West Cumberland Hospital **Ground Investigation Report**

Curtins Ref: 073983-CUR-00-XX-RP-GE-002 Revision: V01 Issue Date: 25 March 2021

Client Name: CCL Solutions

Client Address: Unit 18, The South Range, Hackthorpe Business Centre, Hackthorpe, Penrith, Cumbria, CA10 2HX

Site Address: West Cumberland Hospital, CA28 8JG

Curtins CIVILS & STRUCTURES • TRANSPORT PLANNING • ENVIRONMENTAL • INFRASTRUCTURE • GEOTECHNICAL • CONSERVATION & HERITAGE • PRINCIPAL DESIGNEF Birmingham • Bristol • Cambridge • Cardiff • Douglas • Dublin • Edinburgh • Glasgow • Kendal • Leeds • Liverpool • London • Manchester • Nottingham

Ground Investigation Report

Description	Issued by	Checked	Date
	Description	Description Issued by	Description Issued by Checked

This report has been prepared for the sole benefit, use, and information for the client. The liability of Curtins Limited with respect to the information contained in the report will not extend to any third party.

Author	Signature	Date
J. James BSc GC EnvMgt MCIWEM C.WEM Principal Engineer		25 March 2021

Reviewed	Signature	Date
R Amirhosseiny Meng Principal Geotechnical Engineer		25 March 2021

Authorised	Signature	Date
M Lomas BSc (Hons) CEnv CSci CWEM MCIWEM Associate		25 March 2021

Executive Summary

Appointment	In November 2020, Curtins were instructed by Graham Construction to undertake a Phase 2 Ground Investigation for the construction of a new hospital wing and refurbishment of existing buildings with associated car parking, communal soft landscaped, clinical and recycling waste storage in the north of the site. The site is centred on National Grid Reference NS 298950, 516040.
Current Site Status	Most of the site is currently vacant, having undertaken demolition of the previous hospital building in the west, and previous buildings in the north-east.
	The site was vacant up until the 1960s from when the West Cumberland Hospital was constructed. The site underwent significant development in the mid to late 1960s and remained relatively the same up until the present day, where the site structures have been demolished with significant earthworks also undertaken.
	Based on the site's historical land use and considering the nature of present demolition and earthworks, made/reworked ground is anticipated at varying depths. Superficial deposits are indicated to comprise Till underlain by bedrock noted as the Hensingham Grit and Stainmore Formations, comprising sandstone and mudstone.
Summary of Phase 1	Superficial deposits are not assigned an Aquifer designation. The bedrock is classified as a Secondary A aquifer. The site is not located within a source protection zone and there are no groundwater abstraction points within 1km of the site.
	The nearest surface water feature is located 264m south west of the site. Which appears to relate to a small drain. There are no surface water abstraction points recorded within 1km of the site.
	The site is located in a lower probability radon area, where less than 1% of properties are estimated to be above the radon action level.
	Primary potential risks to be investigated during the Phase 2, as well as establishing ground conditions for geotechnical design, included; potential for land gas and risks to human health from Made Ground soils.
	Fieldworks were carried out in December 2020 and comprised six cable percussion / rotary cored boreholes to a maximum depth of 17.30m bgl and seven windowless sampling boreholes up to 3.65m bgl.
Fieldworks	Additionally, further ground investigation were undertaken in March 2021 comprising three open-hole rotary boreholes to 12.00m bgl and dynamic probing within the north of the site to obtain CBR values for road/pavement design.
	Groundwater and gas monitoring wells installed within select borehole locations, with six return ground gas monitoring visits have been completed. Selected soil and rock samples were scheduled for chemical and geotechnical analysis.
	Made Ground deposits were encountered in all of the exploratory holes (with exception of WS02), to base depths ranging from 0.45m bgl (BH01) to 2.50m bgl (WS05). The Made Ground generally comprised an upper layer of predominantly granular material with demolition material and the deeper Made Ground encountered as a cohesive material, likely reworked material.
Ground Conditions	Residual soils were encountered locally within north-western to south-western area of the site within WS01 and WS02. These were encountered to underlie either Topsoil or Made Ground at shallow depths (<0.80m bgl) to depths of 3.65m bgl.
	Bedrock has been encountered within all of the rotary boreholes, comprising sandstone to circa 10.0m bgl with Limestone thereafter within BH01, BH02 and BH06 all within the northern portion only. The sandstone is described Medium strong light brownish grey coarse rained crystalline SANDSTONE with rare microline coal laminations. The Limestone was described as Strong light whitish grey crystalline LIMESTONE. Small pyritic inclusions noted and common quartz veins throughout.
Environmental Laboratory Testing	With respect to the proposed 'Commercial' end use, no exceedances were recorded within any samples collected from the made ground.

Ground Investigation Report

and Ground Gas Monitoring Results	Selected soil samples were screened for asbestos. No suspected asbestos containing materials (ACMs) were identified in the exploratory hole logs and no asbestos fibres were positively identified during laboratory analysis of the soil samples. No flow, carbon dioxide or methane concentrations above the machine's limit of detection have been recorded.	
Generic Quantitative Risk Assessment	The risk presented to site end users from made ground soils is Low due to no exceedances above <i>Commercial</i> thresholds were recorded in any samples recovered. The risk presented to site end users from ground gases is Low , with a CS-1 classification and no gas protection measures required for the site. Radon protection measures are not required.	
	It is considered that the underlying bedrock could potentially provide a suitable bearing stratum. For foundations founded on moderately strong sandstone with discontinuity spacings >60mm, allowable bearing capacities of 1500 to 2000 kN/m2 are estimated.	
Geotechnical Assessment	Where bedrock is too deep and overlaid by variable made ground (encountered across the site to depths of up to 2.50m bgl) and along with variable residual soils (locally to 3.65m bgl) it may affect the feasibility with potential mass trench fill foundations required within areas of deep made ground/residual soils. It is also considered that a piled foundation solution could be used to transfer the loads to the underlying bedrock. The carrying capacity of piles depends not only on their size and the ground conditions but also on their method installation. If a piled foundation solution is to be adopted, consideration should be given to the fractured/poor quality bedrock at from approximately 9.00 – 11.50m bgl, within the vicinity of BH02A.	
	Based on the observations on site together with the results of laboratory tests, it is recommended that consideration is given to a suspended ground floor slab, unless founded on a suitable natural stratum with allowable bearing capacities satisfying the required pressures from the slab. Where piled foundations are anticipated, a suspended slab is recommended to bear on the pile caps by a network of beams which will minimise any differential settlement between the floor and piled structure.	
	Laboratory test results indicate a Design Sulphate Class for concrete may be taken as DS-2 and ACEC class of AC-2 would be appropriate.	
	Based on the findings of the ground investigation, the following recommendations are made:	
Recommendations	 It is recommended that construction workers are provided with appropriate PPE and sanitary facilities, with reference to the environmental testing results presented herein and within Appendix C. Where unexpected contamination is discovered during future earthworks and/or construction, works should eb stopped and the advice of a qualified geo-environmental engineer should be sought. 	

Ground Investigation Report

Table of Contents

1.0	Intr	oduction	1
1.	1	Project Background	1
1.	2	Scope of Works	1
2.0	Site	Setting	2
2.	1	Available Sources	2
2.	2	Current Setting	2
2.	3	Previous Site Use	3
2.	4	Geology and Hydrogeology	4
2.	5	Hydrology	5
2.	6	Mining	6
2.	7	Unexploded Ordnance	6
2.	8	Ground Gas	6
3.0	Cor	nceptual Site Model & Qualitative Risk Assessment	8
3.	1	Additional Risk Assessments	8
4.0	Fiel	d and Laboratory Studies 1	0
4.	1	Ground Investigation 1	0
4.	2	Laboratory Analysis1	1
4.	3	Monitoring Well Installations 1	3
5.0	Gro	und Conditions1	5
5.	1	General1	5
5.	2	Topsoil1	5
5.	3	Made Ground 1	5
5.	4	Residual Soils 1	6
5.	5	Bedrock 1	6
5.	6	Observed Potential Contamination 1	8
5.	7	Groundwater 1	8
5.	8	Aggressive Ground Conditions 1	9
6.0	Gro	und and Groundwater Contamination Assessment 1	9
6.	1	Human Health GQRA	20
6.	2	Controlled Waters GQRA	22
6.	3	Ground Gas GQRA	22
7.0		rised Conceptual Site Model	
8.0	Geo	otechnical Conclusions and Recommendations2	27
8.	1	Foundation Recommendation	27
8.	2	Ground Floor Slabs	27

Ground Investigation Report

8.3	Chemical Attack on Buried Concrete	
8.4	Excavations	
9.0 0	Geo-Environmental Conclusions and Recommendations	
9.1	Geo-Environmental Conclusions	
9.2	Recommendations	
10.0 E	Bibliography	

Appendices

Appendix A	-	Drawings
Appendix B	-	Exploratory Hole Logs
Appendix C	-	Chemical Laboratory Testing Results
Appendix D	-	Geotechnical Laboratory Testing Results
Appendix E	-	Ground Gas and Groundwater Monitoring Results
Appendix F	-	GAC Screening Thresholds
Appendix G	-	Risk Assessment Methodology

1.0 Introduction

1.1 Project Background

Curtins have been instructed by CCL Solutions on behalf of Grahams Construction to undertake a Ground Investigation for the proposed development at the West Cumberland Hospital in Whitehaven.

The proposed development comprises the construction of a new hospital wing and refurbishment of existing buildings with associated car parking, communal soft landscaped, clinical and recycling waste storage in the north of the site.

The site is located on approximate National Grid Reference (NGR) 298950, 516040.

The current development plans can be referred to within Appendix A of this report.

1.2 Scope of Works

This report includes a review of the readily available information for the site, as presented in the Curtins 2020 Phase 1 Preliminary Risk Assessment Report (Curtins, 2020) and the recent ground investigation undertaken by Curtins. This report will provide an assessment of the geo-environmental and geotechnical conditions across the site and present an account of the ground and groundwater conditions along with any anticipated limitations or constraints caused by contamination or geohazards.

The Phase 2 report is intended to determine:

- a) Likelihood of potential shallow site soils contamination, due to site's current and historic land use, adversely impacting the end-user;
- b) Likelihood of potential groundwater contamination, due to site's current and historic land use, adversely impacting the end-user;
- c) Likelihood of potential ground gas, adversely impacting the end-user; and
- d) Likelihood of the proposed works being adversely impacted by potential geo-hazards across the site.

In addition, recommendations on foundation solutions for the proposed structures will be provided.

Detailed flood risk assessment, ecology and archaeological studies are outside of the scope of this report.

Ground Investigation Report

2.0 Site Setting

Information about the current site setting, history, geology and hydrogeology/hydrology, have been previously detailed within the Phase 1 Preliminary Risk Assessment, undertaken by *Curtins, Ref:73096-CUR-00-XX-RP-GE-001*. Additional sources of readily available information have also been assessed as a part of this report. A summary of these are provided in the subsequent sections.

This information will feed into the geo-environmental risk assessment (refer to Section 7.0) and geotechnical assessment (refer to Section 9.0).

2.1 Available Sources

In addition to the Phase 1 report undertaken by Curtins, other sources of relevant information reviewed for this scheme comprise:

- Envirocheck Report, included in the Curtins Phase 1
- British Geological Society (BGS) Scotland Map Sheet 30E, Scale 1:50,000 Glasgow Solid Geology (British Geological Society, 1993)
- British Geological Society (BGS) Scotland Map Sheet 30E, Scale 1:50,000 Glasgow Solid Geology (British Geological Society, 1994)
- BGS GeoIndex Online Map Viewer (British Geological Society, 2020)

2.2 Current Setting

The development site is indicated within boundary A in the figure below. Most of the site is currently vacant, having undertaken demolition of the previous hospital building in the west, and previous buildings in the north-east.

Figure 2.2 on the following page shows the approximate site boundary.

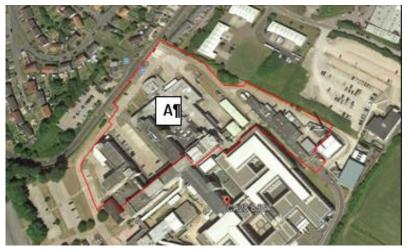


Figure 2.2 Site Location Plan (approx. site boundary shown in pink), centred on National Grid Reference NS 298950, 516040.

The surrounding land use is summarised in *Table 2.2*.

Table 2.2	Surrounding Land uses
-----------	-----------------------

	Ν	Homewood road and mixed commercial and residential properties.
Surrounding Area		Buildings associated with West Cumberland Hospital and open fields with a helipad.
		Residential properties and fields.
	W	Residential properties.

2.3 Previous Site Use

A summary of the review of the historical maps undertaken within the Curtins Phase 1 report is provided below:

Date	Description	Potential Sources of Contamination
1865- 1957	The subject site is spread across several bounded fields. Three trees are present on the western boundary.	N/A
1961- 1963	West Cumberland Hospital is first identified. The previously mentioned trees have been removed. A rectangular building is constructed in the eastern corner of the site as per present day as is a secondary rectangular building that is built parallel. A footpath provides access to these buildings from Homewood Road. A chimney is shown on the east of the site.	Uncontrolled deposition of Made Ground from construction onsite.

Table 2.3 – Previous Site Uses and Potential Sources of Contamination

_

Date	Description	Potential Sources of Contamination
1965- 1968	A large phase of development occurs between O.S. publications and West Cumberland Hospital largely resembles the same general layout as per present day. Construction of numerous buildings, many remain till present day. A row of 8No. square buildings are orientated toward NW- SE in the north west of the site. Several trees are planted along the north eastern site boundary.	Uncontrolled deposition of Made Ground from construction / demolition onsite.
1999	The site remains largely unchanged. The row of square structures previously mentioned appears to have been demolished in the north west of site and replaced by car parking.	Uncontrolled deposition of Made Ground from construction / demolition onsite.
1999- 2019	Site remains largely unchanged until present day.	N/A

The contaminants, likely to be present from the historic site and surrounding area uses, include but are not limited to: asbestos within construction materials, petroleum hydrocarbons from localised fuel spillages, and inorganic compounds including heavy metals.

No significant geo-hazards have been previously recorded.

2.4 Geology and Hydrogeology

The British Geological Society (BGS) 1:50,000 maps and the BGS historic exploratory holes have been reviewed. A summary of the anticipated ground conditions is provided in *Table 2.4*.

 Table 2.4
 Geological/Hydrogeological Succession

Geology	Associated Hydrogeological Classification	
Till, Devensian ¹	Secondary Undifferentiated ²	
Hensingham Grit ³	Secondary A Aquifer ^₄	
Stainmore Formation ⁵	Secondary A Aquifer ⁴	

Notes:

1. Diamicton. Superficial Deposits formed up to 2 million years ago in the Quaternary Period. Local environment previously dominated by ice age conditions.

2. Assigned in cases where it has not been possible to attribute either category A or B to a rock type

- 3. Sandstone. Sedimentary Bedrock formed approximately 328 to 329 million years ago in the Carboniferous Period. Local environment previously dominated by rivers.
- 4. Permeable layers capable of supporting water supplies at a local rather than strategic scale, and in some cases forming an important source of base flow to rivers. These are generally aquifers formerly classified as minor aquifers.
- 5. Mudstone, Siltstone and Sandstone. Sedimentary Bedrock formed approximately 319 to 329 million years ago in the Carboniferous Period. Local environment previously dominated by swamps, estuaries and deltas.

2.4.1 BGS Data

A review of the available online BGS borehole records did not record any historic boreholes on site, however historical boreholes were identified immediately adjacent to the site. These were summarised within the Curtins Phase 1 Preliminary Risk Assessment and are presented in *Table 2.4.1*.

Table 2.4.1 Summary of BGS Historic Boreholes

Reference	Location (NGR)	Details (depth to top of strata/details/thickness)
NX91NE50/52	298730, 515980	 0.40m bgl, Topsoil 3.75m bgl, Broken sandstone and sandy clay. 4.50m bgl, Grey sandstone. Borehole completed at 4.50m bgl.
NX91NE/80	299061, 516308	 0.00m bgl, Firm to stiff brown sandy boulder clay. 1.50m bgl, Stiff brown sandy boulder clay. 3.20m bgl, Soft brown sandy clay and grey shale. 5.00m bgl, Dark grey weathered shale. 5.00m Borehole completed
NX91NE381	299890, 515910	 0.00m bgl, Sandy gravelly cobbly clay. 6.70m bgl, Sand and gravel with cobbles and boulders. 8.35m bgl, Dark reddish-brown sandstone. 18.00m bgl, Dark red sandy clayey siltstone. Borehole continues to 120m bgl prior to termination.

2.5 Hydrology

The nearest surface water feature is located 264m south west of the site. Which appears to relate to a small drain.

There are 17No. discharge consents within 1km of the site. The closest is 390m north east of the site and is operated by Copeland Athletic Stadium Trust for the discharge of surface water into a freshwater stream/river.

There are no surface water abstraction points recorded within 1km of the subject site.

There are 21 pollution incidents to controlled waters within 1km of the site. The closest refers to a Category 3 – Minor incident which occurred in March 1992, 278m to the north west of the site relating to unknown oils being discharged into the Irish Sea catchment area.

2.6 Mining

There are 21No. BGS Recorded Mineral Sites within 1km of the site. The closest refers to the aforementioned Overend Quarry approximately 200m east of the site.

The site is within a known coal mining region, however, is not located within a development high risk area associated with potential zone of influence of surface or subsurface coal workings.

Based on the foregoing commentary, it is not considered there is a risk to the site from previous mining and mineral extraction activities; it is therefore not considered further.

2.7 Unexploded Ordnance

Risk mapping for UXO's has placed the site in a low-risk area. Low-risk areas are indicated as having 15 bombs per 1000 acre or less. In low risk areas, it may not be essential to undertake a detailed UXO risk assessment. Furthermore, no evidence of ruins is noted in post war mapping on site or in the surrounding area and there are no locally significant targets noted prior to or during WW2.

On this basis the risk from UXO is considered to be Low and no further assessment is required at this stage.

2.8 Ground Gas

There is a single (1No.) BGS Recorded Landfill Site entry 198m NE from the site, this refers to Overend Tip (former quarry).

There are 3No. Historic Landfill Site records within 830m of the site. The two closest refer to Overend Quarry approximately 200m north east of the site.

There are 3No. records of Potentially Infilled Land (non-water) within 1km of the site. The closest is 377m east of the site referring to unknown filled ground (pit, quarry, etc) in 1979.

There are 20 records of Potentially Infilled Land (water) within 1km of the site. A single entry is located within the site boundaries referring to unknown filled ground (pond, marsh, river, stream, dock, etc).

Two (2No.) Registered Landfill Sites are identified within the environmental database report. The closest is 195m north east of the site and also refers to Overend Quarry. The license is operated by Copeland B.C. for the disposal of gully waste and road sweepings.

The BGS Radon Mapping confirms the site is situated in a lower probability radon area where <1% of homes are at or above the radon action level. On this basis radon protection measures are not considered necessary in the construction of new dwellings or extensions.

3.0 Conceptual Site Model & Qualitative Risk Assessment

The Preliminary Conceptual Site Model (PCSM) and Qualitative Risk Assessment (QRA) are presented in the table within this section.

The PCSM details the source-pathway-receptor linkages or potential contaminant linkages (PCLs) that have been identified for the site. The QRA details the associated level of risk relating to these PCLs.

The PCSM and QRA concern the major risks to human health and the water environment with additional, more specific risk assessment protocols contained within the main body of this reporting, as detailed in Section 3.1 below.

The QRA follows the framework outlined within CIRIA C552 which is summarised within Appendix G.

The 'risk rating' within the QRA refers to the risk that the source, pathway, receptor linkage or PCL is complete. Unless specifically stated it does not necessarily refer to an immediate risk and is intended to be used as a tool to assess the necessity for further assessment/investigation.

3.1 Additional Risk Assessments

The following risk assessments, listed below, are not included within the main CSM and QRA but nonethe-less can be of critical importance to the onward development of the site.

- The risk presented by **Mining and Mineral Extraction** is discussed and assessed in Section 2.6.
- The risk presented by **Radon** is discussed and assessed in Section 2.8.
- The risk presented by **Unexploded Ordnance** is discussed in Section 2.7.

Under current health and safety legislation, employers are required to carry out their own appropriate risk assessments and mitigation to protect themselves and their employees, other human receptors and the environment from potential contamination. Such risks must be adequately mitigated by law, specifically the Construction Design Management (CDM) Regulations, 2015 which require that potential risks to human health and the environment from construction activities are appropriately identified and all necessary steps taken to eliminate / manage that risk.

It has been assumed that any future construction works on site will be undertaken in compliance with these requirements and therefore construction workers involved in the building works at the site have been discounted as a human receptor in the conceptual site model.

Ground Investigation Report

Qualitative Risk Assessment		Generic Quantitative Risk Assessment		Detailed Quantitative Risk Assessment or; Remedial Action
--------------------------------	--	--	--	--

• The table below represents the first stage in the land quality risk assessment process; the Qualitative Risk Assessment. In order for a development site to be deemed 'suitable for use' the level of risk needs to be brought down to acceptable levels, i.e. low to negligible risk. The purpose of each stage of risk assessment is ultimately to establish if there is a requirement for additional levels of assessment to be made in order to have sufficient confidence to support a risk characterisation or management decision, e.g. remedial action.

	Conceptual Site Model			Qualitative Risk Assessment		
Source	Pathway(s)	Receptor(s)	Consequence	Likelihood of Occurrence	Risk Rating	Recommended Actions
	Direct contact, ingestion, inhalation (dust and vapours)	End-user of site & Construction Workers	Medium Chronic health risk	Low Likelihood Minimal phases of historic development and minimal significant sources of contamination identified. Construction Workers will be protected further by appropriate PPE and Health & Safety Measures.	Moderate / Low	Generic Quantitative Risk Assessment Contamination testing is recommended as part of the ground investigation.
Made Ground of unknown composition from uncontrolled deposition of construction / demolition materials on site. Localised contamination within potential chimney base on site.	Vertical migration through the superficial deposits (soils) May occur due to existing service corridors and physical processes including; capillary action and downwards into the natural deposits through infiltration.	Controlled Waters (groundwater) High vulnerability of superficial Principal Aquifer. Secondary A Aquifer of bedrock. No groundwater abstraction points within 1km & the site is not within a designated Source Protection Zone.	Medium Pollution of sensitive water resources	Unlikely Widespread contamination is not anticipated given the limited site history and lack of industrial land use. Superficial Till deposits anticipated to have a low infiltration capacity. The risk to the aquifer is considered low due to no SPZ or abstraction points.	Low	Generic Quantitative Risk Assessment No further action required unless visual or olfactory evidence of significant contamination is encountered on site, in this case groundwater testing is recommended.
	Horizontal migration over and through the superficial deposits (soils)	Controlled Waters (surface water) There are no surface water courses within 250m of the site.	Medium Pollution of sensitive water resources	Unlikely Considering the considerable distance from the site to the nearest surface water feature, it is considered unlikely that any contamination would migrate to surface water receptors.	Low	No further action required.
Production of ground generating gases from surrounding areas of known infilled land (water and non- water).	Vertical and horizontal migration through existing service corridors and the underlying superficial deposits	End-user of site	Medium Human health risk	Low Numerous sources of possible ground gas identified in area surrounding site. Gas migration may be limited by superficial Glacial Till deposits.	Moderate/ Low	Generic Quantitative Risk Assessment Ground gas monitoring to confirm risk following the recommended ground investigation.

Field and Laboratory Studies 4.0

4.1 **Ground Investigation**

Curtins Ground investigation was undertaken in December 2020 with additional drilling works undertaken in March 2021. The scope of the ground investigation was designed in general accordance with current UK guidance including:

- LCRM (Environment Agency, 2020) •
- British Standard (BS) 10175 (British Standards Institute, 2017) •
- BS5930:2015 (British Standards Institution, 2010) •
- BSEN1997: Part 2:2007 Eurocode 7A (British Standards Institution, 2007) •

The scope of the works and rationale is summarised in Table 4.1.

Table 4.1Scope a	and Rationale of F	Fieldwork Underta	aken
Exploratory Hole Type	Exploratory Hole Reference	Exploratory Hole Depth (m bgl)	Rationale
	WS01	3.65	_
	WS02	3.65	_
	WS03	1.90	Confirm shallow ground conditions.
Windowless Sampling Boreholes	WS04	2.20	 Undertake in-situ testing. Collect soil samples for chemical and
oumphing Dorenoies	WS05	2.50	geotechnical analysis
	WS06	1.80	_
	WS07	2.20	
	BH01	11.00	_
	BH02A	17.30	
Cable Percussion /	BH03	13.00	Confirm ground conditions.Collect soil and water samples for
Rotary Cored Boreholes	BH04	13.00	chemical and geotechnical analysis.Undertake in-situ testing.
	BH05	13.00	Gas and groundwater level monitoring.
	BH06	12.00	
	BH07	12.00	
Open Hole Rotary Boreholes	BH08	12.00	• Confirm ground conditions within vicinity of BH02A to confirm no voiding present.
	BH09	12.00	
Dynamic Cone	DCP01	1.00	Obtain CBR values for proposed
Penetrometer Test	DCP02	1.00	road/pavement design.

Exploratory Hole Type	Exploratory Hole Reference	Exploratory Hole Depth (m bgl)	Rationale
	DCP03	1.00	
	DCP04	1.00	
	DCP05	1.00	
	DCP06	1.00	
	DCP07	1.00	

For the exploratory hole location plan refer to Curtins Drawing Ref: 074525-CUR-00-XX-DR-GE-001-V01, Appendix A.

The exploratory holes were logged on site by an engineer from Curtins in accordance with the requirements of BS5930:2015, including recording of any observed visual and olfactory indications of contamination.

Copies of the exploratory hole logs are provided within Appendix B.

4.1.1 In-Situ Tests

The in-situ testing undertaken during the ground investigation works is summarised in *Table 4.1.1*.

Table 4.1.1In-Situ Testing

Activity	Rationale
SPT tests within window sample boreholes	To obtain in-situ density and investigate bedrock profile across the site.
Rotary coring within rotary boreholes	To obtain Rock Quality Designation (RQD) values of intact bedrock

4.2 Laboratory Analysis

Representative soil samples were obtained for laboratory geotechnical and geochemical testing, based on the field observations.

Soil samples for geochemical analysis were placed in appropriate laboratory provided containers and stored in temperature-controlled conditions prior to being transported to a UKAS accredited laboratory under chain of custody documentation.

The representative rock samples were collected and scheduled for laboratory geotechnical testing. Geotechnical samples were transported to a UKAS and MCerts accredited laboratory under chain of custody documentation for testing.

4.2.1 Geo-environmental – Soils

Soil samples were taken from shallow ground across the site, and 13 made ground samples from across the site were tested for a broad environmental suite as detailed below.

The contaminants of concern potentially present on the site was considered to include, amongst others; organic matter, ash and fill, hydrocarbons (e.g. fuel/oils), heavy metals and asbestos the extent of which is captured by the broad environmental testing suite listed in *Table 4.2.1*.

Suite Ref.	Analyte	LOD
	Asbestos Screen, pH and Soil Organic Matter (SOM)	N/A
	Arsenic, Chromium, Chromium VI, Copper, Lead, Selenium, Zinc, Nickel	1 mg/kg
	Boron (water soluble)	0.2 mg/kg
	Cadmium	0.2 mg/kg
Soils Suite A	Mercury	0.3 mg/kg
	Cyanide (total)	1 mg/kg
	Phenols (screen)	<0.1 – 0.3 mg/kg
	PAHs (USEPA 16)	0.05 mg/kg
	TPH (Aro/Ali Split)	0.01 to 10 mg/kg

 Table 4.2.1
 Environmental Chemistry Analysis Suite : Soils

Copies of the environmental chemistry testing certificates are presented in Appendix C.

4.2.2 Geo-environmental – Groundwater

Groundwater samples were taken from the wells installed in BH01, BH03 and BH06 during the second monitoring visit and were scheduled for a specific groundwater suite listed in *Table 4.2.2*.

Table 4.2.2 – Environmental Chemistry Analysis Suite: Waters

Suite Ref.	Analyte	LOD
Water Suite A	рН	-
	Total Hardness	1 mg/l
	Arsenic, Lead, Nickel, Selenium, Zinc	1 µg/l
	Boron (water soluble), Chromium, Copper, Mercury, Phenols (screen)	0.1 μg/l

Suite Ref.	Analyte	LOD
	Cadmium	0.5 μg/l
	Cyanide, Sulphide 0.2 mg/l	
	Sulphate 10 mg	
	PAHs (USEPA16) 0.01	
	TPH (Aro/Ali Split)	10 μg/l

Copies of the environmental chemistry testing certificates are presented in Appendix C.

4.2.3 Geotechnical

Soil samples for testing were prepared in accordance with BS1377 (British Standards Institution, 2016). The following geotechnical tests have been undertaken:

- 1 No. Particle Size Distribution Test;
- 29 No. Point Load (PL) Tests; and
- 13 No. Unconfined Compression Strength (UCS) Test.

Copies of the geotechnical testing certificates are presented within Appendix D.

4.3 Monitoring Well Installations

Single installations comprising 50mm diameter standpipes have been installed in BH01, BH02A, BH03, BH04, BH06, WS03 and WS05, for the purposes of gas and groundwater monitoring.

A bentonite seal was placed above the screened section of the boreholes to minimise potential for migration of contaminants and the creation of a preferential migratory pathway. A gravel surround was installed in the annulus between the sides of the borehole and the slotted sections of pipe.

The installations are summarised in Table 4.3.

Borehole Ref.	Diameter (mm)	Response Zone (m bgl)	Strata Description(s)
BH01	50	2.0-11.0	Sandstone
BH02A	50	8.0-12.0	Sandstone
BH03	50	3.0-13.0	Sandstone

Table 4.3 Monitoring Well Response Zones

Borehole Ref.	Diameter (mm)	Response Zone (m bgl)	Strata Description(s)
BH04	50	4.0-13.0	Sandstone
BH06	50	2.0-12.00	Sandstone
WS03	50	1.0 – 2.0	Made Ground
WS05	50	1.0 – 2.0	Made Ground

Copies of borehole logs can be referred to in Appendix B of this report.

4.3.1 Post-Investigation Monitoring

Six rounds of groundwater and ground gas monitoring over a three-month period have been completed, to assess the groundwater and ground gas conditions, identified in the Preliminary Conceptual Site Model within the Phase 1 Preliminary Site Assessment.

5.0 Ground Conditions

5.1 General

The ground conditions encountered during the Curtins Ground Investigation is summarised in *Table 5.1*, with detailed information presented on the exploratory hole logs, Appendix B.

Table 5.1Ground Conditions Summary

Stratum	Depth to top of strata	Thickness (m)		
	(m bgl)	Min	Max	
Topsoil	0.0	0.40	-	
Made Ground	0.0	0.45	2.5	
Residual Soils	0.4 – 0.80	2.8	3.25	
Bedrock: Hensingham Grit	0.45-3.65	-		

5.2 Topsoil

Topsoil was encountered within a single location (WS02) comprising a dark brown slightly silty fine and medium SAND. The material was encountered to 0.40m bgl.

5.3 Made Ground

Made Ground deposits were encountered in all of the exploratory holes (with exception of WS02), to base depths ranging from 0.45m bgl (BH01) to 2.50m bgl (WS05). The Made Ground generally comprised a predominate upper layer of granular material with demolition material and the deeper Made Ground encountered as a cohesive material, likely reworked material.

Granular Material

The granular material comprised light brown sand and gravel with gravel of sandstone, breeze block, wood, plastic, metal and cloth fragments. This unit was predominately encountered to circa 1.0m to 2.20m bgl.

Cohesive Material

The cohesive Made Ground was typically encountered to underlie the granular material and was considered to be reflective of reworked residual soils. The unit comprised a brown sandy gravelly clay with gravel of sandstone, wood, brick and nails. This material was typically encountered prior to intact bedrock.

No geotechnical laboratory testing has been undertaken on made ground, however in-situ SPTs within the made ground indicate a highly variable stratum.

5.4 Residual Soils

Residual soils were encountered locally within north-western to south-western area of the site within WS01 and WS02. These were encountered to underlie either Topsoil or Made Ground at shallow depths (<0.80m bgl) to depths of 3.65m bgl.

The residual soils were recorded as both granular and cohesive material. The cohesive material comprised a stiff brownish red sandy slightly gravelly CLAY, whilst granular material comprised a medium dense light brown slightly clayey gravelly fine to coarse SAND. The geotechnical test results recorded within the residual soils are summarised in *Table 5.4.* However, given the localised area of these deposits on-site, no geotechnical parameters have been derived for this unit.

Table 5.4	Summary of geotechnical test results – Residual Soils
-----------	---

Test	No. of tests	Minimum	Maximum	Average	
In-situ					
SPT 'N' Value (cohesive)	3	20	38	30	
SPT 'N' Value (granular)	1	22	-	-	

5.5 Bedrock

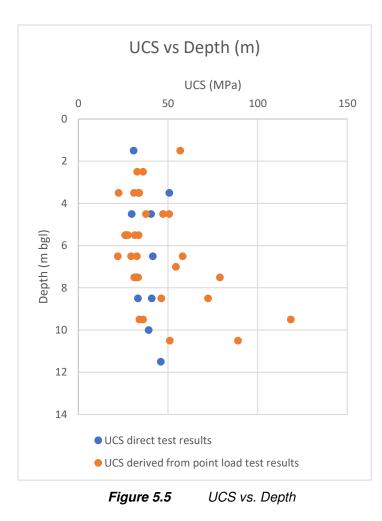
Bedrock has been encountered within all of the rotary boreholes, comprising sandstone to circa 10.0m bgl with Limestone thereafter within BH01, BH02 and BH06 all within the northern portion only. The sandstone is described Medium strong light brownish grey coarse rained crystalline SANDSTONE with rare microline coal laminations. The Limestone was described as Strong light whitish grey crystalline LIMESTONE. Small pyritic inclusions noted and common quartz veins throughout.

It is noted that during drilling of BH02A, a significant reduction in RQD was noted at the apparent limestone interface at approximately 9m bgl. Three additional boreholes (BH07 – BH09) were advanced approximately 5m from BH02A in different directions in March 2021, to investigate whether this potentially arose due to presence of voids. Locations of additional boreholes are presented within Appendix A.

It is noted that within all three locations broken sandstone was encountered from approximately 9m bgl to and at the beginning of the limestone bedrock interface. During groundwater monitoring visits, groundwater was recorded within the bedrock at BH02A at approximately 11m bgl, at levels coinciding with the weakened/fractured bedrock.

As such, it is anticipated that this is reflective of a geological fault with noted reduction of the RQD at the interface between sandstone and limestone within this area and/or weakened/fractured bedrock coinciding with a groundwater bearing unit, rather than voiding.

The geotechnical test results recorded within the sandstone are summarised in *Table 5.5a*. The test result certificates are included within Appendix D. At this stage, no geotechnical test results or parameters have been derived for the Limestone owing to localised area on-site. *Table 5.5a Summary of geotechnical test results – Sandstone*


	No. of tests		Value				
In-Situ							
R	57	Min: 0* Max: 100 Average:86					
	Labora	atory					
Deint Lond Test	Point Load Strength Index (Is50) (MPa)	28	Diametral	Min: 0.48 Max: 6.94 Average: 2.19			
Point Load Test		28	Axial	Min: 0.53 Max: 5.55 Average: 2.26			
UC	12	Min: 26.6 Max: 50.7 Average: 37					

Notes - *At the interface between the sandstone and limestone

UCSs were determined from the Unconfined Compressive Strength (UCS) test results and Point Load test results. A factor of 20 has been used to correlate the Is₅₀ determined from the Point Load tests to the UCS, Figure 5.5.

Ground Investigation Report

5.6 Observed Potential Contamination

No potential contamination was noted within the soils/groundwater.

5.7 Groundwater

Perched groundwater was encountered within the Made Ground during the investigation ranging from 0.50m (WS03) to 2.10m bgl (BH05). A single groundwater strike was recorded within the residual deposits of WS01 at 2.10m bgl.

Groundwater monitoring wells were installed as summarised in Table 5.7.

Six rounds of groundwater monitoring have been undertaken to assess the groundwater regime across the site.

		-					
		Depth (m bgl)					
Borehole Ref.	Installation Strata	07/01/21	20/01/21	04/02/21	17/02/21	08/03/21	
BH01		0.77	0.00	0.0	0.65	0.99	
BH02A		*	11.20	10.80	11.09	11.00	
BH03		1.97	0.98	1.57	1.96	1.91	
BH06		0.66	0.0	0.0	0.04	0.75	
WS03	Made	0.40	0.00	0.0	0.0	*	
WS05	Ground	2.05	1.02	1.63	1.96	1.95	

Table 5.7 Groundwater Monitoring Results

Notes - *Unable to be accessed

It is considered that perched water exists within the Made Ground as noted within WS03 and WS05, at depths of 0.0m to 2.05m bgl.

The installations within the sandstone (BH01, BH03 and BH06) installed within the underlying bedrock has recorded shallow groundwater, at depths of between 0.0m to 1.96m bgl, with locally deep groundwater of 10.80m to 11.20m bgl within BH02A indicating the groundwater within the bedrock aquifer is under an element of hydrostatic pressure.

5.8 Aggressive Ground Conditions

The classification of the site in terms of concrete in aggressive ground is based on the guidance provided in Table C2 of the Building Research Establishment (BRE) Special Digest 1, third edition of 2017 (Building Research Establishment, 2017). *Table 5.7* details the classification.

 Table 5.8
 Aggressive Chemical Environment for Concrete (ACEC) Site Classification

Stratum	Design Sulphate Class	ACEC Class *	
Made Ground	DS-2	AC-2	

* ACEC assessment was based on the mobile groundwater condition for the scheme area

5.9 Dynamic Cone Penetrometer Tests

Seven dynamic cone penetrometer tests were advance to approximately 1.00m bgl to obtain CBR values within areas of proposed road/hardstanding in the new waste recycling facility.

Copies of Test results are included within Appendix D.

6.0 Ground and Groundwater Contamination Assessment

This section of the report includes the assessment of the potential contamination, solid, liquid and gas, identified on the subject site which may present a risk to the proposed end users, associated utilities and the wider environment.

In guidance published by the Environment Agency, the risk to human health or controlled waters is determined through an assessment of pollutant linkages between a source of contamination (within the ground or groundwater either on or off site) and a sensitive receptor such as end users of the site, building materials, edible plants grown in gardens or groundwater abstracted for drinking. This is termed a source-pathway-receptor relationship. The same model is applied to the assessment of risk arising from ground gases as detailed within BS8576:2013 (British Standards Institution, 2013).

These models have a common approach, which is one of a tiered assessment. At each stage of the assessment further detail can be applied to the conceptual site model to provide a detailed interpretation on a site by site basis. As part of the planning process this approach is adopted to establish either if the site is 'suitable for use' or whether additional work or else remedial work is required for the site to be deemed so.

The sub-sections hereafter therefore incorporate the first tier (Tier 1) of this approach otherwise referred to as the Generic Quantitative Risk Assessment (GQRA). The GQRA builds on the qualitative risk assessment presented in Section 3.0 in conjunction with observations made during the ground investigation and is based solely on the results of the chemical and other testing data obtained as part of Curtins ground investigation. The GQRA is used to build/refine the Conceptual Site Model (CSM) for the site as detailed and presented in *Section 8.0* of this report.

The following sections present more detail on the risk assessment methodology rationale for the main receptors.

6.1 Human Health GQRA

Detailed guidance on human health risk assessment is available within several documents, published by both the Environment Agency and Defra. Guidance includes Contaminated Land Exposure Assessment (CLEA) v1.071 model (Environment Agency, 2014), Science Report 2 (Environment Agency, 2009) and Science Report 3 (Environment Agency, 2009).

A generic quantitative risk assessment (GQRA) has been carried out for the Potential Contaminant Linkages (PCLs) investigated by screening of soil contamination data against relevant Generic Assessment Criteria (GAC) where available, including:

i) Soil Guideline Values (SGVs): These have been published by the Environment Agency and are trigger values for screening out low risk areas of land contamination. SGV's give an indication of representative average concentrations of chemicals in soil, below which long-term health risks are likely to be minimal. SGVs have been published for several contaminants

including arsenic, cadmium, mercury, nickel, selenium, BTEX, phenols and dioxins, furans and dioxin-like PCB substances for land uses including residential, allotments and commercial. The SGVs have been developed for a sandy loam soil with 6% soil organic matter (SOM) content;

- ii) Supplementary Screening Values (SSVs): In addition to the SGVs developed by the EA, other third-party organisations have derived SSVs for a wider range of contaminants and land uses using the CLEA Model. Curtins have adopted these numbers where applicable, including those developed by Atkins AtriskSoil™, the LQM/CIEH Suitable for Use Levels (S4UL) and EIC/AGS/CL:AIRE published thresholds;
- iii) Category 4 Screening Levels (C4SLs): In March 2014 DEFRA published C4SLs for arsenic, benzene, benzo(a)pyrene, cadmium, hexavalent chromium and lead. These values were derived to support the revised Part 2A Statutory Guidance issued in 2012 (Department of Environment Food and Rural Affairs (DEFRA), 2012) in which four categories of contaminated land are included, ranging from Category 1 (significant/high risk) to Category 4 (low risk). C4SLs are not representative of significant possibility of significant harm (SPoSH) and are low risk levels which, and therefore where the C4SLs are not exceeded, land can be demonstrated to be in Category 4 and cannot be determined as contaminated land.

6.1.1 Adopted Soil Human Health GACs Screening Methodology

The proposed use to the site, as a hospital, is most analogous with a *Commercial* scenario and so assessment has been undertaken against the following GACs, in order of preference:

- 1. Environment Agency Soil Guideline Values,
- 2. CL:AIRE, AGS, EIC. Soil Generic Assessment Criteria for Human Health Risk Assessments,
- 3. LQM/CIEH 2015 S4ULs for Human Health Risk Assessment, and
- 4. DEFRA Category 4 Screening Levels.

Soil Organic Matter (SOM) has a strong bearing on the availability of potential contaminants and therefore influences the Tier 1 Thresholds. The SOM ranged between 0.2% to 2.9%. As such, the comparison has been made against GACs developed for a sandy soil with a SOM of 1.0%.

The results of the environmental testing can be referred to in Appendix C. Copies of the Tier 1 Thresholds are contained within Appendix F.

6.1.2 Generic Assessment Criteria Screening of Soil Laboratory Results

The results of the environmental testing can be referred to in Appendix C, with testing undertaken on a total of thirteen made ground soil samples across the site.

With respect to the proposed 'Commercial' end use, no exceedances were recorded within any samples collected from the made ground.

Selected soil samples were screened for asbestos. No suspected asbestos containing materials (ACMs) were identified in the exploratory hole logs and no asbestos fibres were positively identified during laboratory analysis of the soil samples.

6.2 Controlled Waters GQRA

No significant visual/olfactory evidence of contamination was identified within shallow site soils during the site investigation. This is further confirmed by laboratory testing of soils highlighted within Section 6.1.2.

Considering the conceptual site model developed within the Phase 1 Preliminary Risk Assessment, due to no surface water receptors being located within 250m of the site, and no recorded abstraction points located within 1km of the site, as well as chemical laboratory it is considered that risks to controlled waters are confirmed as Low with no further action required.

6.3 Ground Gas GQRA

The assessment of risk presented by ground gases is assessed with reference to guidance published by CIRIA (Assessing Risks Posed by Hazardous Ground Gases to Buildings, C665 (CIRIA, December 2007), BSI Publication (Code of practice for the design of protective measures for methane and carbon dioxide ground gases for new buildings BS8485:2015 (British Standards, June 2015), BSI Publication (Guidance on Investigations for Ground Gas-Permanent gases and Volatile Organic Compounds (VOCs) (British Standards Institution, 2013) and other broadly accepted references such as the Ground Gas Handbook 2009 (S.Wilson, G.Card and S.Haines, 2009).

The gas risk assessment adopts a tiered approach. In the first instance, this involves a re-evaluation of the Conceptual Site Model described within the previous reporting and thereafter validating this conceptual model with the ground gas data, a semi-quantitative risk assessment.

6.3.1 Conceptual Site Model

The Preliminary Conceptual Site Model (PCSM) presented within Section 3.0 noted the overall moderate/low risk posed by ground gases based on the identified sources, primarily made ground from previous phases of development and gases associated with potentially infilled ground and historical development.

With respect to ground gas sources;

Made Ground

Made ground deposits were encountered in all of the exploratory holes, to a maximum depth of 3.65 m bgl.

The Made Ground generally comprised a predominate upper layer of granular material with demolition material and the deeper Made Ground encountered as a cohesive material, likely reworked material.

With respect to ground gas pathways:

Direct gassing of ground gas from the shallow soils to the near surface is considered the main pathway for ground gas migration on site.

6.3.2 Monitoring Results Discussion

In order to characterise the site's gas regime and validate the qualitative assessment of ground gas risk, standpipe installations were incorporated within six exploratory borehole locations as detailed in *Table 4.1.3* within Section 4.0.

Gas monitoring has been undertaken on the following occasions: 07/01/2021, 20/01/2021, 04/02/2021 & 17/02/21.

Gas monitoring has been undertaken during both falling and steady atmospheric pressures with barometric pressure ranging from 1014mb to 954mb.

A summary of the soil gas monitoring results to date is presented in *Table 6.3.2* and copies of the log sheets presented in Appendix E.

Location	Flow	Flow (I/hr) CO ₂ Range of Peak				CO₂ Range of Steady	CH₄ Range	Strata Description
Location	Max	SS	Values (% ^{vol} / _{vol)}	State (% ^{vol} / _{vol)}	(% ^{vol} /vol)	(50mm well)		
BH01	-23.7	-0.2	<0.1	<0.1	<0.1	Bedrock		
BH02A	4.5	<0.1	1.3	1.3	<0.1	Bedrock		
BH03	-63.7	<0.1	<0.1	<0.1	<0.1	Bedrock		
BH06	-63.8	<0.1	<0.1	<0.1	<0.1	Bedrock		
WS03	-22.7	-0.2	<0.1	<0.1	<0.1	Made Ground		
WS05	0.1	0.1	<0.1	<0.1	<0.1	Made Ground		

Table 6.3.2Summary of Soil Gas Monitoring Results

Hydrogen sulphide and carbon monoxide were recorded with maximums of 1ppm and 13ppm respectively.

6.3.3 Gas Assessment

It is noted that high negative flow rates were recorded within BH03, BH06 and WS03 on once occasion each. For the remainder of the visits, these wells were noted as being flooded. On the occasions where high flow rates were recorded, the groundwater levels recorded within the well were significantly above the screened section of the well. As such, it is considered that the cause of these peak flows is a result of pressure build up within the well, and not representative of natural site conditions. As such, these peak flows have been discounted form this assessment.

Considering both a 'worst credible scenario' (maximum 'absolute' flow rate, maximum gas concentration within a single borehole location) and 'worst possible scenario' (maximum 'absolute' flow rate, maximum gas concentration across all borehole locations) the Hazardous Gas Flow Rates (Q_{hg}) for the site are evaluated as 0.059 (carbon dioxide) and 0.001 (methane).

On the basis that encountered ground conditions have a low gassing potential and low ground gas concentrations have been recorded the site is assessed as Characteristic Situation 1 (CS-1) where gas protection measures will not be required.

6.3.4 Radon

As identified in Section 2.8, no radon protection measures are required.

However, where the new development incorporates a basement the advice of a specialist Radon assessor must be obtained.

7.0 Revised Conceptual Site Model

The Preliminary Conceptual Site Model (PCSM) presented in Section 3.0 of this report has been revised following the GQRA in *Section 6.0* above. The Revised Conceptual Site Model (CSM) is summarised in the table overleaf.

The CSM details the source-pathway-receptor linkages or potential pollutant linkages (PPL) that have been identified as relevant for the site. The GQRA details the associated level of risk relating to these potential pollutant linkages.

The CSM follows the framework outlined within CIRIA C552 (CIRIA, 2001) which is summarised within Appendix G.

The 'risk rating' within the CSM refers to the risk that the source, pathway, receptor linkage or PPL is complete. Unless specifically stated it does not necessarily refer to an immediate risk and is intended to be used as a tool to assess the necessity for further assessment/investigation.

Risks presented by Unexploded Ordnance is discussed and assessed in Section 2.7.

Under current health and safety legislation, employers are required to carry out their own appropriate risk assessments and mitigation to protect themselves and their employees, other human receptors and the environment from potential contamination. Such risks must be adequately mitigated by law, specifically the Construction Design Management (CDM) Regulations, 2015 (CITB, 2015) which require that potential risks to human health and the environment from construction activities are appropriately identified and all necessary steps taken to eliminate / manage that risk. It has been assumed that any future construction works on site will be undertaken in compliance with these requirements and therefore construction workers involved in the building works at the site have been discounted as a human receptor in the conceptual site model. Reference should be given to the environmental testing results discussed within Section 6.0 and presented within Appendix C.

Ground Investigation Report

Qualitative Risk Assessment	Generic Quantitative Risk Assessment	Detailed Quantitative Risk Assessment or; Remedial Action
--------------------------------	--	--

- The table below represents the Second stage in the land quality risk assessment process; the Revised Conceptual Site Model following the Quantitative Risk Assessment.
- For a development site to be deemed 'suitable for use' the level of risk needs to be brought down to acceptable levels, i.e. low to very low risk. The purpose of each stage of risk assessment is ultimately to establish if there is a requirement for additional levels of assessment to be made to have sufficient confidence to support a risk characterisation or management decision, e.g. remedial action.
- In the absence of specific site data, a Generic Quantitative Risk Assessment is invariably recommended.

Conceptual Site Model		Generic	Qualitative Risk Asses	sment				
Identified Source	Pathway(s)	Receptor(s)	Consequence	Likelihood of Occurrence	Risk Rating	Comments	Action	
On-site sources of potential contamination:	Ingestion/direct contact of soils Inhalation of vapours and soil dust/fibres	End users of site Future site users, visitors and trespassers	Mild	Unlikely	Low	No exceedances of Commercial GACs noted within any recovered made ground soils samples.	Standard Health & Safety precautions likely to be used by workers.	
Made ground was encountered to a maximum depth of 3.65m.	Vertical migration through the Made Ground and residual soils May occur due to processes including; capillary action.	Controlled Waters (Groundwater) Bedrock – Principal Aquifer No groundwater abstractions within 1km of the subject site. The site is not within a SPZ.	Medium Pollution of sensitive water resources	Unlikely	Low	Due to no sources of contamination identified within shallow site soils during the ground investigation and no groundwater abstractions noted within 1km of the site, this SPR linkage is not expected to be realised.	No further action required.	
On-site and off-site sources of potential ground gas generation Made ground associated with historic development on-site.	Vertical and horizontal migration through the Made Ground.	End users of site Future site users, visitors and trespassers	Mild Human health risk	Unlikely	Low	Ground gas monitoring to date has recorded no elevated concentrations of carbon dioxide, methane. High negative flow rates have been attributed to pressure build up within monitoring wells due to high water table and are not considered representative of live site conditions. As such, the site is classified as CS-1.	No further action required.	

8.0 Geotechnical Conclusions and Recommendations

The recommendations provided within this section are based on a review of the ground conditions encountered across the site, considering the geotechnical and geo-environmental limitations and hazards identified.

8.1 Foundation Recommendation

It is understood, the proposed development comprises the construction of a new two storey hospital wing and refurbishment of existing buildings with associated car parking, communal soft landscaped, clinical and recycling waste storage in the north of the site.

It is considered that the underlying bedrock could potentially provide a suitable bearing stratum. For foundations founded on moderately strong sandstone with discontinuity spacings >60mm, allowable bearing capacities of 1500 to 2000 kN/m² are estimated.

Where bedrock is too deep and overlaid by variable made ground (encountered across the site to depths of up to 2.50m bgl) and along with variable residual soils (locally area to 3.65m bgl) it may affect the feasibility with potential mass trench fill foundations required within areas of deep made ground/residual soils. It is also considered that a piled foundation solution could be used to transfer the loads to the underlying bedrock. It must be noted that due to high strength of the bedrock, where allowable bearing capacities cannot be achieved for a pile end bearing at rockhead, CFA piling may not be a suitable solution, and other piling techniques such as bored piles may have to be considered. In addition, obstructions within the made ground and the high strength bedrock may affect the performance of a CFA rig. Therefore, a suitably qualified and experienced piling contractor should be consulted prior to commencement of the works.

The carrying capacity of piles depends not only on their size and the ground conditions but also on their method of installation.

If a piled foundation solution is to be adopted, consideration should be given to the fractured/poor quality bedrock at from approximately 9.00 - 11.50 mbgl, within the vicinity of BH02A.

8.2 Ground Floor Slabs

Based on the observations on site together with the results of laboratory tests, it is recommended that consideration is given to a suspended ground floor slab, unless founded on a suitable natural stratum with allowable bearing capacities satisfying the required pressures from the slab. Where piled foundations are anticipated, a suspended slab is recommended to bear on the pile caps by a network of beams which will minimise any differential settlement between the floor and piled structure.

8.3 Chemical Attack on Buried Concrete

The site has been classified in accordance with BRE Special Digest and laboratory testing undertaken accordingly as detailed in Section 5.7.

Based on the laboratory test results it is considered that for Made Ground a Design Sulphate Class may be taken as DS-2 and an ACEC class for the site of AC-2 would be appropriate.

8.4 Excavations

It is anticipated that excavations will be required during the construction phase. These are likely to be for localised services and dig & replacement works.

Based on observations on site, together with the results of in-situ and laboratory tests, it is considered that excavations to <1.20m bgl should stand unsupported in the short term at suitable batters. However, where soft/loose deposits are present, instability is likely. Side support for safety purposes should of course be provided to all excavations which appear unstable, and those >1.20m deep, in accordance with Health and Safety Regulations.

Suitable side slope batters may be required. These must be designed by a suitably qualified temporary works contractor for any excavations.

Groundwater may be encountered as seepages in shallow excavations for foundations or services as perched water. It is considered that groundwater inflows, if encountered, may be controlled by pumping from sumps.

Excavation through layers of Made Ground encountered across the site should be feasible using conventional site plant. Following periods of heavy rainfall, the use of a tracked excavator may be required to prevent plant subsidence.

All excavation temporary works shall be designed by a suitably qualified temporary works contractor for any excavations.

9.0 Geo-Environmental Conclusions and Recommendations

9.1 Geo-Environmental Conclusions

A revised tabulated Conceptual Site Model has been derived following the findings of the Generic Quantitative Risk Assessment and is presented in Section 7.0.

9.1.1 Ground Contamination

The environmental chemistry soil results have been compared with the Tier 1 criteria for soils with respect to human health against '*Commercial*' thresholds of which no exceedances were noted.

As such, the risk to site end users arising for made ground soils on-site is considered to be **Low**, with no further actions required.

9.1.2 Controlled Waters

No significant visual/olfactory evidence of contamination was identified within shallow site soils during the site investigation.

Considering the conceptual site model developed within the Phase 1 Preliminary Risk Assessment, due to no surface water receptors being located within 250m of the site, and no recorded abstraction points located within 1km of the site, as well as chemical laboratory it is considered that risks to controlled waters are confirmed as **Low** with no further action required.

9.1.3 Ground Gas Assessment

Six ground gas monitoring visits have been undertaken, with low carbon dioxide/methane concentrations recorded during the monitoring visits. The risk to the end-user of the development from soil gases is therefore considered to be **Low**.

It is noted that high negative flow rates were recorded within BH03, BH06 and WS03 on once occasion each. For the remainder of the visits, these wells were noted as being flooded. On the occasions where high flow rates were recorded, the groundwater levels recorded within the well were significantly above the screened section of the well. As such, it is considered that the cause of these peak flows is a result of pressure build up within the well, and not representative of natural site conditions. As such, these peak flows have been discounted form this assessment.

On the basis that encountered ground conditions have a low gassing potential and low ground gas concentrations have been recorded the site is assessed as Characteristic Situation 1 (CS-1) where gas protection measures will not be required.

9.2 Recommendations

Based on the findings of the ground investigation, the following recommendations are made:

1) It is recommended that construction workers are provided with appropriate PPE and sanitary facilities, with reference to the environmental testing results presented herein and within *Appendix C*.

Ground Investigation Report

10.0 Q457Bibliography

Authority, C., 2020. *Coal Authority Interactive Map.* [Online] Available at: <u>https://mapapps2.bgs.ac.uk/coalauthority/home.html</u> [Accessed August 2020].

Barnes, G. E., 2016. Soil Mechanics Principles and Practice. s.l.:s.n.

British Geological Society, 1993. *1:50,000 Geological Map Series, Scotland Sheet 30E.* [Online] Available at: <u>https://www.bgs.ac.uk/data/maps/maps.cfc?method=viewRecord&mapId=10783</u> [Accessed August 2020].

British Geological Society, 1994. *1:50,000 Geological Map Series, Scotland Sheet 30E.* [Online] Available at: <u>https://www.bgs.ac.uk/data/maps/maps.cfc?method=viewRecord&mapId=11013</u> [Accessed August 2020].

British Geological Society, 2020. *GeoIndex Onshore*. [Online] Available at: <u>https://www.bgs.ac.uk/geoindex/</u> [Accessed August 2020].

British Standards (BS), 2013. *BS8576, Guidance on investigations for ground gas. Permanent gases and Volatile Organic Compounds (VOCs).* s.l.:s.n.

British Standards Institution, 2007. *Eurocode 7: Geotechnical Design (report no. BSEN1997).,* s.l.: s.n.

British Standards Institution, 2010. *Code of Practice for Site Investigations (report no. BS5930).,* s.l.: s.n.

British Standards Institution, 2011. *Investigation of Potentially Contaminated Sites (report no. BS10175).,* s.l.: s.n.

British Standards Institution, 2013. *Guidance on Investigations for Ground Gas, Permanent Gas and Volatile Organic Compounds (VOCs) (report no.BS8576:2013).,* s.l.: s.n.

British Standards Institution, 2016. *Methods of test for soils for civil engineering purposes. General requirements and sample preparation (report no. BS1377-1).,* s.l.: s.n.

British Standards, June 2015. *BS 8485, Code of practice for the design of protective measures for methane and carbon dioxide ground gases for new buildings.* s.l.:s.n.

Building Research Establishment, 2005. Concrete in Aggressive Ground (Special Digest 1)., s.l.: s.n.

CIRIA, 2001. Contaminated Land Risk Assessment. A guide to good practice (report no. C552)., s.l.: s.n.

CIRIA, 2002. Special Publication 32: Construction over Abandoned Mine Workings, s.l.: s.n.

CIRIA, 2016. CIRIA Report No C750 Groundwater Control. s.l.:s.n.

CIRIA, December 2007. *CIRIA C665, Assessing risk posed by hazardous grounbd gases to buildings.* s.l.:s.n.

Ground Investigation Report

CITB, 2015. Construction (Design and Management) Regulations., s.l.: s.n.

Coal Authority, Groundsure, June 2019. Enviro All-in-One, ref 51002132338001, s.l.: s.n.

Contaminated Land: Applications In Real Environments (CL:AIRE), 2011. *Definition of Waste Code of Practice (Version 2).*, s.l.: s.n.

Curtins, 2020. Red Tree Central Phase 1 Preliminary Risk Assessment, ref. 073983.302-CUR-00-XX-RP-GE-0001, s.l.: s.n.

Department of Environment Food and Rural Affairs (DEFRA), 2012. *Environmental Protection Act 1990: Part 2A Contaminated Land Statutory Guidance (report no. PB13735).*, s.l.: s.n.

Envirocheck, July 2020. *Envirocheck Report, Ref 248034384_1_1*. s.l.:s.n.

Environment Agency, 2004. *Model Procedures for the Management of Land Contamination Contaminated Land Report 11 (report no. CLR11).*, s.l.: s.n.

Environment Agency, 2006. *Remedial Targets Methodology - Hydrological Risk Assessment for Land Contamination*, s.l.: s.n.

Environment Agency, 2009. *Human Health Toxicological Assessment of Contaminants in Soil* (report no. SC050021/SR2)., s.l.: s.n.

Environment Agency, 2009. Updated Technical Background to the CLEA Model (report no. SC050021/SR3)., s.l.: s.n.

Environment Agency, 2014. Contaminated Land Exposure (CLEA) Tool (version 1.071)., s.l.: s.n.

Environment Agency, May 2015. *Guidance on the classification and assessment of waste (1st edition 2015). Technical Guidance WM3.* s.l.:s.n.

European Community (EC), 2000. The Water Framework Directive, s.l.: s.n.

European Union, 1998. Drinking Water Directive (Council Directive 98/83/EC), s.l.: s.n.

Gibson, R. E., 1953. Experimental Determination of The True Cohesion and True Angle of Internal Friction in Clays..

Groundsure, n.d. s.l.:s.n.

Highways England, 2009. Interim Advice Note 73/06: Design Guidance for Road Pavement Foundations, s.l.: s.n.

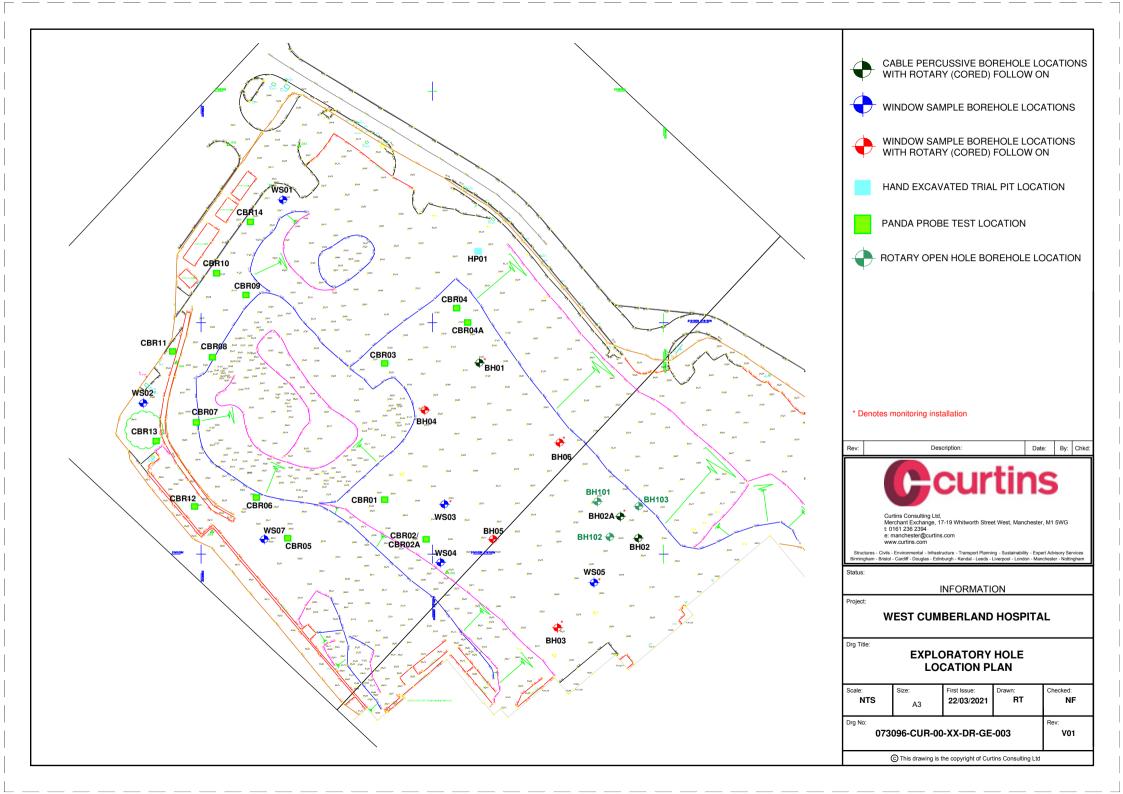
NHBC, 2013. Part 4 (Foundations) Chapter 4.2 (Building near Trees), s.l.: s.n.

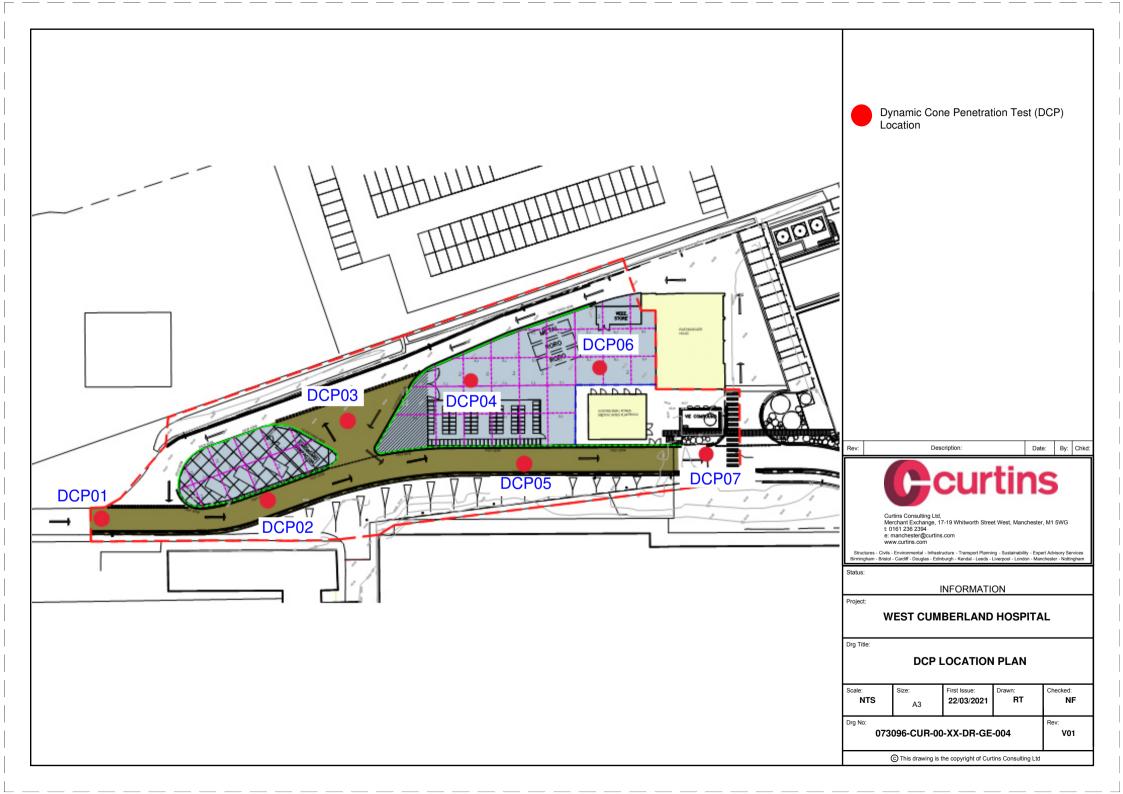
S.Wilson, G.Card and S.Haines, 2009. Ground Gas Handbook. s.l.:s.n.

Stroud, M. a. B. F., 1975. *The Standard Penetration Test and the Engineering Properties of Glacial Materials.* s.l.:s.n.

Stroud, M. A. & Butler, F. G., 1975. *The Standard Penetration Test and the Engineering Properties of Glacial Materials.,* s.l.: s.n.

Tomlinson, M. J., 2001. Foundation Design and Construction. 7th ed. Suffolk: Pearson.


Ground Investigation Report


Tomlinson, M. J., 2001. Foundation Design and Construction. s.l.:s.n.
UK Radon, 2020. UK Radon Maps, http://www.ukradon.org/information/ukmaps. s.l.:s.n.
Waltham, T., 2019. Foundations of Engineering Geology. s.l.:s.n.
World Health Organisation (WHO), 2017. Guidelines for Drinking Water Quality, s.l.: s.n.
WYG, 2013. Southfield Grange Ground Investigation Report, ref: A081403-INT-01, s.l.: s.n.

Ground Investigation Report

Appendix A – Drawings

Ground Investigation Report

Appendix B – Exploratory Hole Logs

								Trialpit No
						Tri	al Pit Log	HP01
				D. i	(N L .			Sheet 1 of 1
Project Name:	West Cu	ımberlar	id Hospital	Projec 07309			Co-ords: - Level:	Date 08/12/2020
				01000	0		Dimensions	Scale
Locatio	on: Whiteha	ven					(m):	1:20
Client:	CCL Sol	utions					Depth 0.60	Logged MH
er (e	Sample	es and I	n Situ Testing	Depth	Level	Lanana		
Water Strike	Depth	Туре	Results	(m)	(m)	Legeno		
	0.50	ES		0.60			MADE GROUND: Light brown slightly silty grav to coarse sand. Gravel is fine to coarse angular subrounded sandstone, rare brick, rare coal and fragments. Rare boulder of sandstone.	
Remar Stabilit								AGS

C					Bo	reho	DIE LOG WS	601
oject Name:	West Cum	berlan		oject No. 3096		Co-ords:		Type /S
cation:	Whitehave	en				Level:		ale 20
ent:	CCL Solut	ions				Dates:	19/12/2020 = 19/12/2020	ed By IH
ell Water Strikes		1	n Situ Testing	Depth	Level	Legend	Stratum Description	
Surkes	Depth (m) 0.40	Type	Results	(m)	(m)		MADE GROUND: Gravel over orangish brown slightly sandy slightly gravelly clay. Gravel is fin to coarse angular to subrounded sandstone of mixed lithologies. Rare cobbles of sandstone.	e
	1.20		N=33 (3,4/7,9,8,9)	0.80			Stiff brownish red sandy slightly gravelly CLAY. Gravel is fine and medium subangular to subrounded sandstone.	
	1.70 - 3.00	Bulk		1.70			Medium dense light brown slightly clayey gravelly fine to coarse SAND. Gravel is fine to coarse angular to subrounded sandstone.	
▼	2.00		N=22 (5,4/5,6,4,7)					
	3.00		0 (0 for 0mm/0 for 0mm)	3.60			Grey medium and coarse SANDSTONE.	
				3.65			End of borehole at 3.60 m	'

	6					Bo	reho	ole Log	Borehole N WS02 Sheet 1 of	2 f 1
oject	Name:	West Cum	berlan		oject No. 3096		Co-ords:	-	Hole Type WS	e
catio	n:	Whitehave	en	I			Level:		Scale 1:20	
ent:		CCL Solut	ions				Dates:	09/12/2020 - 09/12/2020	Logged B MH	y
ell	Water	Samples	s and I	n Situ Testing	Depth	Level	Legend	Stratum Descriptior	1	
	Strikes	Depth (m)	Туре	Results	(m)	(m)		Grass over TOPSOIL: Dark brown sine and medium sand.		
								ine and medium said.		
					0.40			Light brown and yellowish brown w mottling sandy CLAY.	ith rare grey	-
					0.70			Stiff reddish brown sandy slightly g Gravel is fine and medium angular subrounded sandstone.	ravelly CLAY. to	
		1.20		N=20 (2,3/4,5,5,6)						
		2.00		N=38 (5,6/11,8,7,12)						
		3.00		0 (0 for 0mm/0 for 0mm)						
					3.65			End of borehole at 3.65 m		-
mark	(S								AGS	

	C					Во	reho	ole Log	Borehole N WS03 Sheet 1 of	3
Projec	t Name:	West Cum	berlan		Project No. 073096		Co-ords:	-	Hole Type WS	е
Locatio	on:	Whitehave	en	I			Level:		Scale 1:20	
Client:		CCL Solut	ions				Dates:	07/12/2020 - 07/12/2020	Logged B MH	8y
Well	Water Strikes		1	In Situ Testing	Depth	Level	Legend	Stratum Description	ו	
		Depth (m)	ES	Results	(m)	(m)		MADE GROUND: Light brown silty to coarse sand. Gravel is fine to co to subrounded sandstone, brick, wu fragments, metal fragments and ra Occasional cobbles of sandstone. I of sandstone.	gravelly fine arse angular bod re nails.	
		1.20		N=24 (5,6/7,7,5,5) 1.20			MADE GROUND: Yellowish/greyisl brown slightly clayey gravelly medi coarse sand. Gravel is fine to coars subrounded sandstone. Rail nails.	um and	
		1.80		0 (0 for 0mm/0 for 0mm)				Yellowish/greyish brown medium a	nd coarse	
					1.90			End of borehole at 1.90 m	/	2 -
										3
Remai	rks						/		AGS	S

	C					Во	reho	ole Log	Borehole N WS04 Sheet 1 of	Ļ
Project	t Name:	West Cum	berlar		oject No. 3096		Co-ords:	-	Hole Type WS	е
Locatio	on:	Whitehave	en	I			Level:		Scale 1:20	
Client:		CCL Solut	ions				Dates:	07/12/2020 - 07/12/2020	Logged B MH	у
	Water Strikes		1	In Situ Testing	Depth	Level	Legend	Stratum Descriptior	ו	
	SUTIKES	Depth (m) 0.40	Type	Results	(m)	(m)		MADE GROUND: Light brown silty to coarse sand. Gravel is fine to co to subrounded sandstone, brick, wo fragments, metal fragments and rai Occasional cobbles of sandstone. I of sandstone.	gravelly fine arse angular ood re nails.	-
		1.20		N=20 (4,3/2,5,7,6)	1.20			MADE GROUND: Brown sandy gra clayey gravelly fine to coarse sand to coarse angular to subrounded sa brick, wood fragments, metal fragm nails.	Gravel is fine	
		1.90		50 (25 for 113mm/50 for 85mm)	1.90			Brown and yellowish brown fine to SANDSTONE.	coarse	2 -
					2.20			End of borehole at 2.20 m		3
Remar	ks									4 -
. cinal									AGS	5

	C					Во	reho	ole Log	Borehole N WS05 Sheet 1 of	5
Projec	t Name:	West Cum	berlan		oject No. 3096		Co-ords:	-	Hole Type WS	е
Locati	on:	Whitehave	en				Level:		Scale 1:20	
Client:		CCL Solut	ions				Dates:	08/12/2020 - 08/12/2020	Logged B MH	8y
Well	Water Strikes		1	In Situ Testing	Depth (m)	Level (m)	Legend	Stratum Description	ı	
		Depth (m) 0.50	ES	Results N=15 (3,5/5,3,3,4) 50 (1,2/50 for 160mm)	(m) 2.50 2.51			MADE GROUND: Light brown sanc Gravel is fine to coarse angular to s sandstone, breeze block fragments plastic, rare metal and rare cloth fra Occasional cobbles of sandstone.	and gravel. subrounded , wood, igments.	2 -
										4 -
Rema	rks								AGS	5

	C					Во	reho	ole Log	Borehole N WS07 Sheet 1 of	7
Projec	t Name:	West Cum	berland	Hospital	Project No. 073096		Co-ords:	-	Hole Type WS	е
Locatio	on:	Whitehave	en				Level:		Scale 1:20	
Client:		CCL Solut	ions				Dates:	09/12/2020 - 09/12/2020	Logged B MH	y
Well	Water		1 1	n Situ Testing	Depth	Level	Legend	Stratum Description	n	
	Strikes	Depth (m)	ES	Results	(m)	(m)		MADE GROUND: Light brown sand Gravel is fine to coarse angular to concrete, brick, rare clinker, sandst breeze block fragments, rare wood metal.	d and gravel. subrounded tone, rare	
					1.40 1.80 2.00 2.20			MADE GROUND: Brown sandy gra Gravel is fine to coarse angular to concrete, brick, rare clinker, sandst breeze block fragments, rare wood metal. MADE GROUND: Red brick, MADE GROUD: Grey gravelly clay to coarse angular to subangular me End of borehole at 2.20 m	subrounded tone, rare and rare	2
										3
Rema	rks								AGS	4 -

	ng Ltd									ore Log	
oject Name	: West Cum	perland	Hosp	oital		Client: C				Date: 14/12/2020	
oject No. : 3							ame: JH			Drilling Equipment: Fraste XL	
Borehole N		Но	е Тур	е	-		Level		Logged I		er
BH01			RC			5			CG	1:50 Sheet 1 of 2	2
ell Water	Depth (m)	Type /FI	TCR	SCR	g RQE	O Diameter Recovery (SPT)	Depth (m)	Level (m)	Legend	Stratum Description	
										# Drilling carried out by Cable Percussion.	-
							0.50		· · · · · · · · · · · · · · · · · · ·	# SANDSTONE.	
	1.00 - 2.00	4	100	100	90		1.00			Medium strong light brownish grey coarse grained crystalline SANDSTONE. Closely spaced horizontal fractures, stepped rough. Rare rust orange oxidised banding noted.	
	2.00 - 3.00	9 4	90	100	100)					
	3.00 - 4.00	3	100	100	90						
	4.00 - 5.00	2	100	100	95						
	5.00 - 6.00	5	100	100	80						
	6.00 - 7.00	4	100	100	90						
	7.00 - 8.00	3	100	100	100						
	8.00 - 9.00	2	100	100	95						
	9.00 - 10.00	0 3	100	100	90					Closely spaced microline coal laminations.	
le Diameter	Casing Dian	Type/F	TCR		RQD Chise	D D/R/(SPT)		Inclinatio	on and Orienta	tation Drilling Flush	
Base Diameter Diameter Diameter Diameter Diameter Diameter Diameter Diameter Diameter	er Depth Base Dia		epth Top			Duration	Tool De			Drining Flush on Orientation Depth Top Depth Base Type Colour Min (%) N 0.00 1.00 Air 11.00 Water N	
norka											-
marks)escriptio	n based on	driller	s reco	ords.]		

Phoenix Drilling Ltd	Rotary Core	Log	
Project Name: West Cumberland Hospital	Client: Curtins	Date: 14/12/2020	
Location: Whitehaven	Contractor:		
Project No. : 3670	Crew Name: JH	Drilling Equipment: Fraste XL	
Borehole Number Hole Type BH01 RC	Level Logged By CG	-	Number et 2 of 2
		Stratum Description	
	0 10.70 10.80 11.00 10.80 11.00 10.80 11.00 10.80 11.00 10.80	Stratum Description In strong light brownish grey coars a crystalline SANDSTONE. Close b horizontal fractures, stepped rou ust orange oxidised banding note coally very weak dark blackish gr be grained pyritic MUDSTONE. Ight whitish grey crystalline TONE. Small pyritic inclusions not mmon quartz veins. End of Borehole at 11.000m	ly Jgh. d. rey 11 -
Type/FI TCR SCR RC	D D/R/(SPT)		20 —
Hole Diameter Casing Diameter Chis	elling Inclination and Orientation	Drilling Flush	
Depth Base Diameter Depth Base Diameter Depth Top Depth Base 1.00 139 1.00 139 139 1400 139 1400 139 1400 <t< td=""><td>Duration Tool Depth Top Depth Base Inclination Orientation</td><td>Depth Top Depth Base Type Colour M 0.00 1.00 Air 1.00 Air 1.00 11.00 Water Incompare the second se</td><td>1in (%) Max (%) 100 100</td></t<>	Duration Tool Depth Top Depth Base Inclination Orientation	Depth Top Depth Base Type Colour M 0.00 1.00 Air 1.00 Air 1.00 11.00 Water Incompare the second se	1in (%) Max (%) 100 100
Remarks # Description based on drillers records.			

	hoenix lling Ltd						R	ot	ar	y Co	ore	Lo	g				
Project Nan	ne: West Cur	nberland	Hosp	oital	C	Client: C	Curtins					Date: 1	0/12/20	20			
Location: W					0	Contrac	tor:										
Project No.	: 3670				C	Crew Na	ame: JH					Drilling	Equipm	ent: Fra	aste XI	_	
Borehole			е Тур	е			Level			Logged	Ву		Scale			Page Num	
BHO	Donth	1		orin		ter ery	Depth		evel	CG			1:50			Sheet 1 c	of 2
Well Wate	er (m)	/FI	TCR	SCR	RQD	Diameter Recovery (SPT)	(m)		m)	Legend			atum D	-			
											# Drill	ing carri	ed out b	by Cable	e Perci	ussion.	=
							0.50 1.00			· · · · · · · · ·		IDSTON					
I	1.00 - 2.0	00 5	100	100	80		1.00				graine microl horizo prefer rust o	im stron ed crysta line coal ontal frac rential al range o	alline SA laminat ctures, s ong coa	NDSTC tions. C tepped Il lamina	ONE w losely rough, ations.	ith rare spaced Rare	2
	2.00 - 3.0	00 3	100	100	100						throug	ghout.					
I	3.00 - 4.0	00 5	100	100	95												3
I	4.00 - 5.0	00 2	100	100	100												4
I	5.00 - 6.0	00 2	100	100	90												5
	6.00 - 7.0	00 4	100	100	90												6
	7.00 - 8.0	00 5	40	100	40						Become	s very c	oarse.				7
	8.00 - 9.0	0 0	40	100	100												9
	9.00 - 10.	00	40	100	0		10.00										
Hole Diamet		Type/F	TCR		RQD Chisel	D/R/(SPT)	10.00		clinatia	on and Orient	ation	1		Drillis	g Flush		10 -
Hole Dlamet Depth Base Diam 13.00 13	eter Depth Base	ameter Diameter De 139	epth Top			IIng Duration	Tool			Base Inclinatio		Depth Top 0.00	Depth Base 1.00	Drillin Type Air	g Flusn Colou	r Min (%)	Max (%) 100
17.30 11	5											1.00 7.80 13.00	7.80 13.00 17.30	Water Water Water			100 100 0 100
Remarks # Descripti	on based o	n driller	s reco	ords.								<u> </u>		<u> </u>			and the second sec

N		oenix ng Ltd							Ro	otar	⁻ у С	ore	Lo	g				
Projec	t Name	: West Cı	umbe	rland	Hosp	ital	C	Client: C	Curtins				Date: 1	0/12/20	20			
Locati	on: Whi	tehaven					0	Contrac	tor:									
Projec	t No. : 3	3670					C	Crew Na	ame: JH				Drilling	Equipm	ent: Fra	aste XL		
Bor	ehole N BH02				∍ Typ RC				Level		Logged CG	Ву		Scale 1:50			age Num Sheet 2 c	
Well	Water	Depti (m)		Type /FI	C	orin SCR	g ROD	Diameter Recovery (SPT)	Depth (m)	Level (m)	Legend		St	ratum E	Descript	tion		
		10.00 - 1	1.00	4	70 80	80 80	20 80	_	. ,			LIMES and c Widel	STONE. ommon	hitish gr Small p quartz v d sub-ho h.	oyritic in eins thr	clusion oughou	ut.	11
		12.00 - 1				100		_										13
		14.00 - 1				100 95		-										15
		16.00 - 1 17.00 - 1		5	70 60	80 70	30 40	-	17.30				End	of Boreh	ole at 17.3	300m		17
																		18
Hole Depth Bas 13.00 17.30	Diameter ^{se} Diameter 139 115	Casing I or Depth Base 13.00		eter Dep		C	hise	D/R/(SPT) lling Duration	Tool De		tion and Orient th Base Inclinatio		Depth Top 0.00 1.00 7.80 13.00	Depth Base 1.00 7.80 13.00 17.30		g Flush Colour	Min (%)	20
Rema # Des		n based	on d	rillers	reco	ords.												A A A A A A A A A A A A A A A A A A A

·	ng Ltd	orload	Цост	ital		Client: C			y Co		Date: 0	<u> </u>	20			
ation: Whi	: West Cumb	erland	Hosp	oitai		Client: C					Date: 0	9/12/20	20			
ect No. : 3							ame: JH				Drilling	Fauinm	ent: Fr	aste XI		
orehole N		Hole	э Тур	е			Level		Logged	Bv	Diming	Scale			- Page Nur	nb
BH03			RC						CG			1:50			Sheet 1	
ell Water	Depth (m)	Type /FI	C TCR	orin SCR	g RQE	Diameter Recovery (SPT)	Depth (m)	Level (m)	Legend			atum E	Descrip	tion		
	(III) 3.00 - 4.00 4.00 - 5.00 5.00 - 6.00 6.00 - 7.00 7.00 - 8.00 8.00 - 9.00	7 1 3 5	100 100 100 100	100	100 95 80 100		(m) 1.80 2.40 3.00			# SAN Mediu graine space	athered s	IE. g light b Illine SA ntal frae	prownish ANDSTC	ONE. C steppe	losely d rough.	
•	9.00 - 10.00	3	100	100	100				· · · · · · · · · · · · · · · · · · ·							
·		Type/FI	TCR			D/R/(SPT)					•					
e Diameter Base Diamete D 139	Casing Diame r Depth Base Diam 3.00 13	neter De	oth Top		Chise Base	lling Duration	Tool De		on and Orienta Base Inclination		Depth Top 0.00	Depth Base 3.00		ig Flush Colou	r Min (%)	7
0 115											3.00	13.00	Water			
narks escriptior	n based on o	drillers	reco	ords.							<u> </u>	<u> </u>	<u> </u>		A A A A A A A A A A A A A A A A A A A	

*		penix ng Ltd							Ro	otar	y Co	ore	Lo	g				
Proje	ct Name	: West Cu	umbe	rland	Hosp	oital	C	Client: C	Curtins				Date: 09	/12/202	20			
Locat	ion: Whi	tehaven					C	Contrac	tor:									
Proje	ct No. : 3	3670					C	Crew Na	ame: JH				Drilling E	Equipm	ent: Fra	ste XL		
Boi	rehole N BH03				е Тур २С	e			Level		Logged CG	Ву		Scale 1:50			age Num Sheet 2 o	
Well	Water	Dept	h	Туре		orin	g	Diameter Recovery (SPT)	Depth (m)	Level (m)	Legend		Stra		escript			
Hole Depth Ba 3.00 13.00	Diameter se Diamete 139 115	(m) 10.00 - 1 11.00 - 1 12.00 - 1	1.00 2.00 3.00	/FI 5 3 3 3	100 100	100 100	85 100 100	D/R/(SPT)	(m) 13.00	Inclinatio	n and Orient Base Inclinatio	graine space Rare r	End o	light bi line SA ital frac ge oxid	ovnish NDSTC tures, s ised bar	grey c NE. C teppeo nding r	losely d rough. hoted.	11
Rema # Des		n based (on dı	rillers	reco	ords.												and the second se

		enix ng Ltd						Ro	otai	°у С	ore	Lo	g				
Proje	ct Name	: West Cum	berland	Hosp	oital	C	Client: C	Curtins				Date: 1	4/12/20	20			
Locat	tion: Whi	tehaven				C	Contrac	tor:									
-	ct No. : 3					0	Crew Na	ame: JH				Drilling		ent: Fra			
Во	rehole N BH04			e Typ RC	e			Level		Logged CG	-		Scale 1:50			Page Nun Sheet 1 o	
Well	Water	Depth (m)	Type /Fl		orin	g ROD	Diameter Recovery (SPT)	Depth (m)	Level (m)			Str	atum D	escrip	tion		
	139 115	3.00 - 4.00 4.00 - 5.00 5.00 - 6.00 6.00 - 7.00 7.00 - 8.00 8.00 - 9.00 9.00 - 10.0	0 6 0 7 0 8 0 6 0 7 0 6 0 7 0 10 0 3	100 100 100 100 100	100 100 95 95 95 SCR	50 60 30 70 40 95 RQD Chise	D/R/(SPT)	1.60 2.00 2.60 3.00	Inclina	tion and Orien th Base Inclination	# MA # MA sands # Har Mediu graine horizc prefer rust o throug	DE GRC DE GRC DE GRC stone. (P d SAND um stron ed crysta line coal ontal frac rential al range op ghout.	PUND: S PUND: C ossible STONE g light b laminat tures, s ong coa kidised b	andstor Frushed fill). with fra NDSTC ions. C tepped I lamina banding	ne bou broke actures n grey DNE w losely rough ations.	ulder. en s. coarse spaced , Rare	1 - 1
		n based on	drillers	s reco	ords.											N	and a state of the

÷.		oenix ng Ltd							Ro	ota	ŋ	y Co	ore	Lo	g					
Projec	t Name	: West Cu	mber	land	Hosp	oital	C	Client: C	Curtins					Date: 14	4/12/202	20				
Locati	on: Whi	tehaven					C	Contrac	tor:											
Projec	:t No. : 3	3670					C	Crew Na	ame: JH					Drilling I	Equipm	ent: Fra				
Bor	ehole N BH04				е Тур КС	e			Level			Logged CG	Ву		Scale 1:50			Page Nu Sheet 2		
Well	Water	Depth (m)		Type /FI		orin	g RQD	Diameter Recovery (SPT)	Depth (m)	Lev (m		Legend		Stra	atum D	escript				
			2.00		100	100 100	100	Diameter				Legend	graine microl horizo prefer	m strong d crystal ine coal ntal fract ential alc ange ox hout.	g light bi lline SA laminat tures, st ong coa	rownish NDSTC ions. Cl tepped I lamina anding	rough noted	ith rare spaced , Rare	11 12 13 14 15 16 17 18	
																			19	
Hole Depth Bas 3.00 13.00	Diameter e Diamete 139 115	Casing D rr Depth Base 3.00		ter Dep		SCR (Depth I	Chisel	D/R/(SPT) ling Duration	Tool Dep			n and Orient	ation n Orientation	Depth Top 0.00 3.00	Depth Base 3.00 13.00	Drilling Type Air Water	g Flush Colou	ır Min (%	20 6) Max (9 100 100	%)
Rema				I		1			I	1		1	1	1		1		A.	de	
# Des	scription	n based o	on dr	illers	reco	ords.												N	A CONTRACTOR	

N		enix 1g Ltd						Rc	otar	y Co	ore	Lo	g				
Projec	t Name	West Cu	ımberla	and Hos	pital	C	Client: C	Curtins				Date: 1	1/12/202	20			
Locati	on: Whi	tehaven				C	Contrac	tor:									
Projec	t No. : 3	670				C	Crew Na	ame: JH				Drilling	Equipm	ent: Fra	iste XI	L	
Bor	ehole N			Hole Ty	pe			Level		Logged	Ву		Scale			Page Num	
	BH05	Depti		RC ype	Corin		ter ery	Depth	Level	CG			1:50			Sheet 1 c	<u>) f 2</u>
Well	Water	(m)		FI TCF	RSCR	RQD	Diameter Recovery (SPT)	(m)	(m)	Legend			atum D	-			
		3.00 - 4 4.00 - 5 5.00 - 6 6.00 - 7 7.00 - 8 8.00 - 9 9.00 - 10	.00 .00 .00 .00 .00 .00	4 100 3 100 3 100 2 100 3 100 2 100 2 100 2 100	Image: second secon	90 100 85 95 100 100 100 Rap Chisel	D/R/(SPT)	2.10 2.50 3.00	Inclinatic	n and Orient	# Brok # SAN Mediu graine microl horizco prefer rust ou throug		IDSTON IE. g light b lline SA laminat tures, s ong coa kidised b	IE. rownish NDSTC ions. Cl tepped I lamina banding	g Flush	coarse ith rare spaced , Rare	1 - 1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 - 9 - 10 -
Depth Bas 3.00	139		Diameter 139				Duration	Tool De	pth Top Depth	Base Inclinatio	n Orientation	0.00	3.00	Type Air	Colou	ır Min (%)	Max (%) 100
13.00	115											3.00	13.00	Water			100
Rema	arks																<u> </u>
		n based o	on dril	lers rec	ords.												and the second se

	Pho Drillin	oenix ng Ltd							Ro	otar	y C	ore	Log	l				
Project N	Vame	: West Cu	ımbe	rland	Hosp	oital	C	Client: C	Curtins				Date: 11/12	2/2020				
Location	: Whi	tehaven					C	Contrac	tor:									
Project N	No. : 3	3670					C	Crew Na	ame: JH				Drilling Equ	uipmen	nt: Fra	ste XL	_	
	ole N BH05	umber			e Typ RC	е			Level		Logged CG	Ву		ale :50			Page Num Sheet 2 c	
			n			orin	g	ieter very vT)	Depth	Level					oorint			
Well W	/ater	Depti (m) 10.00 - 1 11.00 - 1 12.00 - 1	1.00	Type /FI 4 5 2	С тск 100	SCR 100 100	90 80	Diameter	Depth (m)	Level (m)	Legend	Mediu graine microl horizo prefer rust ol throug	Stratu Im strong lig ed crystalline line coal lam ontal fracture rential along range oxidis	m Des pht brov e SANI nination es, step coal la sed bar	wnish DSTO ns. Clo oped r amina nding	ion grey o NE wi osely s rough, tions. noted	coarse ith rare spaced Rare	
																		20 -
Hole Dia	ameter	Casing [Type/FI er	TCR	SCR	RQD Chisel	D/R/(SPT) lina		Inclinatio	on and Orient	tation			Drilling	a Flush		20 -
	Diamete 139 115		Diamet Diame 139	eter De	pth Top			Duration	Tool De		n and Orien		0.00 3.	.00	Type Air Water	Coloui	r Min (%)	Max (%) 100 100
Remark # Descr		n based o	on di	rillers	reco	ords.												and the second sec

🕷 Drilli	penix ng Ltd					nar	y Co	JIE	1					
-	: West Cumb	erland Ho	spital	Client: (Curtins				Date: 11/	12/2020	0			
ocation: Whi				Contrac										
roject No. : 3		Liele T		Crew N	ame: JH		Lowed	D. /	Drilling E		nt: Fra			
Borehole N BH06		Hole T RC			Level		Logged I CG	БУ		Scale 1:50			age Num Sheet 1 o	
Vell Water	Depth (m)	Туре /FI то		Diameter Recovery (SPT)	Depth (m)	Level (m)	Legend		Stra	tum De	escripti	ion		
	2.00 - 3.00 3.00 - 4.00 4.00 - 5.00 5.00 - 6.00 6.00 - 7.00 7.00 - 8.00 8.00 - 9.00 9.00 - 10.00	6 10 6 10 4 10 5 10 2 10 3 10 3 10 3 10 3 10 3 10 3 10 3 10 7 10	00 100 8 00 100 9 00 100 9 00 100 9 00 100 9 00 100 9 00 100 10 00 100 10 00 100 10 00 100 10 00 100 10 00 100 10 00 100 10 00 100 10 00 100 10 00 100 10 00 100 10		1.20 1.80 2.00	Inclinati	on and Orienta	# MAI (Poss # SAI Mediu graine space Rare	DE GROU DE GROU sible fill). NDSTONE um strong ed crystalli ed horizont rust orang	ND: Co	ay bour	d bore	coarse losely d rough. hoted.	1 2 3 4 5 6 7 8 9 9
Pole Diameter pth Base Diameter 2.00 139 12.00 115		neter Depth T	op Depth Base		Tool Dep		Base Inclination		n Depth Top D 0.00 2.00	epth Base 2.00 12.00	Type Air Water	Colour	Min (%)	Max (% 100 100
												I		
emarks Descriptio	n based on o	drillers re	cords.										S.	and the second second

Phoenix Drilling Ltd	Rotary Core	Log
Project Name: West Cumberland Hospital	Client: Curtins	Date: 11/12/2020
Location: Whitehaven	Contractor:	
Project No. : 3670	Crew Name: JH	Drilling Equipment: Frast XL
Borehole Number Hole Type BH06 RC	Level Logged By CG	Scale Page Number 1:50 Sheet 2 of 2
(m) /FI TCR SCR RG		Stratum Description
(m) /FI TCR SCR RC 10.00 - 10.10 100 0 10.10 - 11.10 5 100 100 11.10 - 12.00 2 100 100	D 10.10	centration Docomption pocally very weak orangish brown weathered and oxidised fine to a grained SANDSTONE. Recovered act and clay bound. light whitish grey crystalline TONE. Small pyritic inclusions noted nmon quartz veins throughout. spaced sub-horizontal fractures, d rough. 11 End of Borehole at 12.000m 12 If a 13 If a 14 If a 14 If a 15 If a 16 If a 17
Type/FI TCR SCR RQ	D D/R/(SPT)	20 —
Hole Diameter Casing Diameter Chis	elling Inclination and Orientation	Drilling Flush
Depth Base Diameter Depth Base Diameter Depth Top Depth Base 2.00 139 2.00 139	Duration Tool Depth Top Depth Base Inclination Orientation	Depth Top Depth Base Type Colour Min (%) Max (%) 0.00 2.00 Air 100 100 100 2.00 12.00 Water 100 100
Remarks # Description based on drillers records.		

•	Drillin	Vest Cum	herlan	d Hoo	nitel		C	Client: C	urtine					Date: 00	3/03/2021				
	n: White		Denan		рпа			Contract						Date. 00	5/03/202				
	No. : 37							Crew Na						Drilling	Equipme	nt: Fract	≏ MI		
-	ehole Ni			Hole	е Тур	e			Level			Logged E		Drining	Scale	1. 1 1430		age Numl	ber
	BH101				20							JM			1:50			Sheet 1 of	
/ell	Water	Deptł (m)	ו ו	Type /FI		SCR	-	Diameter Recovery (SPT)	Depth (m)	Le (n		Legend		St	tratum D	escripti	on		
									0.60					E GROU	JND. SANDST	ONE.			
									2.10		- - - - - - - - - - - - - - - - - - -		# Fine	grained	yellow S <i>i</i>	ANDSTC	DNE.		
									3.20		- - - - - - - - - - - - - - - - - - -		# Fine	grained	grey SAN	IDSTON	IE.		
									4.90		• • • • • • • • • • • • • • • • • • •		# Fine	grain ye	llow SAN	DSTON	Ε.		
									5.90		• • • • • •		# Fine	grained	SANDST	ONE.			
									6.50		• • • • • • • • • • • • • • • • • • •		# Fine	grained	yellow S <i>i</i>	ANDSTO	DNE.		
									8.60		- - - - - - - - - - - - - - - - - - -		# Badly	/ broken	SANDS	FONE.			
		-1		Type/FI	TCR			D/R/(SPT)			ŀ	••••		[
th Base			Diamet		oth Top	C Depth E	Chisel Base	ling Duration	Tool D			and Orientat			Depth Base	Туре	g Flush Colour	Min (%)	M
3.00 12.00	139 115	3.00	139											0.00 8.60 10.70	8.60 10.70 12.00	Air/Mist Air/Mist Air/Mist			
	ription	based on pre dug t					anne	ed.											

Ŵ	Pho Drillin	oenix ng Ltd						F	Ro	otar	y Co	ore	Lo	g				
Project	t Name: '	West Cum	berland	Hospita	al	C	Client: C	urtins					Date: 08	3/03/202 ⁻	1			
Locatio	on: White	haven				C	Contract	or:										
Project	t No. : 37	75				C	Crew Na	me: JS					Drilling	Equipme	nt: Fraste	ML		
Во	rehole N BH10			Hole Ty RO	γpe			Level			Logged JM	Ву		Scale 1:50			age Numb Sheet 2 of :	
Well	Water	Deptl (m)		уре FI тс	Corin		Diameter Recovery (SPT)	Deptł (m)	n	Level (m)	Legend		S	tratum D	Descriptio	on		
								10.70 11.10				# Fine	y broken grain SA	NDSTO				10
								12.00					En	d of Boreho	ole at 12.00	00m		12
																14		
																		16
				pe/FI TC	R SCR	RQD	D/R/(SPT)											18
Hole Depth Bas	Diameter se Diamete		Diameter			Chisel		Tool	Depth		on and Orienta Base Inclinatio		Denth Ton	Depth Base	Drilling Type	Flush Colour	Min (%)	Max (%)
3.00 12.00	se Diamete 139 115	3.00	139			Dase	Duration	1001	υθρτη	iop Depth			0.00 8.60 10.70	8.60 10.70 12.00	Air/Mist Air/Mist Air/Mist Air/Mist	Colour	IVIII1 (%)	Max (%) 100 60 100
Rema # Des Inspec	cription	based on pre dug t	drillers to 1.20r	record n and (ds. CAT so	canne	ed.		<u> </u>									

N		oenix ng Ltd						F	Rota	ar	y C	Co	ore	Lo	g				
Project	t Name:	West Cum	berland F	lospital		С	lient: C	urtins						Date: 0	8/03/202	1			
Locatio	on: White	ehaven				С	Contracto	or:											
Project	t No. : 37	75				С	rew Na	me: JS						Drilling	Equipme	nt: Frast	e ML		
Во	rehole N BH10		F	lole Typ RO				Level			Logg J	ged E JM	Ву		Scale 1:50			Page Numb Sheet 1 of	
Well	Water	Depth (m)	יז Tyj F	pe (T _{TCR}	SCR	g RQD	Diameter Recovery (SPT)	Depth (m)	Lev (m		Leger	nd	# MAD	S E GROI	tratum E	Descript	ion		:
								0.90 1.50					# Fine	grained	yellow S				1-
												 							- 1
								4.70				· · · · · · · · · · · · · · · · · · ·	# Fine	grained	SANDST	FONE.			5 -
							6.20		-				_	yellow S,		DNE.		- 6 - 7 - 8 - 9 -	
			Туре	ə/FI TCR	SCR	RQD	D/R/(SPT)			-	• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •	 . .<	# ⊢ine	grained	SANDST	IONE.			9 -
Hole Depth Bas	Diameter se Diamete	Casing Depth Base		Depth Top		Chisell _{Base}	ing Duration	Tool			n and Or Base Incli		tion Orientation		Depth Base		g Flush Colour	Min (%)	Max (%)
3.00 12.00	139 115	3.00	139	20001100						- JP 01 E				0.00 9.90 11.00	9.90 11.00 12.00	Air/Mist Air/Mist Air/Mist Air/Mist	USIOU		100 60 100
	cription	based on pre dug t				anne	ed.							<u> </u>	<u> </u>				d the

Ŵ	Pho Drillin	enix 1g Ltd						F	Rc	ota	ry	Co	ore	Log	g				
Projec	t Name: \	Nest Cum	berland	Hospita	I	C	Client: C	urtins						Date: 08	3/03/202	1			
Locatio	on: White	haven				C	Contract	or:											
Projec	t No. : 37	75				C	Crew Na	me: JS						Drilling I	Equipme	nt: Fraste	e ML		
Во	rehole Ni BH102		I	Hole Ty RO	pe			Level			l	_ogged E JM	Ву		Scale 1:50			Page Num Sheet 2 c	
Well	Water	Depth (m)	ו דע Ty		Corin	ig	Diameter Recovery (SPT)	Deptl (m)		Level (m)	Le	egend		St	tratum D	escripti	on		
		()			X SUR	RQD		()		()	::	· · · · · ·	# Fine	grained	SANDST	ONE.			=
								9.90			· ·	· · · · · · · · · · · · · · · · · · ·	# Brok	en SANE	OSTONE				10
								11.00)				# LIME	STONE.					11
						12.00						En	d of Poroby	alo at 12.0	00m		- 12 -		
						12.00)					Enc	d of Boreho	ole at 12.0	00m		$ \begin{array}{c} 10 \\ -11 \\ -11 \\ 11 \\ -12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 19 \\ 19 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10$		
																			17
																			18
Hole	Diameter	Casing [De/FI TCF		RQD Chisel	D/R/(SPT)			Incline	ation	nd Orientat	tion	1		Drilling	g Flush		
Depth Ba 3.00 12.00				Depth Top			Duration	Tool	Depth				n Orientation	Depth Top 0.00 9.90 11.00	Depth Base 9.90 11.00 12.00		g Flush Colou	ır Min (%)	Max (%) 100 60 100
Rema # Des Inspe	cription	based on pre dug t	drillers o 1.20m	record n and C	ls. CAT so	canne	ed.		<u> </u>			<u> </u>		<u> </u>	1	1			and the second se

N		enix 1g Ltd							F	Rot	tar	Ъ	Сс	ore	Lo	g				
Project	Name: \	Nest Cum	berlan	d Hos	pital		C	Client: C	urtins						Date: 0	9/03/2021				
Locatio	on: White	haven					C	Contracto	or:											
Project	No. : 37	75					C	Crew Na	me: JS						Drilling	Equipme	nt: Fraste	ML		
Во	ehole Ni BH103				э Тур २О	е			Level			Lo	bgged E JM	Зу		Scale 1:50			Page Numb Sheet 1 of	
Well	Water	Deptl (m)		Type /FI		SCR	-	Diameter Recovery (SPT)	Depth (m)		.evel (m)	Leç	gend		S	tratum D	escriptio	on		
Well	Water			(—)		SCR	-	Diamet					gend	# Fine # Fine # Fine	E GROU grain ye grained grained			E. NE.		
Hole Depth Bass 3.00 12.00	Diameter e Diametea 139 115	Casing I Depth Base 3.00	SCR (Depth E	Chisell	D/R/(SPT) ing Duration	8.60				I Orientati			Depth Base 8.60 9.90 12.00	Drilling Type Air/Mist Air/Mist	Flush Colour	Min (%)	9			
	cription	based on pre dug t		anne	ed.							9.90	12.00	,						

Ŵ	Pho Drillin	enix ng Ltd						F	Ro	ota	ry	Сс	ore	Log	g				
Projec	t Name: \	West Cum	berland	Hospita	I	C	Client: C	urtins						Date: 09	9/03/2021				
Locatio	on: White	haven				C	Contract	or:											
Projec	t No. : 37	75				C	Crew Na	me: JS						Drilling I	Equipme	nt: Fraste	e ML		
Borehole Number Hole Type BH103 RO						Level Logged By					Зу	Scale Page Number 1:50 Sheet 2 of 2							
Well	Water	Depth	ו ז Ty		Corin	ng	neter overy T)	Deptl	h							locorinti			
vven	valei	(m)	/	FI TCF	R SCR	RQD	Dian Reco (SI	(m)		(m)			# Brok						
								9.90			•••	· · · · · ·							
												• •	# SAN						10
								11.20)				# LIME	STONE					
			Uniterilation and Orientation Date: 09/03/2021 Contractor: Drilling Equipment: Fra Corring Evel Logged By Scale pth Type Corring Transition Participation Participation pth Type Corring Transition Participation Participation Participation Participation pth Transition Scale Depth Level Legend Stratum Descripation pth Transition Scale Depth Level Legend Stratum Descripation rate Transition Scale Depth Int.20 # Broken SANDSTONE. # SANDSTONE 11.20 # HIMESTONE. # SANDSTONE. # Sand Oriented at 1 upumber Transition Depth Int.20 # HIMESTONE. # End of Borehole at 1 upumber Transition Depth Depth Depth Depth Depth upumber Transition Depth Depth Depth				12												
								12.00)					End	d of Boreho	ole at 12.00	00m		
																			16 17 18 19
			Tve	De/FI TCF	R SCR	RQD	D/R/(SPT)												18
Hole Depth Ba	Diameter se Diamete		Diameter			Chisel	ling	Tool	Depth					Denth Ton	Depth Base	Drilling	Flush Colou	r Min (%)	Max (%)
3.00 12.00	139 115	3.00		рери то		Dase	Duration	1001	Depth		ui Dase	mation	Uneritation	0.00 8.60	8.60 9.90	Air/Mist Air/Mist Air/Mist	COIOU	1 IVIII1 (%)	Max (%) 100 60 100
Rema # Des Inspe	cription	based on pre dug t	drillers o 1.20m	record n and C	ls. CAT so	canne	ed.		<u> </u>			<u> </u>	<u> </u>		<u> </u>	<u> </u>			and the second sec

Ground Investigation Report

Appendix C – Chemical Laboratory Testing Results

FINAL ANALYTICAL TEST REPORT

Envirolab Job Number: Issue Number:

20/10811

1

Date: 18 January, 2021

Client:

Curtins Consulting (Manchester) Merchant Exchange 17-19 Whitworth Street Manchester UK M1 5WG

Project Manager: Project Name: Project Ref: Order No: Date Samples Received: Date Instructions Received: Date Analysis Completed: Joe James/Matthew Holroyd WC. Hospital B073096 EBED60 14/12/20 14/12/20 18/01/21

Prepared by:

Approved by:

Melanie Marshall Laboratory Coordinator Soprue France Client Service Manager

Page 1 of 11

Envirolab Job Number: 20/10811

Client Project Name: WC. Hospital

Client Project Ref: B073096

Lab Sample ID	20/10811/1	20/10811/2	20/10811/3	20/10811/4	20/10811/5	20/10811/6	20/10811/7			
Client Sample No	1	1	1	1	1	1	1			
Client Sample ID	BH01	WS05	WS01	WS07	BH04	BH02A	BH03			
Depth to Top	0.35	0.50	0.40	0.50	0.40	0.40	0.70			
Depth To Bottom									ion	
Date Sampled	08-Dec-20	08-Dec-20	09-Dec-20	09-Dec-20	08-Dec-20	07-Dec-20	08-Dec-20		etect	if
Sample Type	Soil - ES		Limit of Detection	Method ref						
Sample Matrix Code	5A	6A	5A	4 A	4 A	4AE	4AE	Units	Limit	Meth
% Stones >10mm _A	15.9	23.1	1.3	38.6	21.4	20.8	13.6	% w/w	0.1	A-T-044
pH₀ ^{M#}	10.43	9.72	8.32	10.77	10.40	9.19	9.42	pН	0.01	A-T-031s
Sulphate (water sol 2:1) ^{DM#}	0.57	0.55	0.19	1.04	0.64	0.27	0.48	g/l	0.01	A-T-026s
Cyanide (total) _A ^{M#}	<1	<1	<1	<1	<1	<1	<1	mg/kg	1	A-T-042sTCN
Phenols - Total by HPLC _A	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	mg/kg	0.2	A-T-050s
Organic matter _D ^{M#}	1.0	0.8	2.6	2.9	1.2	2.5	0.9	% w/w	0.1	A-T-032 OM
Arsenic ^{D^{M#}}	5	6	8	2	5	7	10	mg/kg	1	A-T-024s
Boron (water soluble)⊳	2.3	1.8	<1.0	1.4	1.7	<1.0	1.0	mg/kg	1	A-T-027s
Cadmium _D ^{M#}	0.6	0.5	1.2	0.6	<0.5	<0.5	0.6	mg/kg	0.5	A-T-024s
Copper _D ^{M#}	16	18	16	14	14	11	15	mg/kg	1	A-T-024s
Chromium _D ^{M#}	18	12	20	17	13	10	10	mg/kg	1	A-T-024s
Chromium (hexavalent) _D	<1	<1	<1	<1	<1	<1	<1	mg/kg	1	A-T-040s
Lead _D ^{M#}	43	47	21	64	39	21	27	mg/kg	1	A-T-024s
Mercury _D	0.98	0.68	<0.17	1.34	0.62	0.23	0.22	mg/kg	0.17	A-T-024s
Nickel ^{D^{M#}}	12	9	12	12	12	8	15	mg/kg	1	A-T-024s
Selenium _D ^{M#}	<1	<1	2	1	<1	<1	<1	mg/kg	1	A-T-024s
Zinc ^D ^{M#}	52	46	22	64	41	17	21	mg/kg	5	A-T-024s

Envirolab Job Number: 20/10811

Client Project Name: WC. Hospital

Client Project Ref: B073096

Lab Sample ID	20/10811/1	20/10811/2	20/10811/3	20/10811/4	20/10811/5	20/10811/6	20/10811/7			
Client Sample No	1	1	1	1	1	1	1			
Client Sample ID	BH01	WS05	WS01	WS07	BH04	BH02A	BH03			
Depth to Top	0.35	0.50	0.40	0.50	0.40	0.40	0.70			
Depth To Bottom									ion	
Date Sampled	08-Dec-20	08-Dec-20	09-Dec-20	09-Dec-20	08-Dec-20	07-Dec-20	08-Dec-20		Detection	if
Sample Type	Soil - ES			od ref						
Sample Matrix Code	5A	6A	5A	4A	4A	4AE	4AE	Units	Limit of	Method
Asbestos in Soil (inc. matrix)										
Asbestos in soil _D #	NAD			A-T-045						
Asbestos ACM - Suitable for Water Absorption Test? _D	N/A			A-T-045						

Client Project Name: WC. Hospital

Lab Sample ID	20/10811/1	20/10811/2	20/10811/3	20/10811/4	20/10811/5	20/10811/6	20/10811/7			
Client Sample No	1	1	1	1	1	1	1			
Client Sample ID	BH01	WS05	WS01	WS07	BH04	BH02A	BH03			
Depth to Top	0.35	0.50	0.40	0.50	0.40	0.40	0.70			
Depth To Bottom									ы	
Date Sampled	08-Dec-20	08-Dec-20	09-Dec-20	09-Dec-20	08-Dec-20	07-Dec-20	08-Dec-20		etect	Ŧ
Sample Type	Soil - ES		Limit of Detection	Method ref						
Sample Matrix Code	5A	6A	5A	4 A	4 A	4AE	4AE	Units	Limit	Meth
PAH-16MS (MSD order)										
Naphthalene₄ ^{M#}	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	mg/kg	0.03	A-T-019s
Acenaphthylene _A ^{M#}	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	0.01	A-T-019s
Acenaphthene _A ^{M#}	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	0.01	A-T-019s
Fluorene₄ ^{M#}	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	0.01	A-T-019s
Phenanthrene _A ^{M#}	<0.03	<0.03	<0.03	0.03	0.08	0.20	<0.03	mg/kg	0.03	A-T-019s
Anthracene _A ^{M#}	<0.02	<0.02	<0.02	<0.02	<0.02	0.03	<0.02	mg/kg	0.02	A-T-019s
Fluoranthene ^{A^{M#}}	<0.08	<0.08	<0.08	<0.08	<0.08	0.16	<0.08	mg/kg	0.08	A-T-019s
Pyrene _A ^{M#}	<0.07	<0.07	<0.07	<0.07	<0.07	0.11	<0.07	mg/kg	0.07	A-T-019s
Benzo(a)anthracene _A ^{M#}	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	mg/kg	0.04	A-T-019s
Chrysene _A ^{M#}	<0.06	<0.06	<0.06	<0.06	<0.06	<0.06	<0.06	mg/kg	0.06	A-T-019s
Benzo(b)fluoranthene ^{AM#}	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	mg/kg	0.05	A-T-019s
Benzo(k)fluoranthene _A ^{M#}	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	mg/kg	0.07	A-T-019s
Benzo(a)pyrene₄ ^{M#}	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	mg/kg	0.04	A-T-019s
Indeno(123-cd)pyrene ^{AM#}	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	mg/kg	0.03	A-T-019s
Dibenzo(ah)anthracene _A ^{M#}	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	mg/kg	0.04	A-T-019s
Benzo(ghi)perylene ^{AM#}	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	mg/kg	0.05	A-T-019s
Total PAH-16MS (MSD order) A M#	<0.08	<0.08	<0.08	<0.08	0.08	0.50	<0.08	mg/kg	0.03	A-T-019s

Client Project Name: WC. Hospital

Lab Sample ID	20/10811/1	20/10811/2	20/10811/3	20/10811/4	20/10811/5	20/10811/6	20/10811/7			
Client Sample No	1	1	1	1	1	1	1			
Client Sample ID	BH01	WS05	WS01	WS07	BH04	BH02A	BH03			
Depth to Top	0.35	0.50	0.40	0.50	0.40	0.40	0.70			
Depth To Bottom									ion	
Date Sampled	08-Dec-20	08-Dec-20	09-Dec-20	09-Dec-20	08-Dec-20	07-Dec-20	08-Dec-20		etect	<u>ب</u>
Sample Type	Soil - ES		Limit of Detection	Method ref						
Sample Matrix Code	5A	6A	5A	4A	4A	4AE	4AE	Units	Limit	Meth
TPH CWG										
Ali >C5-C6 _A #	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	0.01	A-T-022s
Ali >C6-C8 _A #	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	0.01	A-T-022s
Ali >C8-C10 _A	<1	<1	<1	<1	<1	<1	<1	mg/kg	1	A-T-055s
Ali >C10-C12 _A ^{M#}	<1	<1	<1	<1	<1	<1	<1	mg/kg	1	A-T-055s
Ali >C12-C16 ^{AM#}	2	<1	<1	<1	<1	<1	<1	mg/kg	1	A-T-055s
Ali >C16-C21 _A ^{M#}	4	<1	<1	2	2	<1	<1	mg/kg	1	A-T-055s
Ali >C21-C35 ^{AM#}	36	11	<1	39	35	6	4	mg/kg	1	A-T-055s
Total Aliphatics _A	42	12	<1	42	38	6	4	mg/kg	1	A-T-055s
Aro >C5-C7 _A #	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	0.01	A-T-022s
Aro >C7-C8 _A #	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	0.01	A-T-022s
Aro >C8-C10 _A	3	<1	<1	15	7	<1	<1	mg/kg	1	A-T-055s
Aro >C10-C12 _A	<1	<1	<1	<1	<1	<1	<1	mg/kg	1	A-T-055s
Aro >C12-C16 _A	2	<1	<1	1	2	<1	<1	mg/kg	1	A-T-055s
Aro >C16-C21 ^{AM#}	4	2	<1	6	5	<1	<1	mg/kg	1	A-T-055s
Aro >C21-C35 ^{AM#}	18	7	<1	21	24	6	2	mg/kg	1	A-T-055s
Total Aromatics _A	27	9	<1	44	40	7	2	mg/kg	1	A-T-055s
TPH (Ali & Aro >C5-C35)₄	69	21	<1	86	78	13	6	mg/kg	1	A-T-055s
BTEX - Benzene₄ [#]	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	0.01	A-T-022s
BTEX - Toluene [#]	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	0.01	A-T-022s
BTEX - Ethyl Benzene _A #	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	0.01	A-T-022s
BTEX - m & p Xylene _A #	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	0.01	A-T-022s
BTEX - o Xylene _A #	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	0.01	A-T-022s
MTBE _A #	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	0.01	A-T-022s

Client Project Name: WC. Hospital

Lab Sample ID	20/10811/8	20/10811/9	20/10811/10	20/10811/11	20/10811/12	20/10811/13			
Client Sample No	1	1	1	1	1	1			
Client Sample ID	WS03	WS06	HP01	WS04	BH05	WS01			
Depth to Top	0.40	0.45	0.50	0.40	1.20	1.70			
Depth To Bottom					1.40	3.00		u	
Date Sampled	07-Dec-20	08-Dec-20	08-Dec-20	07-Dec-20	08-Dec-20	09-Dec-20		etect	
Sample Type	Soil - ES	Soil - ES	Soil - ES	Soil - ES	Soil - ES	Solid		Limit of Detection	Method ref
Sample Matrix Code	4AE	4 A	4AE	4A	4A	7	Units	Limit	Meth
% Stones >10mm _A	21.6	10.6	18.8	18.7	16.5	<0.1	% w/w	0.1	A-T-044
pH₀ ^{M#}	10.84	11.22	10.68	10.04	10.73	8.63	pН	0.01	A-T-031s
Sulphate (water sol 2:1) ^{D^{M#}}	0.86	0.57	0.75	0.63	0.28	0.03	g/l	0.01	A-T-026s
Cyanide (total) _A ^{M#}	<1	<1	<1	<1	<1	-	mg/kg	1	A-T-042sTCN
Phenols - Total by HPLC _A	<0.2	<0.2	<0.2	<0.2	<0.2	-	mg/kg	0.2	A-T-050s
Organic matter ^{D^{M#}}	1.2	1.8	0.9	1.1	0.2	-	% w/w	0.1	A-T-032 OM
Arsenic ^{D^{M#}}	3	5	4	9	6	-	mg/kg	1	A-T-024s
Boron (water soluble) _D	2.4	2.8	2.7	2.2	1.4	-	mg/kg	1	A-T-027s
Cadmium _D ^{M#}	0.8	0.7	0.7	0.7	<0.5	-	mg/kg	0.5	A-T-024s
Copper ^{D^{M#}}	17	22	19	24	8	-	mg/kg	1	A-T-024s
Chromium _D ^{M#}	17	21	17	15	7	-	mg/kg	1	A-T-024s
Chromium (hexavalent)₀	<1	<1	<1	<1	<1	-	mg/kg	1	A-T-040s
Lead _{D^{M#}}	71	106	54	50	19	-	mg/kg	1	A-T-024s
Mercury₀	1.73	1.98	1.76	0.75	0.33	-	mg/kg	0.17	A-T-024s
Nickel ^{D^{M#}}	14	14	11	11	4	-	mg/kg	1	A-T-024s
Selenium ^{DM#}	<1	<1	<1	<1	<1	-	mg/kg	1	A-T-024s
Zinc _D ^{M#}	77	272	169	37	15	-	mg/kg	5	A-T-024s
1.10a PSD (Grading/63um/sand fraction/wet sieve) BS1377 pt 2 1990 cl 9.2 _A #	-	-	-	-	-	Appended	%	0.1	Subcon SS

Client Project Name: WC. Hospital

Lab Sample ID	20/10811/8	20/10811/9	20/10811/10	20/10811/11	20/10811/12	20/10811/13			
Client Sample No	1	1	1	1	1	1			
Client Sample ID	WS03	WS06	HP01	WS04	BH05	WS01			
Depth to Top	0.40	0.45	0.50	0.40	1.20	1.70			
Depth To Bottom					1.40	3.00		io	
Date Sampled	07-Dec-20	08-Dec-20	08-Dec-20	07-Dec-20	08-Dec-20	09-Dec-20		Detection	af.
Sample Type	Soil - ES	Soil - ES	Soil - ES	Soil - ES	Soil - ES	Solid			od ref
Sample Matrix Code	4AE	4A	4AE	4A	4A	7	Units	Limit of	Method
Asbestos in Soil (inc. matrix)									
Asbestos in soil _D #	NAD	NAD	NAD	NAD	NAD	-			A-T-045
Asbestos ACM - Suitable for Water Absorption Test? _D	N/A	N/A	N/A	N/A	N/A	-			A-T-045

Client Project Name: WC. Hospital

20/10811/8	20/10811/9	20/10811/10	20/10811/11	20/10811/12	20/10811/13				
1	1	1	1	1	1				
WS03	WS06	HP01	WS04	BH05	WS01				
0.40	0.45	0.50	0.40	1.20	1.70				
				1.40	3.00			ion	
07-Dec-20	08-Dec-20	08-Dec-20	07-Dec-20	08-Dec-20	09-Dec-20			etect	4
Soil - ES	Soil - ES	Soil - ES	Soil - ES	Soil - ES	Solid			t of D	Method ref
4AE	4 A	4AE	4A	4A	7		Units	Limit	Meth
<0.03	<0.03	<0.03	<0.03	<0.03	-		mg/kg	0.03	A-T-019s
<0.01	<0.01	<0.01	<0.01	<0.01	-		mg/kg	0.01	A-T-019s
<0.01	0.01	<0.01	<0.01	<0.01	-		mg/kg	0.01	A-T-019s
0.02	0.01	0.02	<0.01	<0.01	-		mg/kg	0.01	A-T-019s
0.08	0.14	0.19	0.06	<0.03	-		mg/kg	0.03	A-T-019s
<0.02	<0.02	0.03	<0.02	<0.02	-		mg/kg	0.02	A-T-019s
0.08	0.16	0.32	<0.08	<0.08	-		mg/kg	0.08	A-T-019s
0.08	0.14	0.28	<0.07	<0.07	-		mg/kg	0.07	A-T-019s
<0.04	0.06	0.14	<0.04	<0.04	-		mg/kg	0.04	A-T-019s
0.07	0.11	0.18	<0.06	<0.06	-		mg/kg	0.06	A-T-019s
<0.05	0.05	0.10	<0.05	<0.05	-		mg/kg	0.05	A-T-019s
<0.07	<0.07	<0.07	<0.07	<0.07	-		mg/kg	0.07	A-T-019s
<0.04	<0.04	0.06	<0.04	<0.04	-		mg/kg	0.04	A-T-019s
<0.03	<0.03	0.04	<0.03	<0.03	-		mg/kg	0.03	A-T-019s
<0.04	<0.04	<0.04	<0.04	<0.04	-		mg/kg	0.04	A-T-019s
<0.05	<0.05	<0.05	<0.05	<0.05	-		mg/kg	0.05	A-T-019s
0.33	0.68	1.36	<0.08	<0.08	-		mg/kg	0.03	A-T-019s
	1 WS03 0.40 07-Dec-20 Soil - ES 4AE 	1 1 WS03 WS06 0.40 0.45 07-Dec-20 08-Dec-20 Soil - ES Soil - ES 4AE 4A - - <0.03	Image: constraint of the section of the sec	Image: constraint of the section of the sec	1 1 1 1 1 WS03 WS06 HP01 WS04 BH05 0.40 0.45 0.50 0.40 1.20 0.40 0.45 0.50 0.40 1.20 07 -Dec-20 08 -Dec-20 07 -Dec-20 08 -Dec-20 $Soil - ES$ $4AE$ $4A$ $4AE$ $4A$ $4A$ -0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.02 0.01 < 0.01 < 0.01 < 0.01 < 0.02 0.01 < 0.01 < 0.01 < 0.01 < 0.02 0.01 0.02 < 0.01 < 0.01 < 0.02 0.01 0.02 < 0.01 < 0.01 0.02 0.02 <	1 1 1 1 1 1 1 WS03 WS06 HP01 WS04 BH05 WS01 0.40 0.45 0.50 0.40 1.20 1.70 0.40 0.45 0.50 0.40 1.20 1.70 0.40 0.45 0.50 0.40 1.20 1.70 0.40 0.45 0.50 07-Dec-20 08-Dec-20 09-Dec-20 08-Dec-20 08-Dec-20 07-Dec-20 08-Dec-20 09-Dec-20 Soil - ES 4AE 4A 4AE 4A 4A 7 -0.01 -0.02 -0.02 -0.03 -0.03 -0.04 -0.04 -0.04 -0.04 -0.05 -0.05 -0.05 -0.07 -0.07 -0.07	1 1 1 1 1 1 WS03 WS06 HP01 WS04 BH05 WS01 0.40 0.45 0.50 0.40 1.20 1.70 0.40 0.45 0.50 0.40 1.40 3.00 07-Dec-20 08-Dec-20 08-Dec-20 09-Dec-20 09-Dec-20 Soil - ES 4AE 4A 4AE 4A 4A 7 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -	1111111WS03WS06HP01WS04BH05WS010.400.450.500.401.201.700.400.450.500.401.201.7007-Dec-2008-Dec-2008-Dec-2008-Dec-2009-Dec-2009-Dec-20Soll -ESSoll -ESSoll -ESSoll -ESSoll -ESSoll -ES4AE4A4A4A7mg/kg-0.03<0.03	1 1

Client Project Name: WC. Hospital

Lab Sample ID	20/10811/8	20/10811/9	20/10811/10	20/10811/11	20/10811/12	20/10811/13			
Client Sample No	1	1	1	1	1	1			
Client Sample ID	WS03	WS06	HP01	WS04	BH05	WS01			
Depth to Top	0.40	0.45	0.50	0.40	1.20	1.70			
Depth To Bottom					1.40	3.00		ion	
Date Sampled	07-Dec-20	08-Dec-20	08-Dec-20	07-Dec-20	08-Dec-20	09-Dec-20		etect	Ŧ
Sample Type	Soil - ES	Soil - ES	Soil - ES	Soil - ES	Soil - ES	Solid		Limit of Detection	Method ref
Sample Matrix Code	4AE	4 A	4AE	4A	4A	7	Units	Limit	Meth
TPH CWG									
Ali >C5-C6 _A #	<0.01	<0.01	<0.01	<0.01	<0.01	-	mg/kg	0.01	A-T-022s
Ali >C6-C8 _A #	<0.01	<0.01	<0.01	<0.01	<0.01	-	mg/kg	0.01	A-T-022s
Ali >C8-C10 _A	<1	<1	<1	<1	<1	-	mg/kg	1	A-T-055s
Ali >C10-C12 _A ^{M#}	3	<1	<1	<1	<1	-	mg/kg	1	A-T-055s
Ali >C12-C16 ^{AM#}	13	2	5	2	<1	-	mg/kg	1	A-T-055s
Ali >C16-C21 ^{AM#}	15	4	10	2	<1	-	mg/kg	1	A-T-055s
Ali >C21-C35 ^{AM#}	67	48	117	11	2	-	mg/kg	1	A-T-055s
Total Aliphatics _A	99	54	131	15	2	-	mg/kg	1	A-T-055s
Aro >C5-C7 _A #	<0.01	<0.01	<0.01	<0.01	<0.01	-	mg/kg	0.01	A-T-022s
Aro >C7-C8 _A #	<0.01	<0.01	<0.01	<0.01	<0.01	-	mg/kg	0.01	A-T-022s
Aro >C8-C10 _A	14	15	6	3	<1	-	mg/kg	1	A-T-055s
Aro >C10-C12 _A	2	<1	<1	<1	<1	-	mg/kg	1	A-T-055s
Aro >C12-C16 _A	8	2	4	2	<1	-	mg/kg	1	A-T-055s
Aro >C16-C21 ^{AM#}	8	5	8	3	<1	-	mg/kg	1	A-T-055s
Aro >C21-C35 ^{AM#}	30	25	34	9	<1	-	mg/kg	1	A-T-055s
Total Aromatics _A	62	47	51	16	<1	-	mg/kg	1	A-T-055s
TPH (Ali & Aro >C5-C35)₄	161	101	183	31	3	-	mg/kg	1	A-T-055s
BTEX - Benzene [#]	<0.01	<0.01	<0.01	<0.01	<0.01	-	mg/kg	0.01	A-T-022s
BTEX - Toluene [#]	<0.01	<0.01	<0.01	<0.01	<0.01	-	mg/kg	0.01	A-T-022s
BTEX - Ethyl Benzene _A #	<0.01	<0.01	<0.01	<0.01	<0.01	-	mg/kg	0.01	A-T-022s
BTEX - m & p Xylene _A #	<0.01	<0.01	<0.01	<0.01	<0.01	-	mg/kg	0.01	A-T-022s
BTEX - o Xylene _A #	<0.01	<0.01	<0.01	<0.01	<0.01	-	mg/kg	0.01	A-T-022s
MTBE ₄ #	<0.01	<0.01	<0.01	<0.01	<0.01	-	 mg/kg	0.01	A-T-022s

REPORT NOTES

General

This report shall not be reproduced, except in full, without written approval from Envirolab.

The results reported herein relate only to the material supplied to the laboratory.

The residue of any samples contained within this report, and any received with the same delivery, will be disposed of six weeks after initial scheduling. For samples tested for Asbestos we will retain a portion of the dried sample for a minimum of six months after the initial Asbestos testing is completed.

Analytical results reflect the quality of the sample at the time of analysis only.

Opinions and interpretations expressed are outside the scope of our accreditation.

If results are in italic font they are associated with an AQC failure, these are not accredited and are unreliable.

A deviating samples report is appended and will indicate if samples or tests have been found to be deviating. Any test results affected may not be an accurate record of the concentration at the time of sampling and, as a result, may be invalid.

The Client Sample No, Client Sample ID, Depth to Top, Depth to Bottom and Date Sampled were all provided by the client.

Soil chemical analysis:

All results are reported as dry weight (<40°C).

For samples with Matrix Codes 1 - 6 natural stones, brick and concrete fragments >10mm and any extraneous material (visible glass, metal or twigs) are removed and excluded from the sample prior to analysis and reported results corrected to a whole sample basis. This is reported as '% stones >10mm'.

For samples with Matrix Code 7 the whole sample is dried and crushed prior to analysis and this supersedes any "A" subscripts All analysis is performed on the sample as received for soil samples which are positive for asbestos or the client has informed asbestos may be present and/or if they are from outside the European Union and this supersedes any "D" subscripts.

TPH analysis of water by method A-T-007:

Free and visible oils are excluded from the sample used for analysis so that the reported result represents the dissolved phase only

Electrical Conductivity of water by Method A-T-037:

Results greater than 12900µS/cm @ 25°C / 11550µS/cm @ 20°C fall outside the calibration range and as such are unaccredited.

Asbestos:

Asbestos in soil analysis is performed on a dried aliquot of the submitted sample and cannot guarantee to identify asbestos if only present in small numbers as discrete fibres/fragments in the original sample.

Stones etc. are not removed from the sample prior to analysis.

Quantification of asbestos is a 3 stage process including visual identification, hand picking and weighing and fibre counting by sedimentation/phase contrast optical microscopy if required. If asbestos is identified as being present but is not in a form that is suitable for analysis by hand picking and weighing (normally if the asbestos is present as free fibres) quantification by sedimentation is performed. Where ACMs are found a percentage asbestos is assigned to each with reference to 'HSG264, Asbestos: The survey guide' and the calculated asbestos content is expressed as a percentage of the dried soil sample aliquot used.

Predominant Matrix Codes:

1 = SAND, 2 = LOAM, 3 = CLAY, 4 = LOAM/SAND, 5 = SAND/CLAY, 6 = CLAY/LOAM, 7 = OTHER, 8 = Asbestos bulk ID sample. Samples with Matrix Code 7 & 8 are not predominantly a SAND/LOAM/CLAY mix and are not covered by our BSEN 17025 or MCERTS accreditations, with the exception of bulk asbestos which are BSEN 17025 accredited.

Secondary Matrix Codes:

A = contains stones, B = contains construction rubble, C = contains visible hydrocarbons, D = contains glass/metal,

E = contains roots/twigs.

Kev:

IS indicates Insufficient Sample for analysis.

US indicates Unsuitable Sample for analysis.

NDP indicates No Determination Possible.

NAD indicates No Asbestos Detected.

N/A indicates Not Applicable.

Superscript # indicates method accredited to ISO 17025.

Superscript "M" indicates method accredited to MCERTS.

Subscript "A" indicates analysis performed on the sample as received.

Subscript "D" indicates analysis performed on the dried sample, crushed to pass a 2mm sieve

Please contact us if you need any further information.

Envirolab Deviating Samples Report

Units 7&8 Sandpits Business Park, Mottram Road, Hyde, SK14 3AR Tel. email

Client:	Curtins Consulting (Manchester), Merchant Exchange, 17-19 Whitworth Street,	Project No:	20/10811
	Manchester, UK, M1 5WG	Date Received:	14/12/2020 (am)
Project:	WC. Hospital	Cool Box Temperatures (°C)	: 7.9
Clients Project No	: B073096		

NO DEVIATIONS IDENTIFIED

If, at any point before reaching the laboratory, the temperature of the samples has breached those set in published standards, e.g. BS-EN 5667-3, ISO 18400-102:2017, then the concentration of any affected analytes may differ from that at the time of sampling.

FINAL ANALYTICAL TEST REPORT

Envirolab Job Number: Issue Number:

21/00605 1

Date: 28 January, 2021

Client:

Curtins Consulting (Manchester) Merchant Exchange 17-19 Whitworth Street Manchester UK M1 5WG

Project Manager: Project Name: Project Ref: Order No: Date Samples Received: Date Instructions Received: Date Analysis Completed: Joe James West Cumberland Hospital 73096 EBMA2667 21/01/21 21/01/21 28/01/21

Prepared by:

Approved by:

Melanie Marshall Laboratory Coordinator Danielle Brierley Client Manager

Page 1 of 6

Client Project Name: West Cumberland Hospital

					ect her. 75			
Lab Sample ID	21/00605/1	21/00605/2	21/00605/3					
Client Sample No	1	2	3					
Client Sample ID	BH01	BH06	BH03					
Depth to Top	0.50	0.50	1.50					
Depth To Bottom							ion	
Date Sampled	20-Jan-21	20-Jan-21	20-Jan-21				Limit of Detection	÷
Sample Type	Water - EW	Water - EW	Water - EW				of D	Method ref
Sample Matrix Code	N/A	N/A	N/A			Units	Limit	Meth
рН (w)ѧ [#]	11.65	11.37	11.25			pН	0.01	A-T-031w
Hardness Total₄ [#]	276	137	250			mg/l Ca CO3	2	A-T-049w
Sulphate (w) _A #	52	124	250			mg/l	1	A-T-026w
Cyanide (total) (w) _A #	<0.005	<0.005	<0.005			mg/l	0.005	A-T-042wTCN
Phenols - Total by HPLC (w)A	<0.01	0.17	<0.01			mg/l	0.01	A-T-050w
Sulphide (w) _A	<0.1	5.8	<0.1			mg/l	0.1	A-T-S2-w
DOC (w) _A #	4.5	17.0	8.3			mg/l	0.2	A-T-032w
Arsenic (dissolved) _A #	4	31	5			µg/l	1	A-T-025w
Boron (dissolved) _A #	17	17	16			µg/l	10	A-T-025w
Cadmium (dissolved) _A #	<0.2	<0.2	<0.2			µg/l	0.2	A-T-025w
Calcium (dissolved) _A #	110	54	100			mg/l	1	A-T-049w
Copper (dissolved) _A #	11	3	15			µg/l	1	A-T-025w
Chromium (dissolved) _A #	11	9	13			µg/l	1	A-T-025w
Lead (dissolved) _A #	<1	<1	<1			µg/l	1	A-T-025w
Mercury (dissolved) _A #	<0.1	<0.1	<0.1			μg/l	0.1	A-T-025w
Nickel (dissolved) _A #	2	14	3			μg/l	1	A-T-025w
Selenium (dissolved) _A #	1	1	2			μg/l	1	A-T-025w
Zinc (dissolved) _A #	<1	2	20			µg/l	1	A-T-025w

Client Project Name: West Cumberland Hospital

				Olicilit 10	•			
Lab Sample ID	21/00605/1	21/00605/2	21/00605/3					
Client Sample No	1	2	3					
Client Sample ID	BH01	BH06	BH03					
Depth to Top	0.50	0.50	1.50					
Depth To Bottom							ion	
Date Sampled	20-Jan-21	20-Jan-21	20-Jan-21				etect	Ť
Sample Type	Water - EW	Water - EW	Water - EW				Limit of Detection	Method ref
Sample Matrix Code	N/A	N/A	N/A			Units	Limit	Meth
PAH 16MS (w)								
Acenaphthene (w) _A #	0.02	0.02	0.02			μg/l	0.01	A-T-019w
Acenaphthylene (w) _A #	<0.01	<0.01	<0.01			µg/l	0.01	A-T-019w
Anthracene (w) _A #	<0.01	<0.01	<0.01			µg/l	0.01	A-T-019w
Benzo(a)anthracene (w) _A #	<0.01	<0.01	<0.01			µg/l	0.01	A-T-019w
Benzo(a)pyrene (w) _A #	<0.01	<0.01	<0.01			µg/l	0.01	A-T-019w
Benzo(b)fluoranthene (w) _A #	<0.01	<0.01	<0.01			µg/l	0.01	A-T-019w
Benzo(ghi)perylene (w)₄ [#]	<0.01	<0.01	<0.01			µg/l	0.01	A-T-019w
Benzo(k)fluoranthene (w) _A #	<0.01	<0.01	<0.01			µg/l	0.01	A-T-019w
Chrysene (w) _A #	<0.01	<0.01	<0.01			µg/l	0.01	A-T-019w
Dibenzo(ah)anthracene (w) _A #	<0.01	<0.01	<0.01			µg/l	0.01	A-T-019w
Fluoranthene (w) _A #	<0.01	<0.01	<0.01			µg/l	0.01	A-T-019w
Fluorene (w)₄ [#]	<0.01	<0.01	<0.01			µg/l	0.01	A-T-019w
Indeno(123-cd)pyrene (w) _A #	<0.01	<0.01	<0.01			μg/l	0.01	A-T-019w
Naphthalene (w) _A #	0.04	0.03	0.06			μg/l	0.01	A-T-019w
Phenanthrene (w) _A #	0.04	0.02	0.03			μg/l	0.01	A-T-019w
Pyrene (w)₄ [#]	<0.01	<0.01	<0.01			μg/l	0.01	A-T-019w
Total PAH 16MS (w)a [#]	0.10	0.07	0.11			µg/l	0.01	A-T-019w

Client Project Name: West Cumberland Hospital

				Chefit Pro				
Lab Sample ID	21/00605/1	21/00605/2	21/00605/3					
Client Sample No	1	2	3					
Client Sample ID	BH01	BH06	BH03					
Depth to Top	0.50	0.50	1.50					
Depth To Bottom							uo	
Date Sampled	20-Jan-21	20-Jan-21	20-Jan-21				etecti	f
Sample Type	Water - EW	Water - EW	Water - EW				Limit of Detection	Method ref
Sample Matrix Code	N/A	N/A	N/A			Units	Limit	Meth
TPH CWG (w)								
Ali >C5-C6 (w) _A #	<1	<1	<1			μg/l	1	A-T-022w
Ali >C6-C8 (w) _A #	<1	<1	<1			µg/l	1	A-T-022w
Ali >C8-C10 (w) _A #	<5	<5	<5			µg/l	5	A-T-055w
Ali >C10-C12 (w) _A #	<5	<5	<5			µg/l	5	A-T-055w
Ali >C12-C16 (w) _A [#]	<5	<5	<5			µg/l	5	A-T-055w
Ali >C16-C21 (w) _A #	<5	<5	<5			µg/l	5	A-T-055w
Ali >C21-C35 (w) _A #	<5	8	<5			µg/l	5	A-T-055w
Total Aliphatics (w) _A #	<5	8	<5			µg/l	5	A-T-055w
Aro >C5-C7 (w) _A #	<1	<1	<1			µg/l	1	A-T-022w
Aro >C7-C8 (w) _A #	<1	<1	<1			µg/l	1	A-T-022w
Aro >C8-C10 (w) _A	<5	6	<5			µg/l	5	A-T-055w
Aro >C10-C12 (w) _A #	<5	18	8			µg/l	5	A-T-055w
Aro >C12-C16 (w)₄ [#]	<5	15	11			µg/l	5	A-T-055w
Aro >C16-C21 (w)₄#	<5	18	13			µg/l	5	A-T-055w
Aro >C21-C35 (w)₄#	<10	15	12			µg/l	10	A-T-055w
Total Aromatics (w) _A	<10	72	44			µg/l	10	A-T-055w
TPH (Ali & Aro >C5-C35) (w)₄	<10	80	44			µg/l	10	A-T-055w
BTEX - Benzene (w) _A #	<1	<1	<1			µg/l	1	A-T-022w
BTEX - Toluene (w) _A #	<1	<1	<1			μg/l	1	A-T-022w
BTEX - Ethyl Benzene (w) _A #	<1	<1	<1			μg/l	1	A-T-022w
BTEX - m & p Xylene (w) _A #	<1	<1	<1			μg/l	1	A-T-022w
BTEX - o Xylene (w) _A #	<1	<1	<1			μg/l	1	A-T-022w
MTBE (w) _A #	<1	<1	<1			μg/l	1	A-T-022w

REPORT NOTES

General

This report shall not be reproduced, except in full, without written approval from Envirolab.

The results reported herein relate only to the material supplied to the laboratory.

The residue of any samples contained within this report, and any received with the same delivery, will be disposed of six weeks after initial scheduling. For samples tested for Asbestos we will retain a portion of the dried sample for a minimum of six months after the initial Asbestos testing is completed.

Analytical results reflect the quality of the sample at the time of analysis only.

Opinions and interpretations expressed are outside the scope of our accreditation.

If results are in italic font they are associated with an AQC failure, these are not accredited and are unreliable.

A deviating samples report is appended and will indicate if samples or tests have been found to be deviating. Any test results affected may not be an accurate record of the concentration at the time of sampling and, as a result, may be invalid.

The Client Sample No, Client Sample ID, Depth to Top, Depth to Bottom and Date Sampled were all provided by the client.

Soil chemical analysis:

All results are reported as dry weight (<40°C).

For samples with Matrix Codes 1 - 6 natural stones, brick and concrete fragments >10mm and any extraneous material (visible glass, metal or twigs) are removed and excluded from the sample prior to analysis and reported results corrected to a whole sample basis. This is reported as '% stones >10mm'.

For samples with Matrix Code 7 the whole sample is dried and crushed prior to analysis and this supersedes any "A" subscripts All analysis is performed on the sample as received for soil samples which are positive for asbestos or the client has informed asbestos may be present and/or if they are from outside the European Union and this supersedes any "D" subscripts.

TPH analysis of water by method A-T-007:

Free and visible oils are excluded from the sample used for analysis so that the reported result represents the dissolved phase only

Electrical Conductivity of water by Method A-T-037:

Results greater than 12900µS/cm @ 25°C / 11550µS/cm @ 20°C fall outside the calibration range and as such are unaccredited.

Asbestos:

Asbestos in soil analysis is performed on a dried aliquot of the submitted sample and cannot guarantee to identify asbestos if only present in small numbers as discrete fibres/fragments in the original sample.

Stones etc. are not removed from the sample prior to analysis.

Quantification of asbestos is a 3 stage process including visual identification, hand picking and weighing and fibre counting by sedimentation/phase contrast optical microscopy if required. If asbestos is identified as being present but is not in a form that is suitable for analysis by hand picking and weighing (normally if the asbestos is present as free fibres) quantification by sedimentation is performed. Where ACMs are found a percentage asbestos is assigned to each with reference to 'HSG264, Asbestos: The survey guide' and the calculated asbestos content is expressed as a percentage of the dried soil sample aliquot used.

Predominant Matrix Codes:

1 = SAND, 2 = LOAM, 3 = CLAY, 4 = LOAM/SAND, 5 = SAND/CLAY, 6 = CLAY/LOAM, 7 = OTHER, 8 = Asbestos bulk ID sample. Samples with Matrix Code 7 & 8 are not predominantly a SAND/LOAM/CLAY mix and are not covered by our BSEN 17025 or MCERTS accreditations, with the exception of bulk asbestos which are BSEN 17025 accredited.

Secondary Matrix Codes:

A = contains stones, B = contains construction rubble, C = contains visible hydrocarbons, D = contains glass/metal,

E = contains roots/twigs.

Kev:

IS indicates Insufficient Sample for analysis.

US indicates Unsuitable Sample for analysis.

NDP indicates No Determination Possible.

NAD indicates No Asbestos Detected.

N/A indicates Not Applicable.

Superscript # indicates method accredited to ISO 17025.

Superscript "M" indicates method accredited to MCERTS.

Subscript "A" indicates analysis performed on the sample as received.

Subscript "D" indicates analysis performed on the dried sample, crushed to pass a 2mm sieve

Please contact us if you need any further information.

Envirolab Deviating Samples Report

Units 7&8 Sandbits Business Park, Mottram Road, Hyde, SK14 3AR Tel email

Client:	Curtins Consulting (Manchester), Merchant Exchange, 17-19 Whitworth Street,	Project No:	21/00605
	Manchester, UK, M1 5WG	Date Received:	21/01/2021 (am)
Project:	West Cumberland Hospital	Cool Box Temperatures (°C)	: 4.2
Clients Project No	: 73096		

NO DEVIATIONS IDENTIFIED

If, at any point before reaching the laboratory, the temperature of the samples has breached those set in published standards, e.g. BS-EN 5667-3, ISO 18400-102:2017, then the concentration of any affected analytes may differ from that at the time of sampling.

073983-CUR-00-XX-RP-GE-002 West Cumberland Hospital

Ground Investigation Report

Appendix D – Geotechnical Laboratory Testing Results

alle.		STRUCTURAL S		
Report No.	584418-01 (00)			1774
Date	18-January-2021	Contract B073906		
Client Address For the Atte	Envirolab Units 7-8 Sandpits Business Park Mottram Road Hyde SK14 3AR ntion of Michael Ki	niaht		
Testing Star Testing Con		18-December-2020 05-January-2021 18-January-2021	Client Reference Client Order No. Instruction Type	20/10811 P0745381 Written
Tests marke Laboratory.	ed 'Not UKAS Accredited' ir	n this report are not includ	ed in the UKAS Acci	reditation Schedule for our
	f BS1377 is no longer the most up	p to date method due to the pub	olication of ISO17892	t 2:1990,clause 9.2 (superseded)*
	Remaining samples will be re			ill then be disposed of .
	dertaken on samples 'as recei interpretations expressed in t			or this laboratory.
St	ructural Soils Ltd 18 Frogmore Ro	d Hemel Hempstead HP3 9RT	Tel.01442 416661 e-mail	l dimitris.xirouchakis@soils.co.uk

TESTING VERIFICATION CERTIFICATE

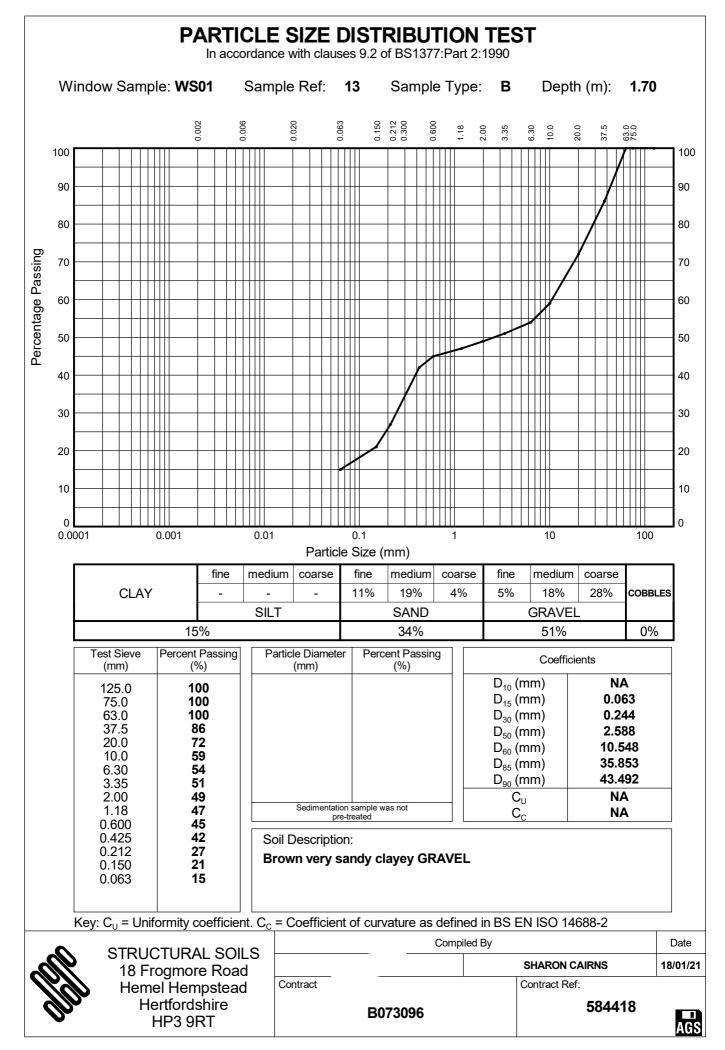
The test results included in this report are certified as:-

ISSUE STATUS: FINAL

In accordance with the Structural Soils Ltd Laboratory Quality Management System, results sheets and summaries of results issued by the laboratory are checked by an approved signatory. The integrity of the test data and results are ensured by control of the computer system employed by the laboratory as part of the Software Verification Program as detailed in the Laboratory Quality Manual.

This testing verification certificate covers all testing compiled on or before the following datetime: **18/01/2021 14:47:37**.

Testing reported after this date is not covered by this Verification Certificate.


Approved Signatory Sharon Cairns (Laboratory Manager)

(Head Office) Bristol Laboratory Unit 1A, Princess Street Bedminster Bristol BS3 4AG

Castleford Laboratory The Potteries, Pottery Street Castleford West Yorkshire WF10 1NJ

Hemel Laboratory 18 Frogmore Road Hemel Hempstead Hertfordshire HP3 9RT Tonbridge Laboratory Anerley Court, Half Moon Lane Hildenborough Tonbridge TN11 9HU

<i>M</i>	STRUCTURAL	Contract: B073096	Job No: 584418
gins.	SOILS LTD		AGS

LABORATORY TEST CERTIFICATE

MATtest Limited materials testing & consultancy

10 Queenslie Point Queenslie Industrial Estate 120 Stepps Road Glasgow G33 3NQ

Certificate No : 21/073 - 01 To : Jillian Lafferty Client : Phoenix Drilli 2 Nairn Road Deans Industri Livingston

Jillian Lafferty Phoenix Drilling Limited 2 Nairn Road Deans Industrial Estate Livingston EH54 8AY

Dear Sirs,

LABORATORY TESTING OF ROCK

Introduction

We refer to samples taken from West Cumberland Hospital and delivered to our laboratory on 27th January 2021.

Material & Source

Sample Reference	:	See Report Plates
Sampled By	:	Client
Sampling Certificate	:	Not Supplied
Location	:	See Report Plates
Description	:	Rock Cores
Date Sampled	:	Not Supplied
Date Tested	:	27th January 2021 Onwards
Source	:	3670 - West Cumberland Hospital

Test Results;

As Detailed On Page 2 to Page 11 inclusive

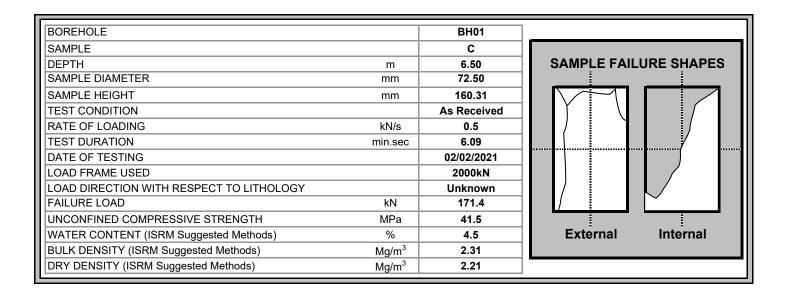
Comments;

Opinions and interpretations expressed herein are outside the scope of UKAS accreditation This report should not be reproduced except in full without the written approval of the laboratory All remaining samples for this project will be disposed of 28 days after issue of this test certificate

Remarks;

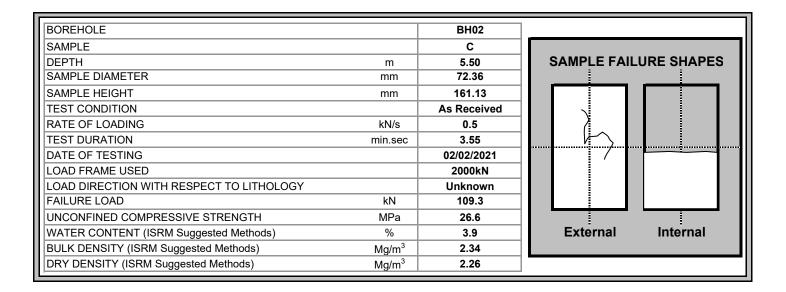
Approved for Issue

T McLelland (Director)


Date

03/02/2021

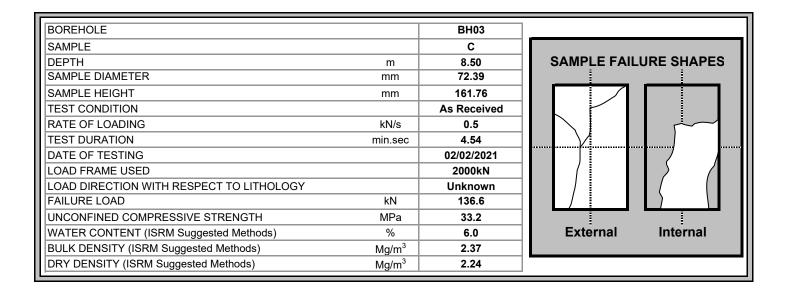
BOREHOLE		BH01	
SAMPLE		C	
DEPTH	m	3.50	SAMPLE FAILURE SHAPES
	m		SAWFLE FAILURE SHAFES
SAMPLE DIAMETER	mm	72.34	
SAMPLE HEIGHT	mm	167.45	
TEST CONDITION		As Received	
RATE OF LOADING	kN/s	0.5	
TEST DURATION	min.sec	4.55	
DATE OF TESTING		02/02/2021	
LOAD FRAME USED		2000kN	
LOAD DIRECTION WITH RESPECT TO LITHOLOGY		Unknown	
FAILURE LOAD	kN	138.0	
UNCONFINED COMPRESSIVE STRENGTH	MPa	33.6	
WATER CONTENT (ISRM Suggested Methods)	%	4.7	External Internal
BULK DENSITY (ISRM Suggested Methods)	Mg/m ³	2.39	
DRY DENSITY (ISRM Suggested Methods)	Mg/m ³	2.28	


BOREHOLE		BH01	
SAMPLE		С	
DEPTH	m	10.00	SAMPLE FAILURE SHAPES
SAMPLE DIAMETER	mm	72.12	
SAMPLE HEIGHT	mm	162.12	
TEST CONDITION		As Received	
RATE OF LOADING	kN/s	0.5	
TEST DURATION	min.sec	5.43	
DATE OF TESTING		02/02/2021	
LOAD FRAME USED		2000kN	
LOAD DIRECTION WITH RESPECT TO LITHOLOGY		Unknown	
FAILURE LOAD	kN	160.2	
UNCONFINED COMPRESSIVE STRENGTH	MPa	39.2	
WATER CONTENT (ISRM Suggested Methods)	%	4.3	External Internal
BULK DENSITY (ISRM Suggested Methods)	Mg/m ³	2.44	
DRY DENSITY (ISRM Suggested Methods)	Mg/m ³	2.34	

Tested in accordance with ASTM D7012 - 14

SUMMARY OF UNCONFINED COMPRESSIVE STRENGTH

BOREHOLE		BH02	
SAMPLE		С	
DEPTH	m	1.50	SAMPLE FAILURE SHAPES
SAMPLE DIAMETER	mm	72.55	
SAMPLE HEIGHT	mm	161.50	
TEST CONDITION		As Received	
RATE OF LOADING	kN/s	0.5	
TEST DURATION	min.sec	4.39	
DATE OF TESTING		02/02/2021	
LOAD FRAME USED		2000kN	
LOAD DIRECTION WITH RESPECT TO LITHOLOGY		Unknown	
FAILURE LOAD	kN	127.3	
UNCONFINED COMPRESSIVE STRENGTH	MPa	30.8	
WATER CONTENT (ISRM Suggested Methods)	%	4.4	External Internal
BULK DENSITY (ISRM Suggested Methods)	Mg/m ³	2.31	
DRY DENSITY (ISRM Suggested Methods)	Mg/m ³	2.21	

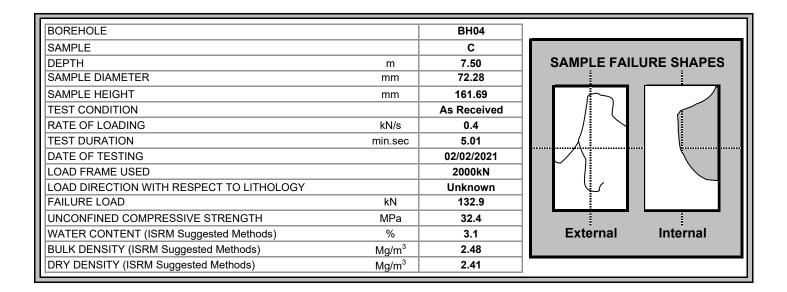

BOREHOLE		BH02	
SAMPLE		С	
DEPTH	m	13.00	SAMPLE FAILURE SHAPES
SAMPLE DIAMETER	mm	72.33	
SAMPLE HEIGHT	mm	158.23	
TEST CONDITION		As Received	
RATE OF LOADING	kN/s	0.5	
TEST DURATION	min.sec	4.41	
DATE OF TESTING		02/02/2021	
LOAD FRAME USED		2000kN	
LOAD DIRECTION WITH RESPECT TO LITHOLOGY		Unknown	
FAILURE LOAD	kN	135.4	
UNCONFINED COMPRESSIVE STRENGTH	MPa	33.0	
WATER CONTENT (ISRM Suggested Methods)	%	0.3	External Internal
BULK DENSITY (ISRM Suggested Methods)	Mg/m ³	2.67	
DRY DENSITY (ISRM Suggested Methods)	Mg/m ³	2.66	

Tested in accordance with ASTM D7012 - 14

SUMMARY OF UNCONFINED COMPRESSIVE STRENGTH

	BH03	
	С	
m	4.50	SAMPLE FAILURE SHAPES
mm	72.73	
mm	171.70	
	As Received	
kN/s	0.5	
min.sec	5.59	
	02/02/2021	
	2000kN	
	Unknown	
kN	168.3	
MPa	40.5	
%	4.5	External Internal
Mg/m ³	2.31	
Mg/m ³	2.21	
	mm mm kN/s min.sec kN kN MPa % Mg/m ³	m 4.50 mm 72.73 mm 171.70 As Received kN/s 0.5 min.sec 5.59 02/02/2021 2000kN Unknown kN 168.3 MPa 40.5 % 4.5 Mg/m³ 2.31

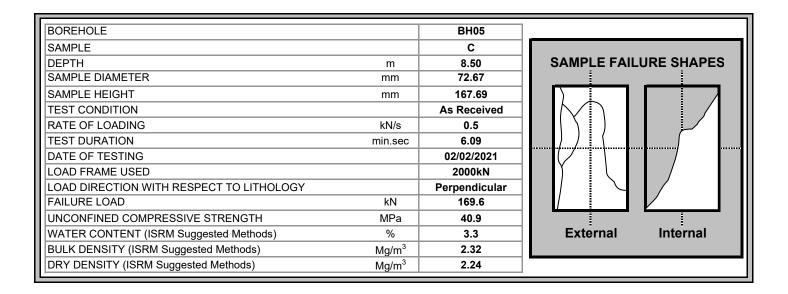
BOREHOLE		
SAMPLE		
DEPTH	m	SAMPLE FAILURE SHAPES
SAMPLE DIAMETER	mm	
SAMPLE HEIGHT	mm	
TEST CONDITION		
RATE OF LOADING	kN/s	
TEST DURATION	min.sec	
DATE OF TESTING		
LOAD FRAME USED		
LOAD DIRECTION WITH RESPECT TO LITHOLOGY		
FAILURE LOAD	kN	
UNCONFINED COMPRESSIVE STRENGTH	MPa	
WATER CONTENT (ISRM Suggested Methods)	%	External Internal
BULK DENSITY (ISRM Suggested Methods)	Mg/m ³	
DRY DENSITY (ISRM Suggested Methods)	Mg/m ³	

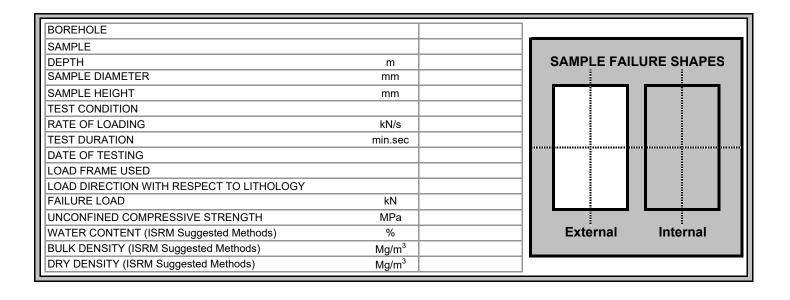

Tested in accordance with ASTM D7012 - 14

SUMMARY OF UNCONFINED COMPRESSIVE STRENGTH

Page 4 of 11

BOREHOLE		BH04		
SAMPLE		C		
		-		
DEPTH	m	3.50	SAMPLE FAILUR	E SHAPES
SAMPLE DIAMETER	mm	72.44		
SAMPLE HEIGHT	mm	164.58		
TEST CONDITION		As Received		
RATE OF LOADING	kN/s	0.5		
TEST DURATION	min.sec	7.21		
DATE OF TESTING		02/02/2021		
LOAD FRAME USED		2000kN		
LOAD DIRECTION WITH RESPECT TO LITHOLOGY		Unknown		
FAILURE LOAD	kN	209.0		
UNCONFINED COMPRESSIVE STRENGTH	MPa	50.7		
WATER CONTENT (ISRM Suggested Methods)	%	3.9	External	Internal
BULK DENSITY (ISRM Suggested Methods)	Mg/m ³	2.47		
DRY DENSITY (ISRM Suggested Methods)	Mg/m ³	2.38		
			•	


BOREHOLE		BH04	
SAMPLE		С	
DEPTH	m	11.50	SAMPLE FAILURE SHAPES
SAMPLE DIAMETER	mm	72.44	
SAMPLE HEIGHT	mm	165.35	
TEST CONDITION		As Received	
RATE OF LOADING	kN/s	0.5	
TEST DURATION	min.sec	6.41	
DATE OF TESTING		02/02/2021	
LOAD FRAME USED		2000kN	
LOAD DIRECTION WITH RESPECT TO LITHOLOGY		Unknown	
FAILURE LOAD	kN	189.4	
UNCONFINED COMPRESSIVE STRENGTH	MPa	46.0	
WATER CONTENT (ISRM Suggested Methods)	%	0.6	External Internal
BULK DENSITY (ISRM Suggested Methods)	Mg/m ³	2.40	
DRY DENSITY (ISRM Suggested Methods)	Mg/m ³	2.39	


Tested in accordance with ASTM D7012 - 14

SUMMARY OF UNCONFINED COMPRESSIVE STRENGTH

BOREHOLE		BH05	
SAMPLE		С	
DEPTH	m	4.50	SAMPLE FAILURE SHAPES
SAMPLE DIAMETER	mm	72.43	
SAMPLE HEIGHT	mm	164.23	
TEST CONDITION		As Received	
RATE OF LOADING	kN/s	0.5	
TEST DURATION	min.sec	4.16	
DATE OF TESTING		02/02/2021	
LOAD FRAME USED		2000kN	
LOAD DIRECTION WITH RESPECT TO LITHOLOGY		Unknown	
FAILURE LOAD	kN	122.4	
UNCONFINED COMPRESSIVE STRENGTH	MPa	29.7	
WATER CONTENT (ISRM Suggested Methods)	%	2.4	External Internal
BULK DENSITY (ISRM Suggested Methods)	Mg/m ³	2.26	
DRY DENSITY (ISRM Suggested Methods)	Mg/m ³	2.21	

Tested in accordance with ASTM D7012 - 14

SUMMARY OF UNCONFINED COMPRESSIVE STRENGTH

Page 6 of 11

BOREHOLE	SAMPLE	DEPTH (m)	MOISTURE CONTENT (%)	TYPE OF TEST * (see below)	CORE DIAMETER (mm)	EQUIVALENT DIAMETER (mm)	PLATEN SEPARATION (mm)	FAILURE LOAD (kN)	ls (MPa)	ls(50) (MPa)
BH01	С	1.50	As Received	D A	72.73 72.22	72.73 72.84	72.73 57.70	14.20 12.45	2.68 2.35	3.18 2.78
	С	2.50	As Received	A D A	72.61 72.85 72.98	71.93 72.85 74.59	55.97 72.85 59.88	11.19 9.44 6.89	2.16 1.78 1.24	2.55 2.11 1.48
	С	4.50	As Received	A D A	72.83 72.41 72.13	75.11 72.41 73.07	60.84 72.41 58.13	8.56 10.33 12.55	1.52 1.97 2.35	1.82 2.33 2.79
	С	5.50	As Received	A D A	72.50 72.42 72.30	71.14 72.42 68.13	54.83 72.42 50.42	10.67 6.66 6.69	2.11 1.27 1.44	2.47 1.50 1.66
	С	7.50	As Received	A D A	72.40 72.40 72.51	73.32 72.40 86.37	58.31 72.40 80.80	7.01 4.21 21.46	1.30 0.80 2.88	1.55 0.95 3.68
	С	8.50	As Received	A D A A	72.30 72.37 72.40 72.35	81.89 72.37 73.15 62.34	72.84 72.37 58.04 42.19	10.71 11.00 11.41 6.78	1.60 2.10 2.13 1.74	1.99 2.48 2.53 1.93
				~	72.55	02.34	42.19	0.70	1.74	1.95

NOTE: N/M - Not measured NOTE: A dash (-) signifies that scale did not register a reading

 Mean Is(50) - Axial tests
 2.27

 Mean Is(50) - Diametrical tests
 2.09

 Ia(50)
 1.09

* I = IRREGULAR TEST D = DIAMETRAL TEST

A = AXIAL TEST

Tested in accordance with ISRM (2007)

BOREHOLE	SAMPLE	DEPTH (m)	MOISTURE CONTENT (%)	TYPE OF TEST * (see below)	CORE DIAMETER (mm)	EQUIVALENT DIAMETER (mm)	PLATEN SEPARATION (mm)	FAILURE LOAD (kN)	ls (MPa)	ls(50) (MPa)
BH02	С	2.50	As Received	D A	72.22 72.10	72.22 77.39	72.22 65.24	5.09 8.50	0.98 1.42	1.15 1.73
	С	3.50	As Received	A D A	72.09 72.48 72.50	72.17 72.48 86.06	56.75 72.48 80.23	8.96 7.01 10.26	1.72 1.33 1.39	2.03 1.58 1.77
	С	4.50	As Received	A D A	72.41 72.47 72.30	84.33 72.47 80.55	77.14 72.47 70.49	9.79 5.76 10.20	1.38 1.10 1.57	1.74 1.29 1.95
	с	6.50	As Received	A D A	72.40 72.39 72.41	67.86 72.39 84.68	49.96 72.39 77.78	9.67 8.00 2.98	2.10 1.53 0.42	2.41 1.80 0.53
	С	7.50	As Received	A D A	72.58 72.90 72.50	71.82 72.90 69.90	55.81 72.90 52.93	11.24 16.57 16.58	2.18 3.12 3.39	2.56 3.69 3.95
	С	10.50	As Received	A D A	72.52 72.36 72.28	65.54 72.36 75.09	46.52 72.36 61.26	15.92 23.83 18.46	3.71 4.55 3.27	4.19 5.37 3.93
				A	72.20	73.28	58.41	19.01	3.54	4.20

NOTE: N/M - Not measured NOTE: A dash (-) signifies that scale did not register a reading

Mean Is(50) - Axial tests2.58Mean Is(50) - Diametrical tests2.48Ia(50)1.04

* I = IRREGULAR TEST D = DIAMETRAL TEST

A = AXIAL TEST

Tested in accordance with ISRM (2007)

BOREHOLE	SAMPLE	DEPTH (m)	MOISTURE CONTENT (%)	TYPE OF TEST * (see below)	CORE DIAMETER (mm)	EQUIVALENT DIAMETER (mm)	PLATEN SEPARATION (mm)	FAILURE LOAD (kN)	ls (MPa)	ls(50) (MPa)
BH03	С	3.50	As Received	D A	71.99 72.14	71.99 71.96	71.99 56.37	4.40 7.71	0.85 1.49	1.00 1.76
	С	5.50	As Received	A D A	72.06 71.78 71.90	67.55 71.78 83.84	49.73 71.38 76.79	7.52 4.54 9.06	1.65 0.88 1.29	1.89 1.04 1.63
	С	6.50	As Received	A D A	71.80 72.39 72.51	84.17 72.39 78.95	77.49 72.39 67.51	6.97 3.18 8.14	0.98 0.61 1.31	1.24 0.72 1.60
	С	7.50	As Received	A D A	72.21 72.65 72.31	80.73 72.65 72.97	70.88 72.65 57.84	10.98 5.94 7.60	1.69 1.13 1.43	2.09 1.33 1.69
	С	9.50	As Received	A D A A	72.78 72.72 72.10 72.28	68.39 72.72 79.66 75.84	50.47 72.72 69.12 62.49	6.71 12.19 5.03 6.63	1.44 2.30 0.79 1.15	1.65 2.73 0.98 1.39

NOTE: N/M - Not measured NOTE: A dash (-) signifies that scale did not register a reading

 Mean Is(50) - Axial tests
 1.59

 Mean Is(50) - Diametrical tests
 1.36

 Ia(50)
 1.17

* I = IRREGULAR TEST D = DIAMETRAL TEST

A = AXIAL TEST

Tested in accordance with ISRM (2007)

BOREHOLE	SAMPLE	DEPTH (m)	MOISTURE CONTENT (%)	TYPE OF TEST * (see below)	CORE DIAMETER (mm)	EQUIVALENT DIAMETER (mm)	PLATEN SEPARATION (mm)	FAILURE LOAD (kN)	ls (MPa)	ls(50) (MPa)
BH04	С	4.50	As Received	D A	72.36 72.41	72.36 75.06	72.36 61.11	12.80 9.66	2.44 1.71	2.89 2.06
	с	5.50	As Received	A D A	72.30 72.39 72.11	66.63 72.39 61.49	48.23 72.39 41.18	8.31 5.72 6.90	1.87 1.09 1.82	2.13 1.29 2.00
	с	6.50	As Received	A D A	72.40 72.21 72.39	64.86 72.21 90.48	45.63 72.21 88.81	6.51 16.74 17.87	1.55 3.21 2.18	1.74 3.79 2.85
	С	8.50	As Received	A D A	72.19 72.73 72.50	86.48 72.73 68.14	81.37 72.73 50.30	12.18 12.64 13.08	1.63 2.39 2.82	2.08 2.83 3.24
	С	9.50	As Received	A D A	72.10 72.30 72.48	64.31 72.30 82.33	45.05 72.30 73.45	17.66 30.74 28.84	4.27 5.88 4.26	4.78 6.94 5.33
	С	10.50	As Received	A D A	72.25 72.32 72.15	80.56 72.32 79.15	70.54 72.32 68.19	28.79 25.54 16.22	4.44 4.88 2.59	5.50 5.77 3.18
				A	72.23	72.81	57.65	19.69	3.71	4.40

NOTE: N/M - Not measured NOTE: A dash (-) signifies that scale did not register a reading

 Mean Is(50) - Axial tests
 3.27

 Mean Is(50) - Diametrical tests
 3.92

 Ia(50)
 0.84

* I = IRREGULAR TEST D = DIAMETRAL TEST

A = AXIAL TEST

Tested in accordance with ISRM (2007)

BOREHOLE	SAMPLE	DEPTH (m)	MOISTURE CONTENT (%)	TYPE OF TEST * (see below)	CORE DIAMETER (mm)	EQUIVALENT DIAMETER (mm)	PLATEN SEPARATION (mm)	FAILURE LOAD (kN)	ls (MPa)	ls(50) (MPa)
BH05	С	3.50	As Received	D A A	72.49 72.30 72.51	72.49 84.92 73.45	72.49 78.33 58.44	2.18 8.49 6.26	0.42 1.18 1.16	0.49 1.49 1.38
	С	5.50	As Received	D A A	72.09 72.40 72.41	72.09 80.56 79.69	72.09 70.40 68.88	2.11 9.46 9.55	0.41 1.46 1.50	0.48 1.81 1.85
	С	6.50	As Received	D A A	72.17 72.10 72.20	72.17 73.10 71.08	72.17 58.20 54.96	3.89 5.65 5.01	0.75 1.06 0.99	0.88 1.25 1.16
	С	7.50	As Received	D A A	72.16 72.30 72.81	72.16 81.32 69.68	72.16 71.83 52.38	5.73 11.00 6.84	1.10 1.66 1.41	1.30 2.07 1.63
	С	9.50	As Received	D A A	72.26 72.11 72.51	72.26 68.09 60.22	72.26 50.50 39.28	5.49 7.11 8.02	1.05 1.53 2.21	1.24 1.76 2.41
	С	10.50	As Received	D A A	72.50 72.31 72.69	72.50 71.08 70.82	72.50 54.87 54.19	8.75 13.30 11.09	1.66 2.63 2.21	1.97 3.08 2.59

NOTE: N/M - Not measured NOTE: A dash (-) signifies that scale did not register a reading

 Mean Is(50) - Axial tests
 1.87

 Mean Is(50) - Diametrical tests
 1.06

 Ia(50)
 1.77

* I = IRREGULAR TEST D = DIAMETRAL TEST

A = AXIAL TEST

Tested in accordance with ISRM (2007)

Dynamic Cone Penetrometer

Documented In House Method No DIHM 302

Client:	CURTINS CONSULTING ENGINEERS Edinburgh United Kingdom	Report No: Job No:	51061689/21/02 51061689
	EH4 3BL	Date Tested:	09/03/2021
		Date Reported:	17/03/2021
Contact:	1a Belford Road		
Site:	West Cumberland Hospital, Whitehaven		
Material:	Clay/ Stone		
Location:	Proposed Waste Compound	Reference:	No 2
		Start Depth(mm) :	60

Interpretative Method : TRL Equation : Log10(CBR) = 2.480 - 1.057 x Log10(mm/blow)

					Cumulativ	e Blows			Layer	No. of Blows	Cum. No of Blows	CBR (%)	Layer Thickness	Total Depth
	(- 0	0	20	40	60	80	100	120					(mm)	(mm)
									1	3	3	5.6	130	190
	200 -	\							2	20	23	23.8	221	411
									3	10	33	34.0	79	490
	400 -								4	15	48	45.4	90	580
Ĩ				<u>\</u>					5	48	96	>100	120	700
Depth (mm)	600 -								6	26	122	39.1	180	880
ם	800 -													
	1000 -													

Comments :

Signed:

Mark R. Dawkins - Laboratory Manager

Paul Thomas - Section Manager

For and on behalf of SOCOTEC UK Limited

Page 1 of 1

Dynamic Cone Penetrometer

Documented In House Method No DIHM 302

Client:	CURTINS CONSULTING ENGINEERS Edinburgh United Kingdom	Report No: Job No:	51061689/21/03 51061689
	EH4 3BL	Date Tested:	09/03/2021
		Date Reported:	17/03/2021
Contact:	1a Belford Road		
Site:	West Cumberland Hospital, Whitehaven		
Material:	Clay/ Stone		
Location:	Proposed Waste Compound	Reference:	No 3
		Start Depth(mm) :	80

Interpretative Method : TRL Equation : Log10(CBR) = 2.480 - 1.057 x Log10(mm/blow)

					nulative Bl				Layer	No. of Blows	Cum. No of Blows	CBR (%)	Layer Thickness	Total Depth
	0	0	4	8	12	16	20	24					(mm)	(mm)
									1	1	1	4.0	60	140
	200								2	4	5	8.3	120	260
									3	3	8	4.8	150	410
_	400								4	4	12	14.7	70	480
) un									5	5	17	6.5	190	670
Depth (mm)	600								6	5	22	4.8	250	920
Dep						<u> </u>								
	800													
	000													
	1000													
	1000													
		1			1		I							

Comments :

Signed:

Mark R. Dawkins - Laboratory Manager

Paul Thomas - Section Manager

For and on behalf of SOCOTEC UK Limited

Page 1 of 1

Dynamic Cone Penetrometer

Documented In House Method No DIHM 302

Client:	CURTINS CONSULTING ENGINEERS Edinburgh United Kingdom	Report No: Job No:	51061689/21/04 51061689
	EH4 3BL	Date Tested:	09/03/2021
		Date Reported:	17/03/2021
Contact: Site:	1a Belford Road West Cumberland Hospital, Whitehaven		
Material:	Clay/ Stone		
Location:	Proposed Waste Compound	Reference:	No 4
		Start Depth(mm) :	50

Interpretative Method : TRL Equation : Log10(CBR) = 2.480 - 1.057 x Log10(mm/blow)

				ulative Blo				Layer	No. of Blows	Cum. No of Blows	CBR (%)	Layer Thickness	Total Depth
	0	20	40	60	80	100	120					(mm)	(mm)
	100							1	12	12	20.9	150	200
	200							2	33	45	56.9	160	360
								3	11	56	32.7	90	450
	300							4	11	67	11.1	250	700
ш ш	400							5	45	112	53.8	230	930
Depth (mm)	500												
Dep	600												
	700												
	800				\searrow								
	900												
	1000												

Comments :

Mark R. Dawkins - Laboratory Manager

Paul Thomas - Section Manager

For and on behalf of SOCOTEC UK Limited

Page 1 of 1

Opinions and interpretations expressed herein are outside the scope of UKAS accreditation. This test report may not be reproduced other than in full, except with prior written approval of the issuing laboratory. Results reported herein relate solely to the sample(s) tested and are not necessarily representive of a lager sample population. SOCOTEC UK Limited, Reg Office: SOCOTEC House, Bretby Business Park, Ashby Road, Burton upon Trent, DE15 0YZ. Incorporated in England: 02880501

Signed:

Dynamic Cone Penetrometer

Documented In House Method No DIHM 302

Client:	CURTINS CONSULTING ENGINEERS Edinburgh United Kingdom	Report No: Job No:	51061689/21/05 51061689
	EH4 3BL	Date Tested:	09/03/2021
		Date Reported:	17/03/2021
Contact: Site:	1a Belford Road West Cumberland Hospital, Whitehaven		
Material:	Clay/ Stone		
Location:	Proposed Waste Compound	Reference:	No 5
		Start Depth(mm) :	150

Interpretative Method : TRL Equation : Log10(CBR) = 2.480 - 1.057 x Log10(mm/blow)

	Cumulative Blows 0 10 20 30 40 50 60 70 80 90 0	Layer	No. of Blows	Cum. No of Blows	CBR (%)	Layer Thickness (mm)	Total Depth (mm)
	100	1	2	2	1.5	310	460
	200	2	8	10	35.9	60	520
		3	1	11	6.1	40	560
	300	4	24	35	50.6	130	690
) mu	400	5	31	66	61.4	140	830
Depth (mm)	500						
Dep	600						
	700						
	800						
	900						
	1000						

Comments :

Signed:

Mark R. Dawkins - Laboratory Manager

Paul Thomas - Section Manager

For and on behalf of SOCOTEC UK Limited

Page 1 of 1

Dynamic Cone Penetrometer

Documented In House Method No DIHM 302

Client:	CURTINS CONSULTING ENGINEERS Edinburgh United Kingdom	Report No: Job No:	51061689/21/06 51061689
	EH4 3BL	Date Tested:	09/03/2021
		Date Reported:	17/03/2021
Contact: Site:	1a Belford Road West Cumberland Hospital, Whitehaven		
Material:	Clay/ Stone		
Location:	Proposed Waste Compound	Reference:	No 6
		Start Depth(mm) :	50

Interpretative Method : TRL Equation : Log10(CBR) = 2.480 - 1.057 x Log10(mm/blow)

	Cumulative Blows 0 10 20 30 40 50 60 70 80 90 100 0	Layer	No. of Blows	Cum. No of Blows	CBR (%)	Layer Thickness (mm)	Total Depth (mm)
	100	1	4	4	14.7	70	120
	200	2	4	8	20.9	50	170
		3	29	37	27.5	280	450
	300	4	12	49	24.3	130	580
) m	400	5	22	71	30.9	190	770
Depth (mm)	500	6	7	78	64.9	30	800
Dep	600						
	700						
	800						
	900						
	1000						

Comments :

Signed:

Mark R. Dawkins - Laboratory Manager

Paul Thomas - Section Manager

For and on behalf of SOCOTEC UK Limited

Page 1 of 1

Dynamic Cone Penetrometer

Documented In House Method No DIHM 302

Client:	CURTINS CONSULTING ENGINEERS Edinburgh United Kingdom	Report No: Job No:	51061689/21/07 51061689
	EH4 3BL	Date Tested:	09/03/2021
		Date Reported:	17/03/2021
Contact: Site:	1a Belford Road West Cumberland Hospital, Whitehaven		
Sile.	west cumberiand hospital, whitehaven		
Material:	Clay/ Stone		
Location:	Proposed Waste Compound	Reference:	No 7
		Start Depth(mm) :	80

Interpretative Method : TRL Equation : Log10(CBR) = 2.480 - 1.057 x Log10(mm/blow)

	Cumulative Blows 0 10 20 30 40 50 60 70 80 0	Layer	No. of Blows	Cum. No of Blows	CBR (%)	Layer Thickness (mm)	Total Depth (mm)
		1	20	20	19.3	270	350
	100	2	15	35	59.3	70	420
	200	3	19	54	36.6	140	560
		4	24	78	>100	50	610
(mm)	300						
Depth (mm)	400						
	500						
	600						
	700						

Comments :

Signed:

Mark R. Dawkins - Laboratory Manager

✓ Paul Thomas - Section Manager

For and on behalf of SOCOTEC UK Limited

Page 1 of 1

Dynamic Cone Penetrometer

Documented In House Method No DIHM 302

Client:	CURTINS CONSULTING ENGINEERS Edinburgh United Kingdom	Report No: Job No:	51061689/21/01 51061689
	EH4 3BL	Date Tested:	09/03/2021
		Date Reported:	17/03/2021
Contact: Site:	1a Belford Road West Cumberland Hospital, Whitehaven		
Material:	Clay & Stone		
Location:	Proposed Waste Compound	Reference:	No 1
		Start Depth(mm) :	100

Interpretative Method : TRL Equation : Log10(CBR) = 2.480 - 1.057 x Log10(mm/blow)

	Cumulative Blows 0 10 20 30 40 50 60 70 80 90 100 110 0	Layer	No. of Blows	Cum. No of Blows	CBR (%)	Layer Thickness (mm)	Total Depth (mm)
		1	8	8	10.1	200	300
	200	2	35	43	25.7	360	660
		3	26	69	51.0	140	800
	400	4	20	89	>100	40	840
(u u)		5	12	101	35.9	90	930
Depth (mm)	600						
_	800						
	1000						

Comments :

Signed:

Mark R. Dawkins - Laboratory Manager

Paul Thomas - Section Manager

For and on behalf of SOCOTEC UK Limited

Page 1 of 1

073983-CUR-00-XX-RP-GE-002 West Cumberland Hospital

Ground Investigation Report

Appendix E – Ground Gas and Groundwater Monitoring Results

Curtins

Merchant Exchange, 17-19 Whitworth Street West, Manchester, M1 5WG Tel: 0161 236 2394 Fax: 0161 228 7902

Curtins

GAS MONITORING LOG SHEET

Project:	West Cumberland Hospital	Date:	07/01/2021
Job Number:	B073096.302	Visit:	1
Client:	CCL Solutions	Weather:	cold, cloudy
Barometric State:	Falling	Ground Conditions:	wet / frozen

Borehole Reference	Barometric Pressure mb	Flo I/h			nane %	Dio	bon xide %	Oxygen %	Hydrogen Sulphide	Monoxide	Water Level m bgl	Borehole Base	Note
	am	Max	" SS	Max	∞ SS	Max	ss	70	ppm	ppm	in bgi	m bgl	
WS03	986	-22.7			0.0	IVIAX	0.0	112.1	0	0	0.40	1.80	
WS05	988	0.0	0.0	0.0	0.0	0.0	0.0	15.2	0	0	2.05	2.16	
BH01	986	-0.6	0.0	0.0	0.0	0.0	0.0	19.8	0	0	0.77	11.22	
BH02A													1
BH03	987	-63.7	0.0	0.0	0.0	0.0	0.0	18.5	0	0	1.97	13.14	2
BH06	986	-63.8		0.0	0.0	0.0	0.0	20.0	0	0	0.66	11.55	2

Notes

Logged by

SH

1 Top of borehole frozen / flooded, could not open

2 Flow monitored for 5mins as it slowly reduced to 0.0

1% gas volume = 10,000 ppm

Flow rate, methane and carbon dioxide reported as 'maximum' (max) and 'steady state' (SS) readings. All other gases recorded at 'steady state' unless otherwise stated Curtins Merchant Exchange, 17-19 Whitworth Street West, Manchester, M1 5WG Tel: 0161 236 2394 Fax: 0161 228 7902

Curtins

GAS MONITORING LOG SHEET

Project:	West Cumberland Hospital	Date:	20/01/2021
Job Number:	B073096.302	Visit:	2
Client:	CCL Solutions	Weather:	Rain
Barometric State:	Falling	Ground Conditions:	Water-logged

Borehole Reference	Barometric Pressure		w		nane	Dio	bon xide	Oxygen	-	Monoxide	Water Level	Borehole Base	Note
	mb		nr		6		6	%	ppm	ppm	m bgl	m bgl	
		Max	SS	Max	SS	Max	SS						
WS03	953										0.00	1.76	1
WS05	954	0.1	0.1	0.0	0.0	0.1	0.0	18.60	0	0	1.02	1.15	
BH01	959										0.00	11.27	1, 2, 3
BH02A	956	4.5	1.8	0.0	0.0	1.3	1.3	14.80	0	0	11.20	11.58	
BH03	956	1.8	1.8	0.0	0.0	0.0	0.0	18.20	0	0	0.98	13.12	3
BH06	959										0.00	11.63	1, 3

Notes

Logged by

1 Borehole flooded

SH

2 Groundwater was orignally measured at 0.33m bgl, but rose to ground level when being purged for sampling

3 Borehole purged and groundwater sample collected

1% gas volume = 10,000 ppm

Flow rate, methane and carbon dioxide reported as 'maximum' (max) and 'steady state' (SS) readings. All other gases recorded at 'steady state' unless otherwise stated Merchant Exchange, 17-19 Whitworth Street West, Manchester, M1 5WG Tel: 0161 236 2394 Fax: 0161 228 7902

GAS MONITORING LOG SHEET

Project:	West Cumberland Hospital	Date:	04/02/2021
Job Number:	B073096.302	Visit:	3
Client:	CCL Solutions	Weather:	Rain
Barometric State:	Steady	Ground Conditions:	Wet

Borehole Reference	Barometric Pressure mb	Fic			nane %	Dio	bon xide %	Oxygen %	Hydrogen Sulphide ppm	Carbon Monoxide ppm	Water Level m bgl	Borehole Base m bgl	Note
		Max	SS	Max	SS	Max	SS						
WS03											0.00	1.77	1
WS05	993	0.0	0.0	0.0	0.0	0.0	0.0	19.3	0	2	1.63	2.10	
BH01											0.00	11.10	1
BH02A	992	0.0	0.0	0.0	0.0	1.0	1.0	17.8	1	2	10.80	11.45	2
BH03	992	-58.1	0.0	0.0	0.0	0.0	0.0	20.6	1	2	1.57	12.85	3
BH06											0.00	11.40	1

Notes

MH

1 - Monitoring well flooded.

2 - Monitoring stopped after 30 seconds due to inflow of water into monitoring pipe.

3 - Steady state air flow rate recorded after 6 minutes.

1% gas volume = 10,000 ppm

Flow rate, methane and carbon dioxide reported as 'maximum' (max) and 'steady state' (SS) readings. All other gases recorded at 'steady state' unless otherwise stated

Curtins

Logged by

Curtins

GAS MONITORING LOG SHEET

Project:	West Cumberland Hospital	Date:	17/02/2021
Job Number:	B073096.302	Visit:	4
Client:	CCL Solutions	Weather:	Sunny
Barometric State:	Steady	Ground Conditions:	Damp

Borehole Reference	Barometric Pressure	Flov	N	Meth	nane		bon xide	Oxygen	Hydrogen Sulphide		Water Level	Borehole Base	Note
	mb	l/hr		9	6	9	6	%	ppm	ppm	m bgl	m bgl	e
		Max	SS	Max	SS	Max	SS						
WS03											0.00	1.76	1
WS05	1014	0.0	0.0	0.0	0.0	0.0	0.0	18.9	0	13	1.96	2.14	
BH01											0.65	11.25	1
BH02A	1014	0.0	0.0	0.0	0.0	0.0	0.0	20.8	0	13	11.09	11.33	
BH03	1014	-43.0	0.0	0.0	0.0	0.0	0.0	20.2	1	10	1.96	12.83	
BH06											0.04	10.50	1

Notes

1 - Not gas mointored due to historic high water levels. Bung removed to check water levels on arrival, releasing any gas within the well. Monitoring would provide non-representative results.

Logged by

MH

2 - Steady state air flow rate achieved after 4 minutes.

1% gas volume = 10,000 ppm

Flow rate, methane and carbon dioxide reported as 'maximum' (max) and 'steady state' (SS) readings. All other gases recorded at 'steady state' unless otherwise stated Curtins Merchant Exchange, 17-19 Whitworth Street West, Manchester, M1 5WG Tel: 0161 236 2394 Fax: 0161 228 7902

GAS MONITORING LOG SHEET

Project:	West Cumberland Hospital	Date:	08/03/2021
Job Number:	B073096.302	Visit:	5
Client:	CCL Solutions	Weather:	Overcast, showers
Barometric State:	Steady	Ground Conditions:	damp

Borehole Reference	Barometric Pressure	Flo			nane	Dio	bon xide	Oxygen	Hydrogen Sulphide	Carbon Monoxide	Water Level	Borehole Base	Note
	mb	l/h			6		6	%	ppm	ppm	m bgl	m bgl	-
		Max	SS	Max	SS	Max	SS						
WS03													1
WS05	1013	0.4	0.4	0.0	0.0	0.0	0.0	17.0	0	2	1.95	2.17	
BH01	1012	-23.7	-0.1	0.0	0.0	0.0	0.0	20.8	1	6	0.99	11.32	2
BH02A	1013	-0.4	0.0	0.0	0.0	0.0	0.0	21.9	0	0	11.00	11.40	
BH03	1013	0.7	0.4	0.0	0.0	0.0	0.0	19.5	0	8	1.91	13.00	
BH06	1014	-55.6	0.0	0.0	0.0	0.0	0.0	19.3	1	6	0.75	10.60	3

Notes	
1	Could not locate
2	Fell to steady state flow rate after circa 4mins.

3 Fell to steady state flow rate after circa 3 mins.

1% gas volume = 10,000 ppm

Flow rate, methane and carbon dioxide reported as 'maximum' (max) and 'steady state' (SS) readings. All other gases recorded at 'steady state' unless otherwise stated

Curtins

Logged by

NF

Merchant Exchange, 17-19 Whitworth Street West, Manchester, M1 5WG Tel: 0161 236 2394 Fax: 0161 228 7902

GAS MONITORING LOG SHEET

Project:	West Cumberland Hospital	Date:	18/03/2021
Job Number:	B073096.302	Visit:	6
Client:	CCL Solutions	Weather:	Sunny
Barometric State:	Falling	Ground Conditions:	Dry

Borehole Reference	Barometric Pressure mb		ow hr		nane %	Dio	bon xide %	Oxygen %	Hydrogen Sulphide	Carbon Monoxide ppm	Water Level m bgl	Borehole Base m bgl	Note
		Max	SS	Max	SS	Max	SS				5	5	
WS03											0.00	1.76	1
WS05	1018	0.0	0.0	0.0	0.0	0.0	0.0	20.4	0	0	1.80	2.15	
BH01											0.36	11.30	1
BH02A													2
BH03	1019	17.3	0.0	0.0	0.0	0.0	0.0	20.8	0	0	1.74	13.10	
BH06											0.10	10.65	1

Notes

1 Borehole flooded and not gas monitored 2 Could not locate

1% gas volume = 10,000 ppm

Flow rate, methane and carbon dioxide reported as 'maximum' (max) and 'steady state' (SS) readings. All other gases recorded at 'steady state' unless otherwise stated

Curtins

Logged by

SH

073983-CUR-00-XX-RP-GE-002 West Cumberland Hospital

Ground Investigation Report

Appendix F – GAC Screening Thresholds

Adopted Soil Generic Assessment Criteria Sandy loam with 6% SOM

Sandy loam with 6% SOM						
Contaminants	Residential with	Residential without	Allotments	Commercial	Public open space	Public park
	home grown	home grown			near residential	POSpark
	produce	produce			housing POS _{resi}	
Metals						
Beryllium	1.7	1.7	35	12	2.2	63
Boron	290	11,000	45	240,000	21,000	46,000
Cadmium	10 ⁽¹³ 22	85 ⁽¹³ 150	1.8 <u>3.9</u>	230 <u>410</u>	120 <u>220</u>	560 <u>880</u>
Chromium III Chromium VI	910 6 <u>21</u>	910 6 <u>21</u>	18,000 1.8 <u>170</u>	8,600	1,500 7.7 <u>21</u>	<i>33,000</i> 220 <u>250</u>
Lead	200	<u>310</u>	<u>80</u>	<i>33 <u>49</u> <u>2,300</u></i>	<u>630</u>	<u>1,300</u>
Mercury (elemental)	1	1	<u>26</u>	26	16	26 ⁽⁸ [<i>30</i>]
Mercury (inorganic)	170	240	80	3600	120	240
Nickel	130 (10	180 (10	53 ⁽¹¹	980 ⁽¹⁰	230	800
Vanadium	410	1200	91	9000	2000	5000
Copper	2400	7100	520	68000	12000	44000
Zinc	3700	40000	620	730000	81000	170000
Semi-Metals and non-metals	40	(10	(10)	(10		
Arsenic	32 ⁽¹² <u>37</u>	35 ⁽¹² 40	43 ⁽¹² <u>49</u>	640 ⁽¹² 640	79 <u>79</u>	<i>170</i> <u>170</u>
Antimony	250	550	100	7500	1500	3300
Selenium Inorganic chemicals	350	600	120	13000	1100	1800
Cyanide	34	34	34	34	34	34
Organic contaminants						
Aliphatic risk banded hydrocarbons - TPHCWG method						
$EC_{>5} - EC_6$	160	160	3900	12000	600000	180000
$EC_{>6} - EC_8$	530	530	13000	40000	620000	320000
$EC_{>8} - EC_{10}$	150	150	1700	11000	13000	21000
EC ₁₀ -EC ₁₂	760	770	7300	47000	13000	24000
EC ₁₂ -EC ₁₆	4300	4400	13000	90000	13000	26000
EC _{>16} - EC ₃₅	110000	110000	270000	1800000	250000	490000
EC> ₃₅ - EC ₄₄ Aromatic risk banded hydrocarbons - TPHCWG method	110000	110000	270000	1800000	250000	490000
EC>5 - EC7	300	1400	57	86000	56000	92000
$EC>_7 - EC_8$	660	3900	120	180000	56000	100000
EC ₅₈ - EC ₁₀	190	270	51	17000	5000	9300
$EC_{10} - EC_{12}$	380	1200	74	34000	5000	10000
EC ₁₂ - EC ₁₆	660	2500	130	38000	5000	10000
$EC_{>16} - EC_{21}$	930	1900	260	28000	3800	7800
$EC_{>21} - EC_{35}$	1700	1900	1600	28000	3800	7900
EC>35 - EC44	1700	1900	1600	28000	3800	7900
Aliph + Arom EC >44-70	1900	1900	3000	28000	3800	7900
Aromatic Benzene	0.33 <u>0.87</u>	1.0 <u>3.3</u>	0.07 <u>0.18</u>	95 <u>98</u>	<i>73</i> <u>140</u>	110 <u>230</u>
Ethyl benzene	350	840	90	2800 ⁽⁸ [66000]	2800 ⁽⁸ [<i>25000</i>]	2800 ⁽⁸ [<i>27000</i>]
Toluene	610	2700	120	4400 ⁽⁸ [190000]	4400 ⁽⁸ [<i>56000</i>]	4400 ⁽⁸ [<i>100000</i>]
Xylene ⁽⁹	230	290	160	2600 ⁽⁸ [32000]	2600 ⁽⁸ [<i>43000</i>]	2600 ⁽⁸ [<i>31000</i>]
Phenol	420	520	280	3200 ⁽¹⁴ (38000)	3200 ⁽¹⁴ (<i>10000</i>)	3200 ⁽¹⁴ (<i>9300</i>)
Polycyclic Aromatic Hydrocarbons (PAH)	-120	520	200	(00000)	(10000)	(0000)
Naphthalene	13	13	24	1100	4900	3000
Acenaphthylene	920	6000	160	100000	15000	30000
Acenaphthene	1100	6000	200	100000	15000	30000
Fluorene Phenanthrene	860 440	4500 1500	160 90	71000 23000	9900 3100	20000 6300
Anthracene	11000	37000	90 2200	23000 540000	74000	150000
Fluoranthene	890	1600	290	23000	3100	6400
Pyrene	2000	3800	620	54000	7400	15000
Benz(a)anthracene	13	15	13	180	29	62
Chrysene Repro/b/fuerenthene	27	32	19	350	57	120
Benzo(b)fluoranthene Benzo(k)fluoranthene	3.7 100	4.0 110	3.9 130	45 1200	7.2 190	16.0 440
Benzo(a)pyrene	3.0 5.0	3.2 <u>5.3</u>	3.5 <u>5.7</u>	36 <u>77</u>	5.7 <u>10</u>	13 <u>21</u>
Indeno(123cd)pyrene	41	46	39	510	82	180
Dibenzo(ah)anthracene	0.3	0.32	0.43	3.6	0.58	1.4
Benzo(ghi)perylene	350	360	640	4000	640	1600
Chlorinated Aliphatic Hydrocarbons	0.0014	0.0015	0.0010	0.10	25	E 4
Vinyl chloride Trichloroethene (TCE)	0.0014 0.075	0.0015 0.08	0.0018 0.21	0.12 5.7	3.5 120	5.4 120
1,1,1,2 Tetrachlorethane	6.4	8.2	4.4	560	1400	2100
Tetrachlorethene (PCE)	0.90	0.92	3.6	95	1400	1500
1,1,1 Trichlorethane	39	40	240	3000	140000	100000
.,.,.	50		- 10			100000

Notes 1. All values above are in mg/kg

2. Numbers in bold are SCVs or GAC that are derived based on SGV report input parameters, numbers in italics are S4ULs, numbers in bold-italics are based on EIC/AGS/CL:AIRE numbers & input parameters and underlined numbers are C4SLs

3. Soil organic matter (SOM) is assumed to be 6% - DEFAULT VALUE

4. Soil type is assumed to be sandy loam - DEFAULT SOIL TYPE

5. For residential, the building type is conservatively assumed to be a small terrace house where the development includes bungalows change to more conservative bungalow setting in computer model

6. For commercial, the building type is conservatively assumed to be a pre 1970s office building, where the proposed development comprises houses, flat with living spaces changes setting in model accordingly

7. For classrooms consider increasing the dust loading fator in the 'Soil and Building Data' of the CLEA 1.04 model from 50 to 100µg m⁻³

8. Based on vapour saturation limt as suggested by EA / [] model value

9. Lowest of o-, m- and p-xylene

10. Based on comparison of inhalation exposure with inhalation TDI

11. Based on comparison of oral, dermal, and inhalation exposure with the oral TDI

12. Based on a comparison of oral and dermal soil exposure with oral Index Dose only

13. Averaged over and based on lifetime exposure

14. Based on critical concentration for skin irritation in humans arising from contact with phenol in aqueous solution (number in brackets based on health effects following long term exposure for illustration)

15. NA: Not applicable

Adopted Soil Generic Assessment Criteria Sandy loam with 2.5% SOM

Sandy Ioan wit	II 2.5 /8 50W					
Contaminants	Residential <u>with</u> home grown produce	Residential <u>without</u> home grown produce	Allotments	Commercial	Public open space near residential housing POS _{resi}	Public park POS _{park}
Metals						
Beryllium	1.7	1.7	35	12	2.2	63
Boron	290	11.000	45	240,000	21,000	46,000
Cadmium	10 ⁽¹³ 22	85 ⁽¹³ 150	1.8 <u>3.9</u>	230 410	120 220	560 <u>880</u>
Chromium III	910	910	18,000	8.600	1,500	33,000
Chromium VI	6 <u>21</u>	6 <u>21</u>	1.8 <u>170</u>	33 <u>49</u>	7.7 <u>21</u>	220 <u>250</u>
Lead	200	310	80	2,300	630	1,300
Mercury (elemental)	1	1	26	26	16	26 ⁽⁸ [<i>30</i>]
Mercury (inorganic)	170	240	80	3600	120	240
Nickel	130 (10	180 ⁽¹⁰	53 ⁽¹¹	980 ⁽¹⁰	230	800
Vanadium	410	1200	91	9000	2000	5000
Copper	2400	7100	520	68000	12000	44000
Zinc	3700	40000	620	730000	81000	170000
Semi-Metals and non-metals						
Arsenic	32 ⁽¹² 37	35 ⁽¹² 40	43 ⁽¹² 49	640 ⁽¹² 640	<i>79</i> <u>79</u>	<i>170</i> <u>170</u>
Antimony	_	550		7500	1500	3300
Selenium	350	600	120	13000	1100	1800
Inorganic chemicals						
Cyanide	34	34	34	34	34	34
Organic contaminants						
Aliphatic risk banded hydrocarbons - TPHCWG method						
EC _{>5} - EC ₆	78	78	1700	5900	590000	130000
EC_56 - EC8	230	230	5600	17000	610000	220000
EC _{>8} - EC ₁₀	65	65	770	4800	13000	18000
EC ₁₀ -EC ₁₂	330	330	4400	23000	13000	23000
EC ₁₂ -EC ₁₆	2400	2400	13000	82000	13000	25000
EC _{>16} - EC ₃₅	92000	92000	270000	1700000	250000	480000
EC> ₃₅ - EC ₄₄	92000	92000	270000	1700000	250000	480000
Aromatic risk banded hydrocarbons - TPHCWG method						
$EC>_5 - EC_7$	140	690	27	46000	56000	84000
EC>7 - EC8	290	1800	51	110000	56000	95000
EC _{>8} - EC ₁₀	83	110	21	8100	5000	8500
EC ₁₀ - EC ₁₂	180	590	31	28000	5000	9700
EC ₁₂ - EC ₁₆	330	2300	57	37000	5100	10000
$EC_{>16} - EC_{21}$	540	1900	110	28000	3800	7700
$EC_{>21} - EC_{35}$	1500	1900	820 800	28000	3800	7800
EC> ₃₅ - EC ₄₄	1500	1900	820	28000	3800	7800
Aliph + Arom EC >44-70 Aromatic	1800	1900	2100	28000	3800	7800
Benzene	0.16	0.49	0.035	50	72	100
		380	39	1200 ⁽⁸ [35000]	1200 ⁽⁸ [24000]	1200 ⁽⁸ [22000]
Ethyl benzene	150				1900 ⁽⁸ [<i>56000</i>]	1900 ⁽⁸ [<i>95000</i>]
Toluene	270	1300	51	1900 ⁽⁸ [110000]		
Xylene ⁽⁹	98	120	70	1200 ⁽⁸ [14000]	1200 ⁽⁸ [42000]	1200 ⁽⁸ [23000]
Phenol	290	420	140	1500 ⁽¹⁴ (35000)	1500 ⁽¹⁴ (<i>10000</i>)	1500 ⁽¹⁴ (<i>8300</i>)
Polycyclic Aromatic Hydrocarbons (PAH)						
Naphthalene	5.6	5.6	10	460	4900	1900
Acenaphthylene	420	4600	69	97000	15000	30000
Acenaphthene	510	4700	85	97000	15000	30000
Fluorene	400	3800	67	68000	9900	20000
Phenanthrene	220	1500	38	22000	3100	6200
Anthracene	5400	35000	950	540000	74000	150000
Fluoranthene	560	1600	130	23000	3100	6300
Pyrene	1200	3800	270	54000	7400	15000
Benz(a)anthracene	11	14	6.5	170	29 57	56
Chrysene Denze (b) fuerenthene	22	31	9.4	350	57	110
Benzo(b)fluoranthene	3.3	4.0	2.1	44	7.2	15
Benzo(k)fluoranthene	93	110	75	1200	190	410
Benzo(a)pyrene	2.7	3.2	2	35	5.7	12
Indeno(123cd)pyrene	36	46	21	510	82	170
Dibenzo(ah)anthracene	0.28	0.32	0.27	3.6	0.57	1.3
Benzo(ghi)perylene	340	360	470	4000	640	1500
Chlorinated Aliphatic Hydrocarbons	0.00097	0.001	0.001	0.077	25	F
Vinyl chloride Trichloroethene (TCE)	0.00087 0.034	0.001 0.036	0.001 0.091	0.077	3.5 120	5 91
				2.6 250		
1,1,1,2 Tetrachlorethane	2.8	3.5	1.9 1.5	250 42	1400	1800
Tetrachlorethene (PCE)	0.39	0.4	1.5	42	1400	1100
1,1,1 Trichlorethane	18	18	110	1300	140000	76000

Notes

1. All values above are in mg/kg

Numbers in bold ar SQVs or GAC that are derived based on SQV report input parameters, numbers in italics are S4ULs, numbers in bold-italics are based on EIC/AGS/CL:AIRE numbers & input parameters and underlined numbers are C4SLs
 Soil organic matter (SOM) is assumed to be 2.5% - DEFAULT VALUE

4. Soil type is assumed to be sandy loam - DEFAULT SOIL TYPE

5. For residential, the building type is conservatively assumed to be a small terrace house where the development includes bungalows change to more conservative bungalow setting in computer model

6. For commercial, the building type is conservatively assumed to be a pre 1970s office building, where the proposed development comprises houses, flat with living spaces changes setting in model accordingly

7. For classrooms consider increasing the dust loading fator in the 'Soil and Building Data' of the CLEA 1.04 model from 50 to 100µg m⁻³

8. Based on vapour saturation limt as suggested by EA / [] model value

9. Lowest of o-, m- and p-xylene

10. Based on comparison of inhalation exposure with inhalation TDI

11. Based on comparison of oral, dermal, and inhalation exposure with the oral TDI

12. Based on a comparison of oral and dermal soil exposure with oral Index Dose only

13. Averaged over and based on lifetime exposure

14. Based on critical concentration for skin irritation in humans arising from contact with phenol in aqueous solution (number in brackets based on health effects following long term exposure for illustration)

15. NA: Not applicable

Adopted Soil Generic Assessment Criteria Sandy loam with 1% SOM

Sandy loam with 1% SOM						
Contaminants	Residential with	Residential without	Allotments	Commercial	Public open space	Public park
	home grown produce	home grown produce			near residential housing POS _{resi}	POSpark
Metals		•			0 1001	
Beryllium	1.7	1.7	35	12	2.2	63
Boron	290	11,000	45	240,000	21,000	46,000
Cadmium	10 ⁽¹³ 22	85 ⁽¹³ 150	1.8 <u>3.9</u>	230 <u>410</u>	120 <u>220</u>	560 <u>880</u>
Chromium III	910	910	18,000	8,600	1,500	33,000
Chromium VI	6 <u>21</u>	6 <u>21</u>	1.8 <u>170</u>	<i>33</i> <u>49</u>	7.7 <u>21</u>	220 <u>250</u>
Lead	200	310	80	2,300	630	1,300
Mercury (elemental)	1	1	26	26	16	26 ⁽⁸ [30]
Mercury (inorganic)	170	240	80	3600	120	240
	130 (10	180 ⁽¹⁰	53 ⁽¹¹	980 ⁽¹⁰	230	
Nickel Vanadium	410	1200	91	9000	2000	800 5000
Copper	2400	7100	520	68000	12000	44000
Zinc	3700	40000	620	730000	81000	170000
Semi-Metals and non-metals	5700	40000	020	700000	01000	170000
Arsenic	32 ⁽¹² <u>37</u>	35 ⁽¹² <u>40</u>	43 ⁽¹² <u>49</u>	640 ⁽¹² 640	<i>79</i> <u>79</u>	<i>170</i> <u>170</u>
Antimony	32 <u>37</u>	550	4 3 <u>43</u>	7500	1500	3300
Selenium	350	600	120	13000	1100	1800
Inorganic chemicals	000	000	120	10000	1100	1000
Cyanide	34	34	34	34	34	34
Organic contaminants						
Aliphatic risk banded hydrocarbons - TPHCWG method						
EC _{>5} - EC ₆	42	42	730	3200	570000	95000
EC _{>6} - EC ₈	100	100	2300	7800	600000	150000
$EC_{>8} - EC_{10}$	27	27	320	2000	13000	14000
EC ₁₀ -EC ₁₂	130	130	2200	9700	13000	21000
EC ₁₂ -EC ₁₆	1100	1100	11000	59000	13000	25000
EC ₁₆ - EC ₃₅	65000	65000	260000	1600000	250000	450000
$EC_{>16} - EC_{35}$ $EC_{>35} - EC_{44}$	65000	65000	260000	1600000	250000	450000
Aromatic risk banded hydrocarbons - TPHCWG method	05000	05000	200000	1000000	230000	450000
EC>5 - EC7	70	370	13	26000	56000	76000
EC>7 - EC8	130	860	22	56000	56000	87000
$EC_{>8} - EC_{10}$	34	47	8.6	3500	5000	7200
EC ₁₀ - EC ₁₂	74	250	13	16000	5000	9200
EC ₁₂ - EC ₁₆	140	1800	23	36000	5100	10000
EC _{>16} - EC ₂₁	260	1900	46	28000	3800	7600
EC _{>21} - EC ₃₅	1100	1900	370	28000	3800	7800
EC> ₃₅ - EC ₄₄	1100	1900	370	28000	3800	7800
Aliph + Arom EC >44-70	1600	1900	1200	28000	3800	7800
Aromatic	1000	1300	1200	20000	5000	7000
Benzene	0.08	0.3	0.017	28	72	90
Ethyl benzene	65	170	16	520 ⁽⁸ [17000]	520 ⁽⁸ [24000]	520 ⁽⁸ [17000]
Toluene	120	610	22	860 ⁽⁸ [59000]	860 ⁽⁸ [56000]	860 ⁽⁸ [87000]
Xylene ⁽⁹	41	53	28	480 ⁽⁸ [69000]	480 ⁽⁸ [41000]	480 ⁽⁸ [17000]
-				760 ⁽¹⁴ (31000)		
Phenol Polycyclic Aromatic Hydrocarbons (PAH)	180	310	66	/00 (31000)	760 ⁽¹⁴ (10000)	760 ⁽¹⁴ (7600)
Polycyclic Aromatic Hydrocarbons (PAH) Naphthalene	2.3	2.3	4.1	190	4900	1200
Acenaphthylene	2.3	2.3	4.1 28	83000	4900 15000	29000
Acenaphthene	210	3000	20 34	84000	15000	29000
Fluorene	170	2800	27	63000	9900	20000
Phenanthrene	95	1300	15	22000	3100	6200
Anthracene	2400	31000	380	520000	74000	150000
Fluoranthene	280	1500	52	23000	3100	6300
Pyrene	620	3700	110	54000	7400	15000
Benz(a)anthracene	7.2	11	2.9	170	29	49
Chrysene	15	30	4.1	350	57	93
Benzo(b)fluoranthene	2.6	3.9	0.99	44	7.1	13
Benzo(k)fluoranthene	77	110	37	1200	190	370
Benzo(a)pyrene	2.2	3.2	0.97	35	5.7	11
Indeno(123cd)pyrene	27	45	9.5	500	82	150
Dibenzo(ah)anthracene	0.24	0.31	0.14	3.5	0.57	1.1
Benzo(ghi)perylene	320	360	290	3900	640	1400
Chlorinated Aliphatic Hydrocarbons Vinyl chloride	0.00064	0.00077	0.00055	0.059	3.5	4.8
Trichloroethene (TCE)	0.00064 0.016	0.0077	0.00055 0.041	0.059 1.2	3.5 120	4.8 70
1,1,1,2 Tetrachlorethane	1.2	1.5	0.041	1.2	1400	1500
Tetrachlorethene (PCE)	0.18	0.18	0.79	19	1400	810
1,1,1 Trichlorethane	8.8	9	48	660	14000	57000
.,.,	0.0	0		000	170000	57000

Notes

1. All values above are in mg/kg

2. Numbers in bold are SGVs or GAC that are derived based on SGV report input parameters, numbers in italics are S4ULs, numbers in bold-italics are based on EIC/AGS/CL:AIRE numbers & input parameters and underlined numbers are C4SLs

parameters and <u>underlined numbers are C4SLs</u>3. Soil organic matter (SOM) is assumed to be 1% - DEFAULT VALUE

4. Soil type is assumed to be sandy loam - DEFAULT SOIL TYPE

5. For residential, the building type is conservatively assumed to be a small terrace house where the development includes bungalows change to more conservative bungalow setting in computer model

6. For commercial, the building type is conservatively assumed to be a pre 1970s office building, where the proposed development comprises houses, flat with living spaces changes setting in model accordingly

7. For classrooms consider increasing the dust loading fator in the 'Soil and Building Data' of the CLEA 1.04 model from 50 to 100 μ g m⁻³

8. Based on vapour saturation limt as suggested by EA / [] model value

9. Lowest of o-, m- and p-xylene

10. Based on comparison of inhalation exposure with inhalation TDI

11. Based on comparison of oral, dermal, and inhalation exposure with the oral TDI

12. Based on a comparison of oral and dermal soil exposure with oral Index Dose only

13. Averaged over and based on lifetime exposure

14. Based on critical concentration for skin irritation in humans arising from contact with phenol in aqueous solution (number in brackets based on health effects following long term exposure for illustration)

15. NA: Not applicable

Ground Investigation Report

Appendix G - Risk Assessment Methodology

The site-specific risk assessment, presented in this report, follows the principle of establishing whether there is a viable linkage between a contaminant source to a potential receptor, via an exposure pathway.

The risk assessment corresponds with the total site area and incorporates both descriptive (qualitative) and, where available, numerical (quantitative) lines of evidence.

Risk assessment is the process of collating known information on a hazard or set of hazards to estimate actual or potential risk to receptors. The receptor may be humans, a water resource, a sensitive local ecosystem or future construction materials. Receptors can be connected to the source by one or several exposure pathways such as direct contact for example. Risks are generally managed by isolating the receptor or intercepting the exposure pathway or by isolating or removing the hazard.

Without the three essential components of a source, pathway and receptor there can be no risk. Therefore, the presence of contaminant source on a site does not necessarily mean there is a risk.

The risk assessment considers the likelihood of an event taking place (accounting for the presence of the source and receptor and the viability of the exposure pathway) in conjunction with the severity of the potential consequence (accounting for the potential severity of the hazard and the sensitivity of the receptor).

In the risk assessment, the consequence of the hazard has been classified as severe or medium or mild or minor and the probability (likelihood) of the circumstances occurring classified as high likelihood or likely or low likelihood or unlikely.

The consequences and probabilities are subsequently cross-correlated to give a qualitative estimation of the risk using Department of the Environment risk classifications as detailed in the table below and as referenced in CIRIA C552.

			Consequence					
		Severe	Medium	Mild	Minor			
(()	High Likelihood	Very High Risk	High Risk	Moderate Risk	Moderate/Low Risk			
Probability (Likelihood)	Likely	High Risk	Moderate Risk	Moderate/Low Risk	Low Risk			
Probabili ikelihoo	Low Likelihood	Moderate Risk	Moderate/Low Risk	Low Risk	Very Low Risk			
н -)	Unlikely	Moderate/Low Risk	Low Risk	Very Low Risk	Very Low Risk			

Ground Investigation Report

In accordance with DoE guidance, the following categorisation of **consequence** has been developed.

Classification	Definition	Examples
Severe	Short-term (acute) risk to human health likely to result in "significant harm" as defined by the Environment Protection Act 1990, Part IIA. Short-term risk of pollution of sensitive water resource. Catastrophic damage to buildings/property. A short-term risk to an ecosystem or organisation forming part of such ecosystem.	 High concentrations of cyanide on the surface of an informal recreation area. Major spillage of contaminants from site into controlled water. Explosion, causing building collapse (can also equate to a short-term human health risk if buildings are occupied).
Medium	Chronic damage to Human Health. Pollution of sensitive water resources. A significant change in an ecosystem or organism forming part of such ecosystem.	Concentration of a contaminant from site exceeds the generic or site-specific assessment criteria. Leaching of contaminants from a site to a Principal or Secondary A aquifer. Death of a species within a designated nature reserve. Lesser toxic and asphyxiate effects
Mild	Pollution of non-sensitive water resources. Significant damage to crops, buildings, structures and services. Damage to sensitive buildings/structures/services or the environment.	Pollution of non-classified groundwater (inc. Secondary B aquifers). Damage to building rendering it unsafe to occupy (e.g. foundation damage resulting in instability).
Minor	Harm, although not necessarily significant harm, which may result in a financial loss or expenditure to resolve. Non-permanent health effects to human health (easily prevented by means such as personal protective clothing, etc). Easily repairable effects of damage to buildings, structures and services.	The presence of contaminants at such concentrations that protective equipment is required during site works. The loss of plants in a landscaping scheme. Discoloration of concrete.

Ground Investigation Report

In accordance with DoE guidance, the following categorisation of **probability** has been developed.

Classification	Definition
High Likelihood	There is a pollution linkage and an event that either appears very likely in the short term and almost inevitable over the long term or there is evidence at the receptor of harm or pollution.
Likely	There is a pollution linkage and all the elements are present and in the right place, which means that it is probable that an event will occur. Circumstances are such that an event is not inevitable, but possible in the short term and likely over the long term.
Low Likelihood	There is a pollution linkage and circumstances are possible under which an event could occur. However, it is by no means certain that even over a longer period such event would take place, and is less likely in the shorter term.
Unlikely	There is a pollution linkage but circumstances are such that it is improbable that an event would occur even in the very long term.

In accordance with DoE guidance, the following categorisation of **risk** has been developed.

Classification	Definition
Very High Risk	There is a <i>high probability</i> that <i>severe harm</i> could arise to a designated receptor from an identified hazard at the site without appropriate further action.
High Risk	<i>Harm</i> is <i>likely to arise</i> to a designated receptor from an identified hazard at the site without appropriate further action.
Moderate Risk	<i>It is possible</i> that without appropriate further action <i>harm could arise</i> to a designated receptor. It is relatively <i>unlikely</i> that any such harm would be <i>severe</i> , and if any harm were to occur it is <i>more likely</i> that such harm would be <i>relatively mild</i> .
Low Risk	<i>It is possible</i> that <i>harm could arise</i> to a designated receptor from an identified hazard. It is <i>likely</i> that, at worst, if any harm was realised any effects would be <i>mild</i> .
Very Low Risk	The presence of an identified hazard does not give rise to the potential to cause harm to a designated receptor.

The term 'risk' in this instance refers to the risk that the source, pathway, receptor linkage for a given source of contamination is complete. It does not refer to immediate risk to individuals or features present on the site from potential contaminants and is intended to be used as a tool to assess the necessity of further investigation.

Our Locations

Birmingham

2 The Wharf Bridge Street Birmingham B1 2JS T. 0121 643 4694 birmingham@curtins.com

Bristol

Quayside 40-58 Hotwell Road Bristol BS8 4UQ T. 0117 302 7560 bristol@curtins.com

Cambridge

50 Cambridge Place Cambridge CB2 1NS T. 01223 631 799 cambridge@curtins.com

Cardiff

3 Cwrt-y-Parc Earlswood Road Cardiff CF14 5GH T. 029 2068 0900 cardiff@curtins.com

Douglas

Varley House 29-31 Duke Street Douglas Isle of Man IM1 2AZ T. 01624 624 585 douglas@curtins.com

Dublin

39 Fitzwilliam Square Dublin 2 Ireland T. 00353 1 507 9447 dublin@curtins.com

Edinburgh

1a Belford Road Edinburgh EH4 3BL T. 0131 225 2175 edinburgh@curtins.com

Glasgow

Queens House 29 St Vincent Place Glasgow G1 2DT T. 0141 319 8777 glasgow@curtins.com

Kendal 28 Lowther Street Kendal Cumbria LA9 4DH T. 01539 724 823 kendal@curtins.com

Leeds

Rose Wharf Ground Floor Leeds L29 8EE T. 0113 274 8509 leeds@curtins.com

Liverpool

51-55 Tithebarn Street Liverpool L2 2SB T. 0151 726 2000 liverpool@curtins.com

London

40 Compton Street London EC1V 0BD T. 020 7324 2240 Iondon@curtins.com

Manchester

Merchant Exchange 17-19 Whitworth Street West Manchester M1 5WG T. 0161 236 2394 manchester@curtins.com

Nottingham

56 The Ropewalk Nottingham NG1 5DW T. 0115 941 5551 nottingham@curtins.com

Curtins

Registered in England and Wales number: 2054159 Registered office: Curtin House, Columbus Quay, Riverside Drive, Liverpool L3 4DB