720	Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter	Return Feriod 100 100 100 100 100 100 100 100 100 10	Climate Change +50% +50% +50% +50% +50% +50% +50% +50%	First () Surchar 100/30 Su 30/60 Wi 30/30 Su 30/15 Su 1/15 Su	X) ge Inter Inter Inner Inner	First (Y)	First (Z)	Overflo	Water (m) 54.379 54.379 56.049 56.049 56.049 56.049 56.050 56.050 56.049 53.528 53.528 53.089 52.207 50.014
7.000 SW20 15 Winter 100 +50% 53.17 7.001 SW19 720 Winter 100 +50% 100/240 Winter 53.05 3.005 SW18 720 Winter 100 +50% 48.21	FN 3.000 3.002 4.000 4.001 4.002 4.003 5.000 5.001 4.003 6.000 6.001 6.002 6.003	US/ME Name SW11 SW10 SW09 SW02 SW02 SW02 SW02 SW03 SW04 SW07 SW04 SW05 SW08 SW05 SW08 SW12 SW12 SW13 SW14 SW15	2720 720 720 600 600 600 600 600 600 600 15 15 720 720	torm Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter	Return Feriod 100 100 100 100 100 100 100 100 100 10	Climate Change +50% +50% +50% +50% +50% +50% +50% +50%	First () Surchar 100/30 Su 30/60 Wi 30/30 Su 30/15 Su 1/15 Su 100/180 Wi	X) ge immer immer immer	First (Y)	First (Z)	Overflo	Water Loval (m) 54.379 54.377 56.049 56.049 56.049 56.050 56.050 56.050 56.050 56.059 53.528 53.089 52.207 50.014 50.013
7.001 SW19 720 Winter 100 +50% 100/240 Winter 53.053 3.005 SW18 720 Winter 100 +50% 48.213	PN 3.000 3.001 4.002 4.002 4.003 5.000 5.001 4.004 3.003 6.000 6.001 6.002 6.003 6.004	US/MH Name SW11 SW09 SW01 SW02 SW03 SW04 SW07 SW06 SW05 SW05 SW05 SW05 SW05 SW05 SW05 SW12 SW12 SW13 SW14 SW15 SW16	3 720 720 600 600 600 600 600 600 15 15 720 720 720	Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter	Return Period 100 100 100 100 100 100 100 100 100 10	Climate Change +50% +50% +50% +50% +50% +50% +50% +50%	First () Surchar 100/30 Su 30/60 Wi 30/15 Su 1/15 Su 100/180 Wi 1/15 Su	X) ge immer immer immer	First (Y)	First (Z)	Overflo	Water (m) 54.379 54.377 56.049 56.049 56.049 56.049 56.050 56.050 56.050 56.050 56.050 56.059 53.528 53.089 52.207 50.014 50.013 50.012
3.005 SW18 720 Winter 100 +50% 48.21	PN 3.000 3.002 4.000 4.001 4.002 4.003 5.000 5.001 4.004 3.003 6.000 6.001 6.002 6.003 6.004 3.004	US/ME Name SW11 SW10 SW01 SW02 SW03 SW04 SW07 SW06 SW05 SW08 SW15 SW13 SW14 SW15 SW15 SW15 SW15 SW15	8 720 720 600 600 600 600 600 15 720 720 720 720	Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter	Return Period 100 100 100 100 100 100 100 100 100 10	Climate Change +50% +50% +50% +50% +50% +50% +50% +50%	First () Surchar 100/30 Su 30/60 Wi 30/15 Su 1/15 Su 100/180 Wi 1/15 Su	X) ge immer immer immer	First (Y)	First (Z)	Overflo	Water (m) 54.379 54.379 54.377 56.049 56.049 56.049 56.050 56.050 56.050 56.050 56.049 53.089 53.089 52.207 50.014 50.013 50.012 48.647
©1982-2020 Innovvze	PN 3.000 3.001 3.002 4.000 4.001 4.003 5.000 5.001 4.003 6.001 6.002 6.002 6.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.005 3.05 3.005	US/MH Name SW11 SW10 SW09 SW01 SW02 SW02 SW02 SW03 SW04 SW05 SW06 SW05 SW08 SW12 SW13 SW12 SW13 SW14 SW15 SW16 SW15 SW16 SW15	9 720 720 600 600 600 600 600 15 15 75 720 720 720 720 720 720	Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter	Return Feriod 100 100 100 100 100 100 100 100 100 10	Climate Change +50% +50% +50% +50% +50% +50% +50% +50%	First () Surchar 100/30 Su 30/60 Wi 30/15 Su 1/15 Su 100/180 Wi 1/15 Su	X) ge immer immer immer	First (Y)	First (Z)	Overflo	Water (m) 54.379 54.377 56.049 56.049 56.049 56.049 56.050 56.050 56.050 56.050 56.050 56.059 53.528 53.089 52.207 50.014 50.013 50.012
©1982-2020 Innovvze	PN 3.000 3.001 3.002 4.000 4.001 4.002 4.003 5.000 5.001 4.004 3.003 6.000 6.001 6.002 6.003 6.004 3.004 7.000 7.001	US/MH Name SW11 SW10 SW09 SW01 SW02 SW03 SW04 SW05 SW08 SW05 SW08 SW12 SW13 SW14 SW15 SW15 SW16 SW17 SW17 SW19	8 720 720 600 600 600 600 600 15 15 720 720 720 720 720 720 720	torm Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter	Return Feriod 100 100 100 100 100 100 100 100 100 10	Climate Change +50% +50% +50% +50% +50% +50% +50% +50%	First () Surchar 100/30 Su 30/60 Wi 30/15 Su 1/15 Su 100/180 Wi 1/15 Su	X) ge immer immer immer	First (Y)	First (Z)	Overflo	Water (m) 54.379 54.379 54.377 56.049 56.049 56.050 56.050 56.050 56.050 56.059 55.28 53.528 53.089 52.207 50.014 50.013 50.012 50.014 50.013
©1982-2020 Innovvze	PN 3.000 3.001 3.002 4.000 4.001 4.002 4.003 5.000 5.001 4.004 3.003 6.000 6.001 6.002 6.003 6.004 3.004 7.000 7.001	US/MH Name SW11 SW10 SW09 SW01 SW02 SW03 SW04 SW05 SW08 SW05 SW08 SW12 SW13 SW14 SW15 SW15 SW16 SW17 SW17 SW19	8 720 720 600 600 600 600 600 15 15 720 720 720 720 720 720 720	torm Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter	Return Feriod 100 100 100 100 100 100 100 100 100 10	Climate Change +50% +50% +50% +50% +50% +50% +50% +50%	First () Surchar 100/30 Su 30/60 Wi 30/15 Su 1/15 Su 100/180 Wi 1/15 Su	X) ge immer immer immer	First (Y)	First (Z)	Overflo	Water Loval (m) 54.379 54.377 56.049 56.049 56.049 56.050 56.
©1982-2020 Innovvze	PN 3.000 3.001 3.002 4.000 4.001 4.002 4.003 5.000 5.001 4.004 3.003 6.000 6.001 6.002 6.003 6.004 3.004 7.000 7.001	US/MH Name SW11 SW10 SW09 SW01 SW02 SW03 SW04 SW05 SW08 SW05 SW08 SW12 SW13 SW14 SW15 SW15 SW16 SW17 SW17 SW19	8 720 720 600 600 600 600 600 15 15 720 720 720 720 720 720 720	torm Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter	Return Feriod 100 100 100 100 100 100 100 100 100 10	Climate Change +50% +50% +50% +50% +50% +50% +50% +50%	First () Surchar 100/30 Su 30/60 Wi 30/15 Su 1/15 Su 100/180 Wi 1/15 Su	X) ge immer immer immer	First (Y)	First (Z)	Overflo	Water Loval (m) 54.379 54.377 56.049 56.049 56.049 56.050 56.
	PN 3.000 3.001 3.002 4.000 4.001 4.002 4.003 5.000 5.001 4.004 3.003 6.000 6.001 6.002 6.003 6.004 3.004 7.000 7.001	US/MH Name SW11 SW10 SW09 SW01 SW02 SW03 SW04 SW05 SW08 SW05 SW08 SW12 SW13 SW14 SW15 SW15 SW16 SW15 SW16 SW17 SW19	8 720 720 600 600 600 600 600 15 15 720 720 720 720 720 720 720	torm Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter	Return Feriod 100 100 100 100 100 100 100 100 100 10	Climate Change +50% +50% +50% +50% +50% +50% +50% +50%	First () Surchar 100/30 Su 30/60 Wi 30/15 Su 1/15 Su 100/180 Wi 1/15 Su	x) ge Inner Inner Inner Inner	First (Y) Flood	First (Z)	Overflo	Water Loval (m) 54.379 54.377 56.049 56.049 56.049 56.050 56.

A L Dai	nes é	Partners						1	Page 11			
28 Cast	le Sti	reet										
Carlisl	e								1			
CA3 8TP									Micro			
Date 02	/05/20	023 09:28		De	signed 1	oy petera						
File MD	The MD CALCS SM.MDX Checked by Designed by Petera											
Micro D	licro Drainage Network 2020.1.3											
100 ye	ar Re	turn Perio	od Summa			1 Results	by M	aximum Le	vel (Rank			
				1)	for Sto	E 10						
		Surcharged	Flooded			Half Drain	Pipe					
	US/ME	-			Overflow		Flow		Level			
PN	Name	(m)	(m ³)	Cap.	(1/s)	(mins)	(1/s)	Status	Exceeded			
3 000	SW11	-0.071	0 000	0.09			14.3	OK				
	SW10		0.000			624		SURCHARGED				
	SW09	0.417	0.000	0.07				SURCHARGED				
	SW01						2.2					
	SW 02 SW 03						4.1	OK				
	SW04		0.000	0.00			1.9	OK				
	SW07	0.525	0.000	0.07			2.1	SURCHARGED)			
	SW06		0.000					SURCHARGED				
	SW05 SW08		0.000	0.04			1.7	SURCHARGED				
	SW12	-0.136					77.4	OK				
	SW13						158.8	OK	:			
	SW14						28.5	OK				
	SW15 SW16		0.000					SURCHARGED				
	SW17	-0.103	0 000	0.57			10.0					
	SW20		0.000	0.31			116.3					
	SW19	0.103	0.000	0.00				SURCHARGED				
3.005	SW18	-0.133	0.000	0.35			11.9	OK				
			(D1982 -	2020 Inn	ovyze						

<u>APPENDIX E – TREATMENT SYSTEMS</u>

A L Daines and Partners LLP 21-C-16080

Water Management Solutions

Margester AquaTreat Surface Water Treatment Separator Range

Technical Specifications

Model	Treatment device capacity [1]	Treatment flow rate [I/s]	Connectable surface [m ²]	Particulate storage capacity [1]	Hydrocarbons storage capacity [1]
SWT010	2450	10	1000	1000	100
SWT015	3600	15	1470	1500	150
SWT020	7300	20	2000	2000	200
SWT030	9150	30	3735	3000	300
SWT040	11000	40	4500	4000	400
SWT050	13400	50	5470	5000	500
SWT065	17250	65	7040	6500	650
SWT080	24800	80	10125	8000	800
SWT100	27100	100	11065	10000	1000
SWT125	32950	125	13450	12500	1250
SWT150	40650	150	16600	15000	1500
SWT175	47380	175	19340	17500	1750
SWT200	52650	200	21500	20000	2000
SWT210	56200	210	14105	21000	2100
SWT225	60100	225	15013	22500	2250
SWT240	63950	240	15909	24000	2400
SWT255	67850	255	16817	25500	2550
SWT270	71700	270	17724	27000	2700
SWT285	75550	285	18620	28500	2850

Hydrocarbon retention	99.7%
Particulate retention efficiency	85.5%
Zinc retention efficiency**	64%
Copper retention efficiency**	64%

British Water CoP testing results available on request.

For more information on any of our products: T: +44 (0)1296 633 209 E: elliott.evans@kingspan.co.uk or visit kingspan.co.uk/klargester

Viel take every care to ensure that the information in this document is accurate at the point of publication. Dimensions may vary (within a small parameter) due to manufacturing process validations or environmental conditions. All images are for illustration purposes only and, along with dimensions, should not be taken as bindings. The accular products may vary and aspects such as explanment age/Editorian/abilet may differ. To ensue you are viewing the most excert and accurate product information, pilease visit this link: https://www.htmgon.com/gbine-gbi/products/wate-management/aquacore-sustainable-urban-drainagesystem--sust/uurban-excertsetment-separation. ØECingspon and the Lion Device are Registered Trademarks of the Eingspon Croup in the UK, lealand and other countries. All facts merved. Registered Trademarks of the Eingspon Croup in the UK, lealand and other countries. All facts merved. Registered Trademarks NINDTAST. Registered Critics: 180 Difford Road, Partadown, Co. Armagh, ErsSSIF. Vert OB402 5124 05

4359-gb-02/2022-v1

ACO Data Sheet

the future of drainage

ACO V-Septor – Hydrodynamic Separator

The ACO V-Septor is an advanced

hydrodynamic separator that removes sediment bound contaminants. Its design enables removal of pollutants by means of settlement and the capture of floatables.

The ACO V-Septor is available in a range of sizes to accommodate small to large sites and can be custom made for demanding installations.

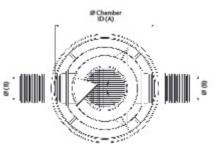
The ACO V-Septor retains solid pollution and oil. It also forms part of the SuDS management train as it removes over 50% of fine Total Suspended Solids as well as sediment bound metals and hydrocarbons.

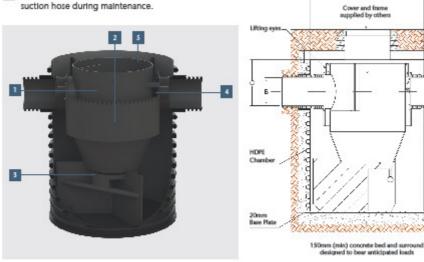
Benefits

- Removes solid pollution from plastic rubbish to fine silt
- Forms part of the SuDS management train
- Delivered fitted in a HDPE chamber with lifting eyes, and straps supplied for ease of installation
- Easily accessible for maintenance

(0.5	0.5	0.4	
Liquid hydrocarbons	Sediment bound hydrocarbons		2012-0113	
0.8	0.5			

Details available on request





Product name	Product code	Gumber diameter (A)	Fipe connections (B)	Tap to invert (Q	Sediment storage capacity	Gil / debris storage capacity	Typical treatment flow rate (fire)	Typical treatment flow rate (coarse)	Typical non remobilisation flow rate (coarse)
		nn a	nn	nn	m ³	1	l/s	1/1	l/a
ACO V-Septor -	Hydrodynami	c Separator	Range						
V-Septor 750	40995	750	150	375	0.4	49	11	14	37
V-Septor 1000	41000	1050	225	483	0.6	335	20	25	67
V-Septor 1200	41003	1200	300	550	0.86	397	29	37	98
V-Septor 1500	41005	1500	375	608	1.2	785	45	57	151
V-Septor 2000	41009	2100	500	700	2.2	1130	80	102	269
V-Septor 2500	41013	2400	600	850	3.5	2010	125	159	421

How it works

- The deflection plate directs the incoming stormwater to create a vertical vortex.
- Suspended solids settle down in the sludge chamber. Light liquids and debris are captured at the surface.
- Radial flow baffies create isolated zones to retain sediments in the sludge chamber and prevent remobilisation of sediments during peak flow events.
- Cleaned water flows up the outer chamber and over the balancing weir and then passes through the outlet to discharge to the water environment.
- S Captured solids and debris can easily be removed by suction hose during maintenance.

ACO Water Management Contacts: Sales: uk-swc@aco.co.uk Technical: technical@aco.co.uk Tel: 01462 816666 www.aco.co.uk

ACO. creating the future of drainage

Concrete capping slab supplied by others

Min

Е

.

Chamber height 2000mm
